• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A review on 3d transition metal dilute magnetic REIn3 intermetallic compounds

    2022-03-12 07:49:50XinPengGuo郭新鵬YongQuanGuo郭永權(quán)LinHanYin殷林瀚andQiangHe何強(qiáng)
    Chinese Physics B 2022年3期

    Xin-Peng Guo(郭新鵬), Yong-Quan Guo(郭永權(quán)), Lin-Han Yin(殷林瀚), and Qiang He(何強(qiáng))

    School of Energy Power and Mechanical Engineering,North China Electric Power University,Beijing 102206,China

    Keywords: dilute magnetic intermetallic compounds, phase transition, magnetic properties, magnetic transport

    1. Introduction

    Over the last decades, the magnetic semiconductors have received much attention due to their potential application on spin-electronic devices by spin modulating electric transport.[1]According to the content of magnetic elements in semiconductor, two kinds of magnetic semiconductors are classified,which correspond to the concentrated magnetic semiconductor(CMS)and dilute magnetic semiconductor(DMS).The early study is mainly focused on EuX(X=O,Se) and CdCr2X4(X=S, Se) CMSs due to their unique ferromagnetic semiconductor characteristics.[2-5]Owing to the ferromagnetism in CMS, the band gap shows the red shift,which causes the exchange interaction between itinerant electrons and localized magnetic spins. However, the further development and application of CMS are restricted by their low Curie temperatures and complex preparation process.[6]Thus,the attention is changed to the magnetic atom/ion-doped IIIV,II-VI,IV-IV,and II-II-V group semiconductors.[7-15]The dilute magnetic semiconductor,which is formed by substituting minor magnetic ions for non-magnetic ions, has attracted much attention due to its excellent magnetic transport properties. In recent years, the novel chalcopyrite-based DMSs have been widely studied.[16]The room temperature ferromagnetism has been obtained in Cd1-xMnxGeP2,CuIn1-xCoxTe2,and Cr-doped CuZnSe2.[17-19]The ferromagnetism is suggested to originate from the spin-spin interactions of 3d transition metal.[19]The codoping of Co and Ce into CuInTe2induces the room temperature ferromagnetism. The magnetization of CuIn0.9CexCo0.1-xTe2is enhanced, which is ascribed to the exchanging interaction between 4f electron of Ce and 3d electron of Co. The high doping ratio of Co and Ce is beneficial for increasing saturation magnetization.[20]Mn-doped CuInSe2semiconductors show antiferromagnetic order with very low N′eel temperature.[21-23]CuIn1-xCoxSe2shows the superparamagnetism at room temperature.[24]

    In recent years, the interest has been growing in the rare earth-indium (REIn3) compounds with a cubic AuCu3-type crystal structure.[25-27]REIn3shows remarkable features,such as heavy fermion,antiferromagnetism,superconductivity at critical temperature or pressure,crystal field effects,Kondo effect, and multiaxial magnetic structures.[25,27-34]CeIn3belongs to a heavy fermion and shows unique magnetic and electric properties such as antiferromagnetic order at 10 K,superconductivity under applied high pressure, and Kondo effect.[35]GdIn3orders antiferromagnetically at 45 K, which is the highest N′eel temperature among theREIn3intermetallic compounds.[36]The crystal electrical-field (CEF) ground state is a singlet for the PrIn3intermetallic compound,its lowtemperature susceptibility is almost temperature-independent,but inversely proportional to the splitting energy of the excited states. The two electrons in the unfilled 4f shell of the Pr ions form a multiplet withJ=4, giving rise to a magnetic moment ofμBgJwithg=0.8. A remarkable feature of PrIn3is a large nuclear quadrupole interaction (e2qQ/h=+228 MHz)at In site.[37,38]Ndln3is a typical 4f-localized intermetallic compound with a N′eel temperature below 5.9 K.With the increasing external magnetic field,the magnetic transformation from the antiferromagnetic to paramagnetic occurs.[39]HoIn3orders antiferromagnetically at 10.5 K and its magnetic structure is suggested to be multiaxial. The potential application of HoIn3as a regenerator material is also expected since its abnormal heat capacity is associated with the antiferromagnetic transition in the temperature range of 4 K-10 K.[40]

    The dilute magnetic intermetallic compounds (DMIC)can be obtained by doping minor 3d transition metal(Co,Mn or Fe) into intermetallics.[41,42]Mn-doped EuMn0.3Ga2.7orders ferromagnetically at room temperature under applying a low field of 40 Oe (1 Oe=79.5775 A/m).[43]As for the dilute magneticREIn3, the studies mainly focus on the doping effects on the structure and magnetic properties at In site orREsite.[31,44,45]It is well known that the 3d transition metals play an important role in magnetic materials due to their significant contributions to the magnetization and magnetic anisotropy by coupling with 4f electrons of the rare-earth.[46]Since the pure Co is strongly ferromagnetic, it is expected to improve the magnetic property ofREIn3by doping minor Co. Doping of Co intoREIn3(RE=Pr, Nd,) induces a giant magnetic effect with Curie temperature more than room temperature.[36,38]The giant moment originates from the partial substitution of non-magnetic element In by magnetic element Co in the host material, and thus, a net moment is produced. The ferromagnetism is caused by the spin-spin interactions between Co and Co or Co andRE.

    The objective of this paper is to introduce a brief review on minor doping of 3d transition metalTintoREIn3intermetallic compounds(RE=Pr,Nd,Gd,Ho;T=Co,Mn,and Fe). The transition of the structure and magnetic properties ofREIn3-xTxhave been systematically discussed.

    2. Structural stability

    As shown in Fig. 1,[36,38,47-51]all theREIn3alloys are single phase with a cubic AuCu3-type structure. The cubic structure is still stable by doping minor 3d transition metal intoREIn3. The single-phase region corresponds toREIn3xMnxwithx <0.3 andREIn3-xCoxwithx ≤0.1.However, the structural stability of cubic phase reduces with doping minor Fe intoREIn3.[47]The additional satellite peaks can be observed out of solid solution region ofREIn3-xCox. The satellite peaks can be indexed with a hexagonal CaIn2-type or GaGd2-type structure based on the structural refinement.[36,38,48,52]In element is detected out ofREIn3-xMnxsolid solution.[49]Doping minor Fe intoREIn3induces the decomposition of the cubic phase, and In is separated fromREIn3. With increasing Fe doping content, the metaphase is observed and its structural formula is suggested to beRE(In,Fe)2.[48]

    The crystallographic parameters ofREIn3-xTxare summarized in Table 1.[36,38,47-53]According to the structural refinements, the main phase ofREIn3-xTxcrystallizes into a cubic AuCu3-type structure with a space group ofPmˉ3m(as shown in Fig.2[52]).Two kinds of non-equivalent crystal positions are included in one unit cell.The atomic occupations correspond to the 1a(0,0,0)site forREatoms,and the 3c(1/2,1/2,0)site for In and transition metal Co,Mn or Fe atoms.

    Fig.1. XRD patterns of REIn3-xTx intermetallic compounds: (a)REIn3;(b)REIn3-xCox;(c)REIn3-xMnx;(d)REIn2.9Fe0.1. The figures are adapted from Refs.[36,38,47-51].

    Table 1. The crystal structure for REIn3-xTx alloys.

    Fig.2. The structural frame of cubic REIn3-xTx. The figure is adapted from Ref.[52].

    The structure of the metaphase is suggested as an isomorphic structure of CaIn2with a space group ofP63/mmc,Z=2 and GdGa2with a space group ofP6/mmm,Z=1. There are two non-equivalent crystal positions in a unit cell with CaIn2-type isomorphic structure,i.e.,2b(0,0,1/4)and 4f(1/3,2/3,z) crystal positions, which are occupied by 2REand 4(In,T)atoms,respectively. For GdGa2-type structure,the atomic occupations correspond to 1a(0,0,0)site forREatoms and 2d(1/3,2/3,1/2)site for In andTatoms,respectively. The lattice parameters of the main- and meta-phases are summarized in Tables 2 and 3.[47-50,52,53]

    Table 2. The lattice parameters of the main phase in REIn3-xTx.

    Table 3. The lattice parameters of the metaphase in REIn2-xTx.

    Since the pure binaryREIn2does not exist naturally,REIn2-xTxalloy is prepared for checking its single-phase with CaIn2-or GaGd2-type structure. However,the phase identification confirms that the single phaseREIn2-xTxdoes not exist at all. It implies thatRE(In, Co)2is metaphase, which might originate from the crystal growing defect and separate from the cubic phase.The phase separation inREIn3-xCoxis suspected to be driven by the lattice distortion originated from the atomic size effect. The substitution of Co for In could cause a large lattice distortion and thus induces the structural reconstruction from cubicREIn3-xCoxto hexagonalREIn2-xCox. The projections of two structures reveal the mechanism of phase separation from the cubicREIn3to hexagonalREIn2-xCox. The reconstruction originates from the rotation of(In,Co)6 hexagonal ring, comparing to the projection of cubicREIn3along[111] direction, the structural skeleton ofRE(In, Co)2could be formed by rotating the (In, Co)6 hexagonal ring with an angle of 30°along[111]direction,as shown in Fig.3.[36]

    Fig. 3. The projection of cubic phase along [111] direction in REIn3 and hexagonal phase along [001] direction in RE(In, Co)2. The figures are adapted from Ref.[36].

    The atomic size can directly influence the crystal structures of materials. The phase transition and lattice distortion inREIn3-xTxmight be driven by the atomic size effect. Since the atomic radii of Co(1.25 °A),Mn(1.32 °A),and Fe(1.24 °A)are quite different from that of In(1.66 °A)or rare-earth atoms(more than 1.74 °A).The doping of Co,Mn or Fe induces large lattice distortion.

    In order to discuss the effect of atomic size on the structural stability ofREIn3-xTxcubic phase, the effective atomic radius ratio is defined betweenREand (In, Co),REand (In,Mn),as well asREand(In,Fe).[47]

    The effective atomic radius ratio equation ofREIn3is

    RA,rR,〈rIn,M〉are the effective atomic radius ratio,the atomic radius ofRE, and the average atomic radius of In and transition metal(Co,Mn or Fe)respectively.

    Table 4 shows the effective atomic radius ratio ofREIn3-xMxcompounds.[47-52]It implies that the cubic phase can be stabilized inRA<1.09 forREIn3-xCoxandRA<1.10 forREIn3-xMnx,respectively.

    The electro-negativity difference between (In,M) and rare earth is also considered as a correlative criterion for the structural stability of the cubic phase. It is defined forREIn3

    whereXIn,XRE, andXMare corresponding to the electronegativity of In, rare earth, and 3d transition metal, respectively.

    The calculated electro-negativity differences show that the cubic phase ΔXranging from 0.384 to 0.397 forREIn3-xCoxand from 0.387 to 0.424 forREIn3-xMnx, as listed in Table 5.[47-52]

    Table 4. The effective atomic radius ratios of REIn3-xTx alloys.

    Table 5. The electro-negativity differences of REIn3-xTx alloys.

    3. Magnetic properties

    According to the temperature dependence of magnetization, Mn-doped NdIn3-xMnx(x <0.3) cubic phase shows the paramagnetic property at room temperature, however, a weak ferromagnetic property is observed out of its singlephase region.[49]The antiferromagnetic order is observed inREIn3-xTx(RE=Nd, Pr, Gd;T=Mn, Co)intermetallics in low-temperature region. Mn doping into GdIn3causes the decrease of N′eel temperature from 42.10 K to 31.66 K due to the distortion of Gd(In, Mn)3tetrahedron formed by Gd at corners and (In, Mn) at face centers in the unit cell. The formation of the antiferromagnetic ordering might originate from the exchanging interaction between the unpaired 4f electron spin ofREand the surrounding conduction electrons at low temperature.[50]REIn2.9Co0.1(RE=Pr,Nd)shows low temperature antiferromagnetic order and room temperature ferromagnetic order with Curie temperature more than 523 K.[36,38]

    Table 6.Various magnetic properties for REIn3-xTx alloys.

    According to the studies on magnetic properties ofREIn3-xTx,[36,38,47-50,52]the magnetic properties are summarized in Table 6. The magnetizing mechanisms ofREIn3-xTxare different for the various magnetic phase, Langevin model[54]is usually used in the ferromagnetic region:

    whereMsis the saturation moment.

    This equation could be rewritten by the Taylor series expansion algorithm as Weiss model

    whereais a parameter related to the applied external field.

    In the region of the mixed ferromagnetic and paramagnetic phase,the magnetization curve follows an equation as

    where the first and second terms are the contributions to magnetization originating from the ferromagnetic and paramagnetic phases, respectively. The magnetization curves follow the three models in ferromagnetic, paramagnetic and mixture of ferromagnetic and paramagnetic regions, as shown in Fig.4.[36,47,48]

    Fig.4. The magnetizing curves of REIn3-xTx at room temperature,solid lines and scatters correspond to fitting and observed results,respectively. (a)NdIn3-xCox,(b)GdIn3-xCox,(c)GdIn3-xMnx,(d)REIn2.9Fe0.1 (RE=Pr,Nd,Gd,and Ho). The figures are adapted from Refs.[36,47,48].

    The magnetic properties ofREIn3-xCoxare sensitive to the Co doping content. With increasing Co content inREIn3-xCox, a mixture of ferromagnetic and paramagnetic phase is observed in NdIn3-xCox(x ≥0.2), PrIn3-xCox(x ≥0.2), respectively. The magnetic properties are strongly correlated to the phase structures. The magnetic transition from paramagnetic to ferromagnetic is caused by the phase separation of the hexagonal phaseREIn2-xCoxfrom cubic phase with increasing Co content. The saturation magnetic moment (Ms) also raises with the increase of Co contents inREIn3-xCox. The enhancement of magnetic moment ofREIn3-xCoxmight be due to the partial substitution of nonmagnetic element In by 3d transition metal Co in the host material and thus a net moment is produced. The evolution of magnetic phases inREIn3-xCoxmight result from the exchange interaction change from the one between the isolated Co spins with the surrounding conduction electrons in Copoor region to the one between Co-Co pairs mediated by the conduction electrons in Co-rich region.[36,38]The magnetizing behaviors ofREIn2.9Co0.1show complex magnetic properties at room temperature and follow a ferromagnetic model forRE= La and a mixed ferromagnetic and paramagnetic model forRE=Ce, Pr, Nd, Gd, Tb, Dy. The formation of ferromagnetic characteristic is suggested to result from the strong spin-spin interaction betweenREand Co. It implies that Co atoms play an important role in magnetic properties ofREIn2.9Co0.1.[55]The fitted and observedREIn3-xMnxexhibit paramagnetic property. The fitted susceptibilityχraises with increasing Mn contents inREIn3-xMnx. Fe doping intoREIn3induces the magnetic phase transition from paramagnetic to ferromagnetic.REIn3-xFexshows a mixture of paramagnetic and ferromagnetic properties. The ferromagnetism ofREIn3-xFexis suggested to be due to 3d-3d interactions between Fe atoms and 3d-s-4f indirect interactions between Fe and rare earth atoms mediated by the conducting s electron.[47]

    The electric transport ofREIn3-xMxis associated with its magnetic phase transition. It shows that the electric transition temperatures are very close to that of the antiferromagnetic transitions.[50]In Fig.5,the first electric phase transition might originate from the magnetic scattering induced by the antiferromagnetic ordering at low temperature, and the other one at low temperature might be induced by the 3d-3d interaction among the unpaired 3d electron spins of Mn at face center sites in a unit cell.

    Fig. 5. The correlation of the temperature dependences of the resistivity and the magnetization for GdIn2.9Mn0.1. Reproduced with permission from Ref.[50].

    whereρ0is the temperature-independent resistivity,Δis the spin-wave gap,Ais related to the spin-wave velocity.

    The model works for the experimental data in the temperature range ofT <0.6TN, as shown in Fig. 5. The spinwave gap goes up with increasing Mn content and induces the increase of electric resistivity.[50]It implies that the electric transport is related to the magnon-electron scattering in the antiferromagnetic ordering state.

    In the high temperature region,the Stoner spin fluctuation scattering model is listed below:

    whereρ1is the extrinsic resistivity, which is independent of the temperature.aandnare the scattering coefficient and temperature indices,respectively.

    The resistivity is suggested to be originated only from the Stoner spin fluctuation in high temperature region.ρ1goes up with increasing Mn contents due to the magnetic scattering effect induced by the 3d-4f magnetic interaction between Mn and Gd.TheaTnterm gives a good fit to the experimental data and probably originates from the phonon-electron scattering.It implies that the spin flip scattering is gradually suppressed by the phonon scattering with increasing temperature.

    4. Conclusion

    In this review, the studies on the structural stability and magnetic properties of dilute magneticREIn3-xTx(RE=Pr,Nd, Gd, and Ho;T= Co, Mn, and Fe) intermetallic compounds have been comprehensively summarized. Doping minor 3d transition metal Mn or Co intoREIn3can still stabilize the cubic phase with a space group ofPmˉ3m. In one unit cell,the 1acrystal position is fully occupied byREatoms and 3ccrystal position is simultaneously and disorderly occupied by In andTatoms. The single-phase regions of cubicREIn3-xTxcorrespond to the doping contentxranging from 0 to 0.3 forREIn3-xMnxand from 0 to 0.1 forREIn3-xCox. Fe doping causes the decomposition of cubic phase.The structural stability of the cubic phase is suggested to be related to the effective atomic radius ratioRAand electro-negativity difference ΔX.The metaphaseREIn2-xTxis separated from the cubic phase out of the single-phase solid solution region,which is formed by the rotation of the original (In,T)6 hexagonal ring driven byTpartly substitution for In.

    TheREIn3-xTxshows complex magnetic properties,which correspond to low temperature antiferromagnetic property forT= Mn and Co, room temperature ferromagnetic property forT=Co or Fe,and paramagnetic property at high temperature. The formation of the antiferromagnetic ordering might originate from the exchange interaction between the unpaired 4f electron spin ofREand the surrounding conduction electrons at low temperature. The formation of ferromagnetic characteristic is suggested to originate from the giant magnetic effect induced by doping strongly magnetic Fe or Co intoREIn3.The partial substitution of non-magnetic element In by strongly magnetic element in the host material through dilute dopants ofT, and thus, a net moment is produced. The ferromagnetism is caused by the spin-spin interactions betweenTandTorTandRE. The magnetic properties ofREIn3-xTxare sensitive toTcontent at room temperature. With the increasing contents of 3d transition metal,the magnetic phase ofREIn3-xTxalloys evolves from the initial paramagnetic state to an intermediated mixture of ferromagnetic and paramagnetic,and finally to ferromagnetic characteristics at room temperature.

    The electric transitions are associated with magnetic transitions. The magneto-transport is suggested to be due to the electron-magnon scattering at low temperature and the Stoner spin fluctuation at high temperature.

    www.www免费av| 天堂网av新在线| 国产成人一区二区在线| 亚洲成人久久性| 99久久精品热视频| 日本a在线网址| 亚洲欧美激情综合另类| 亚洲成av人片在线播放无| 久久精品91蜜桃| 精品一区二区免费观看| 亚洲va在线va天堂va国产| 蜜桃久久精品国产亚洲av| 老司机深夜福利视频在线观看| 一进一出抽搐gif免费好疼| 97超视频在线观看视频| 成人无遮挡网站| 亚洲男人的天堂狠狠| netflix在线观看网站| 22中文网久久字幕| 日韩强制内射视频| 人妻少妇偷人精品九色| 欧美最黄视频在线播放免费| 日韩一本色道免费dvd| 十八禁网站免费在线| a在线观看视频网站| 亚洲图色成人| 欧美最新免费一区二区三区| 国产主播在线观看一区二区| 最近最新免费中文字幕在线| 观看免费一级毛片| 动漫黄色视频在线观看| 国产av不卡久久| 亚洲四区av| 老女人水多毛片| 小说图片视频综合网站| www.色视频.com| 少妇猛男粗大的猛烈进出视频 | 淫秽高清视频在线观看| 99热这里只有是精品在线观看| 久久久久久久久中文| 波野结衣二区三区在线| 老女人水多毛片| 日韩高清综合在线| 在现免费观看毛片| 日韩 亚洲 欧美在线| 在线免费观看不下载黄p国产 | 动漫黄色视频在线观看| 日本五十路高清| 精华霜和精华液先用哪个| 午夜免费成人在线视频| 久久精品久久久久久噜噜老黄 | 国产熟女欧美一区二区| 精品久久久久久久久久久久久| 久久久久久久亚洲中文字幕| 午夜免费男女啪啪视频观看 | 成年女人永久免费观看视频| 亚洲成a人片在线一区二区| 国产亚洲精品综合一区在线观看| 久久国产乱子免费精品| 国产精品久久视频播放| 亚洲美女搞黄在线观看 | 内地一区二区视频在线| 国产精品久久久久久久久免| 欧美人与善性xxx| 色在线成人网| 国产91精品成人一区二区三区| 99久久精品热视频| 色哟哟哟哟哟哟| 成人三级黄色视频| 露出奶头的视频| 久久天躁狠狠躁夜夜2o2o| 一级黄片播放器| 99热精品在线国产| av天堂中文字幕网| 国内揄拍国产精品人妻在线| 精品免费久久久久久久清纯| 很黄的视频免费| 亚洲av成人精品一区久久| 日本成人三级电影网站| 97人妻精品一区二区三区麻豆| 精品一区二区免费观看| 免费高清视频大片| 亚洲欧美日韩卡通动漫| 国内精品久久久久久久电影| 婷婷亚洲欧美| 久久这里只有精品中国| 精品一区二区三区视频在线| 国产精品不卡视频一区二区| 亚洲美女视频黄频| 真人一进一出gif抽搐免费| 男女那种视频在线观看| 91久久精品电影网| 国国产精品蜜臀av免费| 韩国av在线不卡| 国产成人一区二区在线| 亚洲美女视频黄频| 成人av在线播放网站| 看片在线看免费视频| 婷婷精品国产亚洲av在线| 欧美一区二区亚洲| 又爽又黄a免费视频| 亚洲人成网站在线播放欧美日韩| 91久久精品国产一区二区三区| aaaaa片日本免费| 亚洲,欧美,日韩| 精品人妻1区二区| 亚洲国产欧洲综合997久久,| av在线老鸭窝| 男人和女人高潮做爰伦理| 欧美丝袜亚洲另类 | 12—13女人毛片做爰片一| 久久精品国产亚洲av香蕉五月| 色哟哟·www| 欧美成人a在线观看| 男人狂女人下面高潮的视频| 国产av麻豆久久久久久久| 动漫黄色视频在线观看| 国产精品一及| 露出奶头的视频| 99久久无色码亚洲精品果冻| 亚洲人与动物交配视频| 美女被艹到高潮喷水动态| 此物有八面人人有两片| 亚洲精品影视一区二区三区av| 最近最新中文字幕大全电影3| 欧美区成人在线视频| 日韩欧美精品v在线| a级一级毛片免费在线观看| 成人欧美大片| 国产黄片美女视频| av在线蜜桃| 3wmmmm亚洲av在线观看| a级毛片a级免费在线| 男女视频在线观看网站免费| 午夜爱爱视频在线播放| 久久精品国产99精品国产亚洲性色| 亚洲天堂国产精品一区在线| 18+在线观看网站| 亚洲中文字幕日韩| 久久久久久久久久黄片| 两人在一起打扑克的视频| 成人高潮视频无遮挡免费网站| 色综合亚洲欧美另类图片| 国产欧美日韩一区二区精品| 久久精品国产亚洲av涩爱 | 波野结衣二区三区在线| 亚洲成人中文字幕在线播放| 最新中文字幕久久久久| 国产伦在线观看视频一区| 欧美+日韩+精品| 免费看a级黄色片| 久久精品综合一区二区三区| 无人区码免费观看不卡| 国产精品99久久久久久久久| 日韩中字成人| 亚洲黑人精品在线| 欧美极品一区二区三区四区| 欧美绝顶高潮抽搐喷水| 亚洲精品成人久久久久久| 嫩草影院新地址| 亚洲成人久久爱视频| 黄色欧美视频在线观看| 人妻夜夜爽99麻豆av| 哪里可以看免费的av片| 人妻少妇偷人精品九色| 欧美最黄视频在线播放免费| 国产高清视频在线播放一区| 免费高清视频大片| bbb黄色大片| 在线播放无遮挡| 伦精品一区二区三区| 免费看光身美女| 亚洲精品成人久久久久久| 精品乱码久久久久久99久播| 哪里可以看免费的av片| 国产欧美日韩一区二区精品| 国产在视频线在精品| 一级黄色大片毛片| 99热网站在线观看| 最后的刺客免费高清国语| 亚洲精品乱码久久久v下载方式| 亚洲国产日韩欧美精品在线观看| 亚洲真实伦在线观看| 中文字幕熟女人妻在线| 亚洲国产色片| 中文字幕久久专区| 三级男女做爰猛烈吃奶摸视频| 一区福利在线观看| 少妇的逼好多水| 天天躁日日操中文字幕| 99在线视频只有这里精品首页| 欧美另类亚洲清纯唯美| 又黄又爽又免费观看的视频| 美女大奶头视频| 亚洲国产精品成人综合色| 亚洲不卡免费看| 成人特级黄色片久久久久久久| 欧美日韩中文字幕国产精品一区二区三区| 亚洲一区高清亚洲精品| 亚洲av二区三区四区| 国产精品人妻久久久影院| 午夜激情福利司机影院| 又黄又爽又免费观看的视频| 88av欧美| 久久久久性生活片| 少妇高潮的动态图| 深夜精品福利| 中文字幕精品亚洲无线码一区| 国产精品人妻久久久久久| 最新中文字幕久久久久| 99久久精品国产国产毛片| 色综合婷婷激情| 在线观看一区二区三区| 久久午夜亚洲精品久久| av在线亚洲专区| 草草在线视频免费看| 午夜精品久久久久久毛片777| 亚洲无线观看免费| 黄色女人牲交| 在线免费十八禁| 久久精品国产亚洲av涩爱 | 亚洲av中文字字幕乱码综合| 亚洲欧美日韩无卡精品| 天天躁日日操中文字幕| 可以在线观看毛片的网站| 日本色播在线视频| 亚洲欧美清纯卡通| 亚洲午夜理论影院| 婷婷六月久久综合丁香| 可以在线观看的亚洲视频| 久久久久久久久久成人| 我的女老师完整版在线观看| 婷婷精品国产亚洲av| 午夜福利在线在线| 一区二区三区四区激情视频 | 国产一区二区三区在线臀色熟女| 51国产日韩欧美| 欧美日本视频| 3wmmmm亚洲av在线观看| 在线观看午夜福利视频| 成人综合一区亚洲| 日日啪夜夜撸| 亚洲国产精品成人综合色| 国产 一区 欧美 日韩| 不卡一级毛片| 亚洲av日韩精品久久久久久密| 麻豆av噜噜一区二区三区| 国产精品一区二区三区四区免费观看 | 亚洲在线自拍视频| 日韩一本色道免费dvd| 观看美女的网站| 日本三级黄在线观看| 国产精品久久久久久久电影| 免费高清视频大片| 51国产日韩欧美| 国产成人一区二区在线| 国产精品久久久久久亚洲av鲁大| 舔av片在线| 亚洲人成网站在线播| 亚洲 国产 在线| 成人无遮挡网站| 日韩国内少妇激情av| 国产精品日韩av在线免费观看| 日韩欧美在线二视频| 亚洲真实伦在线观看| 美女cb高潮喷水在线观看| 亚洲va日本ⅴa欧美va伊人久久| 变态另类丝袜制服| 成人美女网站在线观看视频| 日韩精品有码人妻一区| 国产精品久久久久久久久免| 男人舔奶头视频| 毛片女人毛片| 色综合色国产| 亚洲av熟女| 亚洲精华国产精华液的使用体验 | 无遮挡黄片免费观看| 99精品久久久久人妻精品| 女同久久另类99精品国产91| 91久久精品国产一区二区成人| 91在线观看av| 男女边吃奶边做爰视频| 国产色爽女视频免费观看| 午夜a级毛片| 99热这里只有是精品在线观看| 国产女主播在线喷水免费视频网站 | 欧美黑人巨大hd| 亚洲性久久影院| 哪里可以看免费的av片| 又黄又爽又刺激的免费视频.| 五月伊人婷婷丁香| 夜夜夜夜夜久久久久| 不卡一级毛片| 亚洲七黄色美女视频| 中文在线观看免费www的网站| 搞女人的毛片| 国产探花在线观看一区二区| 国产免费一级a男人的天堂| 九色成人免费人妻av| 少妇人妻精品综合一区二区 | 国产精品三级大全| 国产色婷婷99| 五月玫瑰六月丁香| 亚洲在线自拍视频| 色吧在线观看| 亚洲图色成人| eeuss影院久久| 日本黄色片子视频| 久久人人精品亚洲av| 欧美xxxx性猛交bbbb| 永久网站在线| 久久久色成人| 日韩欧美 国产精品| 桃红色精品国产亚洲av| 在线观看66精品国产| 亚洲av熟女| 老司机深夜福利视频在线观看| 我要看日韩黄色一级片| 韩国av一区二区三区四区| 麻豆国产97在线/欧美| 精品一区二区三区av网在线观看| 久久中文看片网| 国产久久久一区二区三区| eeuss影院久久| 欧美中文日本在线观看视频| 亚洲成人精品中文字幕电影| 性欧美人与动物交配| 日日啪夜夜撸| 两人在一起打扑克的视频| 此物有八面人人有两片| 日本撒尿小便嘘嘘汇集6| 大型黄色视频在线免费观看| 1024手机看黄色片| 欧美日韩黄片免| 俺也久久电影网| 一级黄色大片毛片| 日韩高清综合在线| 亚洲第一区二区三区不卡| 日韩欧美精品免费久久| 亚洲成人免费电影在线观看| 亚洲五月天丁香| 伦理电影大哥的女人| 日本爱情动作片www.在线观看 | 无遮挡黄片免费观看| 97超级碰碰碰精品色视频在线观看| 成人国产一区最新在线观看| 99热6这里只有精品| 在线观看av片永久免费下载| 国产精品美女特级片免费视频播放器| 亚洲国产精品合色在线| 18禁黄网站禁片免费观看直播| 99久久精品热视频| 1024手机看黄色片| 真人做人爱边吃奶动态| 少妇被粗大猛烈的视频| 天天躁日日操中文字幕| 国产精品人妻久久久久久| 日韩欧美三级三区| 91麻豆av在线| 一区二区三区激情视频| 国产美女午夜福利| 亚洲三级黄色毛片| 国产不卡一卡二| 成人av在线播放网站| av在线亚洲专区| 久久精品国产清高在天天线| 午夜精品久久久久久毛片777| 国产成人一区二区在线| 国产精品国产三级国产av玫瑰| 久久精品国产亚洲网站| 免费无遮挡裸体视频| 日本精品一区二区三区蜜桃| 在线免费观看不下载黄p国产 | 精华霜和精华液先用哪个| 久久午夜亚洲精品久久| 内射极品少妇av片p| 国产精品一区二区三区四区久久| 99热精品在线国产| 欧美日韩中文字幕国产精品一区二区三区| 欧美高清成人免费视频www| 日韩强制内射视频| 国产亚洲精品av在线| 听说在线观看完整版免费高清| 韩国av一区二区三区四区| 乱人视频在线观看| 免费看光身美女| 久久6这里有精品| 国产精品不卡视频一区二区| 久久久久久久久久黄片| 禁无遮挡网站| 亚洲四区av| 欧美人与善性xxx| 亚洲精品色激情综合| 久久精品国产亚洲网站| 亚洲第一区二区三区不卡| 我要搜黄色片| 日韩欧美国产在线观看| 波多野结衣高清无吗| 一区二区三区免费毛片| 成人av在线播放网站| 久久精品国产亚洲网站| 久久人妻av系列| 午夜福利高清视频| 一夜夜www| 97超级碰碰碰精品色视频在线观看| 亚洲专区国产一区二区| 久久久久久大精品| 日本三级黄在线观看| 国产精品久久久久久亚洲av鲁大| 久久国内精品自在自线图片| 欧美人与善性xxx| 亚洲精品色激情综合| 如何舔出高潮| 久久人人精品亚洲av| 亚洲人与动物交配视频| 免费看a级黄色片| 中出人妻视频一区二区| 国产伦精品一区二区三区视频9| 中文在线观看免费www的网站| 五月玫瑰六月丁香| 午夜免费男女啪啪视频观看 | 久久亚洲精品不卡| avwww免费| 久久午夜亚洲精品久久| 午夜日韩欧美国产| 99热网站在线观看| 如何舔出高潮| 22中文网久久字幕| 久久久久国内视频| 人妻制服诱惑在线中文字幕| 国产欧美日韩精品亚洲av| 男人狂女人下面高潮的视频| 悠悠久久av| 亚洲va在线va天堂va国产| 一个人看的www免费观看视频| a在线观看视频网站| 身体一侧抽搐| xxxwww97欧美| 久久亚洲精品不卡| 人妻丰满熟妇av一区二区三区| 久久久久久国产a免费观看| 久久久久免费精品人妻一区二区| 夜夜爽天天搞| 日本黄大片高清| 午夜激情福利司机影院| 黄片wwwwww| 一本精品99久久精品77| 精品久久国产蜜桃| 国产免费男女视频| 日韩高清综合在线| 中文字幕av成人在线电影| 最新在线观看一区二区三区| 久久99热这里只有精品18| 亚洲在线自拍视频| 国产精品自产拍在线观看55亚洲| 老熟妇乱子伦视频在线观看| 精品欧美国产一区二区三| 久久久午夜欧美精品| 欧美色欧美亚洲另类二区| 亚洲专区中文字幕在线| 日日干狠狠操夜夜爽| 色精品久久人妻99蜜桃| 国产亚洲精品综合一区在线观看| 深夜a级毛片| 97超级碰碰碰精品色视频在线观看| 国产高清视频在线播放一区| 色精品久久人妻99蜜桃| 少妇的逼水好多| 国产一区二区激情短视频| av在线老鸭窝| 最新中文字幕久久久久| 欧美极品一区二区三区四区| 亚州av有码| 欧美高清成人免费视频www| 国产精品爽爽va在线观看网站| 亚洲av中文字字幕乱码综合| 久久久久久久久久成人| 久久久久久国产a免费观看| 国产伦一二天堂av在线观看| 中国美女看黄片| 两个人的视频大全免费| 麻豆av噜噜一区二区三区| 午夜a级毛片| 成人美女网站在线观看视频| 噜噜噜噜噜久久久久久91| 又黄又爽又免费观看的视频| 精品欧美国产一区二区三| 免费看a级黄色片| 欧美国产日韩亚洲一区| 国产一区二区亚洲精品在线观看| 久久久久国产精品人妻aⅴ院| 18禁裸乳无遮挡免费网站照片| 91久久精品电影网| 人妻久久中文字幕网| 在线免费观看的www视频| 18+在线观看网站| 久久亚洲真实| 日本免费一区二区三区高清不卡| 成熟少妇高潮喷水视频| 波多野结衣高清作品| 韩国av一区二区三区四区| 精品久久久久久久末码| 又粗又爽又猛毛片免费看| 欧美极品一区二区三区四区| 久久久久久久久大av| 国产色爽女视频免费观看| 丰满人妻一区二区三区视频av| 亚洲天堂国产精品一区在线| av天堂在线播放| 三级毛片av免费| av在线蜜桃| 日本欧美国产在线视频| 特级一级黄色大片| 欧美性感艳星| 日韩欧美在线乱码| 嫩草影院精品99| 18+在线观看网站| 国产成年人精品一区二区| 亚洲人成网站高清观看| www.色视频.com| 久久草成人影院| 国产真实伦视频高清在线观看 | 国产精品99久久久久久久久| 久久精品综合一区二区三区| 日韩一区二区视频免费看| 长腿黑丝高跟| a级一级毛片免费在线观看| 噜噜噜噜噜久久久久久91| 搡老熟女国产l中国老女人| 床上黄色一级片| 搡老妇女老女人老熟妇| 久久久久久久久中文| 亚洲av日韩精品久久久久久密| 国产精品电影一区二区三区| 国产成人福利小说| 99热精品在线国产| 亚洲精品粉嫩美女一区| 在线国产一区二区在线| 国产精品精品国产色婷婷| 欧美最新免费一区二区三区| 很黄的视频免费| 日日撸夜夜添| 国产精品99久久久久久久久| 成年人黄色毛片网站| 美女大奶头视频| 亚洲三级黄色毛片| 日韩av在线大香蕉| 日韩一本色道免费dvd| 欧美国产日韩亚洲一区| 中文字幕熟女人妻在线| 日本黄色视频三级网站网址| 蜜桃亚洲精品一区二区三区| 九色成人免费人妻av| 亚洲色图av天堂| 狂野欧美白嫩少妇大欣赏| 他把我摸到了高潮在线观看| 色5月婷婷丁香| 国产亚洲av嫩草精品影院| 91av网一区二区| 日日夜夜操网爽| 亚洲精品影视一区二区三区av| 男人舔奶头视频| 日韩欧美在线二视频| 丰满人妻一区二区三区视频av| 九色国产91popny在线| 老熟妇乱子伦视频在线观看| 久久久久久国产a免费观看| 免费一级毛片在线播放高清视频| 波多野结衣高清作品| av专区在线播放| 少妇裸体淫交视频免费看高清| 欧美日韩黄片免| 一卡2卡三卡四卡精品乱码亚洲| 琪琪午夜伦伦电影理论片6080| .国产精品久久| 成年免费大片在线观看| 亚洲自偷自拍三级| 99久久九九国产精品国产免费| 中文字幕精品亚洲无线码一区| 国产精品,欧美在线| 久久精品国产亚洲av涩爱 | 国产精品精品国产色婷婷| 亚洲第一区二区三区不卡| 老司机福利观看| a级毛片免费高清观看在线播放| 麻豆成人av在线观看| 欧美中文日本在线观看视频| 国产黄a三级三级三级人| 变态另类成人亚洲欧美熟女| 成人鲁丝片一二三区免费| 亚洲熟妇熟女久久| av福利片在线观看| 性欧美人与动物交配| 有码 亚洲区| 在线观看免费视频日本深夜| 中出人妻视频一区二区| 久久精品综合一区二区三区| 日韩中文字幕欧美一区二区| 午夜福利成人在线免费观看| 露出奶头的视频| 亚洲中文字幕一区二区三区有码在线看| 人妻久久中文字幕网| or卡值多少钱| 精品一区二区三区人妻视频| 色尼玛亚洲综合影院| 天美传媒精品一区二区| 又粗又爽又猛毛片免费看| 日本一本二区三区精品| 色播亚洲综合网| 国产精品福利在线免费观看| 国产精品电影一区二区三区| 日韩欧美精品免费久久| 精品久久久久久久久亚洲 | 中亚洲国语对白在线视频| 亚洲欧美日韩无卡精品|