• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A review on 3d transition metal dilute magnetic REIn3 intermetallic compounds

    2022-03-12 07:49:50XinPengGuo郭新鵬YongQuanGuo郭永權(quán)LinHanYin殷林瀚andQiangHe何強(qiáng)
    Chinese Physics B 2022年3期

    Xin-Peng Guo(郭新鵬), Yong-Quan Guo(郭永權(quán)), Lin-Han Yin(殷林瀚), and Qiang He(何強(qiáng))

    School of Energy Power and Mechanical Engineering,North China Electric Power University,Beijing 102206,China

    Keywords: dilute magnetic intermetallic compounds, phase transition, magnetic properties, magnetic transport

    1. Introduction

    Over the last decades, the magnetic semiconductors have received much attention due to their potential application on spin-electronic devices by spin modulating electric transport.[1]According to the content of magnetic elements in semiconductor, two kinds of magnetic semiconductors are classified,which correspond to the concentrated magnetic semiconductor(CMS)and dilute magnetic semiconductor(DMS).The early study is mainly focused on EuX(X=O,Se) and CdCr2X4(X=S, Se) CMSs due to their unique ferromagnetic semiconductor characteristics.[2-5]Owing to the ferromagnetism in CMS, the band gap shows the red shift,which causes the exchange interaction between itinerant electrons and localized magnetic spins. However, the further development and application of CMS are restricted by their low Curie temperatures and complex preparation process.[6]Thus,the attention is changed to the magnetic atom/ion-doped IIIV,II-VI,IV-IV,and II-II-V group semiconductors.[7-15]The dilute magnetic semiconductor,which is formed by substituting minor magnetic ions for non-magnetic ions, has attracted much attention due to its excellent magnetic transport properties. In recent years, the novel chalcopyrite-based DMSs have been widely studied.[16]The room temperature ferromagnetism has been obtained in Cd1-xMnxGeP2,CuIn1-xCoxTe2,and Cr-doped CuZnSe2.[17-19]The ferromagnetism is suggested to originate from the spin-spin interactions of 3d transition metal.[19]The codoping of Co and Ce into CuInTe2induces the room temperature ferromagnetism. The magnetization of CuIn0.9CexCo0.1-xTe2is enhanced, which is ascribed to the exchanging interaction between 4f electron of Ce and 3d electron of Co. The high doping ratio of Co and Ce is beneficial for increasing saturation magnetization.[20]Mn-doped CuInSe2semiconductors show antiferromagnetic order with very low N′eel temperature.[21-23]CuIn1-xCoxSe2shows the superparamagnetism at room temperature.[24]

    In recent years, the interest has been growing in the rare earth-indium (REIn3) compounds with a cubic AuCu3-type crystal structure.[25-27]REIn3shows remarkable features,such as heavy fermion,antiferromagnetism,superconductivity at critical temperature or pressure,crystal field effects,Kondo effect, and multiaxial magnetic structures.[25,27-34]CeIn3belongs to a heavy fermion and shows unique magnetic and electric properties such as antiferromagnetic order at 10 K,superconductivity under applied high pressure, and Kondo effect.[35]GdIn3orders antiferromagnetically at 45 K, which is the highest N′eel temperature among theREIn3intermetallic compounds.[36]The crystal electrical-field (CEF) ground state is a singlet for the PrIn3intermetallic compound,its lowtemperature susceptibility is almost temperature-independent,but inversely proportional to the splitting energy of the excited states. The two electrons in the unfilled 4f shell of the Pr ions form a multiplet withJ=4, giving rise to a magnetic moment ofμBgJwithg=0.8. A remarkable feature of PrIn3is a large nuclear quadrupole interaction (e2qQ/h=+228 MHz)at In site.[37,38]Ndln3is a typical 4f-localized intermetallic compound with a N′eel temperature below 5.9 K.With the increasing external magnetic field,the magnetic transformation from the antiferromagnetic to paramagnetic occurs.[39]HoIn3orders antiferromagnetically at 10.5 K and its magnetic structure is suggested to be multiaxial. The potential application of HoIn3as a regenerator material is also expected since its abnormal heat capacity is associated with the antiferromagnetic transition in the temperature range of 4 K-10 K.[40]

    The dilute magnetic intermetallic compounds (DMIC)can be obtained by doping minor 3d transition metal(Co,Mn or Fe) into intermetallics.[41,42]Mn-doped EuMn0.3Ga2.7orders ferromagnetically at room temperature under applying a low field of 40 Oe (1 Oe=79.5775 A/m).[43]As for the dilute magneticREIn3, the studies mainly focus on the doping effects on the structure and magnetic properties at In site orREsite.[31,44,45]It is well known that the 3d transition metals play an important role in magnetic materials due to their significant contributions to the magnetization and magnetic anisotropy by coupling with 4f electrons of the rare-earth.[46]Since the pure Co is strongly ferromagnetic, it is expected to improve the magnetic property ofREIn3by doping minor Co. Doping of Co intoREIn3(RE=Pr, Nd,) induces a giant magnetic effect with Curie temperature more than room temperature.[36,38]The giant moment originates from the partial substitution of non-magnetic element In by magnetic element Co in the host material, and thus, a net moment is produced. The ferromagnetism is caused by the spin-spin interactions between Co and Co or Co andRE.

    The objective of this paper is to introduce a brief review on minor doping of 3d transition metalTintoREIn3intermetallic compounds(RE=Pr,Nd,Gd,Ho;T=Co,Mn,and Fe). The transition of the structure and magnetic properties ofREIn3-xTxhave been systematically discussed.

    2. Structural stability

    As shown in Fig. 1,[36,38,47-51]all theREIn3alloys are single phase with a cubic AuCu3-type structure. The cubic structure is still stable by doping minor 3d transition metal intoREIn3. The single-phase region corresponds toREIn3xMnxwithx <0.3 andREIn3-xCoxwithx ≤0.1.However, the structural stability of cubic phase reduces with doping minor Fe intoREIn3.[47]The additional satellite peaks can be observed out of solid solution region ofREIn3-xCox. The satellite peaks can be indexed with a hexagonal CaIn2-type or GaGd2-type structure based on the structural refinement.[36,38,48,52]In element is detected out ofREIn3-xMnxsolid solution.[49]Doping minor Fe intoREIn3induces the decomposition of the cubic phase, and In is separated fromREIn3. With increasing Fe doping content, the metaphase is observed and its structural formula is suggested to beRE(In,Fe)2.[48]

    The crystallographic parameters ofREIn3-xTxare summarized in Table 1.[36,38,47-53]According to the structural refinements, the main phase ofREIn3-xTxcrystallizes into a cubic AuCu3-type structure with a space group ofPmˉ3m(as shown in Fig.2[52]).Two kinds of non-equivalent crystal positions are included in one unit cell.The atomic occupations correspond to the 1a(0,0,0)site forREatoms,and the 3c(1/2,1/2,0)site for In and transition metal Co,Mn or Fe atoms.

    Fig.1. XRD patterns of REIn3-xTx intermetallic compounds: (a)REIn3;(b)REIn3-xCox;(c)REIn3-xMnx;(d)REIn2.9Fe0.1. The figures are adapted from Refs.[36,38,47-51].

    Table 1. The crystal structure for REIn3-xTx alloys.

    Fig.2. The structural frame of cubic REIn3-xTx. The figure is adapted from Ref.[52].

    The structure of the metaphase is suggested as an isomorphic structure of CaIn2with a space group ofP63/mmc,Z=2 and GdGa2with a space group ofP6/mmm,Z=1. There are two non-equivalent crystal positions in a unit cell with CaIn2-type isomorphic structure,i.e.,2b(0,0,1/4)and 4f(1/3,2/3,z) crystal positions, which are occupied by 2REand 4(In,T)atoms,respectively. For GdGa2-type structure,the atomic occupations correspond to 1a(0,0,0)site forREatoms and 2d(1/3,2/3,1/2)site for In andTatoms,respectively. The lattice parameters of the main- and meta-phases are summarized in Tables 2 and 3.[47-50,52,53]

    Table 2. The lattice parameters of the main phase in REIn3-xTx.

    Table 3. The lattice parameters of the metaphase in REIn2-xTx.

    Since the pure binaryREIn2does not exist naturally,REIn2-xTxalloy is prepared for checking its single-phase with CaIn2-or GaGd2-type structure. However,the phase identification confirms that the single phaseREIn2-xTxdoes not exist at all. It implies thatRE(In, Co)2is metaphase, which might originate from the crystal growing defect and separate from the cubic phase.The phase separation inREIn3-xCoxis suspected to be driven by the lattice distortion originated from the atomic size effect. The substitution of Co for In could cause a large lattice distortion and thus induces the structural reconstruction from cubicREIn3-xCoxto hexagonalREIn2-xCox. The projections of two structures reveal the mechanism of phase separation from the cubicREIn3to hexagonalREIn2-xCox. The reconstruction originates from the rotation of(In,Co)6 hexagonal ring, comparing to the projection of cubicREIn3along[111] direction, the structural skeleton ofRE(In, Co)2could be formed by rotating the (In, Co)6 hexagonal ring with an angle of 30°along[111]direction,as shown in Fig.3.[36]

    Fig. 3. The projection of cubic phase along [111] direction in REIn3 and hexagonal phase along [001] direction in RE(In, Co)2. The figures are adapted from Ref.[36].

    The atomic size can directly influence the crystal structures of materials. The phase transition and lattice distortion inREIn3-xTxmight be driven by the atomic size effect. Since the atomic radii of Co(1.25 °A),Mn(1.32 °A),and Fe(1.24 °A)are quite different from that of In(1.66 °A)or rare-earth atoms(more than 1.74 °A).The doping of Co,Mn or Fe induces large lattice distortion.

    In order to discuss the effect of atomic size on the structural stability ofREIn3-xTxcubic phase, the effective atomic radius ratio is defined betweenREand (In, Co),REand (In,Mn),as well asREand(In,Fe).[47]

    The effective atomic radius ratio equation ofREIn3is

    RA,rR,〈rIn,M〉are the effective atomic radius ratio,the atomic radius ofRE, and the average atomic radius of In and transition metal(Co,Mn or Fe)respectively.

    Table 4 shows the effective atomic radius ratio ofREIn3-xMxcompounds.[47-52]It implies that the cubic phase can be stabilized inRA<1.09 forREIn3-xCoxandRA<1.10 forREIn3-xMnx,respectively.

    The electro-negativity difference between (In,M) and rare earth is also considered as a correlative criterion for the structural stability of the cubic phase. It is defined forREIn3

    whereXIn,XRE, andXMare corresponding to the electronegativity of In, rare earth, and 3d transition metal, respectively.

    The calculated electro-negativity differences show that the cubic phase ΔXranging from 0.384 to 0.397 forREIn3-xCoxand from 0.387 to 0.424 forREIn3-xMnx, as listed in Table 5.[47-52]

    Table 4. The effective atomic radius ratios of REIn3-xTx alloys.

    Table 5. The electro-negativity differences of REIn3-xTx alloys.

    3. Magnetic properties

    According to the temperature dependence of magnetization, Mn-doped NdIn3-xMnx(x <0.3) cubic phase shows the paramagnetic property at room temperature, however, a weak ferromagnetic property is observed out of its singlephase region.[49]The antiferromagnetic order is observed inREIn3-xTx(RE=Nd, Pr, Gd;T=Mn, Co)intermetallics in low-temperature region. Mn doping into GdIn3causes the decrease of N′eel temperature from 42.10 K to 31.66 K due to the distortion of Gd(In, Mn)3tetrahedron formed by Gd at corners and (In, Mn) at face centers in the unit cell. The formation of the antiferromagnetic ordering might originate from the exchanging interaction between the unpaired 4f electron spin ofREand the surrounding conduction electrons at low temperature.[50]REIn2.9Co0.1(RE=Pr,Nd)shows low temperature antiferromagnetic order and room temperature ferromagnetic order with Curie temperature more than 523 K.[36,38]

    Table 6.Various magnetic properties for REIn3-xTx alloys.

    According to the studies on magnetic properties ofREIn3-xTx,[36,38,47-50,52]the magnetic properties are summarized in Table 6. The magnetizing mechanisms ofREIn3-xTxare different for the various magnetic phase, Langevin model[54]is usually used in the ferromagnetic region:

    whereMsis the saturation moment.

    This equation could be rewritten by the Taylor series expansion algorithm as Weiss model

    whereais a parameter related to the applied external field.

    In the region of the mixed ferromagnetic and paramagnetic phase,the magnetization curve follows an equation as

    where the first and second terms are the contributions to magnetization originating from the ferromagnetic and paramagnetic phases, respectively. The magnetization curves follow the three models in ferromagnetic, paramagnetic and mixture of ferromagnetic and paramagnetic regions, as shown in Fig.4.[36,47,48]

    Fig.4. The magnetizing curves of REIn3-xTx at room temperature,solid lines and scatters correspond to fitting and observed results,respectively. (a)NdIn3-xCox,(b)GdIn3-xCox,(c)GdIn3-xMnx,(d)REIn2.9Fe0.1 (RE=Pr,Nd,Gd,and Ho). The figures are adapted from Refs.[36,47,48].

    The magnetic properties ofREIn3-xCoxare sensitive to the Co doping content. With increasing Co content inREIn3-xCox, a mixture of ferromagnetic and paramagnetic phase is observed in NdIn3-xCox(x ≥0.2), PrIn3-xCox(x ≥0.2), respectively. The magnetic properties are strongly correlated to the phase structures. The magnetic transition from paramagnetic to ferromagnetic is caused by the phase separation of the hexagonal phaseREIn2-xCoxfrom cubic phase with increasing Co content. The saturation magnetic moment (Ms) also raises with the increase of Co contents inREIn3-xCox. The enhancement of magnetic moment ofREIn3-xCoxmight be due to the partial substitution of nonmagnetic element In by 3d transition metal Co in the host material and thus a net moment is produced. The evolution of magnetic phases inREIn3-xCoxmight result from the exchange interaction change from the one between the isolated Co spins with the surrounding conduction electrons in Copoor region to the one between Co-Co pairs mediated by the conduction electrons in Co-rich region.[36,38]The magnetizing behaviors ofREIn2.9Co0.1show complex magnetic properties at room temperature and follow a ferromagnetic model forRE= La and a mixed ferromagnetic and paramagnetic model forRE=Ce, Pr, Nd, Gd, Tb, Dy. The formation of ferromagnetic characteristic is suggested to result from the strong spin-spin interaction betweenREand Co. It implies that Co atoms play an important role in magnetic properties ofREIn2.9Co0.1.[55]The fitted and observedREIn3-xMnxexhibit paramagnetic property. The fitted susceptibilityχraises with increasing Mn contents inREIn3-xMnx. Fe doping intoREIn3induces the magnetic phase transition from paramagnetic to ferromagnetic.REIn3-xFexshows a mixture of paramagnetic and ferromagnetic properties. The ferromagnetism ofREIn3-xFexis suggested to be due to 3d-3d interactions between Fe atoms and 3d-s-4f indirect interactions between Fe and rare earth atoms mediated by the conducting s electron.[47]

    The electric transport ofREIn3-xMxis associated with its magnetic phase transition. It shows that the electric transition temperatures are very close to that of the antiferromagnetic transitions.[50]In Fig.5,the first electric phase transition might originate from the magnetic scattering induced by the antiferromagnetic ordering at low temperature, and the other one at low temperature might be induced by the 3d-3d interaction among the unpaired 3d electron spins of Mn at face center sites in a unit cell.

    Fig. 5. The correlation of the temperature dependences of the resistivity and the magnetization for GdIn2.9Mn0.1. Reproduced with permission from Ref.[50].

    whereρ0is the temperature-independent resistivity,Δis the spin-wave gap,Ais related to the spin-wave velocity.

    The model works for the experimental data in the temperature range ofT <0.6TN, as shown in Fig. 5. The spinwave gap goes up with increasing Mn content and induces the increase of electric resistivity.[50]It implies that the electric transport is related to the magnon-electron scattering in the antiferromagnetic ordering state.

    In the high temperature region,the Stoner spin fluctuation scattering model is listed below:

    whereρ1is the extrinsic resistivity, which is independent of the temperature.aandnare the scattering coefficient and temperature indices,respectively.

    The resistivity is suggested to be originated only from the Stoner spin fluctuation in high temperature region.ρ1goes up with increasing Mn contents due to the magnetic scattering effect induced by the 3d-4f magnetic interaction between Mn and Gd.TheaTnterm gives a good fit to the experimental data and probably originates from the phonon-electron scattering.It implies that the spin flip scattering is gradually suppressed by the phonon scattering with increasing temperature.

    4. Conclusion

    In this review, the studies on the structural stability and magnetic properties of dilute magneticREIn3-xTx(RE=Pr,Nd, Gd, and Ho;T= Co, Mn, and Fe) intermetallic compounds have been comprehensively summarized. Doping minor 3d transition metal Mn or Co intoREIn3can still stabilize the cubic phase with a space group ofPmˉ3m. In one unit cell,the 1acrystal position is fully occupied byREatoms and 3ccrystal position is simultaneously and disorderly occupied by In andTatoms. The single-phase regions of cubicREIn3-xTxcorrespond to the doping contentxranging from 0 to 0.3 forREIn3-xMnxand from 0 to 0.1 forREIn3-xCox. Fe doping causes the decomposition of cubic phase.The structural stability of the cubic phase is suggested to be related to the effective atomic radius ratioRAand electro-negativity difference ΔX.The metaphaseREIn2-xTxis separated from the cubic phase out of the single-phase solid solution region,which is formed by the rotation of the original (In,T)6 hexagonal ring driven byTpartly substitution for In.

    TheREIn3-xTxshows complex magnetic properties,which correspond to low temperature antiferromagnetic property forT= Mn and Co, room temperature ferromagnetic property forT=Co or Fe,and paramagnetic property at high temperature. The formation of the antiferromagnetic ordering might originate from the exchange interaction between the unpaired 4f electron spin ofREand the surrounding conduction electrons at low temperature. The formation of ferromagnetic characteristic is suggested to originate from the giant magnetic effect induced by doping strongly magnetic Fe or Co intoREIn3.The partial substitution of non-magnetic element In by strongly magnetic element in the host material through dilute dopants ofT, and thus, a net moment is produced. The ferromagnetism is caused by the spin-spin interactions betweenTandTorTandRE. The magnetic properties ofREIn3-xTxare sensitive toTcontent at room temperature. With the increasing contents of 3d transition metal,the magnetic phase ofREIn3-xTxalloys evolves from the initial paramagnetic state to an intermediated mixture of ferromagnetic and paramagnetic,and finally to ferromagnetic characteristics at room temperature.

    The electric transitions are associated with magnetic transitions. The magneto-transport is suggested to be due to the electron-magnon scattering at low temperature and the Stoner spin fluctuation at high temperature.

    欧美精品一区二区大全| av网站在线播放免费| 自拍欧美九色日韩亚洲蝌蚪91| 真人做人爱边吃奶动态| 天天躁夜夜躁狠狠躁躁| 亚洲精品一二三| 大型av网站在线播放| 极品人妻少妇av视频| 精品一区二区三区av网在线观看 | 99热网站在线观看| 少妇猛男粗大的猛烈进出视频| 欧美成人午夜精品| 成年动漫av网址| 国产有黄有色有爽视频| 女人精品久久久久毛片| 又黄又粗又硬又大视频| 国产日韩欧美亚洲二区| 免费观看人在逋| 久久久精品国产亚洲av高清涩受| 少妇猛男粗大的猛烈进出视频| 老司机靠b影院| 亚洲专区中文字幕在线| av视频免费观看在线观看| 免费看不卡的av| 久久国产精品大桥未久av| 99精品久久久久人妻精品| 久久ye,这里只有精品| 日韩 亚洲 欧美在线| 国产又爽黄色视频| 一级毛片黄色毛片免费观看视频| av又黄又爽大尺度在线免费看| 美国免费a级毛片| 成人国语在线视频| 一级毛片电影观看| 久久99热这里只频精品6学生| 欧美 亚洲 国产 日韩一| 丰满饥渴人妻一区二区三| 亚洲欧美色中文字幕在线| 男女床上黄色一级片免费看| 在线看a的网站| 久9热在线精品视频| 欧美日韩亚洲国产一区二区在线观看 | 免费人妻精品一区二区三区视频| 国产国语露脸激情在线看| 又粗又硬又长又爽又黄的视频| 免费在线观看日本一区| 女性被躁到高潮视频| 男人舔女人的私密视频| 国产一区有黄有色的免费视频| 一二三四社区在线视频社区8| 汤姆久久久久久久影院中文字幕| 亚洲精品国产色婷婷电影| 手机成人av网站| 亚洲国产看品久久| 1024视频免费在线观看| 制服人妻中文乱码| 午夜两性在线视频| 日本黄色日本黄色录像| 国产欧美日韩综合在线一区二区| 99久久99久久久精品蜜桃| 自线自在国产av| 亚洲中文av在线| 欧美日韩福利视频一区二区| 国产免费一区二区三区四区乱码| 丝袜喷水一区| 欧美在线一区亚洲| 丰满人妻熟妇乱又伦精品不卡| 久久久久网色| 亚洲视频免费观看视频| 超色免费av| 青春草亚洲视频在线观看| 99热全是精品| 欧美黑人欧美精品刺激| 午夜老司机福利片| 国产在视频线精品| 成年动漫av网址| a级毛片在线看网站| √禁漫天堂资源中文www| 黄色视频在线播放观看不卡| 国产91精品成人一区二区三区 | 国产免费福利视频在线观看| 国产成人欧美在线观看 | 国产精品久久久久久人妻精品电影 | 久久中文字幕一级| 国产成人免费观看mmmm| 黄色视频在线播放观看不卡| 考比视频在线观看| 丝袜人妻中文字幕| av在线播放精品| 亚洲精品国产av蜜桃| 国产免费现黄频在线看| 一本色道久久久久久精品综合| 日韩免费高清中文字幕av| 一个人免费看片子| 一级,二级,三级黄色视频| 夫妻午夜视频| 飞空精品影院首页| 香蕉丝袜av| 可以免费在线观看a视频的电影网站| 欧美 亚洲 国产 日韩一| 日韩电影二区| 久久九九热精品免费| 午夜免费鲁丝| av天堂在线播放| 久久人妻熟女aⅴ| av网站在线播放免费| 一级a爱视频在线免费观看| 久久亚洲精品不卡| 日本av免费视频播放| 亚洲色图综合在线观看| av天堂在线播放| 久久中文字幕一级| 久久久久精品国产欧美久久久 | 亚洲精品国产av蜜桃| 成在线人永久免费视频| 色综合欧美亚洲国产小说| 国产黄色视频一区二区在线观看| 欧美激情 高清一区二区三区| 欧美成狂野欧美在线观看| 午夜免费鲁丝| 国产成人系列免费观看| 亚洲人成电影观看| 男男h啪啪无遮挡| videos熟女内射| 天堂中文最新版在线下载| 成人三级做爰电影| 黄色 视频免费看| 久久精品人人爽人人爽视色| 大片电影免费在线观看免费| 免费看av在线观看网站| 成人亚洲欧美一区二区av| 可以免费在线观看a视频的电影网站| 精品福利观看| 啦啦啦 在线观看视频| 国产精品秋霞免费鲁丝片| 免费在线观看视频国产中文字幕亚洲 | 久久精品aⅴ一区二区三区四区| 亚洲人成电影观看| 女人爽到高潮嗷嗷叫在线视频| 丁香六月天网| 欧美亚洲 丝袜 人妻 在线| 人人澡人人妻人| 三上悠亚av全集在线观看| 精品国产乱码久久久久久男人| 两性夫妻黄色片| 精品一区在线观看国产| 欧美日韩黄片免| 搡老岳熟女国产| 天天躁夜夜躁狠狠久久av| 91老司机精品| 天天躁狠狠躁夜夜躁狠狠躁| 日本av免费视频播放| 大片免费播放器 马上看| 国产精品麻豆人妻色哟哟久久| 男的添女的下面高潮视频| av天堂久久9| 天天躁夜夜躁狠狠躁躁| 天天躁夜夜躁狠狠久久av| 久久99热这里只频精品6学生| 日本欧美视频一区| 久久精品国产亚洲av涩爱| 亚洲精品自拍成人| 成人三级做爰电影| 国产在视频线精品| 亚洲精品一区蜜桃| 成年人免费黄色播放视频| 1024视频免费在线观看| 国产精品三级大全| 2021少妇久久久久久久久久久| av线在线观看网站| 九草在线视频观看| 欧美精品一区二区免费开放| 国产精品 欧美亚洲| 热99国产精品久久久久久7| 国产精品久久久av美女十八| 免费女性裸体啪啪无遮挡网站| 成人国语在线视频| 亚洲欧美一区二区三区久久| 久久人人97超碰香蕉20202| 久久久国产精品麻豆| 亚洲人成电影免费在线| 久久精品久久精品一区二区三区| 亚洲三区欧美一区| 国产不卡av网站在线观看| 日韩av不卡免费在线播放| 欧美国产精品一级二级三级| 18禁观看日本| 母亲3免费完整高清在线观看| 看免费av毛片| 考比视频在线观看| 国产97色在线日韩免费| 美女视频免费永久观看网站| 美女大奶头黄色视频| 天堂8中文在线网| 日本五十路高清| 国产av精品麻豆| e午夜精品久久久久久久| 欧美国产精品va在线观看不卡| 人妻一区二区av| 欧美人与性动交α欧美精品济南到| 少妇猛男粗大的猛烈进出视频| 一区福利在线观看| 性少妇av在线| 每晚都被弄得嗷嗷叫到高潮| 最近最新中文字幕大全免费视频 | 国产精品二区激情视频| 成人三级做爰电影| 男人舔女人的私密视频| 久久免费观看电影| 一本综合久久免费| 国产在线免费精品| 丰满人妻熟妇乱又伦精品不卡| 日韩制服丝袜自拍偷拍| 久久99精品国语久久久| netflix在线观看网站| 久久久精品免费免费高清| 亚洲天堂av无毛| 超碰成人久久| 亚洲精品美女久久久久99蜜臀 | 国产伦理片在线播放av一区| 一本—道久久a久久精品蜜桃钙片| 侵犯人妻中文字幕一二三四区| 国产在线免费精品| 久久ye,这里只有精品| 精品人妻一区二区三区麻豆| 制服诱惑二区| 亚洲精品成人av观看孕妇| 国产一区二区激情短视频 | 九色亚洲精品在线播放| 黑丝袜美女国产一区| 欧美另类一区| 精品亚洲乱码少妇综合久久| 嫁个100分男人电影在线观看 | 久久天躁狠狠躁夜夜2o2o | 满18在线观看网站| 真人做人爱边吃奶动态| 91精品三级在线观看| 十分钟在线观看高清视频www| 在线观看www视频免费| 一级毛片黄色毛片免费观看视频| 亚洲色图综合在线观看| 亚洲国产精品999| 一级毛片 在线播放| 亚洲熟女毛片儿| 欧美日韩综合久久久久久| 伦理电影免费视频| 国产真人三级小视频在线观看| 日韩伦理黄色片| 成年人午夜在线观看视频| 精品少妇黑人巨大在线播放| 久久久精品94久久精品| 日本91视频免费播放| 欧美日韩视频精品一区| 侵犯人妻中文字幕一二三四区| 美女脱内裤让男人舔精品视频| 精品一区在线观看国产| 国产又爽黄色视频| 色婷婷av一区二区三区视频| 国产高清视频在线播放一区 | 日韩av免费高清视频| 国产爽快片一区二区三区| 亚洲精品自拍成人| 欧美精品啪啪一区二区三区 | 精品免费久久久久久久清纯 | 中文字幕另类日韩欧美亚洲嫩草| 真人做人爱边吃奶动态| 亚洲,欧美精品.| 精品久久蜜臀av无| 乱人伦中国视频| 欧美成狂野欧美在线观看| 在现免费观看毛片| 亚洲av电影在线进入| 欧美日韩视频高清一区二区三区二| 亚洲欧美色中文字幕在线| 日本午夜av视频| 日韩 亚洲 欧美在线| 国产高清不卡午夜福利| 亚洲 欧美一区二区三区| av欧美777| 精品久久久久久电影网| 嫩草影视91久久| 婷婷色麻豆天堂久久| 又黄又粗又硬又大视频| videosex国产| av在线播放精品| 国产不卡av网站在线观看| 一本色道久久久久久精品综合| 纯流量卡能插随身wifi吗| 伊人亚洲综合成人网| 91精品伊人久久大香线蕉| 高清视频免费观看一区二区| 国产片内射在线| 欧美在线黄色| 久久久久久亚洲精品国产蜜桃av| 乱人伦中国视频| 青草久久国产| 久热爱精品视频在线9| 免费观看av网站的网址| 99久久综合免费| 欧美人与善性xxx| 国产成人啪精品午夜网站| 无遮挡黄片免费观看| 亚洲熟女精品中文字幕| 久久精品久久久久久久性| 国产女主播在线喷水免费视频网站| 精品久久久精品久久久| 精品久久久久久久毛片微露脸 | 精品久久久精品久久久| 亚洲av日韩精品久久久久久密 | 亚洲人成网站在线观看播放| 久久久久视频综合| 午夜免费成人在线视频| 日本一区二区免费在线视频| 天天躁夜夜躁狠狠躁躁| 18禁黄网站禁片午夜丰满| 国产精品久久久久久精品古装| 人成视频在线观看免费观看| 欧美国产精品va在线观看不卡| 色94色欧美一区二区| 人人妻人人添人人爽欧美一区卜| 熟女av电影| 国产成人啪精品午夜网站| 天天躁狠狠躁夜夜躁狠狠躁| 久久久久视频综合| 丝袜喷水一区| 国产一区亚洲一区在线观看| tube8黄色片| 日本wwww免费看| 999精品在线视频| 国产精品偷伦视频观看了| 一边摸一边抽搐一进一出视频| 国产有黄有色有爽视频| 日日夜夜操网爽| 欧美激情 高清一区二区三区| 欧美少妇被猛烈插入视频| 久久国产精品男人的天堂亚洲| 操美女的视频在线观看| 精品人妻1区二区| 国产成人av教育| 妹子高潮喷水视频| 中文欧美无线码| 一二三四在线观看免费中文在| 人成视频在线观看免费观看| 美女国产高潮福利片在线看| 99国产精品一区二区蜜桃av | 视频在线观看一区二区三区| 97精品久久久久久久久久精品| 国产成人精品久久二区二区91| 精品久久久精品久久久| 一级毛片黄色毛片免费观看视频| 一本综合久久免费| 精品免费久久久久久久清纯 | 欧美日韩成人在线一区二区| 日韩一区二区三区影片| 欧美成狂野欧美在线观看| 久久人人爽人人片av| av网站免费在线观看视频| 国产精品熟女久久久久浪| 人体艺术视频欧美日本| netflix在线观看网站| 久久女婷五月综合色啪小说| 午夜日韩欧美国产| 老司机影院毛片| 91精品伊人久久大香线蕉| 性高湖久久久久久久久免费观看| 国产成人a∨麻豆精品| 国产欧美亚洲国产| 国产成人精品久久二区二区免费| 波野结衣二区三区在线| 人妻人人澡人人爽人人| 你懂的网址亚洲精品在线观看| 一区二区三区乱码不卡18| 国产精品九九99| 免费一级毛片在线播放高清视频 | 18禁国产床啪视频网站| 精品第一国产精品| 中文字幕人妻丝袜一区二区| 免费在线观看日本一区| 五月开心婷婷网| 中文字幕av电影在线播放| 日本黄色日本黄色录像| 精品少妇内射三级| 成在线人永久免费视频| 2021少妇久久久久久久久久久| 一级毛片黄色毛片免费观看视频| 成年人午夜在线观看视频| 久久99一区二区三区| 女性被躁到高潮视频| 男女免费视频国产| 在线 av 中文字幕| 纵有疾风起免费观看全集完整版| 九色亚洲精品在线播放| 亚洲精品久久久久久婷婷小说| 日韩中文字幕欧美一区二区 | 亚洲图色成人| 老司机午夜十八禁免费视频| 搡老岳熟女国产| 国产一区亚洲一区在线观看| 久久久精品免费免费高清| 欧美国产精品一级二级三级| 午夜福利,免费看| 国产片内射在线| 久久亚洲国产成人精品v| 男女高潮啪啪啪动态图| 中文字幕人妻丝袜一区二区| 一区二区三区四区激情视频| 大陆偷拍与自拍| 又黄又粗又硬又大视频| 日本a在线网址| 亚洲欧美中文字幕日韩二区| 亚洲精品自拍成人| 美女视频免费永久观看网站| bbb黄色大片| 乱人伦中国视频| 免费不卡黄色视频| 免费少妇av软件| 午夜激情久久久久久久| 久久久精品免费免费高清| 男女国产视频网站| 国产欧美日韩精品亚洲av| 啦啦啦中文免费视频观看日本| 国产免费现黄频在线看| 夜夜骑夜夜射夜夜干| 男女下面插进去视频免费观看| 亚洲国产精品成人久久小说| 国产精品偷伦视频观看了| 婷婷色av中文字幕| 国产极品粉嫩免费观看在线| 极品少妇高潮喷水抽搐| 成人三级做爰电影| 午夜免费男女啪啪视频观看| 欧美日韩视频高清一区二区三区二| 亚洲成av片中文字幕在线观看| 天堂8中文在线网| 老汉色av国产亚洲站长工具| 九色亚洲精品在线播放| 母亲3免费完整高清在线观看| 国产日韩欧美视频二区| 欧美日韩视频精品一区| 精品人妻1区二区| 国产精品亚洲av一区麻豆| 久久精品熟女亚洲av麻豆精品| 国产精品 欧美亚洲| 欧美黄色片欧美黄色片| 日日夜夜操网爽| 精品国产一区二区三区久久久樱花| 中文字幕精品免费在线观看视频| 亚洲av欧美aⅴ国产| 国产精品一区二区精品视频观看| 亚洲熟女精品中文字幕| 99久久人妻综合| 自拍欧美九色日韩亚洲蝌蚪91| 热99久久久久精品小说推荐| 久久青草综合色| 大陆偷拍与自拍| www日本在线高清视频| 婷婷色麻豆天堂久久| 欧美日韩黄片免| 日韩制服骚丝袜av| 精品一区二区三卡| 国产视频首页在线观看| 国产一区二区三区综合在线观看| 国产免费一区二区三区四区乱码| av网站免费在线观看视频| 亚洲欧美激情在线| 精品国产一区二区久久| 国产精品麻豆人妻色哟哟久久| 欧美少妇被猛烈插入视频| 亚洲,欧美,日韩| 99久久综合免费| 天堂中文最新版在线下载| 侵犯人妻中文字幕一二三四区| 久久精品亚洲av国产电影网| 嫩草影视91久久| 又粗又硬又长又爽又黄的视频| 亚洲人成网站在线观看播放| 国产免费视频播放在线视频| 亚洲欧美一区二区三区黑人| 少妇 在线观看| 亚洲天堂av无毛| 丁香六月天网| www.熟女人妻精品国产| 欧美日本中文国产一区发布| 欧美性长视频在线观看| 亚洲精品久久久久久婷婷小说| 亚洲专区中文字幕在线| 国产精品人妻久久久影院| 亚洲成人国产一区在线观看 | 大型av网站在线播放| 国产亚洲一区二区精品| 人人妻人人澡人人看| 男人添女人高潮全过程视频| 黄片播放在线免费| 香蕉丝袜av| 亚洲欧美精品综合一区二区三区| 日本一区二区免费在线视频| 巨乳人妻的诱惑在线观看| 一级a爱视频在线免费观看| 青草久久国产| 丁香六月天网| 中国国产av一级| 日韩,欧美,国产一区二区三区| 欧美日韩国产mv在线观看视频| 欧美精品一区二区大全| 亚洲国产成人一精品久久久| 国产精品人妻久久久影院| 日韩 欧美 亚洲 中文字幕| 各种免费的搞黄视频| av天堂在线播放| e午夜精品久久久久久久| av线在线观看网站| 亚洲伊人久久精品综合| 久久人人97超碰香蕉20202| 成人手机av| 性色av一级| 十八禁人妻一区二区| 久久人人爽人人片av| 这个男人来自地球电影免费观看| a 毛片基地| 老鸭窝网址在线观看| 日韩 亚洲 欧美在线| 18在线观看网站| 国产日韩欧美视频二区| 两性夫妻黄色片| 飞空精品影院首页| 69精品国产乱码久久久| 丝瓜视频免费看黄片| 少妇人妻 视频| 好男人电影高清在线观看| 极品人妻少妇av视频| av在线老鸭窝| 色综合欧美亚洲国产小说| 91精品三级在线观看| 人妻人人澡人人爽人人| 久久精品国产亚洲av涩爱| 不卡av一区二区三区| 欧美日韩视频精品一区| 亚洲欧美色中文字幕在线| 国产成人av激情在线播放| 日韩熟女老妇一区二区性免费视频| 97人妻天天添夜夜摸| 日本色播在线视频| 久久国产精品男人的天堂亚洲| 黄色怎么调成土黄色| 少妇裸体淫交视频免费看高清 | 男女午夜视频在线观看| 亚洲精品国产色婷婷电影| av有码第一页| 亚洲欧美一区二区三区国产| 亚洲欧洲国产日韩| 一区二区日韩欧美中文字幕| 真人做人爱边吃奶动态| 一级片免费观看大全| 亚洲专区中文字幕在线| 精品一区在线观看国产| 亚洲人成77777在线视频| 欧美成人午夜精品| 99热网站在线观看| 高清视频免费观看一区二区| 欧美精品啪啪一区二区三区 | 可以免费在线观看a视频的电影网站| 亚洲,欧美精品.| 一本久久精品| 中文欧美无线码| 日本91视频免费播放| 亚洲欧美日韩高清在线视频 | 欧美日韩亚洲综合一区二区三区_| 欧美成人午夜精品| 各种免费的搞黄视频| 中文字幕人妻丝袜一区二区| 国产片特级美女逼逼视频| 亚洲天堂av无毛| 一区福利在线观看| 丝袜美足系列| 汤姆久久久久久久影院中文字幕| av在线老鸭窝| 日本av手机在线免费观看| 亚洲欧美精品自产自拍| 久久久久久久国产电影| svipshipincom国产片| 久久女婷五月综合色啪小说| 秋霞在线观看毛片| 少妇的丰满在线观看| 岛国毛片在线播放| 下体分泌物呈黄色| 精品国产一区二区久久| 亚洲,欧美精品.| 老司机深夜福利视频在线观看 | 亚洲中文日韩欧美视频| 麻豆av在线久日| 人人妻,人人澡人人爽秒播 | 少妇被粗大的猛进出69影院| 国产免费一区二区三区四区乱码| 日韩av在线免费看完整版不卡| 亚洲少妇的诱惑av| 久久久久久久精品精品| 久久精品国产亚洲av高清一级| 天天躁夜夜躁狠狠躁躁| 伦理电影免费视频| 性色av乱码一区二区三区2| 午夜精品国产一区二区电影| 久久久精品94久久精品| 国产亚洲精品久久久久5区| 丝袜在线中文字幕| 激情五月婷婷亚洲| 黄频高清免费视频| 亚洲国产欧美日韩在线播放| 免费av中文字幕在线| 狠狠婷婷综合久久久久久88av| 免费在线观看影片大全网站 | 巨乳人妻的诱惑在线观看| 啦啦啦视频在线资源免费观看| a级毛片在线看网站| 国产精品麻豆人妻色哟哟久久| 少妇猛男粗大的猛烈进出视频|