• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer

    2022-03-12 07:49:44QiaopengCui崔翹鵬LiangZhao趙亮XuewenSun孫學(xué)文QiannanYao姚倩楠ShengHuang黃勝LeiZhu朱磊YulongZhao趙宇龍JianSong宋健andYinghuaiQiang強(qiáng)穎懷
    Chinese Physics B 2022年3期
    關(guān)鍵詞:趙亮學(xué)文

    Qiaopeng Cui(崔翹鵬) Liang Zhao(趙亮) Xuewen Sun(孫學(xué)文) Qiannan Yao(姚倩楠)Sheng Huang(黃勝) Lei Zhu(朱磊) Yulong Zhao(趙宇龍)Jian Song(宋健) and Yinghuai Qiang(強(qiáng)穎懷)

    1The Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology and Equipments,School of Materials Science and Physics,China University of Mining and Technology,Xuzhou 221116,China

    2Advanced Analysis&Computation Center,China University of Mining and Technology,Xuzhou 221116,China

    Keywords: perovskite solar cells,nickel oxide,Sr doping,bilayer hole transport layer

    1. Introduction

    Solar cells have attracted a great deal of attention,and the most glamorous star is organic-inorganic hybrid perovskite solar cells (PSCs) now. In recent years, researchers have concentrated on PSCs because of their rapid growth in power conversion efficiency (PCE).[1-5]So far, the PCE of PSCs has reached 25.2%,[6]their performance has almost caught up with currently commercialized silicon solar cells. Hybrid perovskite materials have many advantages, such as adjustable band gap, high absorption coefficient, long carrier life, and high carrier mobility.[7-10]Therefore, PSCs have potential to become the flagship of commercial solar power generation after silicon solar cells.[11]However,interface energy loss of different functional layers and alignment mismatch of energy levels still hinder performance enhancement of PSCs. Many scientists have made efforts in this regard.[12]Chenet al.reached a PCE of 19.35% by employing a NiOxhole transport layer(HTL) with Cs.[13]Chenet al.suppressed the interfacial recombination by facile alkali chloride interface modification of the NiOxHTL and obtained a device with PCE of 21%.[14]Zhuet al.used a larger alkylammonium interface layer to reduce the energy loss between the transport layer and the perovskite, and successfully achieved a inverted PSCs efficiency record of 22.3%.[15]Therefore, improving layer-to-layer interface is essential to promote the charge transfer process and to reduce carrier recombination so as to further improve the PCE.[16]

    HTLs are designed to block electrons,enhance hole transport and prevent quenching caused by direct contact between the perovskite layer and conductive substrate in inverted PSCs.There are many HTLs based on polymers or small molecules,such as Spiro-OMeTAD, PEDOT:PSS, PTAA, and P3HT.[17]However, due to the natural instability of organic materials and relatively low work function, researchers are also actively studying inorganic hole transport materials. Inorganic p-type semiconductor materials, such as NiO, CuI, CuSCN,and graphene oxide are also taken as HTLs in inverted planar PSCs.[18-21]Among them, NiOxhas suitable work function,natural stability,and great energy level matching,which is widely used in the devices.[22,23]

    However,NiO has a low intrinsic conductivity,which will cause holes to accumulate at the NiOx/perovskite interface and to reduce hole extraction ability,so as to reduce the open circuit voltage (Voc) and efficiency of devices.[24]Researchers are actively looking for strategies to improve the optical and electrical properties of NiOxthin film. Doping can effectively improve conductivity of NiOxfilms and adjust energy band position to well match with the energy levels. Dopants,such as Sr,Cu,Li,and Co[20,25-27]have been used to enhance charge transfer performance in NiOxHTLs. However, doping not only greatly increases concentration of free carriers,but also brings lattice distortion and introduces new impurity levels, which will enlarge the possibility of carrier recombination. Therefore, doping is not always conducive to hole extraction at the interface of NiOxand perovskite. Film surface modification[28-31]or various advanced film deposition methods[32-36]can be used to relieve charge recombination at charge transfer layer(CTL)/perovskite interface.

    Our group previously proposed an ingenious strategy both to enhance the hole transport ability and to suppress charge recombination at CTL/perovsktie interfaces with a pp+homojunction based on Cu doped NiOxand Li doped NiOx.[37,38]We found that other element doping such as Sr can also significantly increase the carrier concentration of NiOxfilms. In this work, we further construct a NiOx/Sr:NiOxbilayer HTL to study its influence on interface carrier transport. We prepared an inverted planar PSC with a structure of FTO/Sr:NiOx/NiOx/perovskite/PCBM/BCP/Ag,showing an enhanced hole extraction ability and energy level matching because of the NiOx/Sr:NiOxbilayer HTL. In this device,Sr-doped NiOxthin film has no direct contact with the perovskite layer. As a result, we obtain an improved PCE of 18.44% and a fill factor of 0.80 based on the bialyer HTL,which is much higher than that using Sr:NiOx(16.89%) or NiOx(15.69%).

    2. Experiment

    2.1. Preparation of the HTL

    FTO glass(Nippon Sheet Glass)was first cut into a size of 19 mm×19 mm. The glasses was put in a glass washing rack,and washed by deionized water with dishwashing detergent,deionized water,ethanol,isopropanol,and ethanol in sequence,under ultrasonic for half an hour.Next,a precursor solution of nickel oxide was prepared,0.727 g Ni(NO3)2·6H2O was dissolved in 5 mL of ethylene glycol solution, and then 0.15 g ethylenediamine was added. For Sr doped NiOx, additional 0.04233 g Sr(NO3)2(Sr/Ni ratio in the precursor solution is 8%) was added. In order to eliminate the influence of film thickness, we used the same two-step spin coating method to prepare HTLs with three structures,including NiOx,Sr:NiOx,and NiOx/Sr:NiOx. The first layer was deposited by spin-coating under 5000 rpm for 30 s,after heating at 120°C for 10 min,the second layer was deposited by the same procedure. Finally,the film was annealed at 400°C for 1 h.

    2.2. Fabrication of solar cell

    A ternary cation mixed perovskite film using MA(methylammonium ion, CH3NH+3), FA (formamidine ion, HN=CHNH+3) and Cs was prepared as the active layer. We took 0.0224 g MABr, 0.1719 g FAI, 0.5071 g PbI2, and 0.0734 g PbBr2and dissolved them in a mixed solvent (1 mL) with a volume ratio of DMSO and DMF of 1:4. After two hours of thorough mixing, 84 μL of CsI (1.5 mol/L, DMSO as solvent) was added. The final formula ratio of perovskite is Cs0.1(MA0.12FA0.88)0.9Pb(I0.95Br0.05)3.Then 60 μL of filtered perovskite precursor solution was dropped on the prepared HTL film, spinning at 1000 rpm for 10 s, and then sped to 4000 rpm. After 8 s, 200 μL of ethyl acetate was quickly dropped. The obtained perovskite film was then heated at 70°C for 3 min, and 100°C for 10 min. Next, 45 μL of PCBM(25 mg/mL,chlorobenzene as solvent)was spin-coated at 3000 rmp for 30 s to prepare the electron transport layer.Subsequently,45 μL of BCP(0.5 mg/mL,ethanol as solvent)was deposited on PCBM at 3000 rpm for 30 s. Finally,a vacuum thermal evaporation method was used to deposit 50 nm silver to form metal electrode.

    2.3. Characterization

    We used x-ray diffraction (XRD, D8 Advance, Bruker),energy-dispersive x-ray spectroscopy (EDS, XFlash QUAD SVE6, Burker), x-ray photoelectron spectra (XPS, ESCALAB250Xi,Thermo Fisher),field emission scanning electron microscope (FESEM, SU8220, Hitachi) to observe the crystal structure, element composition and distribution, film morphology of NiOx-based HTLs and perovskite films. UVvisible (UV-Vis spectrophotometer, Cary 300, Varian) was used to test optical property of HTLs. The Hall effect measurement (ezHEMS, NanoMagnetics) was used to demonstrate the carrier properties of HTL. For the Fermi level and valence-band edge of NiOxand Sr:NiOxfilms, we used an ultraviolet photoelectron spectroscope (UPS, Thermo Fisher)with a monochromatic He light source (21.21 eV) to calculate them. Steady state photoluminescence spectra (PL,FS5, Edinburgh) and transient time-resolved photoluminescence (TRPL, FLS980, Edinburgh) were recorded by spectrofluorometer. Electrochemical workstation (Keithley 2420 Source Meter) was selected to measure the photocurrentvoltage (J-V) curves of inverted planar PSCs under solar illumination (100 mW·cm-2, Oriel Sol 3 A, Newport) with 10 mV voltage steps and dwell time of 50 ms. The PSCs were tested with an active area of 0.05 cm2. The light intensity was calibrated by a standard Si-cell (Oriel Instrument).HTL conductivity was evaluated byI-Vcurves of NiOxfilms directly vaporized by silver at the same electrochemical workstation. The darkI-Vcurves (SCLC) were noted from 0 V to 3 V with 10 mV steps and dwell time of 10 ms (Keithley 2420 Source Meter). We used a power source(Newport 300W Xenon lamp,66902)with a monochromator(Newport Cornerstone 260) and a power meter (Newport 2936-C) to measure incident photon to current conversion efficiency(IPCE).Electrochemical impedance spectroscopy(EIS,CHI660E,CH Instruments)was recorded under dark condition at a bias voltage of 0.6 V from 100 kHz to 1 Hz with amplitude of 5 mV and quiet time of 2 s.

    3. Results and discussion

    As shown in Fig. S1, the XRD results of NiOxfilms with or without Sr doping indicate that doping process does not change crystal phase of NiOx, nor does it produce other Sr-containing compounds. We find that Sr are evenly distributed in the NiOxfilm, as shown in Fig. 1(a). Additionally, Sr-doping does not evidently change the morphology of NiOx-based films (Fig. 1(b) and Fig. S2), they all present a dense morphology with some nanoparticles aggregation on the surface, which is beneficial for deposition of the perovksite layer. The similar morphology of NiOxsubstrates lead to indistinguishable phase structure difference of the deposited perovksite films (Fig. S1b). The cross-sectional SEM image in Fig.1(b)clearly shows all the functional layers of the devices.XPS test was used to prove the valence state of Ni and the doping state of Sr. In XPS survey of Sr:NiOx, we can find a characteristic peak of Sr (Fig. S3), which proves the successful incorporation of Sr in the NiOxfilm. In addition to the characteristic peaks of Sr,Ni,O,the width scans spectrum also show characteristic peaks of Na and Si,due to the special composition of FTO glass. As shown in Figs. 1(c) and 1(d),two different oxidation states of Ni2+and Ni3+can be well represented by the Gaussian function fitting the spectrum of Ni 2p 3/2. The main peak at 852.89 eV and the shoulder peak at 854.7 eV correspond to Ni2+and Ni3+, respectively.[39,40]The ratio of simulated peak area of Ni3+to Ni2+is 1.21,which is significantly higher than that of pure NiOxfilm (1.01), the higher ratio of Ni3+to Ni2+indicates a larger hole concentration in the film.[41]This result is further demonstrated by the Hall-effect measurement,as shown in Table S1,both NiOxand Sr:NiOxfilms have p-type property, and the doped film has a much higher charge mobility and carrier density.[42]TheI-Vcurves of different HTLs also manifest the advantages of doping process in the improvement of film electroconductivity(Fig.S4).[43]

    Fig. 1. (a) EDS-mapping spectrum of O, Ni, Sr in Sr:NiOx film. (b) SEM images of NiOx, Sr:NiOx and NiOx/Sr:NiOx films, and SEM cross-section image of the device. XPS spectrum of Ni in(c)NiOx and(d)Sr:NiOx films.

    Energy level alignment of NiOx,Sr:NiOx,and perovskite film (PVSK) is important for the analysis of carrier transport from the perovskite active layer to the HTL, so we first used the UV-vis absorption spectra and the UPS(Figs.S5 and S6)to measure the energy level structure of all the functional layers.Through UV-vis measurement, we found that the absorbance of Sr:NiOxand pure NiOxHTL are similar (Fig. S5a), and the calculated band gaps(Eg)are also very close to each other(Fig. S5b). This means that Sr doping does not change light absorbance of the NiOxHTL.Figure S6 shows cut-off energy and valence band edge in NiOx,Sr:NiOxand perovskite thinfilm by UPS measurements,we can further calculate the Fermi level and valence band maximum(VBM)of semiconductors.The work function is the difference between the Fermi level and the vacuum level, so the work function is defined asφ=21.21-Ecutoff.[44]According to the formula,φof NiOxis 5.15 eV,φof Sr:NiOxis 5.21 eV,andφof PVSK is 5.12 eV.The valence band edge is the difference between the Fermi level and the VBM value,so the VBM values of NiOx,Sr:NiOxand perovskite film are-6.00 eV,-6.02 eV, and-6.36 eV,respectively. The energy level structure of hole transport layers and perovskite calculated from the relevant test results is shown in Fig. 2(a). The results indicate that the Fermi energy level decreases with Sr doping. This is consistent with the semiconductor doping law and previously report.[20]We also notice that the Fermi energy level of NiOxis 0.06 eV higher than Sr:NiOx,after contacting of these two films,band bending at the interface will happen and the bending direction is shown in Fig. 2(b), which is helpful for transportation of holes. Moreover, based on the same band bending rules, the photogenerated holes in the perovskite films could also be effectively extracted by the NiOxfilm. Compared to the single layer HTL, the NiOx/Sr:NiOxbilayer HTL could produce an additional driving force for hole transport, which may accelerate carrier transport and inhibit interface recombination at HTL/PVSK.

    Fig. 2. Energy level structure of HTLs and perovskite film (a) before and (b) after contacting, and the transport of photogenerated holes in different films.

    TheJ-Vcurves of PSCs based on different HTLs are presented in Fig. 3, and the corresponding photovoltaic parameters are listed in Table 1. The device using the NiOx/Sr:NiOxbilayer HTL shows the best performance, exhibiting a PCE of 18.44%, aVocof 1.01 V, a short circuit current density(Jsc)of 22.81 mA·cm-2, and a fill factor(FF)of 0.80. Compared to the devices employing single layer HTLs,the device based on the bilayer HTL has evident advantages in all photovoltaic parameters. The result demonstrates that the bilayer HTL could realize our expectations that proper design of energy level alignment in HTL is useful to improve charge transfer and to decrease carrier recombination. Under the driving force of electric field generated in the bilayer HTL, the hole transport efficiency could be greatly improved. Additionally,we find that the device based on the single-layer Sr-doped NiOxHTL could enhance the performance compared to the one using the NiOxHTL, especially on the parameters ofJscand FF because of the better conductivity of the doped film.However, itsVocdoes not increase obviously, which should be ascribed to some additional defects in the Sr:NiOxfilm introduced by the doping process, these defects would play as carrier recombination sites at HTL/perovskite interface. In regard to the NiOx/Sr:NiOxbilayer HTL, the doped film does not directly contact with the perovskite layer,so no additional defects are introduced to the interface. In Fig. 3(a), all the three devices have negligible hysteresis, presenting the advantage of inverted PSCs. The IPCE and integratedJscare shown in Fig. 3(b), the integratedJscdata are close to the values shown in theJ-Vcurves. Figures 3(c) and S7 show the statistic results of PCE,Jsc,Voc, and FF,respectively. We find that the bilayer HTL presents apparent advantage in PCE,Jsc, and FF with higher average values and narrow distribution, compared to the other two HTLs. Figure 3(d) shows the great working stability of the best performance PSC using NiOx/Sr:NiOxHTL without encapsulation,the PCE maintains 89% after 192 h. The effect of Sr concentration in the NiOx/Sr:NiOxbilayer HTL has been investigated,as shown in Fig. S8 and Table S2. The ratio for Sr/Ni is closely related to device performance. As the Sr/Ni increases from 0 to 8%,photovoltaic performance enhances apparently because of the improved electrical property of the Sr:NiOxfilm. However,as the ratio of Sr/Ni reaches 10%,the device performance decreases slightly,which may be induced by the lattice disorder as the over-doping process.

    Table 1. Photovoltaic parameters of the champion inverted planar PSCs based on different HTLs.

    Fig.3. (a)The J-V curves of champion PSCs based on different HTLs under reverse and forward scans. (b)IPCE spectrum and integrated Jsc.(c)Statistic results of PCE of the devices based on varied HTLs. (d)Normalized PCE as a function of time(hour)for best performance PSC using the NiOx/Sr:NiOx HTL without encapsulation.

    In order to understand carrier dynamics at interfaces,the film was tested by steady-state photoluminescence (PL). We prepared the samples with the structure of FTO/HTL/PVSK,using the same preparation method as the solar cells. We find that the emission peak of the Sr:NiOx-based film has an overall decrease compared to the emission peak of NiOxbased one, as shown in Fig. 3(a). This decrease may be induced by the better carrier extraction of Sr:NiOxfrom the perovskite film as its enhanced conductivity,but it could also originate from the increased non-radiative carrier recombination as the introduction of additional defects in the Sr:NiOxfilm.However, the emission peak decrease of the NiOx/Sr:NiOxbased film should be induced by the enhanced charge transport and inhibits carrier recombination at the HTL/perovskite interface,because it is NiOxbut not Sr:NiOxthat directly contacts with the perovskite film.[45]Time-resolved photoluminescence spectroscopy (TRPL) is further used to study the charge carrier transport, the curves in Fig. 4(b) can be fitted with the equation

    whereτ1andτ2are the life parameters of fast decay and slow decay, respectively. The fast decay process should be attributed to charge transfer at HTL/perovskite interface, and the slow decay should be ascribed to bimolecular radiative recombination.[46]We summarized the life parameters of the devices based on varied HTLs in Table 2. For comparison ofτ1,we know that the value of NiOx/Sr:NiOx-based film is the shortest. A shortτ1value represents effective hole extraction at the HTL/PVSK layer.[47]In addition,the values ofτ2are all above 400 ns,indicating the low level of defects in perovskite films and a slow carrier radiative recombination velocity.

    Table 2. Parameters of the TRPL lifetime from fitting curves of themeasurements.

    In order to determine the effect of Sr doping on the density of defect states in NiOxfilms, a dark current-voltage(IV) test was performed using the space charge limited current(SCLC)model,as shown in Fig.4(c). We can see that the first half of the linear relationship is in the ohmic region. When the applied voltage exceeds a certain value, the current increases rapidly. The value of the inflection point is named as the trap filled limit voltage (VTFL).[48]Obviously,VTFLof the NiOx/Sr:NiOxfilm is 0.735 V, which is lower than those of both NiOxand Sr:NiOx, indicating a lower density of defect states. The lowVTFLoriginates from the improved charge transfer process at HTL/perovskite interface. Moreover, the recombination mechanism is further studied by measuring the ideal factor associated with a specific recombination characteristic as a function ofVoc. Figure 4(d) shows the dependence of light intensity onVoc. The curve is approximately fitted as a linear function curve. The ideal factors of the devices based on NiOx, Sr:NiOx, and NiOx/Sr:NiOxare 1.64,1.48,and 1.31,respectively. The ideality factor closer to 1 indicates a lower single-molecule Shockley-Read-Hall (SRH)recombination. This result is consistent with the increased FF values by introducing the bilayer HTL,induced by the enhanced charge extraction and decreased carrier recombination at HTL/perovskite interface.[49]Furthermore,EIS delivers carriers transferring and recombination behaviors, as shown in Fig. 4(e). Parameters fitted are summarized in Table S3.The transport resistanceRtr, series resistanceRs, and the recombination resistanceRrecat the interface of PVSK/HTLs are displayed.[47]It can be observed clearly thatRrecof the NiOx/Sr:NiOxbased device increases to 77428 Ω, which is much higher than the others. Compared with the control device,RsandRtrdo not change significantly based on different HTLs. This indicates that NiOx/Sr:NiOxhomojunction HTL devices restrain the recombination at the interface and accelerate the transfer of charge carriers,[48]EIS results are in accordance with the other measurements stated above.

    Fig.4. (a)Steady-state photoluminescence(PL)spectra,and(b)transient time-resolved photoluminescence spectrum of FTO/HTL/perovskite.(c)Dark I-V curves of the HTL-only devices. (d)Light intensity dependent Voc for inverted planar PSCs based on different HTLs. (e)Nyquist plots of devices based on different HTLs under a bias of 0.6 V.

    4. Conclusion

    The bilayer hole transport layer we constructed for inverted planar PSC is composed of NiOx/Sr:NiOx. Sr doping significantly increases the ratio of Ni3+/Ni2+in the Sr:NiOxfilm, thereby increasing its charge transfer property. The Fermi level of Sr:NiOxdecreases compared to NiOxand the band direction after contacting with NiOxcould produce a driving force for holes extracting and reduce the recombination at the interface between the perovskite and HTL layers.Based on this bilayer strategy, we obtain an inverted planar PSC with PCE of 18.44%,Jscof 22.81 mA·cm-2and FF of 0.80,higher than the ones using NiOxor Sr:NiOx. This strategy provides a new idea for the future design of novel hole transport layers,which is effective to make high performance solar cells.

    Acknowledgement

    This work was supported by the Fundamental Research Funds for the Central Universities, China (Grant No.2021QN1110).

    猜你喜歡
    趙亮學(xué)文
    包學(xué)文
    包學(xué)文
    收藏與投資(2022年7期)2022-08-02 08:28:08
    某MPV地板加速振動(dòng)優(yōu)化與控制
    《那一刻,我長大了》教學(xué)設(shè)計(jì)
    虎子的周日
    十幾歲(2021年5期)2021-11-22 23:37:22
    A well-balanced positivity preserving two-dimensional shallow flow model with wetting and drying fronts over irregular topography *
    Interannual variation of nutrients along a transect across the Kuroshio and shelf area in the East China Sea over 40 years*
    Simulating the responses of a low-trophic ecosystem in the East China Sea to decadal changes in nutrient load from the Changjiang (Yangtze) River*
    奔跑的月光
    作品(2017年7期)2017-07-31 20:11:24
    趙亮要給我介紹女朋友
    鴨綠江(2016年5期)2016-04-29 13:06:31
    国产精品爽爽va在线观看网站 | 亚洲av熟女| 国产极品粉嫩免费观看在线| 亚洲在线自拍视频| 亚洲专区国产一区二区| 亚洲片人在线观看| 麻豆av在线久日| xxxwww97欧美| 中文资源天堂在线| 黄色 视频免费看| 久久中文看片网| 夜夜爽天天搞| 亚洲男人的天堂狠狠| 欧美乱色亚洲激情| 人人妻人人澡欧美一区二区| 免费观看人在逋| 久久这里只有精品19| 国产精品永久免费网站| 老司机在亚洲福利影院| 国产欧美日韩一区二区三| 欧美黑人巨大hd| 国产日本99.免费观看| 国产精品野战在线观看| 久久久久亚洲av毛片大全| 亚洲精品国产精品久久久不卡| 给我免费播放毛片高清在线观看| 亚洲欧美日韩高清在线视频| 在线观看www视频免费| 国产91精品成人一区二区三区| 亚洲国产欧美一区二区综合| 美女扒开内裤让男人捅视频| 日本成人三级电影网站| 深夜精品福利| 国产国语露脸激情在线看| 欧美最黄视频在线播放免费| 嫩草影视91久久| 亚洲av日韩精品久久久久久密| 午夜精品在线福利| 丁香六月欧美| 人人妻人人澡欧美一区二区| 人成视频在线观看免费观看| 国产片内射在线| 白带黄色成豆腐渣| 18禁国产床啪视频网站| 在线观看日韩欧美| 韩国av一区二区三区四区| 国产精品影院久久| 成人午夜高清在线视频 | 香蕉av资源在线| 久久亚洲真实| 91老司机精品| 男人舔奶头视频| 国产精品爽爽va在线观看网站 | 精品国产超薄肉色丝袜足j| 久久精品国产清高在天天线| 久久天躁狠狠躁夜夜2o2o| 国产亚洲欧美精品永久| 美女国产高潮福利片在线看| 亚洲成人国产一区在线观看| 免费在线观看黄色视频的| 亚洲 欧美一区二区三区| 欧美日韩黄片免| АⅤ资源中文在线天堂| 97超级碰碰碰精品色视频在线观看| 国产亚洲精品av在线| 日本五十路高清| 一个人免费在线观看的高清视频| 免费在线观看亚洲国产| 欧美不卡视频在线免费观看 | 日日干狠狠操夜夜爽| 欧美中文日本在线观看视频| 变态另类成人亚洲欧美熟女| 亚洲精品粉嫩美女一区| 午夜老司机福利片| 不卡av一区二区三区| 美女免费视频网站| 亚洲精华国产精华精| 欧美国产日韩亚洲一区| 黄色 视频免费看| 女生性感内裤真人,穿戴方法视频| av福利片在线| 无限看片的www在线观看| 国产在线观看jvid| 午夜免费激情av| 91老司机精品| 婷婷精品国产亚洲av在线| 99国产综合亚洲精品| 首页视频小说图片口味搜索| 不卡av一区二区三区| av欧美777| 在线观看午夜福利视频| 日日夜夜操网爽| 天天躁夜夜躁狠狠躁躁| 男女之事视频高清在线观看| 国产av一区在线观看免费| 国产亚洲av高清不卡| 中文字幕人妻丝袜一区二区| 成年免费大片在线观看| 国产精品国产高清国产av| 亚洲片人在线观看| 久久精品成人免费网站| 亚洲精品av麻豆狂野| 此物有八面人人有两片| 99久久无色码亚洲精品果冻| 久久久久精品国产欧美久久久| 一边摸一边做爽爽视频免费| 中文字幕人妻丝袜一区二区| 久久这里只有精品19| 熟妇人妻久久中文字幕3abv| 黄色女人牲交| 最近在线观看免费完整版| 日日摸夜夜添夜夜添小说| 亚洲精品在线观看二区| 亚洲七黄色美女视频| 午夜成年电影在线免费观看| 午夜视频精品福利| 极品教师在线免费播放| 国产成人啪精品午夜网站| 精品少妇一区二区三区视频日本电影| 啦啦啦 在线观看视频| 亚洲欧美激情综合另类| 日本免费一区二区三区高清不卡| 国产午夜精品久久久久久| 三级毛片av免费| 无限看片的www在线观看| 国产主播在线观看一区二区| 亚洲成人久久爱视频| 黑人操中国人逼视频| 久久国产精品男人的天堂亚洲| 夜夜爽天天搞| 99国产精品99久久久久| 国产主播在线观看一区二区| 国产极品粉嫩免费观看在线| 国产黄片美女视频| 久久香蕉国产精品| 亚洲精品国产一区二区精华液| 精品少妇一区二区三区视频日本电影| 国产精品爽爽va在线观看网站 | 亚洲国产高清在线一区二区三 | 日本三级黄在线观看| 亚洲 欧美 日韩 在线 免费| 嫩草影院精品99| 色av中文字幕| 国产高清视频在线播放一区| 欧美zozozo另类| 久久人妻av系列| 丝袜在线中文字幕| 国产亚洲精品久久久久5区| 国产精品久久电影中文字幕| 精品一区二区三区视频在线观看免费| 丝袜美腿诱惑在线| 最近最新中文字幕大全电影3 | 免费人成视频x8x8入口观看| 一级毛片女人18水好多| 美女大奶头视频| 欧美成人一区二区免费高清观看 | 国产精品 欧美亚洲| 亚洲中文字幕一区二区三区有码在线看 | 国产精品永久免费网站| 日韩欧美国产一区二区入口| 1024视频免费在线观看| 91在线观看av| 岛国视频午夜一区免费看| 免费在线观看黄色视频的| 不卡av一区二区三区| 亚洲成人国产一区在线观看| 久久久国产成人精品二区| 亚洲欧美精品综合一区二区三区| 国产精品自产拍在线观看55亚洲| 天堂影院成人在线观看| 欧美av亚洲av综合av国产av| 麻豆国产av国片精品| 欧美日本视频| 国产精品一区二区三区四区久久 | 精品国产亚洲在线| 欧美性猛交╳xxx乱大交人| 国产成人啪精品午夜网站| 免费在线观看影片大全网站| 99久久无色码亚洲精品果冻| 亚洲国产日韩欧美精品在线观看 | 亚洲 欧美一区二区三区| 亚洲成人精品中文字幕电影| 一区二区三区精品91| 国产亚洲精品综合一区在线观看 | 午夜福利在线观看吧| 日韩大尺度精品在线看网址| 97人妻精品一区二区三区麻豆 | 亚洲色图av天堂| 亚洲熟妇中文字幕五十中出| 精品午夜福利视频在线观看一区| 欧美成人午夜精品| 日本免费a在线| 欧美久久黑人一区二区| 国产又爽黄色视频| 中文字幕精品亚洲无线码一区 | 久久中文字幕人妻熟女| 一级毛片女人18水好多| 在线永久观看黄色视频| 在线观看免费午夜福利视频| 一边摸一边做爽爽视频免费| 成在线人永久免费视频| 观看免费一级毛片| 亚洲国产看品久久| 亚洲人成伊人成综合网2020| 亚洲精品国产区一区二| 亚洲精品中文字幕一二三四区| 精品一区二区三区av网在线观看| 日韩 欧美 亚洲 中文字幕| 最近在线观看免费完整版| 国产精品乱码一区二三区的特点| 91成年电影在线观看| 午夜成年电影在线免费观看| 波多野结衣高清无吗| 母亲3免费完整高清在线观看| 欧美最黄视频在线播放免费| 国产91精品成人一区二区三区| xxxwww97欧美| 欧美一区二区精品小视频在线| 日韩av在线大香蕉| 国产亚洲精品av在线| 亚洲第一青青草原| 欧美中文日本在线观看视频| www.自偷自拍.com| a在线观看视频网站| 亚洲国产日韩欧美精品在线观看 | netflix在线观看网站| 日韩欧美一区二区三区在线观看| 最新在线观看一区二区三区| 国产爱豆传媒在线观看 | 天堂影院成人在线观看| 国产一区在线观看成人免费| 很黄的视频免费| 午夜两性在线视频| 99久久无色码亚洲精品果冻| 欧美绝顶高潮抽搐喷水| 久久久精品欧美日韩精品| 最近最新中文字幕大全电影3 | 99久久国产精品久久久| 999久久久精品免费观看国产| 性色av乱码一区二区三区2| 午夜免费鲁丝| 国产精品,欧美在线| 女人被狂操c到高潮| 在线观看66精品国产| 国产av一区二区精品久久| 18美女黄网站色大片免费观看| 精品一区二区三区av网在线观看| 女性生殖器流出的白浆| av在线天堂中文字幕| 1024手机看黄色片| 真人做人爱边吃奶动态| 神马国产精品三级电影在线观看 | 黄色 视频免费看| 香蕉丝袜av| 日本 欧美在线| 亚洲成国产人片在线观看| 最近最新中文字幕大全电影3 | ponron亚洲| 国产精品日韩av在线免费观看| 老司机午夜十八禁免费视频| 国产精品亚洲美女久久久| 18禁黄网站禁片免费观看直播| 天天添夜夜摸| 狂野欧美激情性xxxx| 色婷婷久久久亚洲欧美| 精品乱码久久久久久99久播| 香蕉国产在线看| 麻豆一二三区av精品| 妹子高潮喷水视频| 天堂√8在线中文| 可以免费在线观看a视频的电影网站| www日本在线高清视频| 国产精品,欧美在线| 国产成人影院久久av| 国产又黄又爽又无遮挡在线| 午夜激情av网站| 国产真人三级小视频在线观看| 1024视频免费在线观看| 夜夜躁狠狠躁天天躁| 亚洲精品在线观看二区| 最近最新中文字幕大全免费视频| 久久伊人香网站| 欧美亚洲日本最大视频资源| av有码第一页| 十分钟在线观看高清视频www| 国产精品国产高清国产av| 18禁国产床啪视频网站| 别揉我奶头~嗯~啊~动态视频| 国产亚洲精品av在线| 日韩 欧美 亚洲 中文字幕| 色精品久久人妻99蜜桃| 免费一级毛片在线播放高清视频| 国产精品久久久久久亚洲av鲁大| av福利片在线| 精品一区二区三区视频在线观看免费| 黄片大片在线免费观看| 女同久久另类99精品国产91| 一级片免费观看大全| 国产伦一二天堂av在线观看| 国产亚洲欧美在线一区二区| 成人欧美大片| 日韩三级视频一区二区三区| 国产精品电影一区二区三区| 日本精品一区二区三区蜜桃| 级片在线观看| 香蕉av资源在线| 午夜久久久在线观看| 91成人精品电影| 欧美色视频一区免费| 女同久久另类99精品国产91| 色播亚洲综合网| 搞女人的毛片| 搡老妇女老女人老熟妇| 国产免费男女视频| 国产伦人伦偷精品视频| 亚洲va日本ⅴa欧美va伊人久久| 嫩草影院精品99| 免费一级毛片在线播放高清视频| 亚洲中文av在线| 精品国产乱子伦一区二区三区| 宅男免费午夜| 欧美久久黑人一区二区| 日本精品一区二区三区蜜桃| 国内精品久久久久精免费| 国产精品,欧美在线| 成人18禁在线播放| 久久婷婷人人爽人人干人人爱| 午夜福利成人在线免费观看| 久久精品夜夜夜夜夜久久蜜豆 | 日韩欧美在线二视频| 精华霜和精华液先用哪个| 老司机午夜十八禁免费视频| 国产三级在线视频| 欧美黄色淫秽网站| 一级a爱片免费观看的视频| 日本撒尿小便嘘嘘汇集6| 精品电影一区二区在线| 国产极品粉嫩免费观看在线| 天天躁夜夜躁狠狠躁躁| 99热6这里只有精品| 久久精品人妻少妇| 99久久国产精品久久久| 亚洲真实伦在线观看| 亚洲人成伊人成综合网2020| 国产三级在线视频| xxxwww97欧美| 国产精品久久久av美女十八| 精品日产1卡2卡| 亚洲欧美日韩无卡精品| 少妇的丰满在线观看| 女人高潮潮喷娇喘18禁视频| 最新在线观看一区二区三区| 美女大奶头视频| av福利片在线| 日本成人三级电影网站| 亚洲欧美一区二区三区黑人| 欧美黄色片欧美黄色片| 中文字幕精品亚洲无线码一区 | 成人国产综合亚洲| 午夜福利一区二区在线看| 欧美乱妇无乱码| 欧美日本视频| 久热这里只有精品99| 亚洲人成伊人成综合网2020| 又紧又爽又黄一区二区| 精品乱码久久久久久99久播| 久久这里只有精品19| 欧美国产精品va在线观看不卡| 欧美激情极品国产一区二区三区| 久久久久国产一级毛片高清牌| 色婷婷久久久亚洲欧美| 国产一卡二卡三卡精品| 特大巨黑吊av在线直播 | 精品熟女少妇八av免费久了| 757午夜福利合集在线观看| 亚洲激情在线av| 免费看日本二区| 国产精品99久久99久久久不卡| 叶爱在线成人免费视频播放| 观看免费一级毛片| 男人舔奶头视频| 青草久久国产| 成人永久免费在线观看视频| 18禁国产床啪视频网站| 亚洲成a人片在线一区二区| 日本黄色视频三级网站网址| 久久中文字幕一级| 淫妇啪啪啪对白视频| 日韩精品免费视频一区二区三区| 免费在线观看黄色视频的| 国产亚洲av高清不卡| 51午夜福利影视在线观看| 精品国产乱子伦一区二区三区| 国产精品香港三级国产av潘金莲| 免费在线观看黄色视频的| 亚洲五月色婷婷综合| 国产伦人伦偷精品视频| 国产精品野战在线观看| 亚洲成人国产一区在线观看| 成人亚洲精品av一区二区| 最好的美女福利视频网| 99精品久久久久人妻精品| 在线观看www视频免费| 大型av网站在线播放| 熟妇人妻久久中文字幕3abv| 99国产精品一区二区蜜桃av| 一级a爱视频在线免费观看| 久久精品成人免费网站| 色哟哟哟哟哟哟| 久久久国产成人免费| 欧美+亚洲+日韩+国产| 亚洲成a人片在线一区二区| 美女大奶头视频| www.精华液| 日韩欧美一区二区三区在线观看| 人妻丰满熟妇av一区二区三区| 久久久久久国产a免费观看| 欧美日本视频| 色播亚洲综合网| 亚洲人成网站在线播放欧美日韩| 国产av又大| 久久精品人妻少妇| 国产极品粉嫩免费观看在线| 波多野结衣av一区二区av| 校园春色视频在线观看| 岛国视频午夜一区免费看| 可以在线观看毛片的网站| 久久久精品欧美日韩精品| 国产免费男女视频| 久久精品成人免费网站| 欧美日韩黄片免| bbb黄色大片| 国产野战对白在线观看| 亚洲男人的天堂狠狠| 91麻豆精品激情在线观看国产| 人妻丰满熟妇av一区二区三区| 中文字幕最新亚洲高清| 亚洲 国产 在线| 成年免费大片在线观看| 两个人免费观看高清视频| 国产aⅴ精品一区二区三区波| 中文字幕人妻丝袜一区二区| 9191精品国产免费久久| 免费搜索国产男女视频| 欧美亚洲日本最大视频资源| av片东京热男人的天堂| 一区福利在线观看| 欧美中文综合在线视频| avwww免费| 精品日产1卡2卡| 久久精品国产清高在天天线| 国产人伦9x9x在线观看| 国内揄拍国产精品人妻在线 | 日本五十路高清| 一卡2卡三卡四卡精品乱码亚洲| 丰满的人妻完整版| 亚洲 欧美一区二区三区| 99国产综合亚洲精品| 白带黄色成豆腐渣| 99在线视频只有这里精品首页| 免费在线观看影片大全网站| 国产精品亚洲av一区麻豆| 两个人免费观看高清视频| 夜夜躁狠狠躁天天躁| 亚洲人成77777在线视频| 成人国产综合亚洲| 精品欧美国产一区二区三| 韩国精品一区二区三区| 精品久久久久久成人av| 亚洲熟妇中文字幕五十中出| 成人永久免费在线观看视频| 日韩高清综合在线| 韩国精品一区二区三区| 国产精品久久电影中文字幕| 99在线人妻在线中文字幕| 久久精品亚洲精品国产色婷小说| 亚洲精品久久国产高清桃花| 国内少妇人妻偷人精品xxx网站 | 午夜激情福利司机影院| 一区福利在线观看| 亚洲精品av麻豆狂野| 国产伦人伦偷精品视频| 亚洲 欧美 日韩 在线 免费| xxxwww97欧美| 久久精品国产清高在天天线| 99国产精品99久久久久| 免费搜索国产男女视频| ponron亚洲| 婷婷丁香在线五月| 国产精品一区二区三区四区久久 | 欧美激情极品国产一区二区三区| 天天一区二区日本电影三级| 成人手机av| 国产男靠女视频免费网站| 国产成人啪精品午夜网站| 99在线人妻在线中文字幕| 熟妇人妻久久中文字幕3abv| 久久性视频一级片| 久久欧美精品欧美久久欧美| 色尼玛亚洲综合影院| 国产亚洲欧美在线一区二区| 手机成人av网站| 国产熟女午夜一区二区三区| 巨乳人妻的诱惑在线观看| 91老司机精品| 91av网站免费观看| 久久精品91蜜桃| 欧美色欧美亚洲另类二区| 国产av一区二区精品久久| 日日爽夜夜爽网站| 国产成人精品无人区| 国产成人欧美| 婷婷丁香在线五月| 哪里可以看免费的av片| 两性午夜刺激爽爽歪歪视频在线观看 | 久久中文字幕一级| 亚洲成人免费电影在线观看| 亚洲免费av在线视频| 精品国产美女av久久久久小说| 啦啦啦韩国在线观看视频| 国产伦人伦偷精品视频| 亚洲一区二区三区色噜噜| 国产97色在线日韩免费| 久久久久久久久久黄片| 好看av亚洲va欧美ⅴa在| 俺也久久电影网| 神马国产精品三级电影在线观看 | 欧美成人午夜精品| 桃色一区二区三区在线观看| 99热只有精品国产| 超碰成人久久| 久久久国产成人免费| 午夜福利欧美成人| 一级毛片精品| 啪啪无遮挡十八禁网站| 成人国产一区最新在线观看| 久久久久精品国产欧美久久久| 亚洲av电影在线进入| 亚洲欧美精品综合一区二区三区| x7x7x7水蜜桃| 亚洲,欧美精品.| 搡老熟女国产l中国老女人| 日韩大码丰满熟妇| 国产亚洲精品第一综合不卡| 制服人妻中文乱码| 国产精品av久久久久免费| 少妇 在线观看| 国产日本99.免费观看| 免费电影在线观看免费观看| 国产免费男女视频| 欧美人与性动交α欧美精品济南到| 国产真人三级小视频在线观看| 日日夜夜操网爽| 母亲3免费完整高清在线观看| 97碰自拍视频| 国产又黄又爽又无遮挡在线| 性色av乱码一区二区三区2| 老司机靠b影院| 欧美日韩亚洲国产一区二区在线观看| 女性生殖器流出的白浆| 在线观看66精品国产| 两人在一起打扑克的视频| 美女高潮喷水抽搐中文字幕| 欧美绝顶高潮抽搐喷水| 在线观看日韩欧美| 国产蜜桃级精品一区二区三区| 99久久99久久久精品蜜桃| 亚洲五月婷婷丁香| www日本黄色视频网| 国产激情偷乱视频一区二区| 久久久久国内视频| 亚洲国产精品999在线| 日日夜夜操网爽| 色精品久久人妻99蜜桃| 午夜影院日韩av| 看免费av毛片| 国产精品 国内视频| 免费看a级黄色片| 国内精品久久久久精免费| 99久久无色码亚洲精品果冻| 精品人妻1区二区| 我的亚洲天堂| 母亲3免费完整高清在线观看| 精品人妻1区二区| 夜夜躁狠狠躁天天躁| 夜夜爽天天搞| 人人妻人人澡欧美一区二区| 人人澡人人妻人| 国产成人精品无人区| 欧美又色又爽又黄视频| 久久人妻av系列| а√天堂www在线а√下载| 久久精品人妻少妇| 日本一本二区三区精品| 满18在线观看网站| 91字幕亚洲| 最新美女视频免费是黄的| 精品免费久久久久久久清纯| 好男人电影高清在线观看| 国产人伦9x9x在线观看| 亚洲七黄色美女视频| 嫩草影视91久久| 亚洲在线自拍视频| 亚洲国产欧美一区二区综合| 色在线成人网| 国产精品电影一区二区三区| 在线观看午夜福利视频| 一级a爱片免费观看的视频| 久久久久久久久中文| 午夜精品在线福利| 国产av一区二区精品久久| 老司机深夜福利视频在线观看| 国产国语露脸激情在线看| 国产成年人精品一区二区| 国产精品99久久99久久久不卡|