• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A DFT/TD-DFT study of effect of different substituent on ESIPT fluorescence features of 2-(2′-hydroxyphenyl)-4-chloromethylthiazole derivatives

    2022-03-12 07:49:42ShenYangSu蘇申陽XiuNingLiang梁秀寧andHuaFang方華
    Chinese Physics B 2022年3期

    Shen-Yang Su(蘇申陽), Xiu-Ning Liang(梁秀寧), and Hua Fang(方華)

    Department of Chemistry and Material Science,College of Science,Nanjing Forestry University,Nanjing 210037,China

    Keywords: excited-state intramolecular proton transfer(ESIPT),TD-DFT,substitution

    1. Introduction

    As a typical weak interaction, hydrogen bond (Hbond) plays a significant part in biology, chemistry, and physics, especially in many photochemical and photophysical processes.[1-6]Proton transfer (PT) usually occurs in molecules with acidic and basic groups, and the H-bond between the acidic group and basic group i acts as the bridge of proton transfer. Since the excited state proton transfer process was reported first by Weller,[7]a strong upsurge to study the excited state intramolecular and intermolecular proton transfer has sustained for decades.

    Excited-state intramoecular proton transfer(ESIPT)reaction is a sub-picosecond ultrafast photo-induced tautomerization process,in which the ground-state normal form(N)converts into the corresponding tautomer form(T)by undergoing a four-stage photocycle.[8-10]The transformation between N and T results in great changes in the physical and chemical properties of the compound, especially in the spectral behaviors. In the photocycle process,dual fluorescent emission and large Stokes shift are observed in ESIPT compound. Based on the unique photophysical features, ESIPT molecules are widely applied to photostabilizer,sensing technology,molecular switches,and laser dyes.[11-17]

    The fluorescent properties of ESIPT compound are obviously affected by the media environment, such as pH, solvent polarity, solvent type, viscosity,etc. Many researchers have performed a large number of studies on the effects of surrounding media on ESIPT process and luminescent properties.[18-22]In addition,the changes of geometrical structures of ESIPT compound can also control the spectral features. The substitution of functional groups may provide an effective way to fine-tune the ESIPT process and photophysical properties of compounds.[23-26]According to the previous reports, Maet al.[27]studied the substituent effect on ESIPT process of 1-(aclamino)-anhraquinones. Takagiet al.[28]probed the ESIPT fluorescence properties of methoxysubstituted 2-hydroxyphenylbenzimidazole. Songet al.[29]investigated the effect of different substiuents on ESIPT of 3-hydroxychromone. Zhanget al.[30]examined the relationship between the substituted position and ESIPT fluorescence features of 2-(2′-hydroxyphenyl)imidazo[1,2-a]-pyridine(HPIP).Zhanget al.[31]synthesized a series of new NH-type pyrroleindole compounds and discussed the effects of different functional groups on the ESIPT process and photophysical properties. Obviously,an approporiate substituent can greatly improve the properties of ESIPT materials. Therefore,structural modification with different functional groups can usually be used to design and develop new ESIPT compounds with good applications.

    Recently, a series of thiazole-based organic molecules[32-37]was synthesized experimentally and successfully used as fluorescent chemosensors with high selectivity in identifying metal ions (e.g., Ga3+, Al3+, Zn2+, Cu2+) and anions (e.g., CN-, F-, I-, HSO-4, H2P2O3-7). The diversities of fluorescence recognition functions of the parent thiazole molecule are due to the chemical modification in the positions 2 and 4 of the thiazole ring. Inspired by the previous reports, we investigate the effects of different substituents on the ESIPT process and photophysical properties of fluorescent probe molecule in the present work. We design four novel ESIPT compounds via chemical substitution based on 2-(2′-hydroxyphenyl)-4-chloromethylthiazole(HCT).[33]Two electron-donating groups(CH3,OH)and two electron-withdrawing groups (CF3, CHO) are introduced in the para position of hydroxyl group in the benzene ring of HCT, and denoted as R-HCT. The structures of the designed probes R-HCT are shown in Fig. 1. We employ the density functional theory (DFT) and time-dependent DFT (TD-DFT)to investigate the effects of different substituents on the intramolecular H-bond,the absorption/fluorescence spectra and ESIPT process of R-HCT. Detailed calculation results, such as structural parameter,vibrational spectra,topology analysis,reduced density gradient analysis, frontier molecular orbital,ESIPT process, and photophysical properties are investigated as follows. We hope our studies may provide much useful information for the design of ESIPT-based fluorescent probes with better photophysical properties.

    Fig.1. Structures of R-HCT(R:H,CH3,OH,CF3,CHO).

    2. Computational details

    In this work,all the calculations were performed by using the Gaussian 09 package.[38]The ground-state (S0) and the first excitedstate (S1) normal form (N), transition state (TS),and tautomer form (T) of R-HCT (R: CH3, OH, CF3, CHO)molecules were fully optimized by using the DFT and TDDFT methods with B3PW91 functional[39-41]and 6-31+G(d,p) basis set. The frequency calculations were carried out at the same computational level to verify the minima(N and T)and transition state, which have no imaginary frequency and only one imaginary frequency, respectively. Acetonitrile solvent and the integral equation polarizable continuum model(IEFPCM)[42-44]were chosen in order to be consistent with the experimental environment.[33]The absorption and fluorescence emission spectra were simulated at a TD-B3PW91/6-31+G(d,p)level based on the optimized S0structure and optimized S1structure, respectively. The topology analysis and the reduced density gradient isosurfaces were performed by using the Multiwfn program[45]and VMD program,[46]respectively.

    3. Results and discussion

    3.1. Optimized structures and infrared spectra

    All the structures of HCT derivatives R-HCT (R: CH3,OH,CF3,CHO)in the normal(N)and tautomer(T)forms in the S0and S1states are completely optimized and shown in Fig.2. The corresponding structural parameters related to intramolecular H-bond in R-HCT,such as bond lengths O1-H2,H2-N3,and bond angle O1-H2-N3,are listed in Table 1.

    Fig.2. Optimized geometries of normal form(N)and tautomer form(T)of R-HCT(R:CH3,OH,CF3,CHO)in S1 state.

    For the normal forms of CH3-HCT and OH-HCT compound,it can be seen in Table 1 that the bond distances of O1-H2and H2-N3,and the bond angle O1-H2-N3in the S0state are 0.996 °A,1.703 °A,147.9°,and 0.995 °A,1.709 °A,147.8°respectively.Comparing with HCT,[47]the H2-N3bonds and the angles O1-H2-N3of CH3-HCT and OH-HCT in the S0state are elongated and shortened, respectively, which means that the intramolecular H-bonds O1-H2...N3of CH3-HCT and OH-HCT in the S0state are weaker than those of HCT. The electron-donating groups CH3and OH evidently weaken the intramolecular H-bond of HCT in the S0state. For the CHOHCT compound and CF3-HCT compound, the H2-N3bond distances and the bond angles O1-H2-N3averagely decrease by 0.024 °A and increase by 0.15°,respectively,compared with the corresponding data of HCT. The shortened H2-N3bond and the enlarged O1-H2-N3angle confirm the existence of the strong intramolecular H-bond O1-H2...N3in CF3-HCT and CHO-HCT compounds in the S0state. However, the effects of different functional groups(CH3,OH,CF3,CHO)on the structure of HCT in the S1state are quite opposite. From Table 1 it follows that the bond distance of H2-N3and bond angle of O1-H2-N3for each of CH3-HCT and OH-HCT are averagely shortened by 0.059 °A and enlarged by 1.1°,respectively, and the corresponding parameters of R-HCT (R: CF3,CHO) are averagely elongated by 0.022 °A and reduced by 0.9°,respectively,compared with those of HCT.These results indicate that the intramolecular H-bond of HCT in the S1state is enhanced by the electron-donating group (CH3, OH) and weakened by the electron-withdrawing group(CF3,CHO).In addition, the O1-H2and H2-N3bond lengths and O1-H2-N3bond angle of R-HCT (R: CH3, OH, CF3, CHO) are in a range of 0.995 °A-1.003 °A, 1.670 °A-1.709 °A, and 147.8°-148.4°in the S0state, and in a range of 1.023 °A-1.057 °A,1.508 °A-1.610 °A, and 150.7°-152.9°in the S1state, respectively. The elongating O1-H2bond, the shortening H2-N3bond,and the enlarging O1-H2-N3bond angle of the R-HCT(R:CH3, OH,CF3, CHO)confirm that the intramolecular Hbond O1-H2...N3are strengthened in the S1state,which will be favorable to occur in the ESIPT process.

    For the R-HCT (R: CH3, OH, CF3, CHO) compounds,the tautomer forms cannot be obtained in the S0state. Each attempt to find the tautomer structures fails. These results suggest that the R-HCT compounds radioatively return to the ground state in the tautomer form, subsequently return to the normal forms in a barrierless manner.

    Table 1. Primary structural parameters(bond length(in unit °A)and bond angle in unit(°))of HCT and its derivatives R-HCT(R:CH3,OH,CF3,CHO)in S0 state and S1 state.

    The changing of intramolecular H-bond of R-HCT (R:CH3, OH, CF3, CHO) can be confirmed by the infrared (IR)vibration spectra of the O1-H2bond (normal form) in the RHCT compounds in acetonitrile(shown in Fig.3). In general,the strengthening or weakening of H-bond corresponds to the red-shift or blue-shift of O1-H2bond stretching vibrational frequency, respectively.[48-50]As shown in Fig. 3, the O1-H2stretching vibrational frequencies for CH3-HCT,OH-HCT,CF3-HCT, and CHO-HCT in the S0state are at 3189 cm-1,3215 cm-1, 3110 cm-1, and 3063 cm-1, respectively. When R-HCT (R: CH3, OH, CF3, CHO) compounds are in the S1state, the corresponding vibrational frequencies are situated on 2153 cm-1, 2266 cm-1, 2680 cm-1, and 2551 cm-1,respectively. The O1-H2stretching vibrational frequencies of HCT replaced by electron-donating group and electronwithdrawing group are slightly blue-shifted and red-shifted in the S0state, respectively, in comparison with the corresponding value of HCT.[47]These results confirm the electrondonating group (CH3and OH) and electron-withdrawing group (CF3, CHO) weaken and strengthen the intramolecular H-bond O1-H2...N3in the S0state,respectively. In the S1state,the substituents have opposite effects on the intramolecular H-bond based on the changes between HCT and R-HCT(R:CH3,OH,CHO,CF3). In addition,the apparent red-shifts 1036 cm-1,949 cm-1,430 cm-1,and 512 cm-1of the O1-H2stretching vibrational frequency of CH3-HCT,OH-HCT,CF3-HCT,and CHO-HCT in the S1state,respectively,represent the strengthening intramolecular H-bond O1-H2...N3,compared with the corresponding IR frequencies in the S0state. The proton might transfer more easily in the S1state than in the S0state. The red-shift values between S0and S1states in CH3-HCT and OH-HCT are larger than those values in R-HCT(R:CHO,CF3),which means that the electron-donating group has stronger effects on enhancing the intramolecular H-bond than electron-withdrawing group. The conclusion obtained by the structural parameters is proved by the analysis of IR vibration.

    Fig.3. IR spectra for R-HCT(R:CH3,OH,CF3,CHO)in the normal form in a region of O1-H2 stretching vibration spectra in S0 state and S1 state.

    3.2. Topology analysis and reduced density gradient analysis

    To further explore the strength of intramolecular H-bond of R-HCT (R: CH3, OH, CF3, CHO), the topological analysis based on the electron density is performed. Topology parameters (ρ(r), ?2ρ(r),V(r),EHB,G(r),H(r), and ELF)are obtained at the bond critical point (BCP, [3,-1] type) between H2atom and N3atom and listed in Table 2. The value of ?2ρ(r)can be used to determine the type of interaction,and the value ofρ(r)andEHBare closely related to the strength of the H-bond.[51]The positive or negative value of ?2ρ(r)represents the closed-shell interaction(e.g.,ionic bond and H-bond)or shared interaction (e.g., covalent bond), respectively. The H-bond strength can be divided into three types based on the value ofρ(r)at BCP:[52](i)weak,ρ(r)≤0.02;(ii)medium,0.02<ρ(r)<0.03; (iii)strong,ρ(r)≥0.03. The bigger the values ofρ(r)andEHBare,the stronger the H-bond is. It can be found in Table 2 that the electron densityρ(r) of R-HCT(R:CH3,OH,CF3,CHO)in the S0and S1states are in a range of 0.0512 a.u.-0.0547 a.u. and 0.0648 a.u.-0.0845 a.u., respectively, and the value of Laplacian ?2ρ(r) in the S0state and the S1state are larger than 0.10 a.u.

    Table 2. Calculated BCP parameters associated with intramolecular H-bond of R-HCT(R:CH3,OH,CF3,CHO)in S0 state and S1 state.

    Fig.4. Scatter plots of S versus sign(λ2)ρ and gradient isosurfaces of R-HCT(R:CH3,OH,CF3,CHO)in S0 state and S1 state.

    These results mean that the strong intramolecular Hbonds exist in the R-HCT(R:CH3,OH,CF3,CHO)in the S0state and S1state, and the H-bond in the S1state is stronger than that in the S0state. The same conclusion is obtained from the value ofEHBof R-HCT. Evidently, the introduction of different substituents gives rise to different effects on the H-bond strength. In the S0state, the electron-donating group(CH3,OH)weakens the intramolecular H-bond of HCT,and the electron-withdrawing group (CF3, CHO) strengthens the corresponding H-bond. In the S1state, the introducing electron-donating group(CH3,OH)and electron-withdrawing group (CF3, CHO) make the intramolecular H-bond of HCT strengthen and weaken,respectively. The above conclusion is consistent with that drawn from the structures.

    We also employ the reduced density gradient (RDG)function to analyze the intramolecular H-bond of R-HCT.The RDG analysis proposed by Johnsonet al.[53]and Garc′?aet al.[54]is based on the electron densityρa(bǔ)nd its reduced gradientS, and can be used to distinguish non-covalent bond interaction. Herein, a real space function sign(λ2)ρis defined,in whichρis the electron density in corresponding region andλ2is the second largest eigenvalue of Hessian matrix ofρ.Large negative or positive value of sign(λ2)ρrepresents the interaction such as H-bond or steric effect, respectively. The near zero value of sign(λ2)ρrepresents weak van der Waals interactions.

    The RDGversussign(λ2)ρof R-HCT(R:CH3,OH,CF3,CHO)in the S0state and S1state are shown in Fig.4. For the S0and S1R-HCT compounds, their spike peaks are located at-0.06<ρ <-0.05 a.u.and-0.09<ρ <-0.06 a.u., respectively, which confirms that the strong intramolecular Hbond O1-H2...N3exists separately in the S0state and S1state,and the intramolecular H-bonds in the S1state are stronger than those in the S0state. In comparison with HCT,[47]the introduced electron-donating/electron-withdrawing group weakens/enhances and enhances/weakens the intramolelcular H-bond of HCT in the S0and S1states, respectively. Based on the non-covalent interaction analysis,the above-mentioned conclusion is affirmed again.

    3.3. Excited-state intramolecular proton transfer

    In order to further study the effects of different substitutents on ESIPT process of HCT, we completely optimize the structure of transition state(TS).The TS structures of R-HCT(R: CH3, OH, CF3, CHO) are verified by frequency calculations as shown in Fig. A1 in Appendix A. The reaction barrier and reverse reaction barrier in the S0state and S1state of the studied compounds are calculated and displayed in Table 3. The corresponding energy diagram for proton transfer in R-HCT is shown in Fig. 5. It is worth noting that only S1tautomer geometries of R-HCT(R:CH3,OH,CF3,CHO)are obtained. All the attempts to obtain the tautomer structures of CH3-HCT, OH-HCT, CF3-HCT, and CHO-HCT fail and end in their corresponding normal structures. This is probably because the energy values of forming the stable tautomer structures in the S0state are too high.

    Table 3. Calculated reaction barrier (in units kcal/mol) for forward and reverse proton transfer in R-HCT(R:CH3,OH,CF3,CHO)in S1 state.

    Fig.5. Potential energy profiles of proton transfer in R-HCT(R:CH3,OH,CF3,CHO)in S1 state.

    These result suggest that the proton transfer from O-H group to thiazolic nitrogen atom is impossible for R-HCT(R:CH3,OH,CF3,CHO)in the ground state. However,it should be mentioned that there is a low reaction barrier less than 1 kcal/mol in the S1state for proton transfer process from N to T.Obviously, the low reaction barrier is prone to ESIPT process. The ESIPT process should be an ultrafast process due to the lower barrier. After ESIPT behavior,the S1tautomer form of R-HCT (R: CH3, OH, CF3, CHO) will transform into the corresponding unstable S0tautomer structure through emission fluorescence,then occur a barrierless reverse ground-state proton transfer(RGSPT)process and return to the most stable S0normal structure. We also find that the replacement of different substituents can modulate the ESIPT process of HCT.As shown in Table 3,the electron-donating group(CH3,OH)and electron-withdrawing group (CF3, CHO) reduce and increase the ESIPT reaction barrier of HCT, respectively. Evidently, the introduction of electron-donating group into the HCT is more favorable to the ESIPT process. In addition,the reverse proton transfer barrier of CH3-HCT, OH-HCT, CF3-HCT,and CHO-HCT are 5.62,4.02,7.54,and 8.11 kcal/mol,respectively, and they are all higher than the corresponding ESIPT barrier. The larger reaction barrier implies that the reverse ESIPT process is difficult to occur,and the corresponding tautomer structures of R-HCT (R: CH3, OH, CF3, CHO)are the stable structures in the S1state.

    3.4. Frontier molecular orbitals and electronic spectra

    As is well known, the analysis of frontier molecular orbitals(FMOs),as an effective method,is often used to explore the charge distribution characteristics in the excited state.[55,56]Therefore,the calculated FMOs of R-HCT(R:CH3,OH,CF3,CHO) are displayed in Fig. 6. The calculated absorption and fluorescence emission wavelengths, corresponding oscillator strength(f)and the orbital compositions are listed in Tables 4 and 5.Obviously,the first singlet transition(S0-S1)of R-HCT corresponds to the electronic transition from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital(LUMO),making large orbital contributions(see Table 4). Hence,only the HOMO and LUMO orbitals of R-HCT in the S1state are displayed in Fig. 6. From Fig. 6,we can draw the conclusion that the HOMOs of R-HCT (R:CH3,OH,CF3,CHO)haveπcharacter while the corresponding LUMOs haveπ*character. The transition process from HOMO to LUMO hasππ*-type features in view of the charge distribution between HOMO and LUMO.

    For the R-HCT (R: CH3, OH, CF3, CHO), the electron density of hydroxyl O1atom (proton donor) decreases,while the electron density of N3atom (proton acceptor) increases after the transition from HOMO to LUMO. Namely,the intramolecular charge transfer exists in the S0→S1transition, and renders the hydroxyl O1atom and N3atom more acidic and basic, respectively, which is more favorable to the occurrence of ESIPT. However, the remarkable intramolecular charge transfer features in R-HCT (R: CH3, OH, CF3,CHO)compound are totally different because of different substituents.We find that the HOMOs of CH3-HCT and OH-HCT are mainly located on the hydroxyl benzene ring,whereas the LUMOs are distributed mainly on phenol-thiazole ring due to push-pull electron effect(CH3and OH as electron donor and thiazole as electron acceptor). While for the CF3-HCT compound and CHO-HCT compound, electron densities of both HOMOs and LUMOs are mainly in phenol-thiazole ring due to the electron-withdrawing effects of CF3and CHO.

    Table 4. Values of vertical excitation energy of S0 →Sn (n=1-3)and oscillator strength(f),and major orbital contributions of R-HCT(R:H,CH3,OH,CF3,CHO)obtained at TD-B3PW91/6-31+G(d,p)level in acetonitrile.

    Table 5. Values of vertical emission energy of S1 →S0 and oscillator strength (f), and major orbital contributions of R-HCT (R: H, CH3, OH,CF3,CHO)obtained at TD-B3PW91/6-31+G(d,p)level in acetonitrile.

    Fig.6. Frontier molecular orbitals(HOMO and LUMO)of R-HCT(R:CH3,OH,CF3,CHO)in acetonitrile.

    The related energy values of HOMO,LUMO,energy gap of R-HCT (R: H, CH3, OH, CF3, CHO) in the S1states are listed in Table 6. It can be seen that the HOMO and LUMO energy values of CF3-HCT and CHO-HCT are all a little lower than those of HCT, which does not render the energy gaps of CF3-HCT and CHO-HCT significantly different from those of HCT. For compounds with electron-donating group (CH3,OH),the LUMO energy values are obviously increased while their LUMO energy values are a little increased,which results in the smaller energy gaps than that of HCT.The smaller energy gaps of CH3-HCT, OH-HCT are corresponding to the red-shift absorption peaks. The smaller the energy gap, the stronger the red-shift absorption peak is.

    Table 6. Energy values (in unit eV) of HOMO, LUMO, and the HOMOLUMO gaps(in unit eV)of HCT and their derivatives R-HCT(R:CH3,OH,CF3,CHO)in S1 state.

    Fig.7. Calculated absorption(Abs)and fluorescence(Flu)emission spectra of R-HCT(R:CH3,OH,CF3,CHO)in acetonitrile.

    The absorption and fluorescence spectra of R-HCT (R:CH3, OH, CF3, CHO) at the normal and tautomer forms are also simulated and the results are shown in Fig.7.The detailed transition properties of R-HCT(R:CH3,OH,CF3,CHO)are listed in Tables 4 and 5.As shown in Tables 4 and 5 and Fig.7,it can be found that the maximum absorption peaks of CH3-HCT, OH-HCT, CF3-HCT, and CHO-HCT are at 347 nm,373 nm, 328 nm, and 328 nm, respectively. And the corresponding maximum fluorescent peaks are at 402 nm,438 nm,381 nm,and 379 nm. The electron-donating group(CH3,OH)gives rise to a red-shift in both the absorption and fluorescent peaks of HCT,which results in an increase in the Stokes shift (from 48 nm (HCT) to 55 nm (CH3-HCT) and 65 nm(OH-HCT)). However, the electron-withdrawing group (CF3,CHO)makes the electronic spectra blue-shift a little. The redshift or blue-shift electronic spectral wavelengths imply that the intramolecular H-bond is strengthened or weakened.[57,58]Obviously, electron-donating group (CH3, OH) and electronwithdrawing group(CF3,CHO)strengthen and weaken the intramolecular H-bond O1-H2...N3in the S1state,respectively.

    The calculated fluorescence spectra of R-HCT (R: CH3,OH,CF3,CHO)show dual fluorescent emission bands which correspond to their normal and tautomer forms, respectively.For the tautomer forms of R-HCT, the fluorescence peaks of CH3-HCT, OH-HCT, CF3-HCT, and CHO-HCT are at 502 nm,536 nm,467 nm,and 451 nm,respectively,showing the corresponding Stokes shift of 155 nm, 163 nm, 139 nm,and 123 nm. The effects of different substituents on the fluorescent emission peaks in the tautomer form are consistent with those on the absorption peaks and fluorescent peaks in the normal form.

    4. Conclusions

    In summary, DFT and TD-DFT methods with IEFPCM solvent model have been used to investigate the effects of different substituents on the H-bond strength, ESIPT behaviors and photophysical properties of R-HCT (R: CH3, OH, CF3,CHO)compounds in acetonitrile. From the results of primary structural parameters,infrared(IR)vibration spectra,topological analysis and reduced density gradient(RDG)analysis,the strengths of intramolecular H-bond of all title compounds enhanced in the S1state are confirmed, which will be favorable for the ESIPT process. The electron-donating groups (CH3,OH)and electron-withdrawing groups(CF3,CHO)strengthen and weaken the intramolecular H-bond in the S1state,respectively. The enhanced intramolecular H-bond in the CH3-HCT and OH-HCT and the weakened H-bond in the CF3-HCT and CHO-HCT make ESIPT process take place much more easily and more difficultly, respectively. The substitution effect on the H-bond strength in the S0state is opposite. The frontier molecular orbitals prove that the transition process from HOMO to LUMO in R-HCT compounds showππ*-type feature. The electron-donating groups (CH3, OH) narrow the energy gaps of HCT, and electron-withdrawing groups (CF3,CHO)do not show significant difference from those of HCT.The smaller the energy gap,the stronger the red-shift absorption peakis. In addition, the electron-donating groups (CH3,OH) red-shift both the absorption and fluorescence emission peaks of HCT,respectively,and then causing the Stokes shift to increase. The electron-withdrawing groups (CF3, CHO)have a little effect on electronic spectra.

    Appendix A:Supporting information

    Fig.A1. Optimized transition state of R-HCT(R:CH3,OH,CF3,CHO)in the S1 state.

    av黄色大香蕉| 亚洲美女视频黄频| 国产精品久久久久久久电影| 国产伦一二天堂av在线观看| 级片在线观看| 极品教师在线视频| 久久久久性生活片| 九色成人免费人妻av| 久久热精品热| 91在线观看av| 又爽又黄a免费视频| 亚洲成a人片在线一区二区| 一级毛片电影观看 | 在线看三级毛片| 国产高清视频在线观看网站| 亚洲美女黄片视频| 97超碰精品成人国产| 一卡2卡三卡四卡精品乱码亚洲| 久久韩国三级中文字幕| 有码 亚洲区| 亚洲精品成人久久久久久| 午夜福利在线观看免费完整高清在 | 国内少妇人妻偷人精品xxx网站| 欧美人与善性xxx| 99热精品在线国产| 女的被弄到高潮叫床怎么办| 国产69精品久久久久777片| 丝袜美腿在线中文| 在线国产一区二区在线| 麻豆精品久久久久久蜜桃| 亚洲av第一区精品v没综合| 99久久中文字幕三级久久日本| 亚洲真实伦在线观看| 在线观看66精品国产| 精品少妇黑人巨大在线播放 | 久久精品夜夜夜夜夜久久蜜豆| 日韩一本色道免费dvd| 国内精品美女久久久久久| 成年版毛片免费区| 亚洲,欧美,日韩| 成人综合一区亚洲| 欧美极品一区二区三区四区| 国产真实乱freesex| 亚洲精品影视一区二区三区av| а√天堂www在线а√下载| 综合色丁香网| 日韩强制内射视频| 亚洲无线在线观看| 日本精品一区二区三区蜜桃| 少妇被粗大猛烈的视频| 人人妻,人人澡人人爽秒播| 午夜福利在线观看免费完整高清在 | 国产麻豆成人av免费视频| 一边摸一边抽搐一进一小说| 久久综合国产亚洲精品| 国产精品日韩av在线免费观看| АⅤ资源中文在线天堂| 精品乱码久久久久久99久播| 男女下面进入的视频免费午夜| 免费看a级黄色片| 91久久精品电影网| 在线a可以看的网站| 日韩精品中文字幕看吧| 久久久久久久久久成人| 国产伦精品一区二区三区四那| 日本一本二区三区精品| 国产综合懂色| 精品久久久久久久久久久久久| 老司机午夜福利在线观看视频| 秋霞在线观看毛片| 亚洲欧美中文字幕日韩二区| 亚洲四区av| 男人的好看免费观看在线视频| 欧美在线一区亚洲| 一级毛片久久久久久久久女| 国产一区二区在线av高清观看| 国产精品av视频在线免费观看| 日韩av不卡免费在线播放| 精品不卡国产一区二区三区| 伊人久久精品亚洲午夜| 小蜜桃在线观看免费完整版高清| 国产又黄又爽又无遮挡在线| 如何舔出高潮| 亚洲成a人片在线一区二区| 成人av在线播放网站| 亚洲精品影视一区二区三区av| 日韩欧美免费精品| 久久久精品94久久精品| 日韩欧美三级三区| 3wmmmm亚洲av在线观看| 亚洲精品在线观看二区| 亚洲第一区二区三区不卡| 亚洲中文字幕一区二区三区有码在线看| 又黄又爽又免费观看的视频| 尾随美女入室| 欧美最黄视频在线播放免费| 一本精品99久久精品77| 亚洲图色成人| 国产91av在线免费观看| 在线看三级毛片| 能在线免费观看的黄片| 一本一本综合久久| 午夜免费激情av| videossex国产| 亚洲av免费高清在线观看| 久久天躁狠狠躁夜夜2o2o| 观看美女的网站| 国产精品女同一区二区软件| 成人特级av手机在线观看| 亚洲熟妇熟女久久| 在线免费观看的www视频| 黄片wwwwww| 国产一区亚洲一区在线观看| 色综合亚洲欧美另类图片| www日本黄色视频网| 久久精品久久久久久噜噜老黄 | 春色校园在线视频观看| 18禁在线播放成人免费| 日韩欧美国产在线观看| 熟女人妻精品中文字幕| 日韩亚洲欧美综合| 日本一二三区视频观看| 亚洲精品影视一区二区三区av| 欧美在线一区亚洲| 天美传媒精品一区二区| 舔av片在线| 男女边吃奶边做爰视频| 久久中文看片网| 亚洲av成人av| 国产高清视频在线观看网站| 九九久久精品国产亚洲av麻豆| 日韩中字成人| 日韩中字成人| 国产一区二区在线观看日韩| 亚洲自拍偷在线| 亚洲欧美日韩无卡精品| 在线观看一区二区三区| 精品一区二区免费观看| 免费不卡的大黄色大毛片视频在线观看 | 国产91av在线免费观看| 97超级碰碰碰精品色视频在线观看| 美女高潮的动态| 最近2019中文字幕mv第一页| 美女cb高潮喷水在线观看| 亚洲七黄色美女视频| 日韩欧美免费精品| 99九九线精品视频在线观看视频| 少妇的逼好多水| 一进一出好大好爽视频| 一a级毛片在线观看| 国产乱人视频| 寂寞人妻少妇视频99o| 99视频精品全部免费 在线| 在线天堂最新版资源| 婷婷亚洲欧美| 国产精品乱码一区二三区的特点| 色5月婷婷丁香| 久久亚洲国产成人精品v| 亚洲精华国产精华液的使用体验 | 色av中文字幕| 特大巨黑吊av在线直播| 成年女人毛片免费观看观看9| 特大巨黑吊av在线直播| 精品99又大又爽又粗少妇毛片| 精品日产1卡2卡| 午夜福利成人在线免费观看| 欧美成人精品欧美一级黄| 欧美中文日本在线观看视频| 欧美中文日本在线观看视频| 欧美中文日本在线观看视频| 免费黄网站久久成人精品| 亚洲第一电影网av| 91精品国产九色| 国产在视频线在精品| 最近最新中文字幕大全电影3| 国产aⅴ精品一区二区三区波| 又爽又黄a免费视频| 国产精品一区二区免费欧美| 日韩一区二区视频免费看| 午夜视频国产福利| 久久久久免费精品人妻一区二区| 免费无遮挡裸体视频| 国内精品美女久久久久久| 久久久午夜欧美精品| 搡女人真爽免费视频火全软件 | 天美传媒精品一区二区| 国产成人影院久久av| 禁无遮挡网站| 成人av在线播放网站| 欧美中文日本在线观看视频| 校园春色视频在线观看| 亚洲天堂国产精品一区在线| 亚洲丝袜综合中文字幕| 少妇熟女aⅴ在线视频| 精品一区二区三区视频在线观看免费| 大型黄色视频在线免费观看| 国产午夜精品久久久久久一区二区三区 | 伦理电影大哥的女人| 波野结衣二区三区在线| 99久久久亚洲精品蜜臀av| 国产精品久久久久久亚洲av鲁大| 亚洲激情五月婷婷啪啪| 日本色播在线视频| av在线天堂中文字幕| 美女cb高潮喷水在线观看| 欧美成人精品欧美一级黄| 国产激情偷乱视频一区二区| 免费av不卡在线播放| 又粗又爽又猛毛片免费看| 婷婷六月久久综合丁香| 女生性感内裤真人,穿戴方法视频| 插阴视频在线观看视频| 国产真实乱freesex| a级毛色黄片| 成人综合一区亚洲| 亚洲人成网站在线观看播放| 有码 亚洲区| 亚洲性夜色夜夜综合| 亚洲精品影视一区二区三区av| 最近在线观看免费完整版| 干丝袜人妻中文字幕| 亚洲不卡免费看| 一级毛片aaaaaa免费看小| 尾随美女入室| 一级黄色大片毛片| 国产精品综合久久久久久久免费| 日韩欧美精品v在线| 99热网站在线观看| 成人特级av手机在线观看| 一个人免费在线观看电影| 插阴视频在线观看视频| 国产亚洲欧美98| 久久久久免费精品人妻一区二区| 不卡一级毛片| 国产三级在线视频| 少妇的逼好多水| 性色avwww在线观看| 老司机福利观看| 国产激情偷乱视频一区二区| 国产成人精品久久久久久| 3wmmmm亚洲av在线观看| 国产精品一区二区三区四区久久| 综合色丁香网| 国产淫片久久久久久久久| 精品无人区乱码1区二区| 成年av动漫网址| 国产精品亚洲美女久久久| 国产亚洲精品久久久久久毛片| 日韩av不卡免费在线播放| a级毛片免费高清观看在线播放| 成人漫画全彩无遮挡| 久久午夜亚洲精品久久| 蜜桃久久精品国产亚洲av| 97超碰精品成人国产| 色哟哟哟哟哟哟| 精品国产三级普通话版| 丝袜美腿在线中文| 国产麻豆成人av免费视频| 久久久久精品国产欧美久久久| 人妻制服诱惑在线中文字幕| 国产av在哪里看| 精品久久久久久久久亚洲| 欧美性猛交╳xxx乱大交人| 午夜爱爱视频在线播放| 又爽又黄a免费视频| 国产免费男女视频| 国产av在哪里看| 美女大奶头视频| 嫩草影院精品99| 18禁裸乳无遮挡免费网站照片| 成人鲁丝片一二三区免费| 国产大屁股一区二区在线视频| 国产欧美日韩精品一区二区| 久久精品91蜜桃| 少妇人妻一区二区三区视频| 国产三级在线视频| 久久精品国产亚洲av香蕉五月| 亚洲成人中文字幕在线播放| 亚洲精品色激情综合| 日韩欧美免费精品| 男人和女人高潮做爰伦理| 成人二区视频| 黄色欧美视频在线观看| 久久亚洲国产成人精品v| 欧美最新免费一区二区三区| av中文乱码字幕在线| 国产精品,欧美在线| 男女边吃奶边做爰视频| 久久午夜福利片| 啦啦啦啦在线视频资源| 成人美女网站在线观看视频| 少妇熟女aⅴ在线视频| 亚洲欧美日韩无卡精品| 国产伦精品一区二区三区视频9| 变态另类丝袜制服| 99热6这里只有精品| 97超碰精品成人国产| ponron亚洲| 国产一区二区激情短视频| 亚洲欧美清纯卡通| 十八禁国产超污无遮挡网站| 国产女主播在线喷水免费视频网站 | 少妇熟女aⅴ在线视频| 亚洲国产精品sss在线观看| or卡值多少钱| 欧美3d第一页| 搞女人的毛片| 国产午夜精品久久久久久一区二区三区 | www.色视频.com| 中国美女看黄片| 成年av动漫网址| 国产成人freesex在线 | 性色avwww在线观看| 国产综合懂色| 国语自产精品视频在线第100页| 精品国产三级普通话版| 69av精品久久久久久| 蜜桃亚洲精品一区二区三区| 欧美绝顶高潮抽搐喷水| 久久精品国产自在天天线| 91在线精品国自产拍蜜月| 一本一本综合久久| 黄色欧美视频在线观看| 国产午夜福利久久久久久| 午夜a级毛片| 99国产精品一区二区蜜桃av| 成人鲁丝片一二三区免费| 人妻制服诱惑在线中文字幕| 日韩精品有码人妻一区| 日韩高清综合在线| av在线老鸭窝| 国产一级毛片七仙女欲春2| 久久精品影院6| 国产精品电影一区二区三区| 不卡一级毛片| 色综合站精品国产| 日韩 亚洲 欧美在线| 国产精品乱码一区二三区的特点| 免费看a级黄色片| 免费看美女性在线毛片视频| 夜夜夜夜夜久久久久| 国产伦在线观看视频一区| 成人三级黄色视频| 岛国在线免费视频观看| 九九爱精品视频在线观看| 亚洲,欧美,日韩| av中文乱码字幕在线| 欧美性感艳星| 美女 人体艺术 gogo| 99久久精品一区二区三区| 日本黄大片高清| 欧美精品国产亚洲| av女优亚洲男人天堂| 啦啦啦韩国在线观看视频| 午夜福利高清视频| 亚洲熟妇熟女久久| 午夜激情福利司机影院| 日韩国内少妇激情av| 少妇丰满av| 在线观看午夜福利视频| 久久久精品大字幕| 99久久久亚洲精品蜜臀av| 成人特级av手机在线观看| 欧美丝袜亚洲另类| 中国美白少妇内射xxxbb| 在线观看一区二区三区| 欧美在线一区亚洲| 欧洲精品卡2卡3卡4卡5卡区| av福利片在线观看| 黑人高潮一二区| 少妇人妻精品综合一区二区 | 国产精品久久久久久av不卡| 夜夜夜夜夜久久久久| 尾随美女入室| 91av网一区二区| 丝袜美腿在线中文| 国产av一区在线观看免费| 国产熟女欧美一区二区| 五月玫瑰六月丁香| 国产真实乱freesex| 看黄色毛片网站| av天堂在线播放| 校园人妻丝袜中文字幕| 欧美成人精品欧美一级黄| 国产毛片a区久久久久| 国产精品av视频在线免费观看| 精品久久久久久久末码| 欧洲精品卡2卡3卡4卡5卡区| 网址你懂的国产日韩在线| 亚洲精品色激情综合| 简卡轻食公司| 一个人看视频在线观看www免费| 少妇被粗大猛烈的视频| 性插视频无遮挡在线免费观看| 日本一本二区三区精品| 日产精品乱码卡一卡2卡三| 亚洲七黄色美女视频| 精品久久久噜噜| 欧美又色又爽又黄视频| av视频在线观看入口| 中文字幕人妻熟人妻熟丝袜美| 日本黄色视频三级网站网址| 综合色丁香网| 夜夜夜夜夜久久久久| 国产黄片美女视频| 国产精品人妻久久久影院| 午夜激情欧美在线| av福利片在线观看| 少妇的逼好多水| 啦啦啦啦在线视频资源| 变态另类成人亚洲欧美熟女| 最近视频中文字幕2019在线8| 国内精品久久久久精免费| 日本色播在线视频| 一本一本综合久久| 伦理电影大哥的女人| 亚洲一级一片aⅴ在线观看| 能在线免费观看的黄片| 欧美激情国产日韩精品一区| 精品乱码久久久久久99久播| 麻豆av噜噜一区二区三区| 波野结衣二区三区在线| 久久人人爽人人爽人人片va| 国产欧美日韩一区二区精品| 97超碰精品成人国产| 国产男靠女视频免费网站| 一区二区三区四区激情视频 | 国产黄色视频一区二区在线观看 | 69av精品久久久久久| 日本三级黄在线观看| 欧美日韩一区二区视频在线观看视频在线 | 香蕉av资源在线| 麻豆乱淫一区二区| 一级黄色大片毛片| 亚洲av美国av| 美女高潮的动态| 欧美最新免费一区二区三区| 欧美精品国产亚洲| 啦啦啦啦在线视频资源| 全区人妻精品视频| 亚洲无线在线观看| 99久国产av精品| 欧美日韩一区二区视频在线观看视频在线 | 国产成年人精品一区二区| 麻豆精品久久久久久蜜桃| 日韩精品中文字幕看吧| 女生性感内裤真人,穿戴方法视频| 99久国产av精品| 三级男女做爰猛烈吃奶摸视频| 亚洲熟妇熟女久久| 精品午夜福利视频在线观看一区| 黄色日韩在线| 听说在线观看完整版免费高清| 亚洲不卡免费看| 人人妻,人人澡人人爽秒播| 国产成人影院久久av| 天天一区二区日本电影三级| 国产精品三级大全| 国产又黄又爽又无遮挡在线| 国产午夜精品久久久久久一区二区三区 | 日韩av在线大香蕉| 日本色播在线视频| 一夜夜www| 精品人妻一区二区三区麻豆 | 长腿黑丝高跟| 一卡2卡三卡四卡精品乱码亚洲| 12—13女人毛片做爰片一| 黄片wwwwww| 日韩欧美 国产精品| 日韩av在线大香蕉| 国产精品电影一区二区三区| eeuss影院久久| 精品人妻熟女av久视频| 亚洲av五月六月丁香网| 国产成人福利小说| 色av中文字幕| 老熟妇仑乱视频hdxx| 日韩欧美精品免费久久| 欧美人与善性xxx| 久久精品综合一区二区三区| 久久久久久久久久久丰满| 99国产极品粉嫩在线观看| 国模一区二区三区四区视频| 看黄色毛片网站| 国产蜜桃级精品一区二区三区| 日本撒尿小便嘘嘘汇集6| 12—13女人毛片做爰片一| 两个人视频免费观看高清| 天堂av国产一区二区熟女人妻| 热99在线观看视频| 麻豆av噜噜一区二区三区| 精品一区二区三区视频在线观看免费| а√天堂www在线а√下载| 国产激情偷乱视频一区二区| 国产精品国产三级国产av玫瑰| 中出人妻视频一区二区| 人妻夜夜爽99麻豆av| 99久久无色码亚洲精品果冻| 18+在线观看网站| 亚洲一级一片aⅴ在线观看| 免费看日本二区| 日韩人妻高清精品专区| 亚洲四区av| av福利片在线观看| 精品免费久久久久久久清纯| 青春草视频在线免费观看| 看非洲黑人一级黄片| 在线看三级毛片| 国产爱豆传媒在线观看| 97热精品久久久久久| 国产成人一区二区在线| 国产国拍精品亚洲av在线观看| 亚洲图色成人| 一a级毛片在线观看| 成年免费大片在线观看| 日韩欧美 国产精品| 免费观看的影片在线观看| 看免费成人av毛片| 国产精品一区二区三区四区久久| 亚洲精品乱码久久久v下载方式| 欧美日本亚洲视频在线播放| 免费观看的影片在线观看| 99久久九九国产精品国产免费| 久久久久久大精品| 精品久久久久久久久久久久久| av在线观看视频网站免费| 国产麻豆成人av免费视频| 我的老师免费观看完整版| 毛片女人毛片| 国产精品亚洲一级av第二区| 乱人视频在线观看| 国产在线男女| 床上黄色一级片| 亚洲av成人精品一区久久| 免费av毛片视频| 晚上一个人看的免费电影| 亚洲精品在线观看二区| 精品一区二区三区视频在线| 欧美区成人在线视频| 欧美zozozo另类| 亚洲成av人片在线播放无| 九九热线精品视视频播放| 午夜视频国产福利| 日韩三级伦理在线观看| 色av中文字幕| 午夜影院日韩av| 久久人人爽人人片av| 12—13女人毛片做爰片一| 男人和女人高潮做爰伦理| 亚洲第一区二区三区不卡| 日韩高清综合在线| 欧美不卡视频在线免费观看| 欧美zozozo另类| 成年版毛片免费区| 69av精品久久久久久| 你懂的网址亚洲精品在线观看 | 成人毛片a级毛片在线播放| 三级毛片av免费| 午夜福利在线在线| 中出人妻视频一区二区| www.色视频.com| 国内精品久久久久精免费| 有码 亚洲区| 国产又黄又爽又无遮挡在线| 长腿黑丝高跟| 中文字幕av在线有码专区| 最近视频中文字幕2019在线8| 欧美人与善性xxx| av卡一久久| 欧美区成人在线视频| 亚洲av免费高清在线观看| ponron亚洲| 99热这里只有是精品在线观看| avwww免费| 亚洲第一电影网av| 日韩欧美三级三区| 99精品在免费线老司机午夜| 亚洲国产欧美人成| 免费一级毛片在线播放高清视频| 免费电影在线观看免费观看| 亚洲天堂国产精品一区在线| 91麻豆精品激情在线观看国产| 观看免费一级毛片| 菩萨蛮人人尽说江南好唐韦庄 | 黄色一级大片看看| 精品免费久久久久久久清纯| 又黄又爽又免费观看的视频| 久久天躁狠狠躁夜夜2o2o| 成年女人看的毛片在线观看| 在线免费十八禁| 日本免费一区二区三区高清不卡| 国产成人aa在线观看| 人人妻人人澡欧美一区二区| 成人二区视频| 婷婷六月久久综合丁香| 女的被弄到高潮叫床怎么办| av国产免费在线观看| 蜜桃久久精品国产亚洲av| 日韩中字成人| 内地一区二区视频在线| 99久久精品热视频| 精品久久久久久久久久免费视频| 国产精品一及| 天堂网av新在线| 长腿黑丝高跟| 亚洲丝袜综合中文字幕| 91久久精品国产一区二区三区| 国产成人一区二区在线| 日本a在线网址| av福利片在线观看| 禁无遮挡网站| 此物有八面人人有两片| 桃色一区二区三区在线观看| 亚洲欧美日韩无卡精品| 亚洲不卡免费看|