• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Generalized Hybrid Nanofluid Model with the Application of Fully Developed Mixed Convection Flow in a Vertical Microchannel?

    2019-08-20 09:24:36HangXu徐航andQiangSun孫強
    Communications in Theoretical Physics 2019年8期
    關鍵詞:孫強

    Hang Xu(徐航)and Qiang Sun(孫強)

    1State Key Laboratory of Ocean Engineering,School of Naval Architecture,Ocean and Civil Engineering,Shanghai Jiao Tong University,Shanghai 200240,China

    2Particulate Fluids Processing Centre,Department of Chemical Engineering,The University of Melbourne,Parkville,VIC 3010,Australia

    AbstractThe fully developed mixed convection hybrid nanofluid flow in a vertical microchannel is examined in detail.The simplified hybrid model that omits the nonlinear terms due to the interaction of different nanoparticle volumetric fractions is derived and compared with the existing one.The generalized model describing hybrid nanofluid suspended with multiple kinds of solid particles is suggested.The argument that the corresponding nanofluid solutions obtained by the homogenous model can be recovered from the results of the regular problems through simple arithmetic operations is checked.Solutions in similarity form for this flow problem are formulated by means of a set of similarity variables.The effects of various parameters on important physical quantities are analyzed and discussed.

    Key words:hybrid nanofluid,vertical channel,mixed convection,slippery effect

    Nomenclature

    ?

    1 Introduction

    Many recent studies revealed that nanofluids have better heat transfer capability than regular fluids.Therefore it is possible to replace traditional heat transfer fluids by nanofluids in the design of various heat transfer systems such as cooling systems,heat regenerators,and heat exchangers.Choi[1]noticed that,by suspending nanometer-sized metallic particles in conventional heat transfer fluids,the resulting nanofluids hold higher thermal conductivities than those of currently used ones.Xuan and Li[2]attributed the heat transfer enhancement of nanofluids to the increase of thermal conductivity of the nanofluid.Eastman et al.[3]found that the particle shape has stronger effects on effective nanofluid thermal conductivity than particle size or particle thermal conductivity.Wen and Ding[4]speculated that possible reasons for the heat transfer enhancement of nanofluids are due to the migration of nanoparticles and the resulting disturbance of the boundary layer.Buongiorno[5]concluded that the Brownian diffusion and thermophoresis are dominant factors for heat enhancement within the boundary layer owing to the effect of the temperature gradient and thermophoresis.Other classic researches on nanofluids have been experimentally done by Pak and Cho,[6]Xie et al.,[7]Williams et al.[8]and numerically done by Tiwari and Das,[9]Oztop and Abu-Nada,[10]Raza et al.,[11]Khan,[12]Sajid et al.,[13]Sheikholeslami and Sadoughi,[14]Sheremet and Pop,[15]Kefayati[16]and Alsabery et al.[17]

    Some researchers made attempts to investigate the characters of nanofluids containing different kinds of nanoparticles.Suresh et al.[18]found that both thermal conductivity and viscosity of hybrid nanofluids increase with the nanoparticle volume concentration while the viscosity increase is substantially higher than the increase in thermal conductivity for an Al2O3-Cu hybrid nanofluid.The behaviours of hybrid nanofluids then were examined in detail by different researchers such as Esfe et al.,[19]Rostamian et al.[20]and Ebrahimi and Saghravani.[21]From modelling point of view,Devi and Devi[22]proposed a mathematical model to investigate the effects of Lorentz force over a three-dimensional stretching surface subject to Newtonian heating.Tayebi and Chamkha[23?24]considered natural convection in an annulus between two confocal elliptic cylinders and eccentric horizontal cylinders filled with a Cu-Al2O3/water hybrid nanofluid.Huminic and Huminic[25]examined the influence of hybrid nanofluids on the performances of elliptical tube.Rostami et al.[26]considered mixed convective stagnation-point flow of an aqueous silica Calumina hybrid nanofluid.

    This paper intends to analyze a fully developed mixed convection hybrid nanofluid flow in a vertical microchannel by means of a generalized hybrid nanofluid model.We are to simplify the Devi and Devi’s model[22]by omitting the nonlinear terms due to the interaction of different nanoparticle volumetric fractions.Then we extend Devi and Devi’s model[22]to the case that the hybrid nanofluids contain various kinds of nanoparticles.The argument by Magayari[27]that corresponding nanofluid results can be recovered from the solutions of already solved regular problems by simple arithmetic operations is then checked.The similarity solutions for this microchannel fl ow and heat transfer of a hybrid nanofluid are formulated by means of a set of similarity variables.It should be mentioned at this end,that the studies on hybrid nanofluids are still very new at this stage.There is no conclusive idea on how nanoparticles act on fluid flow and heat transfer.Complementary studies are urgently needed to understand the heat transfer characteristics of hybrid nanofluids,especially for those in suspension of multiple kinds of small particles.

    2 Generalized Hybrid Nanofluid Model

    In experimental and numerical studies on nanofluids’behaviours,it is a common practice to model their physical quantities by using simplified mathematical relations between the corresponding ones of base fluid and solid particles,as presented by many researchers such as Vajravelu et al.and[28]Devi and Devi.[22]Several experiments have been carried out to confirm the validity of such expressions for dilute nanofluids in suspension of one single kind of solid particles[6]and two types of mixed solid particles.[18]Devi and Devi[22]suggested a group of correlations for physical quantities of hybrid nanofluids.In their approach,they took the fluid containing one kind of nanoparitcles as the base fluid and the other kind of nanoparticles as the individual particles.The correlations of viscosity and thermal conductivity matched the experimental results given by Suresh et al.[18]

    In Devi and Devi’s approach,[22]there are nonlinear terms due to the interaction of two kinds of different nanoparticles.However,in dilute solutions in which the nanoparticle volumetric fractions are usually small,the effects of these nonlinear terms may not be significant. Therefore,we reasonably neglect the nonlinear terms in Devi and Devi’s model.[22]Our simplified model of hybrid nanofluid,as well as the classic nanofluid model and Devi and Devi’s model[22]are listed in Table 1 in which Type I denotes the traditional nanofluid model(nanofluid in suspension one kind of small particles),Types II and III,respectively,denote Devi and Devi’s hybrid nanofluid model[22]and our simplified hybrid nanofluid model(nanofluid in suspension two different kind of small particles).

    Devi and Devi’s approach[22]used the recurrence formulae to represent the viscosity,density,specific heat and thermal conductivity of the hybrid nanofluid corresponding to the n-th kinds of nanoparticles as

    and

    Table 1 Models of nanofluid and hybrid nanofluid.

    By neglecting the nonlinear terms in above correlations,we obtain

    Note that we keep the recurrence formula(5)for the thermal conductivity khnfsince the interactions between different particles can hardly be expressed using the Maxwell equation.Also,M=3 is chosen throughout this work that means that the particle shape is spherical.

    3 Mathematical Description

    Consider a mixed convection flow of a hybrid nanofluid in a constant porosity medium between two parallel vertical infinite walls separated by a distance of 2H.As shown in Fig.1,the Cartesian coordinate system(x,y)is chosen with the x-axis being along the walls and the y-axis being perpendicular to the walls.The temperatures on both walls are assumed to vary linearly along the height that are prescribed as T1+ax and T2+ax on the left and the right walls,respectively.Since the hydrodynamically fl ow is fully-developed,the velocity along the wall is only a function of y.Invoking the Boussinesq approximation,the governing equations are written as

    subject to the boundary conditions

    Fig.1 Physical sketch.

    It is easy to see from Eq.(12)that ?2p/?x?y=0.This indicates that?p/?x is a constant and that all terms on the right-hand side of Eq.(11)are only dependent on y.Based on this fact,we define the following variables

    where Ur=gβfKaH/νfis a reference velocity.

    Substituting Eq.(16)into Eqs.(10),(11),and(13),the continuity equation(10)is automatically satisfied,and the rest of equations are reduced to

    with the boundary conditions

    where

    4 Comparison Analysis Between Models

    We calculate the coefficients ε1,ε2,and ε3in Eqs.(17)and(18)by Type II and Type III hybrid nanofluid models listed in Table 1.The data regarding to the basic thermophysical properties of the base fluid and nanoparticles are given in Table 2 where the thermophysical properties of water is chosen at 25C.

    Table 2 Thermophysical properties of fluid and nanoparticles.

    Substituting the quantities in Table 2 into different hybrid nanofluid models,the values of ε1,ε2,and ε3can be obtained,as shown in Table 3.It can be seen from the table,when the solution is dilute,namely,the nanoparticle volumetric fractions are small,the difference between the values of ε1,ε2and ε3obtained by both models is imperceptible.Recalling the experimental results and modelling tests by Pak et al.[6]and Suresh et al.,[18]it is clear that the computational range of nanoparticle volumetric fractions listed in Table 3 is acceptable and widely used.As a result,we can infer that our simplified hybrid nanofluid model is meaningful for prediction of nanofluids’behaviours.Further verification shows that,for the cases that two kinds of nanoparticles coexist,each nanoparticle volumetric fraction needs to be small to keep the solution remaining dilute.

    Magyari[27]once found that,without consideration of velocity-slip effects,the governing equations of homogeneous nanofluid models can be reduced via elementary scaling transformations to the corresponding equations of the regular fluids.Thus he concluded that the corresponding nanofluid results can be recovered from the solutions of already solved problems with regular Newtonian fluids by simple arithmetic operations.

    Here,we would like to check if this applicability is valid on the hybrid nanofluid flow problems.We introduce the following scaling transformations:

    Substituting Eq.(21)into Eqs.(17)and(18),we obtain

    To keep Eqs.(22)and(23)invariant in forms,the two relationships below must hold:

    which leads to

    Equation(26)clearly indicates that,for the problem considered in this work,there is no alternative scaling transformation that can be used to obtain solutions from the existing results.We therefore are able to conclude that Mayari’s conclusion[27]on that nanofluid results can be recovered from the solutions of already solved regular Newtonian fluid problems by simple arithmetic operations is only valid for several special cases in nanofluid researches.

    Table 3 Computation of nanoparticles related parameters.?

    5 Results

    It is known that Eq.(17)contains an unknown constant σ,which requires an additional boundary condition.In the studies on channel flow problems,it is a common practice to sprecify the mass flow rate as a prescribed quantity.We thus obtain

    which can be simplified,by using the similarity variables(16),to

    where Umis the constant average flow velocity across the channel,and λ=2Um/Ur.For convenience,we let Um=Urwhich leads to λ=2.

    The homotopy analysis method(HAM)is used to solve this flow problem.Since the similar HAM procedures are available in Refs.[29–30],we omit the detailed process but just give the core information as shown in Table 4.

    To check the accuracy of our solutions,we define the following functions to evaluate errors:

    where

    When all physical parameters are prescribed,the cor-responding errors can be obtained.For example,if we set Ra=10,γ=1/100,K1=1,N1=1/10,N2= ?1/10,and θw=1/10,and prescribe ?1and ?2for a range of values,at a certain HAM computational order,the errors can be determined by Eq.(29)as shown in Table 5.

    Table 4 HAM computation related quantities.

    ?

    Fig.2 Comparisons of U(η)and θ(η)in the case of Ra=10,γ =1/100,K1=1,N1=1/10,N2= ?1/10,θw=1/10.Line with gradients:solutions by Devi and Devi’s model,[22]Line with circles:solutions by our model.(a)?1= ?2=1/10.(b)?1= ?2=1/10.(c)?1= ?2= ?3=3/100.(d)?1= ?2= ?3=3/100.

    Further to check the validity and accuracy of our simplified model,we compare our results of velocity and temperature profiles for a hybrid nanofluid in suspension of two types of nanoparticles with those given by Devi and Devi.[22]It can be seen in Figs.2(a)and 2(b)that very good agreement is found.Note that here Al2O3and Cu nanoparticles are chosen for comparison.As shown in Figs.2(a)and 2(b),we also notice that the results by our simplified hybrid nanofluid model match to those given by the generalized hybrid nanofluid model when three types of nanoparticles,namely,Al2O3,Cu and TiO2are employed.

    In our computation,it is found that the variation of nanoparticle volumetric fraction plays limited influence on velocity profiles while it has significant effect on the temperature profiles,as shown in Fig.3.This indicates that the increase of nanoparticle volumetric fraction can enhance heat transfer significantly.In another words,this also verifies the fact that the nanofluids have better thermal transport capability than traditional ones.

    Physically,the skin friction and the Nusselt number are important quantities to measure the fluid behaviours.Since the flow and heat transfer exhibit similar characters on both walls,we therefore only consider those quantities on the left wall.In this situation,they are defined by

    where

    Substituting similarity variables in Eq.(16)into Eq.(32),we obtain

    where Re=UmH/νnhfis the Reynolds number.

    Fig.3 Variation of(a)U(η)and(b) θ(η)with ?2for Ra=10, γ =1/100,K1=1,N1=1/10,N2= ?1/10,θw=1/10,?1=25/1000.

    To test the effects of the nanoparticle volumetric fractions ?1and ?2on various physical quantities,we select Al2O3and Cu nanoparticles in following analysis.As shown in Fig.4(a),for a certain value of ?1,the absolute value of the skin friction coefficient CfLreduces as ?2enlarges.Similarly,when ?2is prescribed,the absolute value of CfLdecreases as ?1evolves.This clearly shows that the nanofluids can effectively diminish the skin friction.The slip effects between the velocities of nanoparticles and the base fluid is the key factor to affect the Nusselt number.The trend of NuLvaries with ?2is similar to that of CfL,namely,when ?1is given,the increase of ?2causes the decrease of the absolute value of NuL,or verse visa,as shown in Fig.4(b).As concluded by Buongiorno,[5]the temperature difference between the walls and the fluid can alter the temperature gradient and thermophoresis,which could result in a significant decrease of viscosity within the boundary layer,thus leading to heat transfer enhancement.

    The effect of nanoparticle volumetric fractions on the pressure constant is shown in Fig.4(c).For a given value of ?1,it is found that the pressure decreases gradually as ?2grows.Same trend is found for the variation of the pressure constant σ with ?1at a fixed value of ?2.This reflects another aspect that the flow velocity reduces owing to the reduction of skin friction caused by the increase of nanoparticle volumetric fractions,either for nanofluids or hybrid nanofluids.

    In microchannel studies,the slip of the channel wall is of great importance to alter flow and heat transfer behaviours.Take the hybrid nanofluid containing Al2O3,Cu and TiO2nanopaticles as an example.As shown in Fig.5(a),the absolute value of the skin friction coefficient CfLdecreases monotonously as N1grows.However,the absolute value of the Nusselt number NuLincreases continuously as N1increases,as shown in Fig.5(b),while the pressure constant σ reduces gradually as N1enlarges,as shown in Fig.5(c).It is seen from Fig.6(a)that the increase of N1leads to the increase of the velocity near the left wall.This velocity variation leads to the enhancement of temperature in the channel,as presented in Fig.6(b).Physically,the increase of the slip length indicates the decrease of the skin friction,which leads to the increase of fl ow velocity near that wall.Nevertheless,due to the conservation of flow flux,the flow velocity far from the left wall decreases with N1increasing.

    Fig.4 Variation of(a)reduced CfL,(b)reduced NuLand(c) σ with ?2for some values of ?1in the case of Ra=10,γ=1/100,K1=1,N1=1/10,N2=?1/10,θw=1/10.

    Fig.5 Variation of(a)reduced CfL,(b)reduced NuLand(c)σ with N1in the case of Ra=10,γ=1/100,K1=1,N2=0,θw=1/10,and ?1= ?2= ?3=3/100.

    Fig.6 Variation of(a)U(η)and(b)θ(η)with N1in the case of Ra=10,γ =1/100,K1=1,N2=0,θw=1/10,and ?1= ?2= ?3=3/100.

    6 Conclusion

    The generalized hybrid nanofluid model and its simplifi ed form have been proposed to study the flow and heat transfer behaviours of a hybrid nanofluid convection in a vertical microchannel.It has been found that when the solution is dilute,our simplified model can well predict the flow and heat transfer behaviours of hybrid nanofluids.The argument by Magyari[27]with regards to the homogenous model for expressions of nanofluid solutions by the results of already solved regular Newtonian fluid problems via simple arithmetic operations has been found problematic when it is applied to hybrid nanofluid flows.The effects of various parameters on important physical quantities are analysed and discussed with the following conclusions can be reached:

    (i) The variations of nanoparticle volumetric fractions have more obvious effects on temperature distribution than on velocity distribution.

    (ii)The nanoparticle volumetric fractions play a significant role on altering flow and heat transfer behaviours.

    (iii)The slip effect of the channel wall are of great importance to affect the flow and heat transfer behaviours.

    猜你喜歡
    孫強
    Oscillator strength and cross section study of the valence-shell excitations of NO2 by fast electron scattering
    Two-dimensional self-consistent numerical simulation of the whole discharge region in an atmospheric argon arc
    Three-dimensional non-equilibrium modeling of a DC multi-cathode arc plasma torch
    Effects of W6+occupying Sc3+on the structure,vibration,and thermal expansion properties of scandium tungstate?
    求解線性規(guī)劃問題的常規(guī)思路
    孫強作品
    我送男友3600萬,他卻拿錢悅前妻
    老公愛車勝過愛我
    婦女生活(2017年9期)2017-09-13 20:09:03
    A scheme for improving computational efficiency of quasi-two-dimensional model*
    偷來的靠山
    久热这里只有精品99| 久久人人精品亚洲av| 国产精品免费视频内射| 国产亚洲精品av在线| 人人澡人人妻人| 制服人妻中文乱码| 国内久久婷婷六月综合欲色啪| 热99re8久久精品国产| 男女之事视频高清在线观看| av视频在线观看入口| 亚洲欧美激情综合另类| 日韩大尺度精品在线看网址| 一区二区三区高清视频在线| АⅤ资源中文在线天堂| 亚洲色图 男人天堂 中文字幕| 亚洲第一电影网av| 一二三四在线观看免费中文在| 国产又爽黄色视频| 欧美在线一区亚洲| 日本在线视频免费播放| 曰老女人黄片| 一a级毛片在线观看| 无遮挡黄片免费观看| 长腿黑丝高跟| 国产精品美女特级片免费视频播放器 | 1024香蕉在线观看| 欧美在线一区亚洲| 天堂影院成人在线观看| 日本黄色视频三级网站网址| 国产欧美日韩精品亚洲av| 国产亚洲av嫩草精品影院| 久久午夜综合久久蜜桃| 亚洲精品国产区一区二| 亚洲中文av在线| 欧美乱妇无乱码| 两个人看的免费小视频| 丝袜在线中文字幕| 欧美性猛交黑人性爽| 别揉我奶头~嗯~啊~动态视频| 亚洲男人的天堂狠狠| 少妇熟女aⅴ在线视频| 91成人精品电影| 黄色视频,在线免费观看| 国产精品美女特级片免费视频播放器 | 高清毛片免费观看视频网站| 久久伊人香网站| 亚洲色图av天堂| 久久狼人影院| 亚洲七黄色美女视频| 精品久久蜜臀av无| 久久精品亚洲精品国产色婷小说| 最好的美女福利视频网| 日韩视频一区二区在线观看| 亚洲人成伊人成综合网2020| 色综合婷婷激情| 男人舔女人的私密视频| 在线天堂中文资源库| 一区二区三区精品91| 伦理电影免费视频| 侵犯人妻中文字幕一二三四区| 一区二区日韩欧美中文字幕| 国产精品久久久久久人妻精品电影| 成年女人毛片免费观看观看9| 无限看片的www在线观看| 99国产极品粉嫩在线观看| 亚洲av电影在线进入| 国产成人av教育| 99国产精品99久久久久| 日本免费一区二区三区高清不卡| 亚洲精品美女久久久久99蜜臀| 国产精品久久视频播放| 欧美国产日韩亚洲一区| 国产精品1区2区在线观看.| 欧美黑人精品巨大| 免费人成视频x8x8入口观看| 色av中文字幕| 欧美不卡视频在线免费观看 | 欧美在线一区亚洲| 精品久久久久久成人av| 亚洲av五月六月丁香网| 亚洲片人在线观看| 母亲3免费完整高清在线观看| 国产成人啪精品午夜网站| 亚洲精品一卡2卡三卡4卡5卡| 久热这里只有精品99| 亚洲精品久久国产高清桃花| 久久午夜综合久久蜜桃| 国产一区二区三区视频了| 在线天堂中文资源库| 亚洲成人久久爱视频| 99国产精品99久久久久| 午夜福利在线在线| 99国产综合亚洲精品| www国产在线视频色| 日韩精品中文字幕看吧| 日本 av在线| 1024视频免费在线观看| 午夜久久久久精精品| 亚洲中文字幕日韩| 亚洲成av片中文字幕在线观看| 亚洲色图 男人天堂 中文字幕| 日日摸夜夜添夜夜添小说| 天天躁夜夜躁狠狠躁躁| 国产亚洲欧美在线一区二区| 99热6这里只有精品| netflix在线观看网站| 午夜福利在线在线| 90打野战视频偷拍视频| xxxwww97欧美| 欧美乱色亚洲激情| 啦啦啦免费观看视频1| 久久亚洲真实| 级片在线观看| 熟女电影av网| 欧美黑人欧美精品刺激| 久9热在线精品视频| 国产1区2区3区精品| 亚洲精品在线观看二区| 亚洲七黄色美女视频| 丰满人妻熟妇乱又伦精品不卡| 欧美三级亚洲精品| 在线天堂中文资源库| 免费在线观看成人毛片| 成人永久免费在线观看视频| www日本黄色视频网| 国产精品久久视频播放| av中文乱码字幕在线| 日本免费a在线| 国产激情久久老熟女| 国产精品亚洲一级av第二区| 亚洲熟妇中文字幕五十中出| 国产精品美女特级片免费视频播放器 | 国产成人av教育| 一本大道久久a久久精品| 国产不卡一卡二| 这个男人来自地球电影免费观看| 亚洲在线自拍视频| 一进一出抽搐gif免费好疼| 国产亚洲欧美在线一区二区| 两人在一起打扑克的视频| 婷婷亚洲欧美| 免费在线观看完整版高清| 在线观看日韩欧美| 女人爽到高潮嗷嗷叫在线视频| 国产又色又爽无遮挡免费看| 日韩大码丰满熟妇| 久久国产亚洲av麻豆专区| av中文乱码字幕在线| 久久久久久久精品吃奶| 黑人欧美特级aaaaaa片| 久久久久久人人人人人| 91av网站免费观看| 精品国产国语对白av| 国产精品香港三级国产av潘金莲| 男人的好看免费观看在线视频 | 国产精品一区二区精品视频观看| 精品乱码久久久久久99久播| 中文字幕人妻熟女乱码| 国产伦在线观看视频一区| 日韩欧美一区视频在线观看| 久久久久国内视频| 中文字幕av电影在线播放| 最好的美女福利视频网| 亚洲五月天丁香| 亚洲 欧美一区二区三区| 精品久久久久久,| 满18在线观看网站| 老司机午夜福利在线观看视频| 日韩一卡2卡3卡4卡2021年| 国产精品一区二区三区四区久久 | 欧美黑人欧美精品刺激| 亚洲性夜色夜夜综合| 日日干狠狠操夜夜爽| 俺也久久电影网| 欧美黄色淫秽网站| 手机成人av网站| 香蕉av资源在线| 一进一出抽搐动态| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲第一青青草原| 中文字幕精品亚洲无线码一区 | 亚洲性夜色夜夜综合| svipshipincom国产片| 一进一出抽搐gif免费好疼| 久久中文字幕一级| 日韩欧美国产在线观看| 日韩欧美国产一区二区入口| 老鸭窝网址在线观看| 啦啦啦观看免费观看视频高清| 国产亚洲精品第一综合不卡| 又大又爽又粗| 一区二区三区国产精品乱码| 久久狼人影院| 中文字幕人妻熟女乱码| 欧美国产精品va在线观看不卡| 久久中文看片网| 亚洲成a人片在线一区二区| 少妇 在线观看| 变态另类丝袜制服| 99久久综合精品五月天人人| 精品一区二区三区视频在线观看免费| av在线天堂中文字幕| 级片在线观看| 日本五十路高清| 麻豆av在线久日| 亚洲午夜理论影院| 欧美午夜高清在线| 精品无人区乱码1区二区| 婷婷精品国产亚洲av| 女性生殖器流出的白浆| 一卡2卡三卡四卡精品乱码亚洲| 12—13女人毛片做爰片一| 亚洲av熟女| 高潮久久久久久久久久久不卡| 成人三级黄色视频| 亚洲成av人片免费观看| 又黄又粗又硬又大视频| 国产av一区二区精品久久| 免费在线观看黄色视频的| 国产伦在线观看视频一区| 99热只有精品国产| 国产97色在线日韩免费| 久久精品91蜜桃| 欧美日韩亚洲综合一区二区三区_| 正在播放国产对白刺激| 最好的美女福利视频网| 一本久久中文字幕| 亚洲自偷自拍图片 自拍| 宅男免费午夜| 成人国语在线视频| 亚洲中文字幕一区二区三区有码在线看 | 国产视频一区二区在线看| 国产一区二区三区在线臀色熟女| 国产片内射在线| 国产精品综合久久久久久久免费| 在线天堂中文资源库| 一边摸一边抽搐一进一小说| 国产亚洲欧美精品永久| 99久久99久久久精品蜜桃| 国产99白浆流出| 搡老岳熟女国产| 91麻豆精品激情在线观看国产| videosex国产| 91麻豆av在线| 每晚都被弄得嗷嗷叫到高潮| 国产成人精品久久二区二区91| 欧美最黄视频在线播放免费| 亚洲片人在线观看| 18禁黄网站禁片午夜丰满| 又紧又爽又黄一区二区| a级毛片a级免费在线| 久久久久精品国产欧美久久久| 欧美日本亚洲视频在线播放| 91国产中文字幕| 亚洲自偷自拍图片 自拍| 在线天堂中文资源库| 热99re8久久精品国产| 无人区码免费观看不卡| 国产91精品成人一区二区三区| 国产亚洲精品久久久久5区| 国产国语露脸激情在线看| 在线国产一区二区在线| 老熟妇仑乱视频hdxx| 久久久水蜜桃国产精品网| 精品久久蜜臀av无| 18禁观看日本| 亚洲五月天丁香| 国产成+人综合+亚洲专区| 亚洲精品美女久久久久99蜜臀| www.精华液| 男人舔奶头视频| 国产精华一区二区三区| www日本在线高清视频| 成人亚洲精品一区在线观看| 一本精品99久久精品77| 成人三级黄色视频| 国产成人av教育| 女同久久另类99精品国产91| 午夜亚洲福利在线播放| 啦啦啦韩国在线观看视频| 他把我摸到了高潮在线观看| 成年免费大片在线观看| 黄色 视频免费看| 这个男人来自地球电影免费观看| 又黄又粗又硬又大视频| 亚洲无线在线观看| 久久热在线av| 久久精品夜夜夜夜夜久久蜜豆 | 香蕉国产在线看| 久久久久国产精品人妻aⅴ院| 亚洲精品粉嫩美女一区| 级片在线观看| 巨乳人妻的诱惑在线观看| 可以在线观看的亚洲视频| 国产精品久久久久久亚洲av鲁大| 精品久久久久久久毛片微露脸| 高潮久久久久久久久久久不卡| 久热这里只有精品99| 老司机午夜福利在线观看视频| 91字幕亚洲| 禁无遮挡网站| 国产黄片美女视频| 久久精品国产亚洲av高清一级| 国产在线精品亚洲第一网站| 国产精品久久久人人做人人爽| 亚洲免费av在线视频| 国内少妇人妻偷人精品xxx网站 | 国产精品一区二区三区四区久久 | 别揉我奶头~嗯~啊~动态视频| 制服人妻中文乱码| 国产精品98久久久久久宅男小说| 国产又爽黄色视频| 黑丝袜美女国产一区| 免费在线观看黄色视频的| 国产精品亚洲美女久久久| 日韩三级视频一区二区三区| 高清在线国产一区| 欧美在线黄色| 亚洲成国产人片在线观看| 大型黄色视频在线免费观看| 香蕉国产在线看| 国产精品98久久久久久宅男小说| 最近最新中文字幕大全免费视频| 久久精品国产综合久久久| 琪琪午夜伦伦电影理论片6080| 国产精品一区二区免费欧美| 黄色女人牲交| 特大巨黑吊av在线直播 | 亚洲国产中文字幕在线视频| 久久人人精品亚洲av| 一进一出抽搐动态| 国产精品综合久久久久久久免费| 久久久久九九精品影院| 在线观看66精品国产| 欧美成人性av电影在线观看| 国产精品亚洲美女久久久| videosex国产| 国产1区2区3区精品| 亚洲久久久国产精品| 级片在线观看| 婷婷六月久久综合丁香| 国产激情久久老熟女| 美女大奶头视频| 日韩一卡2卡3卡4卡2021年| 一进一出抽搐gif免费好疼| 男人操女人黄网站| 女同久久另类99精品国产91| 麻豆av在线久日| 成人国产综合亚洲| cao死你这个sao货| 欧美国产精品va在线观看不卡| 中文字幕另类日韩欧美亚洲嫩草| 亚洲av中文字字幕乱码综合 | 国产精品乱码一区二三区的特点| 俄罗斯特黄特色一大片| 色综合婷婷激情| videosex国产| 黄色毛片三级朝国网站| 国产三级黄色录像| 久久青草综合色| 国产精品一区二区三区四区久久 | avwww免费| 欧美一级毛片孕妇| 亚洲国产看品久久| 中出人妻视频一区二区| 国产精品久久久久久亚洲av鲁大| 女警被强在线播放| www.自偷自拍.com| 女警被强在线播放| 日韩欧美国产一区二区入口| 国产麻豆成人av免费视频| 999久久久国产精品视频| 久久久国产成人免费| 日韩欧美 国产精品| 亚洲色图 男人天堂 中文字幕| 999久久久精品免费观看国产| 日韩大码丰满熟妇| 精品少妇一区二区三区视频日本电影| www.www免费av| 国产精品1区2区在线观看.| 中亚洲国语对白在线视频| 欧美激情久久久久久爽电影| 久久精品国产亚洲av高清一级| 亚洲国产精品合色在线| 性色av乱码一区二区三区2| 超碰成人久久| 欧美日韩乱码在线| 国产免费男女视频| 日日干狠狠操夜夜爽| 免费在线观看视频国产中文字幕亚洲| 国产伦人伦偷精品视频| 午夜日韩欧美国产| 久久天堂一区二区三区四区| 免费在线观看亚洲国产| 一本综合久久免费| 国产精品久久久久久精品电影 | 日本成人三级电影网站| 久久婷婷人人爽人人干人人爱| 大香蕉久久成人网| 人妻丰满熟妇av一区二区三区| 男人舔奶头视频| 免费人成视频x8x8入口观看| 午夜免费鲁丝| 欧美在线黄色| 国产真实乱freesex| 美女国产高潮福利片在线看| 色综合站精品国产| www.精华液| 女人高潮潮喷娇喘18禁视频| www.www免费av| 美国免费a级毛片| 国产av不卡久久| 99热这里只有精品一区 | www.www免费av| 好看av亚洲va欧美ⅴa在| 久久中文看片网| 在线看三级毛片| 最好的美女福利视频网| 在线av久久热| 国产一区在线观看成人免费| 国产精品久久电影中文字幕| 国产一卡二卡三卡精品| 91老司机精品| 十八禁网站免费在线| 日日夜夜操网爽| 国产一区二区三区在线臀色熟女| 香蕉久久夜色| 亚洲aⅴ乱码一区二区在线播放 | 欧美午夜高清在线| 精品久久久久久久久久免费视频| 十八禁网站免费在线| 窝窝影院91人妻| 成人亚洲精品一区在线观看| 女人爽到高潮嗷嗷叫在线视频| 日日干狠狠操夜夜爽| 成年版毛片免费区| 嫁个100分男人电影在线观看| 国产99白浆流出| 国产极品粉嫩免费观看在线| 午夜免费成人在线视频| 老司机午夜福利在线观看视频| 亚洲国产看品久久| 日韩欧美国产在线观看| 中文字幕人妻丝袜一区二区| 久久 成人 亚洲| 天天添夜夜摸| 国产精品国产高清国产av| 一级片免费观看大全| 国产精品亚洲一级av第二区| 国产真实乱freesex| 欧美又色又爽又黄视频| 精品日产1卡2卡| 黄色女人牲交| 久久青草综合色| 午夜福利免费观看在线| 少妇熟女aⅴ在线视频| 欧美国产日韩亚洲一区| 国产精品久久久人人做人人爽| 国产精品国产高清国产av| 最近最新免费中文字幕在线| 99久久久亚洲精品蜜臀av| 免费在线观看亚洲国产| 久久亚洲精品不卡| 夜夜躁狠狠躁天天躁| 国产精品爽爽va在线观看网站 | 视频区欧美日本亚洲| 国产亚洲精品一区二区www| 亚洲aⅴ乱码一区二区在线播放 | 在线天堂中文资源库| 亚洲午夜理论影院| 一级片免费观看大全| 色哟哟哟哟哟哟| 久久久精品国产亚洲av高清涩受| 亚洲国产看品久久| 伦理电影免费视频| 欧美日韩中文字幕国产精品一区二区三区| 99国产精品一区二区三区| 最近最新免费中文字幕在线| 老熟妇仑乱视频hdxx| 国产区一区二久久| 在线永久观看黄色视频| 成人欧美大片| 两个人视频免费观看高清| 曰老女人黄片| 免费搜索国产男女视频| 女性被躁到高潮视频| 天天添夜夜摸| 一级毛片女人18水好多| 婷婷六月久久综合丁香| 亚洲免费av在线视频| 国产午夜福利久久久久久| 一级片免费观看大全| 91九色精品人成在线观看| 亚洲av美国av| 精品久久久久久成人av| 精品人妻1区二区| 国产国语露脸激情在线看| 久久精品91蜜桃| 18禁美女被吸乳视频| 国产激情欧美一区二区| 欧美黑人精品巨大| aaaaa片日本免费| 精品国产超薄肉色丝袜足j| 丝袜美腿诱惑在线| 国产99久久九九免费精品| 一区二区日韩欧美中文字幕| 99精品久久久久人妻精品| 亚洲欧美精品综合一区二区三区| av在线天堂中文字幕| 成人一区二区视频在线观看| 婷婷六月久久综合丁香| 性欧美人与动物交配| 好男人电影高清在线观看| 精品欧美国产一区二区三| 最好的美女福利视频网| 级片在线观看| 露出奶头的视频| 亚洲精品一卡2卡三卡4卡5卡| 欧美人与性动交α欧美精品济南到| 亚洲欧美日韩无卡精品| 久久久久久久久免费视频了| av在线天堂中文字幕| 在线观看免费视频日本深夜| 久久久精品国产亚洲av高清涩受| 久久婷婷人人爽人人干人人爱| 国产1区2区3区精品| 久久精品国产亚洲av高清一级| 国产午夜福利久久久久久| 97超级碰碰碰精品色视频在线观看| 在线永久观看黄色视频| 精品国产国语对白av| 最近最新免费中文字幕在线| 久久欧美精品欧美久久欧美| 国产精品 欧美亚洲| 成人亚洲精品一区在线观看| 变态另类成人亚洲欧美熟女| 国产成人一区二区三区免费视频网站| 国产精品久久久人人做人人爽| 热re99久久国产66热| 夜夜爽天天搞| 嫩草影视91久久| 法律面前人人平等表现在哪些方面| 哪里可以看免费的av片| 天天一区二区日本电影三级| 99精品久久久久人妻精品| av在线播放免费不卡| 中文字幕久久专区| 亚洲国产精品成人综合色| 日韩免费av在线播放| 欧美另类亚洲清纯唯美| 欧美激情极品国产一区二区三区| 又黄又爽又免费观看的视频| 在线观看日韩欧美| 久久精品国产亚洲av香蕉五月| 国产精品野战在线观看| 最近最新免费中文字幕在线| 亚洲av成人不卡在线观看播放网| 高清在线国产一区| 99国产综合亚洲精品| 欧美成人午夜精品| 欧美丝袜亚洲另类 | 丁香欧美五月| 日韩大尺度精品在线看网址| 国产精品久久久久久人妻精品电影| 午夜视频精品福利| svipshipincom国产片| 欧美日韩中文字幕国产精品一区二区三区| 亚洲专区国产一区二区| 97超级碰碰碰精品色视频在线观看| 午夜免费观看网址| 国产伦在线观看视频一区| 国产精华一区二区三区| 美女免费视频网站| 国产激情偷乱视频一区二区| av超薄肉色丝袜交足视频| www.自偷自拍.com| 国产v大片淫在线免费观看| 久久婷婷人人爽人人干人人爱| 亚洲欧美日韩高清在线视频| 一二三四社区在线视频社区8| 国产精品电影一区二区三区| 变态另类丝袜制服| 色播在线永久视频| 国产午夜精品久久久久久| 国产1区2区3区精品| 国产三级黄色录像| 一区二区三区国产精品乱码| 19禁男女啪啪无遮挡网站| 可以在线观看毛片的网站| 久久久水蜜桃国产精品网| 亚洲中文日韩欧美视频| 香蕉丝袜av| 少妇熟女aⅴ在线视频| 啪啪无遮挡十八禁网站| 成人特级黄色片久久久久久久| 真人一进一出gif抽搐免费| 男人舔女人的私密视频| 成人国语在线视频| 日本 av在线| 欧美一级a爱片免费观看看 | 国产精品自产拍在线观看55亚洲| 超碰成人久久| 男女视频在线观看网站免费 | 18禁观看日本| 少妇的丰满在线观看| 国内揄拍国产精品人妻在线 | 午夜福利高清视频| 国产精品永久免费网站| 久久人妻福利社区极品人妻图片| 老汉色∧v一级毛片| 丰满人妻熟妇乱又伦精品不卡| 制服丝袜大香蕉在线| 老司机靠b影院| 国产精品 欧美亚洲| 黄色视频,在线免费观看|