• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Generalized Hybrid Nanofluid Model with the Application of Fully Developed Mixed Convection Flow in a Vertical Microchannel?

    2019-08-20 09:24:36HangXu徐航andQiangSun孫強
    Communications in Theoretical Physics 2019年8期
    關鍵詞:孫強

    Hang Xu(徐航)and Qiang Sun(孫強)

    1State Key Laboratory of Ocean Engineering,School of Naval Architecture,Ocean and Civil Engineering,Shanghai Jiao Tong University,Shanghai 200240,China

    2Particulate Fluids Processing Centre,Department of Chemical Engineering,The University of Melbourne,Parkville,VIC 3010,Australia

    AbstractThe fully developed mixed convection hybrid nanofluid flow in a vertical microchannel is examined in detail.The simplified hybrid model that omits the nonlinear terms due to the interaction of different nanoparticle volumetric fractions is derived and compared with the existing one.The generalized model describing hybrid nanofluid suspended with multiple kinds of solid particles is suggested.The argument that the corresponding nanofluid solutions obtained by the homogenous model can be recovered from the results of the regular problems through simple arithmetic operations is checked.Solutions in similarity form for this flow problem are formulated by means of a set of similarity variables.The effects of various parameters on important physical quantities are analyzed and discussed.

    Key words:hybrid nanofluid,vertical channel,mixed convection,slippery effect

    Nomenclature

    ?

    1 Introduction

    Many recent studies revealed that nanofluids have better heat transfer capability than regular fluids.Therefore it is possible to replace traditional heat transfer fluids by nanofluids in the design of various heat transfer systems such as cooling systems,heat regenerators,and heat exchangers.Choi[1]noticed that,by suspending nanometer-sized metallic particles in conventional heat transfer fluids,the resulting nanofluids hold higher thermal conductivities than those of currently used ones.Xuan and Li[2]attributed the heat transfer enhancement of nanofluids to the increase of thermal conductivity of the nanofluid.Eastman et al.[3]found that the particle shape has stronger effects on effective nanofluid thermal conductivity than particle size or particle thermal conductivity.Wen and Ding[4]speculated that possible reasons for the heat transfer enhancement of nanofluids are due to the migration of nanoparticles and the resulting disturbance of the boundary layer.Buongiorno[5]concluded that the Brownian diffusion and thermophoresis are dominant factors for heat enhancement within the boundary layer owing to the effect of the temperature gradient and thermophoresis.Other classic researches on nanofluids have been experimentally done by Pak and Cho,[6]Xie et al.,[7]Williams et al.[8]and numerically done by Tiwari and Das,[9]Oztop and Abu-Nada,[10]Raza et al.,[11]Khan,[12]Sajid et al.,[13]Sheikholeslami and Sadoughi,[14]Sheremet and Pop,[15]Kefayati[16]and Alsabery et al.[17]

    Some researchers made attempts to investigate the characters of nanofluids containing different kinds of nanoparticles.Suresh et al.[18]found that both thermal conductivity and viscosity of hybrid nanofluids increase with the nanoparticle volume concentration while the viscosity increase is substantially higher than the increase in thermal conductivity for an Al2O3-Cu hybrid nanofluid.The behaviours of hybrid nanofluids then were examined in detail by different researchers such as Esfe et al.,[19]Rostamian et al.[20]and Ebrahimi and Saghravani.[21]From modelling point of view,Devi and Devi[22]proposed a mathematical model to investigate the effects of Lorentz force over a three-dimensional stretching surface subject to Newtonian heating.Tayebi and Chamkha[23?24]considered natural convection in an annulus between two confocal elliptic cylinders and eccentric horizontal cylinders filled with a Cu-Al2O3/water hybrid nanofluid.Huminic and Huminic[25]examined the influence of hybrid nanofluids on the performances of elliptical tube.Rostami et al.[26]considered mixed convective stagnation-point flow of an aqueous silica Calumina hybrid nanofluid.

    This paper intends to analyze a fully developed mixed convection hybrid nanofluid flow in a vertical microchannel by means of a generalized hybrid nanofluid model.We are to simplify the Devi and Devi’s model[22]by omitting the nonlinear terms due to the interaction of different nanoparticle volumetric fractions.Then we extend Devi and Devi’s model[22]to the case that the hybrid nanofluids contain various kinds of nanoparticles.The argument by Magayari[27]that corresponding nanofluid results can be recovered from the solutions of already solved regular problems by simple arithmetic operations is then checked.The similarity solutions for this microchannel fl ow and heat transfer of a hybrid nanofluid are formulated by means of a set of similarity variables.It should be mentioned at this end,that the studies on hybrid nanofluids are still very new at this stage.There is no conclusive idea on how nanoparticles act on fluid flow and heat transfer.Complementary studies are urgently needed to understand the heat transfer characteristics of hybrid nanofluids,especially for those in suspension of multiple kinds of small particles.

    2 Generalized Hybrid Nanofluid Model

    In experimental and numerical studies on nanofluids’behaviours,it is a common practice to model their physical quantities by using simplified mathematical relations between the corresponding ones of base fluid and solid particles,as presented by many researchers such as Vajravelu et al.and[28]Devi and Devi.[22]Several experiments have been carried out to confirm the validity of such expressions for dilute nanofluids in suspension of one single kind of solid particles[6]and two types of mixed solid particles.[18]Devi and Devi[22]suggested a group of correlations for physical quantities of hybrid nanofluids.In their approach,they took the fluid containing one kind of nanoparitcles as the base fluid and the other kind of nanoparticles as the individual particles.The correlations of viscosity and thermal conductivity matched the experimental results given by Suresh et al.[18]

    In Devi and Devi’s approach,[22]there are nonlinear terms due to the interaction of two kinds of different nanoparticles.However,in dilute solutions in which the nanoparticle volumetric fractions are usually small,the effects of these nonlinear terms may not be significant. Therefore,we reasonably neglect the nonlinear terms in Devi and Devi’s model.[22]Our simplified model of hybrid nanofluid,as well as the classic nanofluid model and Devi and Devi’s model[22]are listed in Table 1 in which Type I denotes the traditional nanofluid model(nanofluid in suspension one kind of small particles),Types II and III,respectively,denote Devi and Devi’s hybrid nanofluid model[22]and our simplified hybrid nanofluid model(nanofluid in suspension two different kind of small particles).

    Devi and Devi’s approach[22]used the recurrence formulae to represent the viscosity,density,specific heat and thermal conductivity of the hybrid nanofluid corresponding to the n-th kinds of nanoparticles as

    and

    Table 1 Models of nanofluid and hybrid nanofluid.

    By neglecting the nonlinear terms in above correlations,we obtain

    Note that we keep the recurrence formula(5)for the thermal conductivity khnfsince the interactions between different particles can hardly be expressed using the Maxwell equation.Also,M=3 is chosen throughout this work that means that the particle shape is spherical.

    3 Mathematical Description

    Consider a mixed convection flow of a hybrid nanofluid in a constant porosity medium between two parallel vertical infinite walls separated by a distance of 2H.As shown in Fig.1,the Cartesian coordinate system(x,y)is chosen with the x-axis being along the walls and the y-axis being perpendicular to the walls.The temperatures on both walls are assumed to vary linearly along the height that are prescribed as T1+ax and T2+ax on the left and the right walls,respectively.Since the hydrodynamically fl ow is fully-developed,the velocity along the wall is only a function of y.Invoking the Boussinesq approximation,the governing equations are written as

    subject to the boundary conditions

    Fig.1 Physical sketch.

    It is easy to see from Eq.(12)that ?2p/?x?y=0.This indicates that?p/?x is a constant and that all terms on the right-hand side of Eq.(11)are only dependent on y.Based on this fact,we define the following variables

    where Ur=gβfKaH/νfis a reference velocity.

    Substituting Eq.(16)into Eqs.(10),(11),and(13),the continuity equation(10)is automatically satisfied,and the rest of equations are reduced to

    with the boundary conditions

    where

    4 Comparison Analysis Between Models

    We calculate the coefficients ε1,ε2,and ε3in Eqs.(17)and(18)by Type II and Type III hybrid nanofluid models listed in Table 1.The data regarding to the basic thermophysical properties of the base fluid and nanoparticles are given in Table 2 where the thermophysical properties of water is chosen at 25C.

    Table 2 Thermophysical properties of fluid and nanoparticles.

    Substituting the quantities in Table 2 into different hybrid nanofluid models,the values of ε1,ε2,and ε3can be obtained,as shown in Table 3.It can be seen from the table,when the solution is dilute,namely,the nanoparticle volumetric fractions are small,the difference between the values of ε1,ε2and ε3obtained by both models is imperceptible.Recalling the experimental results and modelling tests by Pak et al.[6]and Suresh et al.,[18]it is clear that the computational range of nanoparticle volumetric fractions listed in Table 3 is acceptable and widely used.As a result,we can infer that our simplified hybrid nanofluid model is meaningful for prediction of nanofluids’behaviours.Further verification shows that,for the cases that two kinds of nanoparticles coexist,each nanoparticle volumetric fraction needs to be small to keep the solution remaining dilute.

    Magyari[27]once found that,without consideration of velocity-slip effects,the governing equations of homogeneous nanofluid models can be reduced via elementary scaling transformations to the corresponding equations of the regular fluids.Thus he concluded that the corresponding nanofluid results can be recovered from the solutions of already solved problems with regular Newtonian fluids by simple arithmetic operations.

    Here,we would like to check if this applicability is valid on the hybrid nanofluid flow problems.We introduce the following scaling transformations:

    Substituting Eq.(21)into Eqs.(17)and(18),we obtain

    To keep Eqs.(22)and(23)invariant in forms,the two relationships below must hold:

    which leads to

    Equation(26)clearly indicates that,for the problem considered in this work,there is no alternative scaling transformation that can be used to obtain solutions from the existing results.We therefore are able to conclude that Mayari’s conclusion[27]on that nanofluid results can be recovered from the solutions of already solved regular Newtonian fluid problems by simple arithmetic operations is only valid for several special cases in nanofluid researches.

    Table 3 Computation of nanoparticles related parameters.?

    5 Results

    It is known that Eq.(17)contains an unknown constant σ,which requires an additional boundary condition.In the studies on channel flow problems,it is a common practice to sprecify the mass flow rate as a prescribed quantity.We thus obtain

    which can be simplified,by using the similarity variables(16),to

    where Umis the constant average flow velocity across the channel,and λ=2Um/Ur.For convenience,we let Um=Urwhich leads to λ=2.

    The homotopy analysis method(HAM)is used to solve this flow problem.Since the similar HAM procedures are available in Refs.[29–30],we omit the detailed process but just give the core information as shown in Table 4.

    To check the accuracy of our solutions,we define the following functions to evaluate errors:

    where

    When all physical parameters are prescribed,the cor-responding errors can be obtained.For example,if we set Ra=10,γ=1/100,K1=1,N1=1/10,N2= ?1/10,and θw=1/10,and prescribe ?1and ?2for a range of values,at a certain HAM computational order,the errors can be determined by Eq.(29)as shown in Table 5.

    Table 4 HAM computation related quantities.

    ?

    Fig.2 Comparisons of U(η)and θ(η)in the case of Ra=10,γ =1/100,K1=1,N1=1/10,N2= ?1/10,θw=1/10.Line with gradients:solutions by Devi and Devi’s model,[22]Line with circles:solutions by our model.(a)?1= ?2=1/10.(b)?1= ?2=1/10.(c)?1= ?2= ?3=3/100.(d)?1= ?2= ?3=3/100.

    Further to check the validity and accuracy of our simplified model,we compare our results of velocity and temperature profiles for a hybrid nanofluid in suspension of two types of nanoparticles with those given by Devi and Devi.[22]It can be seen in Figs.2(a)and 2(b)that very good agreement is found.Note that here Al2O3and Cu nanoparticles are chosen for comparison.As shown in Figs.2(a)and 2(b),we also notice that the results by our simplified hybrid nanofluid model match to those given by the generalized hybrid nanofluid model when three types of nanoparticles,namely,Al2O3,Cu and TiO2are employed.

    In our computation,it is found that the variation of nanoparticle volumetric fraction plays limited influence on velocity profiles while it has significant effect on the temperature profiles,as shown in Fig.3.This indicates that the increase of nanoparticle volumetric fraction can enhance heat transfer significantly.In another words,this also verifies the fact that the nanofluids have better thermal transport capability than traditional ones.

    Physically,the skin friction and the Nusselt number are important quantities to measure the fluid behaviours.Since the flow and heat transfer exhibit similar characters on both walls,we therefore only consider those quantities on the left wall.In this situation,they are defined by

    where

    Substituting similarity variables in Eq.(16)into Eq.(32),we obtain

    where Re=UmH/νnhfis the Reynolds number.

    Fig.3 Variation of(a)U(η)and(b) θ(η)with ?2for Ra=10, γ =1/100,K1=1,N1=1/10,N2= ?1/10,θw=1/10,?1=25/1000.

    To test the effects of the nanoparticle volumetric fractions ?1and ?2on various physical quantities,we select Al2O3and Cu nanoparticles in following analysis.As shown in Fig.4(a),for a certain value of ?1,the absolute value of the skin friction coefficient CfLreduces as ?2enlarges.Similarly,when ?2is prescribed,the absolute value of CfLdecreases as ?1evolves.This clearly shows that the nanofluids can effectively diminish the skin friction.The slip effects between the velocities of nanoparticles and the base fluid is the key factor to affect the Nusselt number.The trend of NuLvaries with ?2is similar to that of CfL,namely,when ?1is given,the increase of ?2causes the decrease of the absolute value of NuL,or verse visa,as shown in Fig.4(b).As concluded by Buongiorno,[5]the temperature difference between the walls and the fluid can alter the temperature gradient and thermophoresis,which could result in a significant decrease of viscosity within the boundary layer,thus leading to heat transfer enhancement.

    The effect of nanoparticle volumetric fractions on the pressure constant is shown in Fig.4(c).For a given value of ?1,it is found that the pressure decreases gradually as ?2grows.Same trend is found for the variation of the pressure constant σ with ?1at a fixed value of ?2.This reflects another aspect that the flow velocity reduces owing to the reduction of skin friction caused by the increase of nanoparticle volumetric fractions,either for nanofluids or hybrid nanofluids.

    In microchannel studies,the slip of the channel wall is of great importance to alter flow and heat transfer behaviours.Take the hybrid nanofluid containing Al2O3,Cu and TiO2nanopaticles as an example.As shown in Fig.5(a),the absolute value of the skin friction coefficient CfLdecreases monotonously as N1grows.However,the absolute value of the Nusselt number NuLincreases continuously as N1increases,as shown in Fig.5(b),while the pressure constant σ reduces gradually as N1enlarges,as shown in Fig.5(c).It is seen from Fig.6(a)that the increase of N1leads to the increase of the velocity near the left wall.This velocity variation leads to the enhancement of temperature in the channel,as presented in Fig.6(b).Physically,the increase of the slip length indicates the decrease of the skin friction,which leads to the increase of fl ow velocity near that wall.Nevertheless,due to the conservation of flow flux,the flow velocity far from the left wall decreases with N1increasing.

    Fig.4 Variation of(a)reduced CfL,(b)reduced NuLand(c) σ with ?2for some values of ?1in the case of Ra=10,γ=1/100,K1=1,N1=1/10,N2=?1/10,θw=1/10.

    Fig.5 Variation of(a)reduced CfL,(b)reduced NuLand(c)σ with N1in the case of Ra=10,γ=1/100,K1=1,N2=0,θw=1/10,and ?1= ?2= ?3=3/100.

    Fig.6 Variation of(a)U(η)and(b)θ(η)with N1in the case of Ra=10,γ =1/100,K1=1,N2=0,θw=1/10,and ?1= ?2= ?3=3/100.

    6 Conclusion

    The generalized hybrid nanofluid model and its simplifi ed form have been proposed to study the flow and heat transfer behaviours of a hybrid nanofluid convection in a vertical microchannel.It has been found that when the solution is dilute,our simplified model can well predict the flow and heat transfer behaviours of hybrid nanofluids.The argument by Magyari[27]with regards to the homogenous model for expressions of nanofluid solutions by the results of already solved regular Newtonian fluid problems via simple arithmetic operations has been found problematic when it is applied to hybrid nanofluid flows.The effects of various parameters on important physical quantities are analysed and discussed with the following conclusions can be reached:

    (i) The variations of nanoparticle volumetric fractions have more obvious effects on temperature distribution than on velocity distribution.

    (ii)The nanoparticle volumetric fractions play a significant role on altering flow and heat transfer behaviours.

    (iii)The slip effect of the channel wall are of great importance to affect the flow and heat transfer behaviours.

    猜你喜歡
    孫強
    Oscillator strength and cross section study of the valence-shell excitations of NO2 by fast electron scattering
    Two-dimensional self-consistent numerical simulation of the whole discharge region in an atmospheric argon arc
    Three-dimensional non-equilibrium modeling of a DC multi-cathode arc plasma torch
    Effects of W6+occupying Sc3+on the structure,vibration,and thermal expansion properties of scandium tungstate?
    求解線性規(guī)劃問題的常規(guī)思路
    孫強作品
    我送男友3600萬,他卻拿錢悅前妻
    老公愛車勝過愛我
    婦女生活(2017年9期)2017-09-13 20:09:03
    A scheme for improving computational efficiency of quasi-two-dimensional model*
    偷來的靠山
    国产成人午夜福利电影在线观看| 亚洲精品影视一区二区三区av| 日韩精品有码人妻一区| 女人久久www免费人成看片| 欧美极品一区二区三区四区| 亚洲,一卡二卡三卡| 一级毛片 在线播放| 国产精品久久久久久久电影| 成人欧美大片| 麻豆精品久久久久久蜜桃| 国产免费视频播放在线视频| 久久精品综合一区二区三区| 一级毛片电影观看| 亚洲精品国产成人久久av| 中文字幕av成人在线电影| 不卡视频在线观看欧美| 国精品久久久久久国模美| 日产精品乱码卡一卡2卡三| 亚洲精品aⅴ在线观看| av福利片在线观看| 欧美激情久久久久久爽电影| 成人美女网站在线观看视频| 亚洲一区二区三区欧美精品 | 在线观看av片永久免费下载| 国产精品.久久久| 18禁动态无遮挡网站| 亚洲最大成人手机在线| 我要看日韩黄色一级片| 亚洲国产欧美在线一区| 久久久成人免费电影| 久久99蜜桃精品久久| 在线观看av片永久免费下载| 亚洲最大成人中文| 国产探花在线观看一区二区| 久久精品国产亚洲av天美| 乱系列少妇在线播放| 大片免费播放器 马上看| 久久影院123| 久久久国产一区二区| 国产一区二区在线观看日韩| 国产黄色免费在线视频| .国产精品久久| 少妇的逼好多水| 看十八女毛片水多多多| 夜夜爽夜夜爽视频| 一本久久精品| 中文欧美无线码| 制服丝袜香蕉在线| 欧美激情久久久久久爽电影| 欧美人与善性xxx| 日韩视频在线欧美| 女的被弄到高潮叫床怎么办| 美女cb高潮喷水在线观看| 欧美一区二区亚洲| 一边亲一边摸免费视频| 在线观看三级黄色| 国产黄a三级三级三级人| av一本久久久久| 国产一区二区三区av在线| 成人亚洲欧美一区二区av| a级一级毛片免费在线观看| 色5月婷婷丁香| 小蜜桃在线观看免费完整版高清| 亚洲久久久久久中文字幕| 97在线人人人人妻| 国产精品99久久99久久久不卡 | 美女被艹到高潮喷水动态| 青春草国产在线视频| 国产精品熟女久久久久浪| 亚洲综合精品二区| 97热精品久久久久久| 啦啦啦在线观看免费高清www| 各种免费的搞黄视频| 国产一区亚洲一区在线观看| 国产精品久久久久久精品电影| 91aial.com中文字幕在线观看| 亚洲精品,欧美精品| 哪个播放器可以免费观看大片| 精品久久久久久电影网| 有码 亚洲区| 女人十人毛片免费观看3o分钟| 国产人妻一区二区三区在| 色视频www国产| av线在线观看网站| 国产精品久久久久久久久免| 男人爽女人下面视频在线观看| 在线观看免费高清a一片| 丰满乱子伦码专区| 亚洲美女视频黄频| 深夜a级毛片| 男的添女的下面高潮视频| 久久女婷五月综合色啪小说 | 黄色一级大片看看| 久久久欧美国产精品| 少妇高潮的动态图| 制服丝袜香蕉在线| 91aial.com中文字幕在线观看| 免费观看在线日韩| 九草在线视频观看| 麻豆成人av视频| a级一级毛片免费在线观看| 久久久a久久爽久久v久久| 中文字幕免费在线视频6| 欧美xxxx性猛交bbbb| 亚洲最大成人手机在线| 亚洲婷婷狠狠爱综合网| 天美传媒精品一区二区| 成人特级av手机在线观看| 777米奇影视久久| 色吧在线观看| 草草在线视频免费看| 少妇人妻一区二区三区视频| 午夜福利在线观看免费完整高清在| .国产精品久久| 色综合色国产| 国产成人freesex在线| 日日摸夜夜添夜夜添av毛片| 久久精品国产亚洲av涩爱| 午夜免费男女啪啪视频观看| 夜夜爽夜夜爽视频| 国产高清三级在线| 国产久久久一区二区三区| 欧美极品一区二区三区四区| 国产乱来视频区| 亚洲成人久久爱视频| 国产精品嫩草影院av在线观看| 一本久久精品| 久久久久九九精品影院| 王馨瑶露胸无遮挡在线观看| 亚洲,一卡二卡三卡| 一区二区三区四区激情视频| 久久综合国产亚洲精品| 亚洲精品国产成人久久av| 两个人的视频大全免费| 高清视频免费观看一区二区| 国产伦在线观看视频一区| 日韩成人伦理影院| 亚洲性久久影院| av在线亚洲专区| 亚洲欧美成人精品一区二区| 18+在线观看网站| 另类亚洲欧美激情| 人妻 亚洲 视频| 成人欧美大片| 久久久精品免费免费高清| 亚洲三级黄色毛片| 国产探花在线观看一区二区| 在线观看一区二区三区激情| 亚洲国产精品国产精品| 日日啪夜夜爽| 中文在线观看免费www的网站| 免费黄频网站在线观看国产| 成人美女网站在线观看视频| av在线老鸭窝| 久久久久久久国产电影| 亚洲精品456在线播放app| 如何舔出高潮| 欧美成人午夜免费资源| 中文字幕免费在线视频6| 熟妇人妻不卡中文字幕| 亚洲久久久久久中文字幕| 国产一级毛片在线| 热re99久久精品国产66热6| 国产精品久久久久久久久免| 欧美极品一区二区三区四区| 成人一区二区视频在线观看| 不卡视频在线观看欧美| 国产精品一区二区性色av| 交换朋友夫妻互换小说| 国产真实伦视频高清在线观看| 少妇被粗大猛烈的视频| 国产av不卡久久| 天美传媒精品一区二区| 成人无遮挡网站| 亚洲精品日本国产第一区| 韩国av在线不卡| 中文字幕制服av| 日日啪夜夜爽| 大又大粗又爽又黄少妇毛片口| 亚洲欧美成人精品一区二区| .国产精品久久| 成人毛片a级毛片在线播放| 亚洲精品亚洲一区二区| 国产一区二区三区av在线| 免费不卡的大黄色大毛片视频在线观看| 高清av免费在线| 亚洲国产精品成人综合色| 国语对白做爰xxxⅹ性视频网站| 国产人妻一区二区三区在| 久久久久性生活片| 高清毛片免费看| 国产综合懂色| 天天一区二区日本电影三级| 亚洲av二区三区四区| 两个人的视频大全免费| 日韩精品有码人妻一区| 爱豆传媒免费全集在线观看| 九色成人免费人妻av| 狂野欧美激情性xxxx在线观看| 国产亚洲精品久久久com| 久久久久网色| 99热这里只有是精品在线观看| 最近的中文字幕免费完整| 国产成人aa在线观看| 日本黄色片子视频| 久久久久性生活片| 日韩电影二区| 波多野结衣巨乳人妻| 一个人看的www免费观看视频| 国产精品一区二区性色av| 国产黄色免费在线视频| 国产精品av视频在线免费观看| 各种免费的搞黄视频| 亚洲国产精品成人综合色| 国语对白做爰xxxⅹ性视频网站| 久久久久网色| 成年av动漫网址| 亚洲无线观看免费| 国产熟女欧美一区二区| 国产乱人视频| 亚洲国产av新网站| 国产高清国产精品国产三级 | 菩萨蛮人人尽说江南好唐韦庄| 日韩av免费高清视频| 亚洲国产最新在线播放| 超碰97精品在线观看| 国产亚洲av片在线观看秒播厂| www.av在线官网国产| 在线观看一区二区三区| 日本爱情动作片www.在线观看| 欧美 日韩 精品 国产| 日韩国内少妇激情av| 亚洲欧美一区二区三区黑人 | 91久久精品电影网| 视频区图区小说| av免费在线看不卡| 亚洲精品国产成人久久av| 国产男人的电影天堂91| 一级二级三级毛片免费看| 久久久久九九精品影院| 亚洲美女搞黄在线观看| 80岁老熟妇乱子伦牲交| 22中文网久久字幕| 久久99蜜桃精品久久| 国产精品秋霞免费鲁丝片| 国产国拍精品亚洲av在线观看| 国语对白做爰xxxⅹ性视频网站| 观看免费一级毛片| 国产精品一区二区在线观看99| videossex国产| 亚洲人成网站在线播| 国产av码专区亚洲av| 高清日韩中文字幕在线| 精品一区二区三区视频在线| 99久久精品一区二区三区| 免费看a级黄色片| 久久6这里有精品| 日韩大片免费观看网站| 亚洲精品久久午夜乱码| 成年av动漫网址| 午夜爱爱视频在线播放| 久久久久精品性色| 国产免费又黄又爽又色| 日韩欧美 国产精品| 97在线视频观看| 亚洲av不卡在线观看| 国产永久视频网站| 一级毛片久久久久久久久女| a级毛色黄片| 成年版毛片免费区| 久久久午夜欧美精品| 好男人视频免费观看在线| 亚洲在线观看片| 亚洲av日韩在线播放| 一边亲一边摸免费视频| 女人被狂操c到高潮| 国产高清不卡午夜福利| 色吧在线观看| 乱系列少妇在线播放| 人妻一区二区av| 午夜日本视频在线| 日韩欧美精品免费久久| 国产色婷婷99| 久久久亚洲精品成人影院| 亚洲最大成人av| 免费播放大片免费观看视频在线观看| 国产精品.久久久| av免费在线看不卡| 国产老妇伦熟女老妇高清| 精品99又大又爽又粗少妇毛片| 精品熟女少妇av免费看| 亚洲精品视频女| av一本久久久久| 国产亚洲一区二区精品| 成人高潮视频无遮挡免费网站| 精品国产乱码久久久久久小说| 能在线免费看毛片的网站| 国产日韩欧美在线精品| 成人亚洲精品一区在线观看 | 久久久久性生活片| 成年版毛片免费区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 成年av动漫网址| 精品熟女少妇av免费看| 成人漫画全彩无遮挡| 99热这里只有精品一区| 在线天堂最新版资源| 亚洲美女视频黄频| 久久精品久久久久久久性| 国产精品.久久久| 九九久久精品国产亚洲av麻豆| 精品一区二区三区视频在线| 中文资源天堂在线| 亚洲成人中文字幕在线播放| 水蜜桃什么品种好| 另类亚洲欧美激情| 26uuu在线亚洲综合色| 久久久色成人| 看黄色毛片网站| 最新中文字幕久久久久| 亚洲精品国产av成人精品| 赤兔流量卡办理| 久久精品久久久久久噜噜老黄| 免费观看的影片在线观看| 97超碰精品成人国产| 啦啦啦在线观看免费高清www| 国产 精品1| 99re6热这里在线精品视频| 最新中文字幕久久久久| 肉色欧美久久久久久久蜜桃 | 免费av毛片视频| 性插视频无遮挡在线免费观看| 亚洲国产成人一精品久久久| 亚洲av中文字字幕乱码综合| 欧美极品一区二区三区四区| 国产精品99久久久久久久久| 日韩av不卡免费在线播放| 免费不卡的大黄色大毛片视频在线观看| 欧美xxxx黑人xx丫x性爽| 国产成人a区在线观看| 国产极品天堂在线| 一区二区三区免费毛片| 人妻系列 视频| 伦理电影大哥的女人| 国产精品一区二区在线观看99| 亚洲电影在线观看av| 久久久久久久午夜电影| 熟女人妻精品中文字幕| 三级男女做爰猛烈吃奶摸视频| 久久综合国产亚洲精品| 国产69精品久久久久777片| 尾随美女入室| 国产成年人精品一区二区| 久久久久国产精品人妻一区二区| 欧美激情国产日韩精品一区| 亚洲国产av新网站| 简卡轻食公司| 女人十人毛片免费观看3o分钟| 成年免费大片在线观看| 欧美激情久久久久久爽电影| 久久久久久久久大av| 欧美xxxx性猛交bbbb| 欧美老熟妇乱子伦牲交| 视频区图区小说| 美女cb高潮喷水在线观看| 另类亚洲欧美激情| 亚洲自拍偷在线| 91精品伊人久久大香线蕉| 涩涩av久久男人的天堂| 久久99精品国语久久久| 18禁在线无遮挡免费观看视频| 另类亚洲欧美激情| 日日撸夜夜添| 下体分泌物呈黄色| 国产又色又爽无遮挡免| 午夜日本视频在线| 美女xxoo啪啪120秒动态图| 狠狠精品人妻久久久久久综合| 看免费成人av毛片| 欧美bdsm另类| 久久午夜福利片| 国产成人精品一,二区| 亚洲一区二区三区欧美精品 | 国产精品蜜桃在线观看| 91久久精品电影网| 国模一区二区三区四区视频| 免费看不卡的av| 草草在线视频免费看| 男人爽女人下面视频在线观看| 国产精品人妻久久久久久| 精品久久久久久久久亚洲| 一区二区三区乱码不卡18| 国产日韩欧美在线精品| 久久99精品国语久久久| 亚洲精品国产av成人精品| 中文资源天堂在线| 国产亚洲91精品色在线| 老司机影院成人| 小蜜桃在线观看免费完整版高清| 边亲边吃奶的免费视频| 国国产精品蜜臀av免费| 日本黄色片子视频| 免费大片黄手机在线观看| 亚洲伊人久久精品综合| 精品久久久精品久久久| 一级爰片在线观看| 国产精品一区二区性色av| 久久久久久久午夜电影| 久久精品久久久久久久性| 岛国毛片在线播放| 免费av毛片视频| 国产精品嫩草影院av在线观看| 午夜免费观看性视频| 婷婷色麻豆天堂久久| 青青草视频在线视频观看| 亚洲人成网站在线播| 亚洲国产高清在线一区二区三| 少妇的逼好多水| 久久99热6这里只有精品| 国产毛片a区久久久久| 99久久精品热视频| 99久国产av精品国产电影| 秋霞伦理黄片| 91aial.com中文字幕在线观看| 色播亚洲综合网| 在线观看一区二区三区激情| 老女人水多毛片| 在线看a的网站| 国产视频首页在线观看| 香蕉精品网在线| 美女脱内裤让男人舔精品视频| 中文精品一卡2卡3卡4更新| 国产中年淑女户外野战色| 人人妻人人澡人人爽人人夜夜| 2018国产大陆天天弄谢| 天堂俺去俺来也www色官网| 日本免费在线观看一区| 一级毛片久久久久久久久女| 亚洲三级黄色毛片| 亚洲美女视频黄频| 国产人妻一区二区三区在| 国产毛片在线视频| 又粗又硬又长又爽又黄的视频| 精品99又大又爽又粗少妇毛片| 欧美xxⅹ黑人| 超碰av人人做人人爽久久| 国产色爽女视频免费观看| 日韩欧美精品v在线| 春色校园在线视频观看| 在线播放无遮挡| 精品人妻视频免费看| 日韩免费高清中文字幕av| 91精品一卡2卡3卡4卡| 日韩伦理黄色片| 亚洲欧美一区二区三区国产| 岛国毛片在线播放| 国产欧美另类精品又又久久亚洲欧美| 日本wwww免费看| 国产一区二区在线观看日韩| 国语对白做爰xxxⅹ性视频网站| 赤兔流量卡办理| 自拍欧美九色日韩亚洲蝌蚪91 | 老女人水多毛片| 神马国产精品三级电影在线观看| 国产精品久久久久久av不卡| 午夜免费观看性视频| 国产一区二区在线观看日韩| 午夜爱爱视频在线播放| 看十八女毛片水多多多| 欧美少妇被猛烈插入视频| 99热这里只有是精品50| 在线观看一区二区三区| 国产精品伦人一区二区| 国内精品美女久久久久久| 日韩成人av中文字幕在线观看| 丝袜喷水一区| 黄片无遮挡物在线观看| 亚洲国产精品成人久久小说| 国产白丝娇喘喷水9色精品| 久久综合国产亚洲精品| 成人美女网站在线观看视频| 99热国产这里只有精品6| 亚洲精品成人av观看孕妇| 黄色配什么色好看| 精品久久久久久久久av| 久久精品国产鲁丝片午夜精品| 亚洲欧美精品专区久久| 免费黄色在线免费观看| 人妻夜夜爽99麻豆av| 一本一本综合久久| 久久鲁丝午夜福利片| 亚洲国产欧美人成| 精品亚洲乱码少妇综合久久| 免费看a级黄色片| 国产精品熟女久久久久浪| 人人妻人人澡人人爽人人夜夜| 免费观看性生交大片5| 久久精品国产亚洲av涩爱| 激情 狠狠 欧美| 亚洲av成人精品一区久久| 少妇人妻 视频| 三级国产精品片| 亚洲电影在线观看av| 欧美激情在线99| 午夜免费男女啪啪视频观看| 黑人高潮一二区| 亚洲久久久久久中文字幕| 国产精品一区二区性色av| 日日摸夜夜添夜夜爱| 亚洲精华国产精华液的使用体验| 日韩大片免费观看网站| 国产精品久久久久久久久免| 1000部很黄的大片| 六月丁香七月| 色5月婷婷丁香| 九色成人免费人妻av| 高清在线视频一区二区三区| 街头女战士在线观看网站| av女优亚洲男人天堂| 大话2 男鬼变身卡| 一个人观看的视频www高清免费观看| 日韩一区二区视频免费看| 亚洲伊人久久精品综合| a级毛色黄片| 男的添女的下面高潮视频| 禁无遮挡网站| 肉色欧美久久久久久久蜜桃 | kizo精华| 国产一区亚洲一区在线观看| 亚洲av在线观看美女高潮| 少妇丰满av| 一级av片app| 亚洲精品,欧美精品| 久久精品夜色国产| 三级国产精品欧美在线观看| 一级毛片我不卡| h日本视频在线播放| 观看美女的网站| 小蜜桃在线观看免费完整版高清| 2018国产大陆天天弄谢| 99热这里只有是精品50| 菩萨蛮人人尽说江南好唐韦庄| 女的被弄到高潮叫床怎么办| 国产亚洲5aaaaa淫片| 国产成人aa在线观看| 麻豆久久精品国产亚洲av| 禁无遮挡网站| 日本-黄色视频高清免费观看| 最近手机中文字幕大全| 精品熟女少妇av免费看| 能在线免费看毛片的网站| 国产一区二区三区综合在线观看 | 久久精品熟女亚洲av麻豆精品| 精品久久久久久电影网| 极品教师在线视频| 精品人妻视频免费看| 国产亚洲一区二区精品| 日韩欧美精品v在线| 午夜精品国产一区二区电影 | 在线观看国产h片| 80岁老熟妇乱子伦牲交| 又粗又硬又长又爽又黄的视频| 国产成人a区在线观看| 日韩三级伦理在线观看| 国产免费又黄又爽又色| 日韩三级伦理在线观看| 97在线人人人人妻| 一区二区av电影网| 内地一区二区视频在线| 最新中文字幕久久久久| 午夜精品国产一区二区电影 | 国产综合精华液| 国产成人一区二区在线| 我要看日韩黄色一级片| av在线亚洲专区| 超碰av人人做人人爽久久| 亚洲国产精品999| 中国国产av一级| 伦精品一区二区三区| 91精品伊人久久大香线蕉| 三级经典国产精品| 最近手机中文字幕大全| 午夜福利在线观看免费完整高清在| 亚洲综合精品二区| 全区人妻精品视频| 日本一二三区视频观看| 欧美三级亚洲精品| 热99国产精品久久久久久7| 交换朋友夫妻互换小说| 国产黄色视频一区二区在线观看| 久久99精品国语久久久| 亚洲av不卡在线观看| 菩萨蛮人人尽说江南好唐韦庄| 天堂网av新在线| 亚洲国产欧美人成| 人妻一区二区av| 久久韩国三级中文字幕| 成人亚洲欧美一区二区av| av卡一久久| 全区人妻精品视频| 免费观看的影片在线观看| 午夜福利在线观看免费完整高清在| 高清欧美精品videossex| 制服丝袜香蕉在线| 精品一区二区三区视频在线| 亚洲av欧美aⅴ国产| 国产黄色视频一区二区在线观看| 久久热精品热| 在线免费观看不下载黄p国产| 婷婷色麻豆天堂久久| 国产精品一二三区在线看| 少妇人妻一区二区三区视频| 欧美日韩亚洲高清精品| 日韩不卡一区二区三区视频在线| 亚洲精品一区蜜桃|