• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of W6+occupying Sc3+on the structure,vibration,and thermal expansion properties of scandium tungstate?

    2021-06-26 03:04:12DongxiaChen陳冬霞QiangSun孫強ZhanjunYu于占軍MingyuLi李明玉JuanGuo郭娟MingjuChao晁明舉andErjunLiang梁二軍
    Chinese Physics B 2021年6期
    關鍵詞:孫強

    Dongxia Chen(陳冬霞) Qiang Sun(孫強) Zhanjun Yu(于占軍) Mingyu Li(李明玉)Juan Guo(郭娟) Mingju Chao(晁明舉) and Erjun Liang(梁二軍)

    1School of Materials Science&Engineering,Zhengzhou University of Aeronautics,Zhengzhou 450046,China

    2Key Laboratory of Materials Physics of Ministry of Education,School of Physics and Microelectronics,Zhengzhou University,Zhengzhou 450052,China

    Keywords: structure,negative thermal expansion,Raman spectroscopy

    1. Introduction

    Materials with negative thermal expansion (NTE) property have potential applications in many fields such as precision optics, optoelectronic devices, and aerospace materials. Usually, NTE materials can be compounded with positive thermal expansion materials or tailored chemically to attain near zero or controllable thermal expansion materials.Such materials are especially suitable for use in heat cycles due to the low mismatch or less thermal stress. AW2O8[1]and AV2O7(A=Zr, Hf)[2,3]are two types of well-known framework NTE oxides which possess isotropic NTE property and wide temperature ranges of NTE.A number of studies have shown that AW2O8is metastable at high temperature, while AV2O7undergoes a structure phase transition at about 427 K. Materials with general formula of A2M3O12(A=+3 ions; M=Mo, W) also exhibit NTE properties in a wide temperature range but NTE is anisotropic. Except for Sc2W3O12,[4,5]all the members of A2M3O12family show either structure phase transition(e.g.,Fe2Mo3O12,Cr2Mo3O12,Al2Mo3O12,[6]Al2W3O12and In2W3O12)[7]or hydroscopicity (e.g., Yb2Mo3O12,[8]Y2Mo3O12[9]and Y2W3O12).[10]A great deal of research has been carried out to control the phase transition or hydroscopicity of A2M3O12by substituting A4+or M6+with other ions.[11–19]In addition, PbTiO3based ferroelectric transition materials,[20–22]Mn3AN based materials with magnet volume effect[23–25]and TaVO5[26]also exhibit NTE properties.

    Recent years, tetra-molybdates with NTE properties in a narrow region have been reported, e.g., Ln2Mo4O15(Ln=Y,Dy, Ho, Tm),[27]Ce2(MoO4)2(Mo2O7),[28]and R2Mo4O15(R=La, Nd, Sm).[29]It is worth noting that all of these materials adopt monoclinic structure, of which, two Mo(2)O4tetrahedra are connected by a bridge O atom to form a pyromolybdate Mo(2)2O7group that is similar to V2O7group in ZrV2O7. One Mo(2)2O7polyhedron is weakly joined with two Mo(1)O4tetrahedra by sharing O atoms to form an entire Mo4O15group. Each+3 metal atom is coordinated with seven oxygen atoms to constitute a single capped trigonal prism.

    Meanwhile, Cu2P2O7has been found to exhibit the strongest NTE among the oxides (αv~?27.69×10?6K?1,5 K–375 K).[30]The NTE behaviors of Prussian blue analogues, e.g., FeFe(CN)6,[31]MII2MIV(CN)8(MII= Ni, Co,Fe, and Mn; MIV= Mo and W),[32]ScCo(CN)6[33]and YFe(CN)6[34]were also reported in recent years.

    In this paper,a new tungstate(Sc6W2)W12O48±δwith the structure similar to the orthorhombic structure of Sc2W3O12is studied by two W6+occupying two sites of Sc3+in the unit cell of Sc2W3O12. The structure, vibration and thermal expansion properties of the doped sample are investigated experimentally. The results of Rietveld refinement of synchronous x-ray diffraction(SXRD)data indicate that the structure of the doped sample is similar to that of orthorhombic Sc2W3O12.Blue shifts of peak positions and increasement of FWHMs are found in the spectrum of the doped sample by comparing the Raman spectrum with that of Sc2W3O12. The distortion of polyhedra and stress introduced by W6+occupying Sc3+in the unit cell are attributed to those changes. In order to demonstrate this structure of the doped sample, the effects of odd/even W6+occupying the odd/even sites of Sc3+in the unit cell on the stability of crystal are studied by first-principles calculations based on DFT.It is shown that the structure by odd W6+occupying odd Sc3+in the unit cell is unstable because of the severe distortion of the unit cell,while it is stable by even W6+occupying even Sc3+in the unit cell. Simultaneously,according to the changes of cell parameters with temperature,an intrinsic NTE property is discovered in the doped sample.

    2. Experimental procedure and computational details

    The sample of (Sc6W2)W12O48±δwas synthesized by a solid-state reaction method. Commercial chemicals Sc2O3and WO3(99.9% purity) were used as the starting materials.The materials were weight according to the stoichiometric ratios, then mixed and ground in a mortar for 2 h. The obtained uniform powders were transferred to a corundum ark and heated in a tube furnace of 1753 K for 5 min,then rapidly quenched in deionized water and placed in of about 400 K for 0.5 h. Repeat the above procedure, the sample was sintered for a second time at 1753 K for 1 h. To ensure the purity,the sample was sintered for a third time at 1753 K for 30 min and then cooled out. The sintered powders were reground,pressed into pellets then sintered again at 1173 K for 30 min.

    X-ray photoelectron spectrometer (XPS) (Axis Ultra,Kratos,UK)was used to analyze the composition of the doped sample and the valence of the elements.The casaXPS(version 2.3.16) software was used to process the data. Crystal structure and CTEs of the sample were determined by synchrotron x-ray diffraction(SXRD).Temperature-dependent SXRD data were collected by an instrument 11-ID-C at the Advanced Photon Source with a wavelength of 0.11730 ?A.The structure together with lattice constants was refined using an orthorhombic structural model (space group:Pbcn). All the calculations of structure and lattice constants were performed on Fullprof software (version 1.10). Raman spectra were recorded by a LabRAM HR Evolution Raman spectrometer (France HORIBA Jobin Yvon S.A.S.) with the excitation wavelength of 532 nm.

    To predict the stable structure of the doped system, the first-principles calculations based on DFT were performed as implemented in the Viennaab initiosimulation package (VASP).[35]The ion–electron interaction is depicted by projector augmented wave (PAW) method,[36]and the exchange and correlation effects are described by the GGA-PBE functional.[37]The wave functions are expanded by the plane waves up to an energy cutoff of 380 eV.Due to the large unit cell(~10 ?A×10 ?A×13 ?A),integrals over the first BZ are approximated by a Monkhorst–PackK-point mesh of 1×1×1.The total energy was calculated with high precision,converged to 10?7eV/atom, and the structural relaxation was stopped when the residual forces become less than 10?3eV/?A.

    The substitutional energy of Sc replaced by W is calculated by

    whereEsubis substitutional energy,EdopedandEundopedare the total energy of W doped and undoped systems, respectively;ESc(atom)andEW(atom)are energy of per Sc or W atom;nis the number of substitutional W.

    3. Results and discussion

    Figure 1(a) shows the XPS total spectrum of the doped sample. It can be seen that the spectrum contains the elements of C,Sc,W and O.The C element is derived from the experimental oil pump. Figures 1(b)–1(d) give the XPS spectra of Sc 2p,W 4f and O 1s. The integrated areas of the XPS peaks were calculated to determine the atomic ratio of the sample.Lorenz fittings of the peaks were used to determine the binding energies of Sc 2p,W 4f and O 1s and then the valence of element. The spin-orbit splitting of Sc 2p into 2p3/2and 2p1/2were found in the Sc 2p spectrum. The corresponding binding energies are 402.67 eV and 407.26 eV, respectively. The W 4f spectrum(Fig.1(c))can be fitted by two Lorenz peaks with the binding energies of 35.37 eV and 37.63 eV for W 4f7/2and W 4f5/2,respectively. It indicates that the tungsten ions in the sample are in+6 valence. By fitting the spectrum of O 1s(Fig. 1(d)), the binding energies were found to be 530.53 eV and 531.82 eV. Table 1 gives the semi-quantitative results of the XPS spectra. It can be seen that the atomic ratio of the sample is Sc:W:O≈1:2.50:9.68, which is very close to the design ratio of 6:14:48±δ.

    Table 1. The integration results of the XPS peaks and the atomic ratio of Sc 2p,W 4f and O 1s.

    Fig.1. XPS spectra of the doped sample: (a)total XPS spectrum;(b)–(d)XPS spectra corresponding to the Sc 2p,W 4f,and O 1s.

    Figure 2(a)gives the Rietveld refined results of the XRD spectrum at 300 K for the doped sample (the black curve as the measured intensity;the red symbol as the calculated intensity).The results show that the sample adopts an orthorhombic structure at room temperature with space groupPbcn(No.60).The lattice constants obtained by the refinement are as follows:a=13.2461(6) ?A,b=9.52801(5) ?A,c=9.6208(5) ?A,V=1214.2(1) ?A3. The reliability factors for the refinement are as follows:Rp=11.4,Rwp=13.9 andRexp=1.61. The cell parameters of the basic material Sc2W3O12at room temperature(300 K) reported previously[38]are as below:a=9.6720 ?A,b=13.318 ?A,c=9.5795 ?A,V=1234.0 ?A3. Comparing the two sets of data, it is not difficult to find that the cell parameters of the doped sample are slightly smaller than those of Sc2W3O12. Figure 2(b) shows a partial enlargement of the XRD pattern of the sample at 300 K.Each peak in the figure can be well indexed. Table 2 provides the metal coordinates and atomic occupancies of the doped sample and Sc2W3O12.As can be seen from the table, it contains three unequivalent positions of W in the unit cell of the doped sample, where~16% of the Sc positions are occupied by W. Figure 2(c)presents the structure schematic diagram of the doped sample by the Rietveld refinement. The framework of the crystal consists of corner-shared WO4tetrahedra and ScO6/WO6octahedra. There are four W(1)O4tetrahedra and eight W(2)O4tetrahedra occupying the normal lattice positions similar to Sc2W3O12. The additional W(3) occupies the positions of Sc and forms WO6octahedra. Each ScO6/WO6octahedron shares its six oxygen atoms with the adjacent WO4tetrahedra,and each WO4tetrahedron shares all of its oxygen atoms with the adjacent ScO6octahedra. Therefore, the structure can be regarded as quasi-rigid unit modules (QRUMs). It can be concluded that the synthesized sample crystallizes into an orthorhombic structure similar to that of Sc2W3O12, and with two W6+occupying two sites of Sc3+in the unit cell of Sc2W3O12.

    Figure 2(d) gives the temperature-dependent SXRD patterns of the doped sample. As temperature increasing,no significant change was observed in the patterns, indicating that no phase transition occurs within 150–650 K.Also, there are no impurity peaks in the patterns other than the XRD peaks of the orthorhombic structure, indicating that the sample is a pure single-phase material.

    Fig. 2. (a) Results of the Rietveld refinement of the SXRD pattern at 300 K. (b) The partially enlarged SXRD pattern at 300 K with Peaks indexed. (c)Schematic diagram of the doped sample with orthorhombic symmetry depending on our experiments. O atoms are shown in red balls,ScO6/WO6 octahedra in purple and WO4 tetrahedra in gray. (d)SXRD patterns of the doped sample measured from 150 K to 650 K.

    Table 2. Metal atomic coordinates of the doped sample and Sc2(WO4)3.

    The lattice parameters at deferent temperatures were calculated by the method of LeBail fit. Figure 3 shows the changes of the lattice constants of the doped sample as a function of temperature. As can be seen from the figure,thea-axis expands while theb-axis and thec-axis continuously contract as temperature increasing, which eventually cause a continuous contraction of the volume. The linear CTEs of thea,bandcaxes in 150–650 K are calculated to be 5.64×10?6K?1,?3.80×10?6K?1and?6.33×10?6K?1,respectively,which results in a volumetric CTE of?4.52×10?6K?1and a linear CTE of?1.51×10?6K?1.An intrinsic NTE in the doped material is determined. This absolute value of linear CTE is a little smaller than that of the reported value?2.2×10?6K?1for Sc2W3O12at 10–450 K.[38]The little changes of cell parameters between the doped and undoped materials can be used to explain the little change of linear CTE.

    Figure 4(a) shows the Raman spectra of the doped and undoped samples at room temperature. All the Raman modes can be identified by referring to the literature on spectroscopy studies.[3,15,39]Usually, the symmetric modes of tungstate crystal are located in the areas of the higher frequencies.Here,a strong mode centered at 1024.3 cm?1,a shoulder mode near 1008.4 cm?1and a weak mode near 974.1 cm?1all can be assigned to the W–O symmetric stretching vibrations(ν1)of the WO4tetrahedra. A weaker mode centered at 959.1 cm?1,two shoulder modes near 850.3 cm?1and 842.5 cm?1,and a strong mode near 828.1 cm?1all can be identified as the W–O asymmetric stretching vibrations (ν3) of the WO4tetrahedra. The mode centered at 354.9 cm?1is recognized as the antisymmetric bending vibration(ν4)of the WO4tetrahedron. The modes near 327.5 cm?1and 287.7 cm?1are assigned to the symmetric bending vibration(ν2)of the WO4tetrahedron and the rotation (T'(Sc3+)) of the Sc3+, respectively. The mode near 258.2 cm?1is considered as the rotation (T'(Sc3+)) of Sc3+.The mode below 200 cm?1is deemed as the translational and liberations(T'(WO4),L(WO4))of the WO4tetrahedra.

    Fig.3. The changes of the lattice constants with temperature.

    Lorentz peak fitting was used to find the subtle differences between the Raman spectra of the doped and undoped samples as shown in Figs. 4(a)–4(d). Most stretching and bending modes of the doped sample are located in the positions of higher wave numbers (blueshifts) than that of Sc2W3O12,indicating that the W–O bonds of the doped sample are somewhat stronger (harder) than those of Sc2W3O12. This is due to the stress introduced by W(3)6+occupying the positions of Sc3+and the distortion of the crystal. The electronegativity of Sc3+(1.36)differs greatly from that of W6+(2.36),which results in the significant difference of distributions of negative charges between the doped and undoped samples, and distinct changes of bond strength between the metal atom and the oxygen atom and the introduction of stress. In addition,the apparent difference of ionic radius between W6+(0.41 ?A)and Sc3+(0.73 ?A) also inevitably causes distortions of polyhedra, thus stresses are introduced. Combining it with the shrink of the unit cell volume, we can infer the stress to be compressive stress. Since the changes of bond strength and introduced stress usually cause blueshift or redshift in Raman mode frequency,the mode frequencyωiof the doped sample can be expressed by the sum of the natural frequencyωi0(T)of Sc2W3O12and the change of frequency ?ωiintroduced by W(3)6+occupying Sc3+sites,that is,ωi=ωi0(T)+?ωi.

    Fig. 4. (a) Raman spectra of the doped sample and Sc2W3O12 at room temperature; (b)–(c) Lorentz fits of the spectra; (d) FWHMs of the Raman peaks of the spectra,squares and circles represent the data of the doped sample and Sc2W3O12,respectively.

    Figure 4(d) gives the comparison of full width at half maximum(FWHM)of Raman peaks of the two spectra. Obviously,the FWHMs of the doped sample are larger than that of Sc2W3O12,indicating the wider linewidths of Raman peaks in the doped sample, due to the distortion of polyhedra and stress introduced. Thus the Raman linewidth,Γ,of the doped sample can be expressed by the sum of the natural linewidth,Γ0(T),of Sc2W3O12and the variation of linewidth ?Γcaused by W(3)6+occupying Sc3+site,namely,Γ=Γ0(T)+?Γ.

    Structure stability of different Sc3+occupied by W6+in the unit cell of Sc2W3O12was analyzed by first-principles calculations based on DFT.Results show that with one W6+occupying the site of Sc3+, the polyhedron distorted severely and the structure of crystal is unstable (substitutional energy 1.19 eV/W, the positive value implies that the substitution is endothermal).The unit cell parameters of the crystal are as follows:a=13.22 ?A,b=9.61 ?A,c=9.96 ?A.It no longer maintains the orthorhombic structure(α=91?,β=93?,γ=89?).With two W6+occupying the sites of Sc3+, the structure of crystal is more stable than the former case(substitutional energy 0.85 eV/W).The unit cell parameters of the crystal are as follows:a=13.56 ?A,b=9.66 ?A,c=9.79 ?A.The orthorhombic structure is still maintained. Compared to the unit cell parameters of the undoped sample (a=13.66 ?A,b=9.72 ?A,c=9.83 ?A), the volume of the doped crystal shrinks lightly.Figures 5(a)–5(c) give the schematic diagrams of Sc2W3O12crystal and the crystals with different Sc3+occupied by W6+.These calculation results further demonstrate the reliability of the structure of the doped sample.

    Fig.5. (a)Schematic diagram of the Sc2W3O12 crystal. (b)Schematic diagram with one W occupying Sc site in the unit cell of Sc2W3O12.(c)Schematic diagram with two W occupying Sc sites in the unit cell of Sc2W3O12. O atoms are shown in red balls,ScO6 octahedra in purple,WO6 octahedrain in brown and WO4 tetrahedra in gray.

    4. Conclusions

    In summary,we have investigated the effects of W6+occupying the sites of Sc3+in the unit cell of Sc2W3O12by employing experiment and first-principles calculations. The structure of the doped sample (Sc6W2)W12O48±δis similar to that of orthorhombic Sc2W3O12but with three unequivalent W in the sites of the crystal lattice, two of which occupy the positions similar to Sc2W3O12,and the other one occupies the remaining positions of Sc and thus formed WO6octahedra. It also exhibits an intrinsic NTE property (linear CTE,?1.51×10?6K?1) within the measured temperature range (150 K–650 K). Compared to the Raman spectrum of Sc2W3O12, the stretching modes and bending modes of the doped samples shift toward the higher wave numbers,indicating that the W–O bonds in the doped sample become harder(stronger). In addition,the increase of the FWHMs means the broadening of Raman linewidths in the spectrum of the doped sample. The distortion of crystal and stress in crystal,induced by W6+occupying Sc3+, are account for these changes. Results of first-principles calculations show that the crystal with even W6+occupying even Sc3+in the unit cell is stable while the structure with odd W6+occupying odd Sc3+in the unit cell is unstable due to the unit cell is severely distorted. It further proves the reliability of the structure of the doped sample.

    猜你喜歡
    孫強
    Oscillator strength and cross section study of the valence-shell excitations of NO2 by fast electron scattering
    Two-dimensional self-consistent numerical simulation of the whole discharge region in an atmospheric argon arc
    Three-dimensional non-equilibrium modeling of a DC multi-cathode arc plasma torch
    求解線性規(guī)劃問題的常規(guī)思路
    孫強作品
    Generalized Hybrid Nanofluid Model with the Application of Fully Developed Mixed Convection Flow in a Vertical Microchannel?
    我送男友3600萬,他卻拿錢悅前妻
    老公愛車勝過愛我
    婦女生活(2017年9期)2017-09-13 20:09:03
    A scheme for improving computational efficiency of quasi-two-dimensional model*
    偷來的靠山
    叶爱在线成人免费视频播放| 日韩av在线大香蕉| 午夜免费激情av| 毛片女人毛片| 成人亚洲精品av一区二区| 狂野欧美激情性xxxx| 婷婷丁香在线五月| 夜夜躁狠狠躁天天躁| 真人做人爱边吃奶动态| 亚洲人成网站在线播放欧美日韩| 亚洲国产精品sss在线观看| 日韩欧美一区二区三区在线观看| 国产午夜精品久久久久久| 久久中文字幕人妻熟女| 丝袜人妻中文字幕| 日本黄色片子视频| 欧美最黄视频在线播放免费| 国内久久婷婷六月综合欲色啪| 精品国产乱子伦一区二区三区| 一区二区三区国产精品乱码| 九九在线视频观看精品| 波多野结衣高清无吗| 日韩 欧美 亚洲 中文字幕| 天堂动漫精品| 久久亚洲真实| 操出白浆在线播放| 99热这里只有精品一区 | 露出奶头的视频| 免费电影在线观看免费观看| 成年女人永久免费观看视频| 久久九九热精品免费| 中文字幕精品亚洲无线码一区| 色综合欧美亚洲国产小说| 中文字幕最新亚洲高清| 最近最新中文字幕大全电影3| 啦啦啦观看免费观看视频高清| 好看av亚洲va欧美ⅴa在| 欧美日韩瑟瑟在线播放| 日本五十路高清| 婷婷六月久久综合丁香| 亚洲国产欧美人成| 一个人观看的视频www高清免费观看 | 91九色精品人成在线观看| 黄色成人免费大全| 美女大奶头视频| 一二三四社区在线视频社区8| 少妇裸体淫交视频免费看高清| 亚洲精华国产精华精| 国产成人av教育| 国产精品久久电影中文字幕| 天天一区二区日本电影三级| 成人av一区二区三区在线看| 久久精品夜夜夜夜夜久久蜜豆| 久久香蕉国产精品| 久久久久久久精品吃奶| 日韩有码中文字幕| 制服人妻中文乱码| 欧美激情久久久久久爽电影| 免费在线观看影片大全网站| 日韩欧美一区二区三区在线观看| 最近最新中文字幕大全免费视频| 欧美黄色淫秽网站| 日韩欧美国产在线观看| 国产精品99久久99久久久不卡| 一个人看视频在线观看www免费 | 色综合欧美亚洲国产小说| 好男人在线观看高清免费视频| 熟女少妇亚洲综合色aaa.| 最近最新中文字幕大全电影3| 亚洲欧美日韩东京热| 麻豆久久精品国产亚洲av| 亚洲片人在线观看| 51午夜福利影视在线观看| 亚洲人与动物交配视频| 精品国产乱子伦一区二区三区| 757午夜福利合集在线观看| 日韩免费av在线播放| 美女高潮喷水抽搐中文字幕| 给我免费播放毛片高清在线观看| 啦啦啦观看免费观看视频高清| 国产99白浆流出| 亚洲av成人av| 免费在线观看成人毛片| 亚洲专区字幕在线| 91av网一区二区| 在线观看美女被高潮喷水网站 | 亚洲精品美女久久久久99蜜臀| 亚洲色图 男人天堂 中文字幕| 高清在线国产一区| 一二三四在线观看免费中文在| 国产精品久久久久久亚洲av鲁大| 床上黄色一级片| 淫秽高清视频在线观看| 精品一区二区三区视频在线 | 1024手机看黄色片| 国产麻豆成人av免费视频| 欧美一级毛片孕妇| 精品一区二区三区av网在线观看| 亚洲国产高清在线一区二区三| 午夜福利欧美成人| 制服丝袜大香蕉在线| 99在线视频只有这里精品首页| 特大巨黑吊av在线直播| 特级一级黄色大片| 精品国内亚洲2022精品成人| 麻豆成人av在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 日韩欧美三级三区| 久久性视频一级片| 色尼玛亚洲综合影院| 日日摸夜夜添夜夜添小说| 精品一区二区三区视频在线观看免费| 久久精品国产清高在天天线| 久久天躁狠狠躁夜夜2o2o| 免费在线观看亚洲国产| 国产伦精品一区二区三区四那| 久久精品国产综合久久久| 日韩中文字幕欧美一区二区| 精华霜和精华液先用哪个| 国产一区二区激情短视频| 69av精品久久久久久| 久久久国产成人免费| 久久伊人香网站| 看免费av毛片| 一区二区三区高清视频在线| 国产精品一及| 欧美日韩乱码在线| 熟女人妻精品中文字幕| 日韩大尺度精品在线看网址| 亚洲成人免费电影在线观看| 久久久久久久久久黄片| 桃红色精品国产亚洲av| 最近最新中文字幕大全电影3| 国产精品99久久99久久久不卡| 亚洲国产欧美网| 欧美日韩一级在线毛片| ponron亚洲| 伊人久久大香线蕉亚洲五| 亚洲国产精品999在线| 亚洲av成人av| 久99久视频精品免费| 一本精品99久久精品77| 亚洲国产精品合色在线| 国产高潮美女av| 在线免费观看的www视频| 一边摸一边抽搐一进一小说| www.精华液| 亚洲 欧美一区二区三区| 特大巨黑吊av在线直播| 中文字幕人妻丝袜一区二区| 深夜精品福利| 久久欧美精品欧美久久欧美| 国产亚洲av高清不卡| 国产精品久久久久久久电影 | 亚洲成人中文字幕在线播放| 在线视频色国产色| 美女大奶头视频| 国产男靠女视频免费网站| 免费看a级黄色片| 成人av一区二区三区在线看| 白带黄色成豆腐渣| 麻豆成人av在线观看| 亚洲中文字幕一区二区三区有码在线看 | 两性午夜刺激爽爽歪歪视频在线观看| www日本黄色视频网| 国产精品爽爽va在线观看网站| 国产欧美日韩一区二区精品| 天堂影院成人在线观看| 国产精品久久久久久久电影 | 91九色精品人成在线观看| 国产激情久久老熟女| www.自偷自拍.com| 久久久久久久久中文| 搡老熟女国产l中国老女人| 国产熟女xx| 欧美高清成人免费视频www| 99久久精品一区二区三区| 日本一本二区三区精品| 精品国产乱子伦一区二区三区| 99热精品在线国产| 免费一级毛片在线播放高清视频| 在线观看舔阴道视频| 国产爱豆传媒在线观看| 国产一区二区三区在线臀色熟女| 国产69精品久久久久777片 | 九色国产91popny在线| 国产熟女xx| 此物有八面人人有两片| 国产黄a三级三级三级人| 国产黄色小视频在线观看| 99久久国产精品久久久| 国产伦在线观看视频一区| 国产三级在线视频| 91在线精品国自产拍蜜月 | 一个人免费在线观看电影 | 国内精品久久久久精免费| 国产亚洲精品久久久久久毛片| 18禁黄网站禁片免费观看直播| 90打野战视频偷拍视频| xxxwww97欧美| 韩国av一区二区三区四区| 国产一区在线观看成人免费| 69av精品久久久久久| 性欧美人与动物交配| 国产精品99久久99久久久不卡| 天堂动漫精品| 一卡2卡三卡四卡精品乱码亚洲| 在线观看免费视频日本深夜| 叶爱在线成人免费视频播放| www.精华液| 成人午夜高清在线视频| 日韩欧美在线二视频| 成年女人看的毛片在线观看| 制服丝袜大香蕉在线| 日韩欧美国产在线观看| 国产乱人视频| 这个男人来自地球电影免费观看| 特级一级黄色大片| 国产av不卡久久| 成年免费大片在线观看| 成年女人看的毛片在线观看| 成在线人永久免费视频| 国产成人啪精品午夜网站| 久久久久久九九精品二区国产| 成在线人永久免费视频| 国产成人av激情在线播放| 少妇人妻一区二区三区视频| 国产真实乱freesex| 少妇的逼水好多| 久久欧美精品欧美久久欧美| 日本a在线网址| 国产成人啪精品午夜网站| 亚洲国产高清在线一区二区三| 亚洲精品国产精品久久久不卡| 国内精品久久久久久久电影| 白带黄色成豆腐渣| 亚洲av成人av| 亚洲avbb在线观看| 伊人久久大香线蕉亚洲五| 国产精品女同一区二区软件 | 在线永久观看黄色视频| 国产视频内射| 99久久久亚洲精品蜜臀av| 久久精品综合一区二区三区| 日韩欧美在线二视频| 人妻夜夜爽99麻豆av| 淫秽高清视频在线观看| 亚洲欧洲精品一区二区精品久久久| 三级国产精品欧美在线观看 | 国产伦一二天堂av在线观看| 免费电影在线观看免费观看| 又爽又黄无遮挡网站| 亚洲精品一卡2卡三卡4卡5卡| 国产欧美日韩精品亚洲av| 国产成人av教育| 曰老女人黄片| 亚洲18禁久久av| 可以在线观看的亚洲视频| 亚洲一区二区三区不卡视频| 午夜福利欧美成人| 亚洲成人久久爱视频| netflix在线观看网站| 美女大奶头视频| 嫁个100分男人电影在线观看| 欧美最黄视频在线播放免费| 欧美在线黄色| 麻豆成人午夜福利视频| 中文字幕高清在线视频| 久久精品国产清高在天天线| 国产精品亚洲av一区麻豆| 久久久久免费精品人妻一区二区| 变态另类丝袜制服| 午夜成年电影在线免费观看| 国产精品久久久久久亚洲av鲁大| 国产亚洲av嫩草精品影院| 国产午夜精品论理片| 婷婷六月久久综合丁香| 久久久久性生活片| 国内精品美女久久久久久| 精品国产乱码久久久久久男人| 欧美大码av| 色哟哟哟哟哟哟| 男女午夜视频在线观看| 又爽又黄无遮挡网站| 精品久久久久久久久久免费视频| 国产精品国产高清国产av| 欧美激情久久久久久爽电影| 免费看a级黄色片| 亚洲国产欧洲综合997久久,| 别揉我奶头~嗯~啊~动态视频| 成人精品一区二区免费| 久久人人精品亚洲av| 搡老妇女老女人老熟妇| 91麻豆av在线| 久久国产精品影院| 天堂√8在线中文| 最新在线观看一区二区三区| 成年版毛片免费区| 日韩欧美三级三区| 午夜激情欧美在线| 又黄又粗又硬又大视频| 日韩 欧美 亚洲 中文字幕| 精品免费久久久久久久清纯| 午夜福利免费观看在线| 黄色女人牲交| 嫩草影院入口| 精品国产乱子伦一区二区三区| 亚洲美女视频黄频| 国产成人啪精品午夜网站| 国产精品久久久av美女十八| 久久久久国产一级毛片高清牌| 国产av在哪里看| 久久亚洲真实| 国产免费男女视频| 男女之事视频高清在线观看| 国产成+人综合+亚洲专区| 国产精品日韩av在线免费观看| 真实男女啪啪啪动态图| 日韩欧美三级三区| 欧美日韩亚洲国产一区二区在线观看| 国产真人三级小视频在线观看| 亚洲一区高清亚洲精品| 日韩成人在线观看一区二区三区| 又爽又黄无遮挡网站| 日本五十路高清| 黄色片一级片一级黄色片| 日韩中文字幕欧美一区二区| 欧美在线一区亚洲| 国产精品99久久99久久久不卡| 成人午夜高清在线视频| 亚洲最大成人中文| 久久精品综合一区二区三区| 亚洲第一电影网av| 波多野结衣高清无吗| 亚洲七黄色美女视频| 日韩欧美在线二视频| 国产又色又爽无遮挡免费看| 后天国语完整版免费观看| 亚洲电影在线观看av| 叶爱在线成人免费视频播放| 亚洲av片天天在线观看| 亚洲美女视频黄频| 国产美女午夜福利| 1000部很黄的大片| 国产精品av久久久久免费| 欧美成人免费av一区二区三区| 亚洲欧美日韩无卡精品| 欧美日韩一级在线毛片| 12—13女人毛片做爰片一| 男女之事视频高清在线观看| 国产av麻豆久久久久久久| www.999成人在线观看| 欧美丝袜亚洲另类 | 天天一区二区日本电影三级| 亚洲精品美女久久av网站| 老司机午夜十八禁免费视频| 亚洲精品在线观看二区| 这个男人来自地球电影免费观看| 天天添夜夜摸| 91老司机精品| 国产免费av片在线观看野外av| 日韩有码中文字幕| 日韩人妻高清精品专区| 一个人观看的视频www高清免费观看 | 精品国产乱子伦一区二区三区| 黄色女人牲交| 久久草成人影院| 国产午夜福利久久久久久| www.www免费av| 9191精品国产免费久久| 国产精品,欧美在线| av黄色大香蕉| 人人妻人人澡欧美一区二区| 97超级碰碰碰精品色视频在线观看| 国产亚洲av高清不卡| 精品久久久久久久毛片微露脸| 亚洲av成人一区二区三| 国产精品一及| 在线观看免费午夜福利视频| 午夜福利高清视频| 男插女下体视频免费在线播放| 亚洲电影在线观看av| 观看美女的网站| 99热这里只有是精品50| 亚洲精品色激情综合| 色视频www国产| 最好的美女福利视频网| 久久久国产成人免费| 国产乱人伦免费视频| 中亚洲国语对白在线视频| 国产伦在线观看视频一区| 他把我摸到了高潮在线观看| 女人被狂操c到高潮| 欧美日韩黄片免| 精品欧美国产一区二区三| 国产精品乱码一区二三区的特点| 中文字幕人妻丝袜一区二区| 麻豆一二三区av精品| 久久亚洲精品不卡| 国产亚洲精品久久久com| 亚洲欧美日韩东京热| 五月玫瑰六月丁香| 可以在线观看毛片的网站| 九九久久精品国产亚洲av麻豆 | av黄色大香蕉| 黄片小视频在线播放| 欧美丝袜亚洲另类 | 免费高清视频大片| 一级毛片精品| 嫩草影院精品99| 亚洲人成网站高清观看| 麻豆国产97在线/欧美| 窝窝影院91人妻| 欧美黄色片欧美黄色片| 窝窝影院91人妻| 国产91精品成人一区二区三区| 夜夜躁狠狠躁天天躁| 巨乳人妻的诱惑在线观看| 欧美极品一区二区三区四区| 国产蜜桃级精品一区二区三区| 97超级碰碰碰精品色视频在线观看| 少妇人妻一区二区三区视频| 老司机午夜十八禁免费视频| 日韩 欧美 亚洲 中文字幕| 给我免费播放毛片高清在线观看| 亚洲专区国产一区二区| 久久性视频一级片| 婷婷精品国产亚洲av| 午夜福利视频1000在线观看| av天堂中文字幕网| 99在线视频只有这里精品首页| www日本在线高清视频| 亚洲精华国产精华精| 国产熟女xx| 舔av片在线| 在线十欧美十亚洲十日本专区| 亚洲av免费在线观看| 国产av麻豆久久久久久久| 极品教师在线免费播放| 亚洲av成人精品一区久久| 99热这里只有精品一区 | 成年女人永久免费观看视频| 高潮久久久久久久久久久不卡| 精品国产亚洲在线| 国产精品综合久久久久久久免费| 99re在线观看精品视频| 亚洲五月婷婷丁香| 欧美最黄视频在线播放免费| 亚洲精品在线美女| 九色成人免费人妻av| 18禁美女被吸乳视频| 法律面前人人平等表现在哪些方面| 在线观看66精品国产| 国产免费av片在线观看野外av| 国产淫片久久久久久久久 | 好男人在线观看高清免费视频| 黄色成人免费大全| 香蕉av资源在线| 欧美色视频一区免费| 亚洲国产日韩欧美精品在线观看 | 91字幕亚洲| 一个人免费在线观看电影 | 久久国产乱子伦精品免费另类| 好男人在线观看高清免费视频| 午夜福利在线在线| 熟女人妻精品中文字幕| 两个人的视频大全免费| 成人鲁丝片一二三区免费| 亚洲成人久久性| 最新在线观看一区二区三区| 国产av在哪里看| 久久久国产成人免费| 午夜影院日韩av| 国内精品久久久久久久电影| 国产精品香港三级国产av潘金莲| 特大巨黑吊av在线直播| 男女床上黄色一级片免费看| 国产精品一区二区免费欧美| 在线视频色国产色| xxx96com| 午夜免费观看网址| 一本精品99久久精品77| 欧美又色又爽又黄视频| 久久天躁狠狠躁夜夜2o2o| 婷婷亚洲欧美| 亚洲狠狠婷婷综合久久图片| 色综合婷婷激情| 色播亚洲综合网| 无限看片的www在线观看| 又大又爽又粗| 激情在线观看视频在线高清| 国模一区二区三区四区视频 | 欧美日本亚洲视频在线播放| 国产精品久久电影中文字幕| 美女午夜性视频免费| 久久人妻av系列| 国产蜜桃级精品一区二区三区| 18禁裸乳无遮挡免费网站照片| av在线蜜桃| 精品欧美国产一区二区三| 欧美日本亚洲视频在线播放| 色视频www国产| 国产三级中文精品| 色尼玛亚洲综合影院| 99re在线观看精品视频| 午夜精品一区二区三区免费看| 国产精品一及| 久久久久免费精品人妻一区二区| 99在线人妻在线中文字幕| 久久久久亚洲av毛片大全| 综合色av麻豆| 国产麻豆成人av免费视频| 国产99白浆流出| 性色av乱码一区二区三区2| 久久人妻av系列| 好男人电影高清在线观看| 欧美日韩乱码在线| 久久人妻av系列| 男人舔奶头视频| 国产成人影院久久av| 99久久成人亚洲精品观看| 99re在线观看精品视频| 丝袜人妻中文字幕| 亚洲午夜理论影院| 搡老岳熟女国产| 国产单亲对白刺激| 日本黄大片高清| 我要搜黄色片| 亚洲欧美日韩东京热| 成年女人永久免费观看视频| 久久伊人香网站| 宅男免费午夜| 免费看日本二区| 成人国产一区最新在线观看| 制服丝袜大香蕉在线| 久久久精品大字幕| 亚洲片人在线观看| 三级毛片av免费| 一进一出抽搐gif免费好疼| 日日干狠狠操夜夜爽| 国产精品野战在线观看| 19禁男女啪啪无遮挡网站| 日韩精品中文字幕看吧| 嫩草影院入口| 久久欧美精品欧美久久欧美| 99久久国产精品久久久| 黄色女人牲交| 伦理电影免费视频| 国内毛片毛片毛片毛片毛片| 亚洲va日本ⅴa欧美va伊人久久| 亚洲欧美日韩高清专用| 国产一级毛片七仙女欲春2| 国产成人一区二区三区免费视频网站| 村上凉子中文字幕在线| 欧美大码av| 久久久水蜜桃国产精品网| 手机成人av网站| 日本免费a在线| 三级国产精品欧美在线观看 | 国产高清视频在线播放一区| 欧美极品一区二区三区四区| 亚洲精品一区av在线观看| 中文字幕最新亚洲高清| 少妇裸体淫交视频免费看高清| 少妇熟女aⅴ在线视频| 国产欧美日韩一区二区精品| 国产精品香港三级国产av潘金莲| 国产av一区在线观看免费| 噜噜噜噜噜久久久久久91| 国产高清三级在线| 最近最新中文字幕大全免费视频| 亚洲色图av天堂| 精品久久久久久久毛片微露脸| 国产精品99久久久久久久久| 男女床上黄色一级片免费看| 国产成人一区二区三区免费视频网站| 欧美+亚洲+日韩+国产| 两个人视频免费观看高清| svipshipincom国产片| 亚洲电影在线观看av| 午夜精品在线福利| 婷婷精品国产亚洲av| 99riav亚洲国产免费| 欧美激情久久久久久爽电影| 亚洲国产欧美一区二区综合| 亚洲午夜理论影院| 18禁美女被吸乳视频| 国产熟女xx| 欧美激情在线99| 99久久精品一区二区三区| 国产一区二区三区在线臀色熟女| xxx96com| 在线永久观看黄色视频| 久久久精品大字幕| av欧美777| 观看免费一级毛片| 搡老岳熟女国产| 日本在线视频免费播放| 久久人人精品亚洲av| 亚洲av电影不卡..在线观看| 国产男靠女视频免费网站| 亚洲欧美精品综合久久99| 国产精品久久久av美女十八| 麻豆一二三区av精品| 欧美日韩乱码在线| 大型黄色视频在线免费观看| bbb黄色大片| 五月伊人婷婷丁香| 亚洲av片天天在线观看| 亚洲七黄色美女视频| 国产精品影院久久| 日韩大尺度精品在线看网址| avwww免费| 成人精品一区二区免费| 18禁裸乳无遮挡免费网站照片|