• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of W6+occupying Sc3+on the structure,vibration,and thermal expansion properties of scandium tungstate?

    2021-06-26 03:04:12DongxiaChen陳冬霞QiangSun孫強ZhanjunYu于占軍MingyuLi李明玉JuanGuo郭娟MingjuChao晁明舉andErjunLiang梁二軍
    Chinese Physics B 2021年6期
    關鍵詞:孫強

    Dongxia Chen(陳冬霞) Qiang Sun(孫強) Zhanjun Yu(于占軍) Mingyu Li(李明玉)Juan Guo(郭娟) Mingju Chao(晁明舉) and Erjun Liang(梁二軍)

    1School of Materials Science&Engineering,Zhengzhou University of Aeronautics,Zhengzhou 450046,China

    2Key Laboratory of Materials Physics of Ministry of Education,School of Physics and Microelectronics,Zhengzhou University,Zhengzhou 450052,China

    Keywords: structure,negative thermal expansion,Raman spectroscopy

    1. Introduction

    Materials with negative thermal expansion (NTE) property have potential applications in many fields such as precision optics, optoelectronic devices, and aerospace materials. Usually, NTE materials can be compounded with positive thermal expansion materials or tailored chemically to attain near zero or controllable thermal expansion materials.Such materials are especially suitable for use in heat cycles due to the low mismatch or less thermal stress. AW2O8[1]and AV2O7(A=Zr, Hf)[2,3]are two types of well-known framework NTE oxides which possess isotropic NTE property and wide temperature ranges of NTE.A number of studies have shown that AW2O8is metastable at high temperature, while AV2O7undergoes a structure phase transition at about 427 K. Materials with general formula of A2M3O12(A=+3 ions; M=Mo, W) also exhibit NTE properties in a wide temperature range but NTE is anisotropic. Except for Sc2W3O12,[4,5]all the members of A2M3O12family show either structure phase transition(e.g.,Fe2Mo3O12,Cr2Mo3O12,Al2Mo3O12,[6]Al2W3O12and In2W3O12)[7]or hydroscopicity (e.g., Yb2Mo3O12,[8]Y2Mo3O12[9]and Y2W3O12).[10]A great deal of research has been carried out to control the phase transition or hydroscopicity of A2M3O12by substituting A4+or M6+with other ions.[11–19]In addition, PbTiO3based ferroelectric transition materials,[20–22]Mn3AN based materials with magnet volume effect[23–25]and TaVO5[26]also exhibit NTE properties.

    Recent years, tetra-molybdates with NTE properties in a narrow region have been reported, e.g., Ln2Mo4O15(Ln=Y,Dy, Ho, Tm),[27]Ce2(MoO4)2(Mo2O7),[28]and R2Mo4O15(R=La, Nd, Sm).[29]It is worth noting that all of these materials adopt monoclinic structure, of which, two Mo(2)O4tetrahedra are connected by a bridge O atom to form a pyromolybdate Mo(2)2O7group that is similar to V2O7group in ZrV2O7. One Mo(2)2O7polyhedron is weakly joined with two Mo(1)O4tetrahedra by sharing O atoms to form an entire Mo4O15group. Each+3 metal atom is coordinated with seven oxygen atoms to constitute a single capped trigonal prism.

    Meanwhile, Cu2P2O7has been found to exhibit the strongest NTE among the oxides (αv~?27.69×10?6K?1,5 K–375 K).[30]The NTE behaviors of Prussian blue analogues, e.g., FeFe(CN)6,[31]MII2MIV(CN)8(MII= Ni, Co,Fe, and Mn; MIV= Mo and W),[32]ScCo(CN)6[33]and YFe(CN)6[34]were also reported in recent years.

    In this paper,a new tungstate(Sc6W2)W12O48±δwith the structure similar to the orthorhombic structure of Sc2W3O12is studied by two W6+occupying two sites of Sc3+in the unit cell of Sc2W3O12. The structure, vibration and thermal expansion properties of the doped sample are investigated experimentally. The results of Rietveld refinement of synchronous x-ray diffraction(SXRD)data indicate that the structure of the doped sample is similar to that of orthorhombic Sc2W3O12.Blue shifts of peak positions and increasement of FWHMs are found in the spectrum of the doped sample by comparing the Raman spectrum with that of Sc2W3O12. The distortion of polyhedra and stress introduced by W6+occupying Sc3+in the unit cell are attributed to those changes. In order to demonstrate this structure of the doped sample, the effects of odd/even W6+occupying the odd/even sites of Sc3+in the unit cell on the stability of crystal are studied by first-principles calculations based on DFT.It is shown that the structure by odd W6+occupying odd Sc3+in the unit cell is unstable because of the severe distortion of the unit cell,while it is stable by even W6+occupying even Sc3+in the unit cell. Simultaneously,according to the changes of cell parameters with temperature,an intrinsic NTE property is discovered in the doped sample.

    2. Experimental procedure and computational details

    The sample of (Sc6W2)W12O48±δwas synthesized by a solid-state reaction method. Commercial chemicals Sc2O3and WO3(99.9% purity) were used as the starting materials.The materials were weight according to the stoichiometric ratios, then mixed and ground in a mortar for 2 h. The obtained uniform powders were transferred to a corundum ark and heated in a tube furnace of 1753 K for 5 min,then rapidly quenched in deionized water and placed in of about 400 K for 0.5 h. Repeat the above procedure, the sample was sintered for a second time at 1753 K for 1 h. To ensure the purity,the sample was sintered for a third time at 1753 K for 30 min and then cooled out. The sintered powders were reground,pressed into pellets then sintered again at 1173 K for 30 min.

    X-ray photoelectron spectrometer (XPS) (Axis Ultra,Kratos,UK)was used to analyze the composition of the doped sample and the valence of the elements.The casaXPS(version 2.3.16) software was used to process the data. Crystal structure and CTEs of the sample were determined by synchrotron x-ray diffraction(SXRD).Temperature-dependent SXRD data were collected by an instrument 11-ID-C at the Advanced Photon Source with a wavelength of 0.11730 ?A.The structure together with lattice constants was refined using an orthorhombic structural model (space group:Pbcn). All the calculations of structure and lattice constants were performed on Fullprof software (version 1.10). Raman spectra were recorded by a LabRAM HR Evolution Raman spectrometer (France HORIBA Jobin Yvon S.A.S.) with the excitation wavelength of 532 nm.

    To predict the stable structure of the doped system, the first-principles calculations based on DFT were performed as implemented in the Viennaab initiosimulation package (VASP).[35]The ion–electron interaction is depicted by projector augmented wave (PAW) method,[36]and the exchange and correlation effects are described by the GGA-PBE functional.[37]The wave functions are expanded by the plane waves up to an energy cutoff of 380 eV.Due to the large unit cell(~10 ?A×10 ?A×13 ?A),integrals over the first BZ are approximated by a Monkhorst–PackK-point mesh of 1×1×1.The total energy was calculated with high precision,converged to 10?7eV/atom, and the structural relaxation was stopped when the residual forces become less than 10?3eV/?A.

    The substitutional energy of Sc replaced by W is calculated by

    whereEsubis substitutional energy,EdopedandEundopedare the total energy of W doped and undoped systems, respectively;ESc(atom)andEW(atom)are energy of per Sc or W atom;nis the number of substitutional W.

    3. Results and discussion

    Figure 1(a) shows the XPS total spectrum of the doped sample. It can be seen that the spectrum contains the elements of C,Sc,W and O.The C element is derived from the experimental oil pump. Figures 1(b)–1(d) give the XPS spectra of Sc 2p,W 4f and O 1s. The integrated areas of the XPS peaks were calculated to determine the atomic ratio of the sample.Lorenz fittings of the peaks were used to determine the binding energies of Sc 2p,W 4f and O 1s and then the valence of element. The spin-orbit splitting of Sc 2p into 2p3/2and 2p1/2were found in the Sc 2p spectrum. The corresponding binding energies are 402.67 eV and 407.26 eV, respectively. The W 4f spectrum(Fig.1(c))can be fitted by two Lorenz peaks with the binding energies of 35.37 eV and 37.63 eV for W 4f7/2and W 4f5/2,respectively. It indicates that the tungsten ions in the sample are in+6 valence. By fitting the spectrum of O 1s(Fig. 1(d)), the binding energies were found to be 530.53 eV and 531.82 eV. Table 1 gives the semi-quantitative results of the XPS spectra. It can be seen that the atomic ratio of the sample is Sc:W:O≈1:2.50:9.68, which is very close to the design ratio of 6:14:48±δ.

    Table 1. The integration results of the XPS peaks and the atomic ratio of Sc 2p,W 4f and O 1s.

    Fig.1. XPS spectra of the doped sample: (a)total XPS spectrum;(b)–(d)XPS spectra corresponding to the Sc 2p,W 4f,and O 1s.

    Figure 2(a)gives the Rietveld refined results of the XRD spectrum at 300 K for the doped sample (the black curve as the measured intensity;the red symbol as the calculated intensity).The results show that the sample adopts an orthorhombic structure at room temperature with space groupPbcn(No.60).The lattice constants obtained by the refinement are as follows:a=13.2461(6) ?A,b=9.52801(5) ?A,c=9.6208(5) ?A,V=1214.2(1) ?A3. The reliability factors for the refinement are as follows:Rp=11.4,Rwp=13.9 andRexp=1.61. The cell parameters of the basic material Sc2W3O12at room temperature(300 K) reported previously[38]are as below:a=9.6720 ?A,b=13.318 ?A,c=9.5795 ?A,V=1234.0 ?A3. Comparing the two sets of data, it is not difficult to find that the cell parameters of the doped sample are slightly smaller than those of Sc2W3O12. Figure 2(b) shows a partial enlargement of the XRD pattern of the sample at 300 K.Each peak in the figure can be well indexed. Table 2 provides the metal coordinates and atomic occupancies of the doped sample and Sc2W3O12.As can be seen from the table, it contains three unequivalent positions of W in the unit cell of the doped sample, where~16% of the Sc positions are occupied by W. Figure 2(c)presents the structure schematic diagram of the doped sample by the Rietveld refinement. The framework of the crystal consists of corner-shared WO4tetrahedra and ScO6/WO6octahedra. There are four W(1)O4tetrahedra and eight W(2)O4tetrahedra occupying the normal lattice positions similar to Sc2W3O12. The additional W(3) occupies the positions of Sc and forms WO6octahedra. Each ScO6/WO6octahedron shares its six oxygen atoms with the adjacent WO4tetrahedra,and each WO4tetrahedron shares all of its oxygen atoms with the adjacent ScO6octahedra. Therefore, the structure can be regarded as quasi-rigid unit modules (QRUMs). It can be concluded that the synthesized sample crystallizes into an orthorhombic structure similar to that of Sc2W3O12, and with two W6+occupying two sites of Sc3+in the unit cell of Sc2W3O12.

    Figure 2(d) gives the temperature-dependent SXRD patterns of the doped sample. As temperature increasing,no significant change was observed in the patterns, indicating that no phase transition occurs within 150–650 K.Also, there are no impurity peaks in the patterns other than the XRD peaks of the orthorhombic structure, indicating that the sample is a pure single-phase material.

    Fig. 2. (a) Results of the Rietveld refinement of the SXRD pattern at 300 K. (b) The partially enlarged SXRD pattern at 300 K with Peaks indexed. (c)Schematic diagram of the doped sample with orthorhombic symmetry depending on our experiments. O atoms are shown in red balls,ScO6/WO6 octahedra in purple and WO4 tetrahedra in gray. (d)SXRD patterns of the doped sample measured from 150 K to 650 K.

    Table 2. Metal atomic coordinates of the doped sample and Sc2(WO4)3.

    The lattice parameters at deferent temperatures were calculated by the method of LeBail fit. Figure 3 shows the changes of the lattice constants of the doped sample as a function of temperature. As can be seen from the figure,thea-axis expands while theb-axis and thec-axis continuously contract as temperature increasing, which eventually cause a continuous contraction of the volume. The linear CTEs of thea,bandcaxes in 150–650 K are calculated to be 5.64×10?6K?1,?3.80×10?6K?1and?6.33×10?6K?1,respectively,which results in a volumetric CTE of?4.52×10?6K?1and a linear CTE of?1.51×10?6K?1.An intrinsic NTE in the doped material is determined. This absolute value of linear CTE is a little smaller than that of the reported value?2.2×10?6K?1for Sc2W3O12at 10–450 K.[38]The little changes of cell parameters between the doped and undoped materials can be used to explain the little change of linear CTE.

    Figure 4(a) shows the Raman spectra of the doped and undoped samples at room temperature. All the Raman modes can be identified by referring to the literature on spectroscopy studies.[3,15,39]Usually, the symmetric modes of tungstate crystal are located in the areas of the higher frequencies.Here,a strong mode centered at 1024.3 cm?1,a shoulder mode near 1008.4 cm?1and a weak mode near 974.1 cm?1all can be assigned to the W–O symmetric stretching vibrations(ν1)of the WO4tetrahedra. A weaker mode centered at 959.1 cm?1,two shoulder modes near 850.3 cm?1and 842.5 cm?1,and a strong mode near 828.1 cm?1all can be identified as the W–O asymmetric stretching vibrations (ν3) of the WO4tetrahedra. The mode centered at 354.9 cm?1is recognized as the antisymmetric bending vibration(ν4)of the WO4tetrahedron. The modes near 327.5 cm?1and 287.7 cm?1are assigned to the symmetric bending vibration(ν2)of the WO4tetrahedron and the rotation (T'(Sc3+)) of the Sc3+, respectively. The mode near 258.2 cm?1is considered as the rotation (T'(Sc3+)) of Sc3+.The mode below 200 cm?1is deemed as the translational and liberations(T'(WO4),L(WO4))of the WO4tetrahedra.

    Fig.3. The changes of the lattice constants with temperature.

    Lorentz peak fitting was used to find the subtle differences between the Raman spectra of the doped and undoped samples as shown in Figs. 4(a)–4(d). Most stretching and bending modes of the doped sample are located in the positions of higher wave numbers (blueshifts) than that of Sc2W3O12,indicating that the W–O bonds of the doped sample are somewhat stronger (harder) than those of Sc2W3O12. This is due to the stress introduced by W(3)6+occupying the positions of Sc3+and the distortion of the crystal. The electronegativity of Sc3+(1.36)differs greatly from that of W6+(2.36),which results in the significant difference of distributions of negative charges between the doped and undoped samples, and distinct changes of bond strength between the metal atom and the oxygen atom and the introduction of stress. In addition,the apparent difference of ionic radius between W6+(0.41 ?A)and Sc3+(0.73 ?A) also inevitably causes distortions of polyhedra, thus stresses are introduced. Combining it with the shrink of the unit cell volume, we can infer the stress to be compressive stress. Since the changes of bond strength and introduced stress usually cause blueshift or redshift in Raman mode frequency,the mode frequencyωiof the doped sample can be expressed by the sum of the natural frequencyωi0(T)of Sc2W3O12and the change of frequency ?ωiintroduced by W(3)6+occupying Sc3+sites,that is,ωi=ωi0(T)+?ωi.

    Fig. 4. (a) Raman spectra of the doped sample and Sc2W3O12 at room temperature; (b)–(c) Lorentz fits of the spectra; (d) FWHMs of the Raman peaks of the spectra,squares and circles represent the data of the doped sample and Sc2W3O12,respectively.

    Figure 4(d) gives the comparison of full width at half maximum(FWHM)of Raman peaks of the two spectra. Obviously,the FWHMs of the doped sample are larger than that of Sc2W3O12,indicating the wider linewidths of Raman peaks in the doped sample, due to the distortion of polyhedra and stress introduced. Thus the Raman linewidth,Γ,of the doped sample can be expressed by the sum of the natural linewidth,Γ0(T),of Sc2W3O12and the variation of linewidth ?Γcaused by W(3)6+occupying Sc3+site,namely,Γ=Γ0(T)+?Γ.

    Structure stability of different Sc3+occupied by W6+in the unit cell of Sc2W3O12was analyzed by first-principles calculations based on DFT.Results show that with one W6+occupying the site of Sc3+, the polyhedron distorted severely and the structure of crystal is unstable (substitutional energy 1.19 eV/W, the positive value implies that the substitution is endothermal).The unit cell parameters of the crystal are as follows:a=13.22 ?A,b=9.61 ?A,c=9.96 ?A.It no longer maintains the orthorhombic structure(α=91?,β=93?,γ=89?).With two W6+occupying the sites of Sc3+, the structure of crystal is more stable than the former case(substitutional energy 0.85 eV/W).The unit cell parameters of the crystal are as follows:a=13.56 ?A,b=9.66 ?A,c=9.79 ?A.The orthorhombic structure is still maintained. Compared to the unit cell parameters of the undoped sample (a=13.66 ?A,b=9.72 ?A,c=9.83 ?A), the volume of the doped crystal shrinks lightly.Figures 5(a)–5(c) give the schematic diagrams of Sc2W3O12crystal and the crystals with different Sc3+occupied by W6+.These calculation results further demonstrate the reliability of the structure of the doped sample.

    Fig.5. (a)Schematic diagram of the Sc2W3O12 crystal. (b)Schematic diagram with one W occupying Sc site in the unit cell of Sc2W3O12.(c)Schematic diagram with two W occupying Sc sites in the unit cell of Sc2W3O12. O atoms are shown in red balls,ScO6 octahedra in purple,WO6 octahedrain in brown and WO4 tetrahedra in gray.

    4. Conclusions

    In summary,we have investigated the effects of W6+occupying the sites of Sc3+in the unit cell of Sc2W3O12by employing experiment and first-principles calculations. The structure of the doped sample (Sc6W2)W12O48±δis similar to that of orthorhombic Sc2W3O12but with three unequivalent W in the sites of the crystal lattice, two of which occupy the positions similar to Sc2W3O12,and the other one occupies the remaining positions of Sc and thus formed WO6octahedra. It also exhibits an intrinsic NTE property (linear CTE,?1.51×10?6K?1) within the measured temperature range (150 K–650 K). Compared to the Raman spectrum of Sc2W3O12, the stretching modes and bending modes of the doped samples shift toward the higher wave numbers,indicating that the W–O bonds in the doped sample become harder(stronger). In addition,the increase of the FWHMs means the broadening of Raman linewidths in the spectrum of the doped sample. The distortion of crystal and stress in crystal,induced by W6+occupying Sc3+, are account for these changes. Results of first-principles calculations show that the crystal with even W6+occupying even Sc3+in the unit cell is stable while the structure with odd W6+occupying odd Sc3+in the unit cell is unstable due to the unit cell is severely distorted. It further proves the reliability of the structure of the doped sample.

    猜你喜歡
    孫強
    Oscillator strength and cross section study of the valence-shell excitations of NO2 by fast electron scattering
    Two-dimensional self-consistent numerical simulation of the whole discharge region in an atmospheric argon arc
    Three-dimensional non-equilibrium modeling of a DC multi-cathode arc plasma torch
    求解線性規(guī)劃問題的常規(guī)思路
    孫強作品
    Generalized Hybrid Nanofluid Model with the Application of Fully Developed Mixed Convection Flow in a Vertical Microchannel?
    我送男友3600萬,他卻拿錢悅前妻
    老公愛車勝過愛我
    婦女生活(2017年9期)2017-09-13 20:09:03
    A scheme for improving computational efficiency of quasi-two-dimensional model*
    偷來的靠山
    欧美区成人在线视频| 毛片女人毛片| 久久欧美精品欧美久久欧美| 国产伦精品一区二区三区四那| 亚洲av免费高清在线观看| 日本免费a在线| 我的女老师完整版在线观看| 亚洲美女视频黄频| 精华霜和精华液先用哪个| 国产高潮美女av| 国产精品亚洲一级av第二区| 白带黄色成豆腐渣| 成人永久免费在线观看视频| 国产中年淑女户外野战色| 极品教师在线免费播放| 亚洲精品色激情综合| 亚洲美女黄片视频| 亚洲精品在线观看二区| 亚洲国产高清在线一区二区三| 国语自产精品视频在线第100页| 不卡视频在线观看欧美| 在线国产一区二区在线| 麻豆精品久久久久久蜜桃| 精品无人区乱码1区二区| 午夜福利视频1000在线观看| 一区二区三区四区激情视频 | 黄色视频,在线免费观看| 国产黄a三级三级三级人| 亚洲熟妇熟女久久| 精品人妻1区二区| 成年女人看的毛片在线观看| 国产探花极品一区二区| 窝窝影院91人妻| 亚洲人成网站高清观看| 国内久久婷婷六月综合欲色啪| 国产亚洲欧美98| 亚洲欧美激情综合另类| 久久99热6这里只有精品| 97超级碰碰碰精品色视频在线观看| 亚洲欧美激情综合另类| 韩国av在线不卡| www.www免费av| 午夜福利在线观看吧| 极品教师在线免费播放| 亚洲av成人av| 久久这里只有精品中国| 91av网一区二区| 国产午夜精品久久久久久一区二区三区 | 婷婷精品国产亚洲av| 人人妻人人看人人澡| 精品久久久噜噜| av黄色大香蕉| 中文字幕免费在线视频6| 九九爱精品视频在线观看| 蜜桃久久精品国产亚洲av| 精品99又大又爽又粗少妇毛片 | 女同久久另类99精品国产91| 免费观看在线日韩| 成人永久免费在线观看视频| 老司机深夜福利视频在线观看| 一本精品99久久精品77| 99热这里只有是精品在线观看| 亚洲四区av| 国产精品免费一区二区三区在线| 黄片wwwwww| 久久精品夜夜夜夜夜久久蜜豆| 久久99热这里只有精品18| 九九久久精品国产亚洲av麻豆| 成人国产麻豆网| 国产蜜桃级精品一区二区三区| 久久久成人免费电影| 99久久中文字幕三级久久日本| 香蕉av资源在线| 亚洲av免费在线观看| 波多野结衣高清作品| 美女黄网站色视频| 亚洲熟妇熟女久久| a级毛片a级免费在线| 亚洲国产欧美人成| 男女边吃奶边做爰视频| 欧美性猛交黑人性爽| 我要看日韩黄色一级片| 国产精品女同一区二区软件 | 欧美最黄视频在线播放免费| 黄色欧美视频在线观看| 日韩大尺度精品在线看网址| 大又大粗又爽又黄少妇毛片口| 99热这里只有是精品50| 天堂av国产一区二区熟女人妻| 日日摸夜夜添夜夜添小说| 国产伦在线观看视频一区| 成人国产综合亚洲| 婷婷亚洲欧美| 亚洲av二区三区四区| 黄色日韩在线| 又紧又爽又黄一区二区| 国产免费一级a男人的天堂| 国产av在哪里看| 日韩精品有码人妻一区| 88av欧美| 男女边吃奶边做爰视频| 亚洲无线在线观看| 欧美性感艳星| 男女之事视频高清在线观看| 亚洲av一区综合| 男女视频在线观看网站免费| 日本 欧美在线| 亚洲av熟女| 免费人成视频x8x8入口观看| 午夜福利在线观看吧| 久久午夜亚洲精品久久| 欧美xxxx性猛交bbbb| 国产日本99.免费观看| 一级av片app| 中出人妻视频一区二区| 精品久久久久久成人av| 欧美高清性xxxxhd video| 中文在线观看免费www的网站| 精品久久久噜噜| 看黄色毛片网站| 国产毛片a区久久久久| 999久久久精品免费观看国产| 日韩一本色道免费dvd| 国产精品无大码| 观看美女的网站| 一级毛片久久久久久久久女| 欧美日韩乱码在线| 中国美女看黄片| 午夜激情欧美在线| 97超级碰碰碰精品色视频在线观看| 国产久久久一区二区三区| 99热这里只有是精品50| 内射极品少妇av片p| 麻豆成人av在线观看| 老熟妇仑乱视频hdxx| 国产一区二区在线观看日韩| 久久久久久久久久黄片| 日韩欧美三级三区| 久久人人爽人人爽人人片va| 欧美性猛交╳xxx乱大交人| 国产精品久久视频播放| 给我免费播放毛片高清在线观看| 欧美xxxx性猛交bbbb| 中文字幕免费在线视频6| 免费观看精品视频网站| 欧美日韩国产亚洲二区| 黄色一级大片看看| 不卡一级毛片| 嫩草影视91久久| 3wmmmm亚洲av在线观看| 日韩欧美三级三区| 琪琪午夜伦伦电影理论片6080| 欧美日韩乱码在线| 久久午夜亚洲精品久久| 性欧美人与动物交配| 中文字幕人妻熟人妻熟丝袜美| 午夜日韩欧美国产| 又黄又爽又免费观看的视频| 国产亚洲精品久久久久久毛片| 精品久久久噜噜| 中文字幕久久专区| 搡老熟女国产l中国老女人| 亚洲av五月六月丁香网| 嫩草影视91久久| 国内精品美女久久久久久| 国产极品精品免费视频能看的| 国产一区二区三区视频了| 日本五十路高清| 丰满的人妻完整版| 亚洲无线在线观看| 深爱激情五月婷婷| 天天躁日日操中文字幕| 久久久国产成人免费| 99久国产av精品| 久久久久久久久久久丰满 | 色综合婷婷激情| 白带黄色成豆腐渣| 亚洲av二区三区四区| 国产av在哪里看| 男女做爰动态图高潮gif福利片| 亚洲熟妇熟女久久| 深爱激情五月婷婷| 久久九九热精品免费| 99久国产av精品| 午夜精品一区二区三区免费看| 91狼人影院| 成人特级黄色片久久久久久久| 亚洲精品一区av在线观看| eeuss影院久久| 久久精品影院6| 综合色av麻豆| 男女视频在线观看网站免费| 欧美色视频一区免费| 欧美另类亚洲清纯唯美| 欧美一级a爱片免费观看看| 国内精品一区二区在线观看| 免费在线观看影片大全网站| 久久国产乱子免费精品| 久久久久久久久久黄片| 欧美zozozo另类| 1024手机看黄色片| 别揉我奶头 嗯啊视频| 欧美激情国产日韩精品一区| 亚洲经典国产精华液单| 老熟妇仑乱视频hdxx| 精品人妻视频免费看| 国产成人福利小说| 毛片一级片免费看久久久久 | 欧美丝袜亚洲另类 | 嫩草影视91久久| 午夜福利在线在线| 丰满的人妻完整版| 亚洲综合色惰| 日日夜夜操网爽| 九九久久精品国产亚洲av麻豆| 久久久久久久久大av| 热99re8久久精品国产| 久久天躁狠狠躁夜夜2o2o| aaaaa片日本免费| 赤兔流量卡办理| 22中文网久久字幕| 久久久久久久久久黄片| 一边摸一边抽搐一进一小说| 啦啦啦啦在线视频资源| 91在线观看av| 久久久精品大字幕| 又紧又爽又黄一区二区| 久久婷婷人人爽人人干人人爱| 亚洲av熟女| 欧美高清性xxxxhd video| 亚洲最大成人中文| 婷婷精品国产亚洲av| 少妇人妻一区二区三区视频| 18禁在线播放成人免费| 午夜激情欧美在线| av在线老鸭窝| 欧美三级亚洲精品| 亚洲欧美日韩无卡精品| 久久中文看片网| 中国美女看黄片| 蜜桃亚洲精品一区二区三区| 久久精品国产亚洲av涩爱 | 九九爱精品视频在线观看| 国产亚洲精品久久久久久毛片| 极品教师在线免费播放| 午夜精品一区二区三区免费看| 亚洲精品成人久久久久久| 午夜精品久久久久久毛片777| 看免费成人av毛片| 日韩强制内射视频| 亚洲在线观看片| 婷婷色综合大香蕉| 很黄的视频免费| 亚洲人成网站在线播放欧美日韩| 日本免费a在线| 欧美潮喷喷水| 国产高清视频在线观看网站| 精品人妻一区二区三区麻豆 | 亚洲精品成人久久久久久| 可以在线观看的亚洲视频| 小说图片视频综合网站| 99久久无色码亚洲精品果冻| 国产精品99久久久久久久久| 亚洲熟妇中文字幕五十中出| 九色国产91popny在线| 3wmmmm亚洲av在线观看| 欧美3d第一页| 日本免费一区二区三区高清不卡| 给我免费播放毛片高清在线观看| 亚洲人成网站在线播放欧美日韩| 最近最新免费中文字幕在线| 少妇熟女aⅴ在线视频| 亚洲无线在线观看| av专区在线播放| 国产精品一及| 国产av一区在线观看免费| 国产男靠女视频免费网站| 国产亚洲av嫩草精品影院| 国产精品乱码一区二三区的特点| 我要搜黄色片| 亚洲性久久影院| 精品午夜福利在线看| 麻豆av噜噜一区二区三区| 1000部很黄的大片| 久久久色成人| 成年女人看的毛片在线观看| 国产成人影院久久av| 少妇熟女aⅴ在线视频| 九九热线精品视视频播放| 中文在线观看免费www的网站| 日韩中字成人| 免费看av在线观看网站| 人人妻,人人澡人人爽秒播| 99在线视频只有这里精品首页| av福利片在线观看| 精品久久久久久久末码| 国产白丝娇喘喷水9色精品| 舔av片在线| 成人一区二区视频在线观看| 天堂√8在线中文| 国产精品永久免费网站| 少妇丰满av| 女人被狂操c到高潮| 日韩人妻高清精品专区| 亚洲成人久久爱视频| 999久久久精品免费观看国产| 天天躁日日操中文字幕| 一个人看的www免费观看视频| 日本免费a在线| 看黄色毛片网站| 久久精品影院6| 乱码一卡2卡4卡精品| 少妇被粗大猛烈的视频| 亚洲精品456在线播放app | 亚洲国产精品久久男人天堂| eeuss影院久久| 亚洲一区高清亚洲精品| 国产真实伦视频高清在线观看 | 欧美日韩精品成人综合77777| 夜夜夜夜夜久久久久| 国产三级中文精品| x7x7x7水蜜桃| 亚洲真实伦在线观看| 可以在线观看的亚洲视频| 亚洲中文字幕一区二区三区有码在线看| 夜夜爽天天搞| 老熟妇乱子伦视频在线观看| 久久6这里有精品| 亚洲,欧美,日韩| 日韩强制内射视频| 国产亚洲精品av在线| 国产成人福利小说| 免费一级毛片在线播放高清视频| 哪里可以看免费的av片| 美女被艹到高潮喷水动态| 五月玫瑰六月丁香| 精品久久久久久久久久免费视频| 亚洲18禁久久av| av黄色大香蕉| 精品乱码久久久久久99久播| 国产 一区 欧美 日韩| 国产蜜桃级精品一区二区三区| 校园春色视频在线观看| 少妇被粗大猛烈的视频| 欧美高清性xxxxhd video| eeuss影院久久| 久久草成人影院| 午夜免费成人在线视频| 成人鲁丝片一二三区免费| 人人妻人人澡欧美一区二区| 亚洲成a人片在线一区二区| 欧美+亚洲+日韩+国产| 久99久视频精品免费| 色哟哟哟哟哟哟| 国内精品宾馆在线| 成人av一区二区三区在线看| 真人一进一出gif抽搐免费| 国产熟女欧美一区二区| 国内精品宾馆在线| 国产精品综合久久久久久久免费| 无人区码免费观看不卡| 午夜福利在线在线| 成人鲁丝片一二三区免费| 村上凉子中文字幕在线| 91麻豆av在线| 国内揄拍国产精品人妻在线| 欧洲精品卡2卡3卡4卡5卡区| 亚洲av.av天堂| 中文在线观看免费www的网站| 日日撸夜夜添| 欧美一级a爱片免费观看看| 五月玫瑰六月丁香| 日日摸夜夜添夜夜添小说| 国产精品三级大全| 亚洲午夜理论影院| 日本免费a在线| 久久精品国产亚洲av涩爱 | 国产一区二区亚洲精品在线观看| 看片在线看免费视频| 欧美一区二区国产精品久久精品| 中文字幕av在线有码专区| 狂野欧美激情性xxxx在线观看| 国产精品人妻久久久久久| 亚洲精品国产成人久久av| 亚洲午夜理论影院| 搡老妇女老女人老熟妇| 亚洲色图av天堂| 欧美在线一区亚洲| 在线观看免费视频日本深夜| 中国美女看黄片| 欧美区成人在线视频| 男插女下体视频免费在线播放| 精品一区二区三区视频在线观看免费| 成人av在线播放网站| 亚洲专区中文字幕在线| 日本黄色片子视频| 少妇丰满av| 亚洲图色成人| 日本一本二区三区精品| 国产男人的电影天堂91| 窝窝影院91人妻| 欧美一区二区国产精品久久精品| 搡老熟女国产l中国老女人| 一级毛片久久久久久久久女| 婷婷亚洲欧美| 国产精品久久视频播放| 999久久久精品免费观看国产| 久9热在线精品视频| 精品人妻偷拍中文字幕| 日本黄色片子视频| 一区福利在线观看| 尤物成人国产欧美一区二区三区| 国产成年人精品一区二区| 欧美最黄视频在线播放免费| 舔av片在线| 国产免费男女视频| 日韩av在线大香蕉| 国产白丝娇喘喷水9色精品| 国模一区二区三区四区视频| 麻豆久久精品国产亚洲av| 日韩 亚洲 欧美在线| 欧美+亚洲+日韩+国产| 久久99热6这里只有精品| 搡老岳熟女国产| 内地一区二区视频在线| 久久久久久久久久黄片| 久久久精品大字幕| 国产精品爽爽va在线观看网站| 国产午夜精品论理片| 日本免费a在线| 看十八女毛片水多多多| 国产亚洲av嫩草精品影院| 日韩欧美 国产精品| 精品人妻熟女av久视频| 2021天堂中文幕一二区在线观| 国产精品伦人一区二区| www.色视频.com| 亚洲在线观看片| 男女边吃奶边做爰视频| 中文资源天堂在线| 99久久无色码亚洲精品果冻| 久久精品91蜜桃| 国产精品一区www在线观看 | 尤物成人国产欧美一区二区三区| 十八禁网站免费在线| 日日摸夜夜添夜夜添小说| 美女xxoo啪啪120秒动态图| 日韩国内少妇激情av| 丝袜美腿在线中文| 国产亚洲精品久久久久久毛片| 久久久国产成人免费| 亚洲精品在线观看二区| 亚洲人成网站在线播| 我的女老师完整版在线观看| 天堂av国产一区二区熟女人妻| 美女xxoo啪啪120秒动态图| 成人国产综合亚洲| 久久九九热精品免费| 成人国产一区最新在线观看| 欧美成人免费av一区二区三区| 国产精品久久久久久精品电影| 人妻丰满熟妇av一区二区三区| 国产一区二区三区在线臀色熟女| 又黄又爽又免费观看的视频| 男人的好看免费观看在线视频| 12—13女人毛片做爰片一| xxxwww97欧美| 黄色女人牲交| 国产精品一区二区免费欧美| 久久久精品欧美日韩精品| 成人国产综合亚洲| 69人妻影院| 99久久九九国产精品国产免费| 高清毛片免费观看视频网站| 国产爱豆传媒在线观看| 国产精品久久久久久久久免| 精品乱码久久久久久99久播| 国产精品人妻久久久久久| 亚洲欧美日韩卡通动漫| 国产精品久久久久久久电影| 日韩 亚洲 欧美在线| 美女免费视频网站| 亚洲人成网站高清观看| 黄色视频,在线免费观看| 老熟妇乱子伦视频在线观看| 欧美色视频一区免费| 欧美日本亚洲视频在线播放| 亚洲精品乱码久久久v下载方式| 亚洲国产欧洲综合997久久,| 亚洲无线观看免费| 亚洲精品影视一区二区三区av| 我的老师免费观看完整版| 欧美丝袜亚洲另类 | 可以在线观看毛片的网站| 少妇裸体淫交视频免费看高清| 亚洲精品一卡2卡三卡4卡5卡| 午夜精品在线福利| 久久久午夜欧美精品| 精品午夜福利视频在线观看一区| 亚洲自偷自拍三级| 国产伦在线观看视频一区| 成人无遮挡网站| 一区二区三区高清视频在线| 久久精品国产99精品国产亚洲性色| 日日撸夜夜添| 在线播放无遮挡| 最近最新免费中文字幕在线| 日韩人妻高清精品专区| 亚洲男人的天堂狠狠| АⅤ资源中文在线天堂| 欧美精品啪啪一区二区三区| 日韩亚洲欧美综合| 搡老岳熟女国产| 国产高清三级在线| 日韩欧美免费精品| 亚洲电影在线观看av| 日本撒尿小便嘘嘘汇集6| 一区福利在线观看| 99久久精品一区二区三区| 精品免费久久久久久久清纯| 亚洲国产高清在线一区二区三| 亚洲人成伊人成综合网2020| 国产精品久久久久久精品电影| 赤兔流量卡办理| 久久亚洲真实| 日韩一本色道免费dvd| 91麻豆av在线| 国产国拍精品亚洲av在线观看| 不卡视频在线观看欧美| 久久久色成人| 五月伊人婷婷丁香| 啦啦啦韩国在线观看视频| 两个人视频免费观看高清| av在线蜜桃| 91麻豆av在线| 亚洲熟妇熟女久久| 免费无遮挡裸体视频| 熟女人妻精品中文字幕| 国产高清激情床上av| 成人精品一区二区免费| videossex国产| 我的老师免费观看完整版| 欧美成人免费av一区二区三区| 久久人人爽人人爽人人片va| 成人国产综合亚洲| 一进一出抽搐动态| 九九久久精品国产亚洲av麻豆| 小蜜桃在线观看免费完整版高清| 中亚洲国语对白在线视频| 日本免费一区二区三区高清不卡| 欧洲精品卡2卡3卡4卡5卡区| 综合色av麻豆| 国产亚洲精品久久久久久毛片| 桃色一区二区三区在线观看| 88av欧美| 人妻制服诱惑在线中文字幕| 简卡轻食公司| 久久婷婷人人爽人人干人人爱| 人人妻人人看人人澡| 日韩欧美精品免费久久| av天堂在线播放| 久久国产精品人妻蜜桃| 搡老妇女老女人老熟妇| 1000部很黄的大片| 精品久久久久久成人av| 91久久精品国产一区二区三区| 一个人看的www免费观看视频| 三级毛片av免费| 男女做爰动态图高潮gif福利片| 日韩欧美在线乱码| 国产精华一区二区三区| 国产精品无大码| 中文字幕久久专区| 99久久无色码亚洲精品果冻| 日日啪夜夜撸| 一本精品99久久精品77| 午夜亚洲福利在线播放| 一进一出抽搐gif免费好疼| 亚洲国产精品久久男人天堂| 最近视频中文字幕2019在线8| 黄色日韩在线| 国产亚洲欧美98| 日本精品一区二区三区蜜桃| 欧美绝顶高潮抽搐喷水| 午夜爱爱视频在线播放| 精品一区二区免费观看| 韩国av一区二区三区四区| 男人的好看免费观看在线视频| 亚洲精品日韩av片在线观看| 日韩一区二区视频免费看| 亚洲精华国产精华精| 2021天堂中文幕一二区在线观| 欧美一级a爱片免费观看看| 91久久精品国产一区二区成人| 此物有八面人人有两片| 日韩欧美国产在线观看| 国内毛片毛片毛片毛片毛片| 亚洲成人久久性| 日韩欧美在线二视频| 亚洲最大成人av| 亚洲人成网站在线播放欧美日韩| 免费看日本二区| 国产一区二区亚洲精品在线观看| 国产精品亚洲一级av第二区| 91精品国产九色| 成人特级av手机在线观看| 亚洲中文字幕日韩| 成人亚洲精品av一区二区| 狂野欧美激情性xxxx在线观看| 日本-黄色视频高清免费观看| 99热这里只有精品一区| 国产精品精品国产色婷婷| 人妻夜夜爽99麻豆av| 在线播放国产精品三级| 一夜夜www|