• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Gas sensor using gold doped copper oxide nanostructured thin films as modified cladding fiber

    2021-06-26 03:31:08HusseinSalloomRushdiJasimNadirFadhilHabubiSamiSalmanChiadJadanandJihadAddasi
    Chinese Physics B 2021年6期

    Hussein T.Salloom Rushdi I.Jasim Nadir Fadhil Habubi Sami Salman Chiad M Jadan and Jihad S.Addasi

    1Al-Nahrain Nanorenewable Energy Research Centre,Al-Nahrain University,Baghdad,Iraq

    2Department of Physics,College of Education,Mustansiriyah University,Baghdad,Iraq

    3Department of Physics,College of Science,Imam Abdulrahman Bin Faisal University,Dammam 31441,Saudi Arabia

    4Basic and Applied Scientific Research Center,Imam Abdulrahman Bin Faisal University,Dammam 31441,Saudi Arabia

    5Department of Applied Physics,College of Science,Tafila Technical University,Tafila 66110,Jordan

    Keywords: nanostructured thin films,gold-doped copper oxide,gas sensors,optical properties

    1. Introduction

    Nowadays,fiber-optic gas sensors are the most important type of sensors thanks to their distinctive properties,including low cost,small size,remote sensing,immunity to electromagnetic,and capability of working in various environments.[1–4]Current fiber-optic systems for gas sensing have exploited many different detection manners[5]such as transmission,absorption, reflectance, evanescent wave surface plasmon resonance (SPR), and lossy mode resonance. Regarding the type of fiber, no-core optical fiber (NCF),[6]a side polishing Dshape optical fiber,[7]tapered small core single mode fiber(TSCSMF) and a microfiber coupler (MFC),[8]and another characteristic related to optical fiber sensing is that utilizing a modified clad region with nanocrystalline metal oxide to create a hybrid structure. In this sense, Renganathanet al. have widely exploited such structures for gas sensing with various metal oxides such as zinc oxide ZnO,[9]NiO,[10]CeO2,[11]and V2O5, WO3.[12]In a real case, light propagating inside the fiber could escape from the core towards the modified clad region. Variations in the output light power are correlated not only to the refractions among the modified clad region but also to the presence of the surrounding medium.

    On the other hand, CuO has been proved a prominent catalytic material for gas sensing in terms of better response,improved stability,and longer lifetime.[13]Also doping metal oxides with noble metals(i.e.,Au,Ag,Pt,and Pd)[14–16]may find potential applications in gas sensor that acts as sensitizers or promoters having diverse optical properties. In clad modified fiber optic,the gas-sensing mechanism relies on evanescent wave leakage, in which the creation of the sensing layer requires the removal of cladding and replacement by a thin layer of nanocrystalline metal oxides. Consequently,some of the light launched to the fiber’s core will leak into the surrounding. The refractive index of the cladding material varies due to chemical reactions if such a device has been exposed to gases and produces an optical loss by evanescent.

    Hence, in the present work, we investigate the influence of pure and Au-doped CuO deposited on fiber surface on gassensing capabilities. The effect of Au doping on various samples of CuO thin films on the structural, morphological, and optical properties have been studied and discussed. The light intensity of a clad modified polymer optical fiber coated with pure and gold doped cupric oxides is examined at room temperature with different ammonia concentrations. The optical response of the presented sensor when exposed to gas is discussed in terms of the modified clad interface.

    2. Experimental details

    2.1. Deposition of Au:CuO samples

    Thin films of CuO were prepared by the chemical spray pyrolysis method. These films were deposited on a highly cleaned glass slide using 0.1 M of copper chloride(CuCl2·2H2O) dissolved in 100 mL deionized water. 0.1 M of gold chloride was dissolved in redistilled water added to the matrix solution to obtain 1%and 3%Au doped CuO.The substrate temperature was kept at 350?C during the deposition process and nitrogen was used as a carrier gas. The spray parameters were optimized to obtain clear and homogenous samples: nozzle distance was 27 cm,spraying time was 10 s,spray rate was 5 mL/min,and spray time interval was 2 min.

    2.2. Devices and measurements

    To determine film structure, XRD(Model: SHIMADZU XRD-6000) was used, while AFM (Model: AA3000 SPM)was used to determine the morphology of the films. Characteristics spectra of transmittance and the absorbance were measured via UV–visible spectrophotometer(Model: Double beam SPUV 26)in the wavelength range(300–900 nm).

    2.3. Sensor setup

    The proposed ammonia gas sensor structure is presented in Fig. 1. A multi-mode plastic optical fiber of 40 cm length and 750 mm diameter was used. 3 cm of cladding region was etched in the center to work as sensor head. The cladding section was chemically etched by acetone,followed by polishing with a 1000 grid sheet.Then,the polished surface was cleaned and coated with pure and Au doped (2 at% and 4 at%) CuO thin film. A halogen lamp (Model-SLS201/M) is coupled at the first end of the fiber. At the other end of the fiber, a fiber optic spectrometer(Model:Thorlabs CCS200)was used to exhibit the intensity spectrum. The sensor head was inserted into the lab-built gas chamber,which is the bottom flask filled with a gas of interest.

    Fig.1. Modified clad-fiber optic gas sensing setup.

    The sensitivity of the proposed gas sensor is calculated using the following relation

    whereIaandIgare the intensity in the reference(without gas)and measured signals in the presence of a gas.

    3. Results and discussion

    3.1. Structural analysis

    Two characteristics diffraction peaks with high intensity are observed at values of 32.6?and 37.1?with a preferred orientation along the (11) and (111) axes, which are indicated as cubic structured CuO.The other two less intense peaks are found at 55.4?and 65.9?. The sharp diffraction peaks indicate that wellcrystallized CuO nanostructures films can be obtained. With the increase of Au content,there is a slight shift in the position 2θtowards the lower from 37.1?for the undoped film to 36.7?for 4% Au:CuO films and this could be assigned to the replacement of Cu+2ions of(0.73 ?A)by Au+2ions of larger radius(1.73 ?A).It can be assumed that Au atoms were effectively substituted by Cu sites within CuO lattice without altering the crystal structure of copper oxide or generating new phases. Considering the most intense peak(11)mean size of crystal(D)was calculated by utilizing Scherrer’s equation[17–19]

    whereλis the wavelength of the x-rays used(1.5406 ?A),βandθare full width at half maximum(FWHM)and the diffraction angle,respectively.The crystalline size has been found to vary from 90 nm to 75 nm with Au concentration,as represented in Table 1. The reduction of the grain size facilitates the increase of nucleation center density in the doping films leading to the formation of small crystallites. It is found that the values of strain decrease from 2.88 to 1.77 when increasing the Au content. On the other hand,the dislocation densityδincreases as the concentrations of Au-doped CuO increase. Generally,Au doped CuO thin film exhibits better crystalline quality with less strain as compared to pure CuO films.

    Other structural parameters such as dislocation density(δ) are also evaluated.δgives the number of defects in the films, the values ofδin Table 1, which shows the structural parameters estimated from[20–22]

    The strain (ε) gives information about the material structure and obtained by employing the following equation:[23–25]

    Table 1. Grain size, optical band gap and structural parameters of the prepared films.

    Fig.2. XRD-patterns(a)crystalline size(b)dislocation(c)strain(d)of the prepared films.

    Fig.3. The 2D AFM images,AFM parameters and granularly distribution of the pure and Au doped CuO films.

    Atomic force microscope (AFM) micrographs and their roughness analysis of prepared Au:CuO films are shown in Fig.3.The 2D images and distribution of grains exhibit spherical nano-grainshaving an average diameter of 66.08 nm for pure CuO, 67.90 nm for 2% Au doped CuO and 55.86 nm for 4%Au doped CuO.The surface roughness is 3.28 nm for pure CuO, 4.93 nm for 2% Au doped CuO, and 5.08 nm for 4%Au doped Cu. The decrease in average surface roughness could be attributed to the reduced grain size. The reduction values agree with crystallite size variation established from XRD data. The same trend in roughness values NiO:Co was reported by Tas?k¨opr¨uet al.,[26]and the influence of Au doping on AFM parameters is shown in Fig.3 and summarized in Table 2.

    Table 2. AFM parameters of the deposited films.

    3.2. Optical analysis

    Figures 4 and 5 show the optical transmittance and absorbance measurements of prepared films recorded in the spectral region 300–900 nm. All films are transparent in that region.The undoped CuO films exhibit an average optical transparency of 65% in the visible range and decrease to 45% for the 2% Au-doped thin films and 40% for the 4% doped thin films. The lower optical transmittance for CA1 and CA2 may be due to the increase of absorbing centers with the incorporation of Au leading to an increase in the absorption capability.Moreover,the decrease of transmittance can also be associated with the scattering of incident photons by the addition of gold at different sites in the CuO matrix. However, CuO: Au thin films are found to be highly transparent in the NIR region,and the maximum transmittance is about 80%for 4%Au concentration. These results are in accord with films deposited using other coating techniques.[27]The absorption edge is shifted to higher wavelengths according to the increase in gold content,as shown in Fig.4,due to the presence of inter-band transitions at localized states in the energy gap.

    Optical energy gap analysis was performed according to Tauc’s relation given by[28–30]

    whereαis the absorption coefficient,βis constant and is photon energy.Egis given from thex-axis intersection of(αhν)2versushνplots shown in Fig.6 and found to decrease with Au dopants. Similar to the trend described for Au doped ZnO by Dilonardoet al.[31]

    Fig.4. Absorbance versus wavelength for the grown films.

    Fig.5. Transmittance for the prepared films.

    Fig.6. The(αhν)2 vs. hν of the prepared thin films.

    3.3. Sensing properties and analysis

    Figure 7 shows a plot of the spectral intensity of the proposed sensor with special emphasis on the spectral region of(560–600) nm and various gas concentrations from 0 ppm to 500 ppm. The optical response of the sensor is described as a change in the peak intensity with respect to the change in the gas concentration. After rigorous observation, the results demonstrate an increase in the light intensity output with an increase in gas concentration, and the proposed sensor showed a good response compared to its counterparts made of optical fibers. This could be attributed to the increase of refractive index of modified cladding region when ammonia gas interacts with CuO film, so the transmitted light through the fiber is confined by the modified cladding and there is an increase in the output. Furthermore,the output intensity increases with Au-doping,which indicates that the percentage of light reflectivity may be enhanced depending upon the value of the refractive index of the modified cladding with Au doped CuO.As it is obvious from this figure,the output intensity shows a slight increase with the increase of gas ammonia concentrations due to the decrease in evanescent wave absorption and increase of light confinement. In general,there is light intensity modulation rather than light conversion.

    Figure 8 presents the gas sensor sensitivity plot of pure and Au doped CuO films in different gas concentrations ranging from 0 ppm to 500 ppm at room temperature. It can be seen that Au doped CuO(2%and 4%)shows enhanced sensitivity,where Au doped CuO(4%)exhibits a maximum sensitivity of 17%compared with that of other pure and Au doped CuO(2%). According to the data plotted in Fig.8,the sensor response increases properly with Au doping. As the refractive index of the modified cladding(nmclad)is about 2.6,[32]which is higher than the core (1.492), the presented sensor satisfies the leaky mode criteria. Moreover, the features of the sensor could be correlated to the variation of light reflectivity at the core-modified clad surface.

    Fig. 7. The response of the presented sensor with different gas concentrations ranging from 0 to 500 ppm(a)CuO,(b)2%Au:CuO,(c)4%Au:CuO.

    Fig.8. Variation of sensitivity versus gas concentration ranging from 0 ppm to 500 ppm.

    Fig. 9. Reproducibility plot (sensitivity versus No. of cycles) of pristine CuO and Au doped CuO films towards ammonia gas.

    Reproducibility and stability are the most critical factors for choosing a sensor. Hence,these have been examined in the experiments by the injection and removal of the gas with realtime measurement of the optical response in repeated cycles.The sensor was checked by allowing the ammonia gas concentration of 300 ppm to remain in the gas chamber for 3 min and recording the optical signal. The gas was evacuated from the chamber by the end of the 3 min and the signal was recorded;the results are shown in Fig.9.Over six cycles,the response is almost constant except for a slight sensitivity fluctuation,indicating respectable reproducibility for the fabricated sensor.

    4. Conclusion

    Undoped,2%and%Au doped CuO nanostructured thin films were produced by spray method.XRD analysis and SEM images displayed that undoped CuO formed clear nanostructured films. XRD analysis reveals that no secondary phase is formed. The prepared films are deposited on surface fiber and act as a gas sensor for detecting ammonia as the output response increases with the gas concentration. Furthermore,the sensitivity increases when CuO is doped with gold. The reproducibility of the proposed sensor is studied over six cycles with an ammonia gas concentration of 300 ppm.

    Acknowledgment

    The authors gratefully appreciate the support from Al-Nahrain University and Mustansiriyah University.

    91在线精品国自产拍蜜月| 久久人妻av系列| 欧美成人免费av一区二区三区| 中文字幕精品亚洲无线码一区| 成年免费大片在线观看| 久久久久性生活片| 精品熟女少妇八av免费久了| 色av中文字幕| 中文在线观看免费www的网站| 国产综合懂色| 久久久国产成人精品二区| 首页视频小说图片口味搜索| 欧美丝袜亚洲另类 | 女人十人毛片免费观看3o分钟| 久久久久久大精品| 国产国拍精品亚洲av在线观看| 婷婷色综合大香蕉| 2021天堂中文幕一二区在线观| 亚洲一区二区三区色噜噜| 欧美日韩综合久久久久久 | 美女 人体艺术 gogo| 麻豆成人午夜福利视频| 国产亚洲欧美98| 免费在线观看成人毛片| 九九热线精品视视频播放| 麻豆国产97在线/欧美| 亚洲熟妇熟女久久| 欧美日韩中文字幕国产精品一区二区三区| 此物有八面人人有两片| 99久久九九国产精品国产免费| 国产精品电影一区二区三区| 老司机福利观看| 夜夜夜夜夜久久久久| 超碰av人人做人人爽久久| 国产精品一及| 国产精品一及| 日本 av在线| 久久99热这里只有精品18| 欧美黄色片欧美黄色片| 久久精品影院6| 欧美一区二区国产精品久久精品| 亚洲av电影在线进入| 俄罗斯特黄特色一大片| 两个人视频免费观看高清| 一个人观看的视频www高清免费观看| 久久久久国内视频| 国产中年淑女户外野战色| 日韩 亚洲 欧美在线| 亚洲av一区综合| 久久欧美精品欧美久久欧美| 白带黄色成豆腐渣| 观看免费一级毛片| 午夜精品久久久久久毛片777| 亚洲人与动物交配视频| 麻豆av噜噜一区二区三区| 亚洲av电影不卡..在线观看| 国产精品电影一区二区三区| 婷婷精品国产亚洲av| 蜜桃久久精品国产亚洲av| 日本 欧美在线| 婷婷六月久久综合丁香| 国产精品一区二区性色av| 亚洲av五月六月丁香网| 在线a可以看的网站| 国产极品精品免费视频能看的| 一进一出抽搐gif免费好疼| 日本五十路高清| 午夜a级毛片| 亚洲精品色激情综合| 麻豆国产97在线/欧美| 免费观看人在逋| 露出奶头的视频| www.www免费av| 日本撒尿小便嘘嘘汇集6| 国产熟女xx| 2021天堂中文幕一二区在线观| 俄罗斯特黄特色一大片| 欧洲精品卡2卡3卡4卡5卡区| 国产老妇女一区| 美女黄网站色视频| 99热6这里只有精品| 国产熟女xx| 丁香欧美五月| 性色avwww在线观看| 亚洲在线自拍视频| av中文乱码字幕在线| 一个人免费在线观看电影| 婷婷丁香在线五月| 亚洲成人免费电影在线观看| 国产黄a三级三级三级人| 51国产日韩欧美| 搡老熟女国产l中国老女人| 亚洲国产精品sss在线观看| 两个人视频免费观看高清| 亚洲男人的天堂狠狠| 日本成人三级电影网站| 美女高潮喷水抽搐中文字幕| 一夜夜www| 久久中文看片网| 悠悠久久av| 欧美不卡视频在线免费观看| 亚洲中文字幕日韩| 麻豆国产av国片精品| 男人和女人高潮做爰伦理| 熟女人妻精品中文字幕| 中出人妻视频一区二区| 十八禁国产超污无遮挡网站| 免费看光身美女| 国产亚洲精品久久久久久毛片| 91午夜精品亚洲一区二区三区 | 国产午夜精品久久久久久一区二区三区 | 亚洲国产精品999在线| www.色视频.com| 搡老妇女老女人老熟妇| 国产美女午夜福利| av视频在线观看入口| 久久人人爽人人爽人人片va | 天堂√8在线中文| 欧美性猛交╳xxx乱大交人| 搡老妇女老女人老熟妇| 亚洲最大成人手机在线| 成年免费大片在线观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲第一区二区三区不卡| 亚洲自拍偷在线| 久久精品国产清高在天天线| 国产一区二区三区在线臀色熟女| 国产精品久久视频播放| 无人区码免费观看不卡| 国产单亲对白刺激| 国语自产精品视频在线第100页| 美女黄网站色视频| 首页视频小说图片口味搜索| 精品一区二区三区视频在线观看免费| 免费大片18禁| 十八禁国产超污无遮挡网站| 无遮挡黄片免费观看| 性插视频无遮挡在线免费观看| 国产精品一区二区免费欧美| 精品久久久久久,| 嫩草影院入口| 国产精品不卡视频一区二区 | 午夜精品一区二区三区免费看| 国产三级中文精品| 久久久久国内视频| 搡老熟女国产l中国老女人| 男女下面进入的视频免费午夜| 桃红色精品国产亚洲av| 国产色爽女视频免费观看| 久久久久国产精品人妻aⅴ院| 久久久久久久亚洲中文字幕 | 欧美在线黄色| 九九热线精品视视频播放| 午夜精品久久久久久毛片777| 精品久久久久久久久久免费视频| 九九在线视频观看精品| 黄色女人牲交| 老鸭窝网址在线观看| 特大巨黑吊av在线直播| 国产精品乱码一区二三区的特点| 精品人妻视频免费看| 深爱激情五月婷婷| 夜夜夜夜夜久久久久| 在线观看舔阴道视频| 日本五十路高清| 中文字幕熟女人妻在线| 国产中年淑女户外野战色| 赤兔流量卡办理| 亚洲成人久久性| 99久久精品热视频| 最近最新免费中文字幕在线| 国产成人啪精品午夜网站| 激情在线观看视频在线高清| 男女下面进入的视频免费午夜| 亚洲aⅴ乱码一区二区在线播放| 国产单亲对白刺激| 免费看光身美女| 日韩中字成人| 91久久精品国产一区二区成人| 欧美另类亚洲清纯唯美| 激情在线观看视频在线高清| av欧美777| 欧美成人a在线观看| 色尼玛亚洲综合影院| 又紧又爽又黄一区二区| 香蕉av资源在线| 嫁个100分男人电影在线观看| av在线老鸭窝| 久久精品91蜜桃| 国产精品一区二区三区四区久久| 男人的好看免费观看在线视频| 十八禁国产超污无遮挡网站| 国产午夜福利久久久久久| 高清日韩中文字幕在线| 深夜精品福利| 日韩欧美免费精品| 免费在线观看亚洲国产| 久久久久免费精品人妻一区二区| 午夜免费成人在线视频| 国产一区二区三区在线臀色熟女| 在线免费观看不下载黄p国产 | 亚洲国产高清在线一区二区三| 精品乱码久久久久久99久播| 亚洲aⅴ乱码一区二区在线播放| 国产成人aa在线观看| 中文字幕av在线有码专区| 亚洲精品一区av在线观看| 国产免费av片在线观看野外av| 偷拍熟女少妇极品色| 成年女人毛片免费观看观看9| 国产免费男女视频| 欧美绝顶高潮抽搐喷水| 不卡一级毛片| 亚洲成人中文字幕在线播放| 亚洲内射少妇av| 99riav亚洲国产免费| 校园春色视频在线观看| 人妻制服诱惑在线中文字幕| 亚洲成人精品中文字幕电影| 69av精品久久久久久| 国产精品国产高清国产av| 悠悠久久av| 他把我摸到了高潮在线观看| 亚洲五月婷婷丁香| 九色国产91popny在线| 夜夜看夜夜爽夜夜摸| 精品乱码久久久久久99久播| 亚洲欧美日韩高清专用| 脱女人内裤的视频| 永久网站在线| 他把我摸到了高潮在线观看| 91麻豆av在线| 2021天堂中文幕一二区在线观| 嫁个100分男人电影在线观看| 国产精品99久久久久久久久| 国产精品日韩av在线免费观看| 高清在线国产一区| 国产午夜精品久久久久久一区二区三区 | 国产一区二区三区视频了| 少妇裸体淫交视频免费看高清| 夜夜躁狠狠躁天天躁| 少妇被粗大猛烈的视频| 成人鲁丝片一二三区免费| 身体一侧抽搐| 国模一区二区三区四区视频| 激情在线观看视频在线高清| 欧美性感艳星| 中文字幕av在线有码专区| 高清日韩中文字幕在线| 99久国产av精品| 亚洲专区中文字幕在线| 亚洲欧美日韩高清专用| 国产精品久久久久久久电影| 欧美成人a在线观看| 在线观看舔阴道视频| 亚洲18禁久久av| 亚洲人成网站在线播| 日韩欧美国产一区二区入口| 亚洲人成电影免费在线| 国内精品美女久久久久久| 免费搜索国产男女视频| 欧美日韩瑟瑟在线播放| 一个人免费在线观看电影| 成人一区二区视频在线观看| 欧美日本亚洲视频在线播放| 丝袜美腿在线中文| 午夜老司机福利剧场| bbb黄色大片| 欧美国产日韩亚洲一区| 国产黄片美女视频| 亚洲综合色惰| 毛片一级片免费看久久久久 | 国产精品美女特级片免费视频播放器| 午夜视频国产福利| 婷婷精品国产亚洲av在线| 俄罗斯特黄特色一大片| 中出人妻视频一区二区| 国产精品1区2区在线观看.| 宅男免费午夜| 日韩亚洲欧美综合| 中文字幕高清在线视频| 午夜福利18| 老鸭窝网址在线观看| av在线老鸭窝| 在线天堂最新版资源| 少妇被粗大猛烈的视频| 男女之事视频高清在线观看| 国产单亲对白刺激| 天堂av国产一区二区熟女人妻| 12—13女人毛片做爰片一| 有码 亚洲区| 中文字幕精品亚洲无线码一区| 亚洲无线观看免费| 一a级毛片在线观看| 91久久精品国产一区二区成人| 中文字幕人妻熟人妻熟丝袜美| 国产视频一区二区在线看| 欧美黄色片欧美黄色片| 国产淫片久久久久久久久 | 亚洲乱码一区二区免费版| 欧美在线一区亚洲| 国产av一区在线观看免费| 成年女人看的毛片在线观看| 少妇的逼好多水| 国产av一区在线观看免费| 亚洲精品成人久久久久久| 精品无人区乱码1区二区| 1000部很黄的大片| 麻豆国产av国片精品| 国产亚洲精品久久久久久毛片| 日韩av在线大香蕉| 欧美不卡视频在线免费观看| 亚洲aⅴ乱码一区二区在线播放| 欧美日韩国产亚洲二区| a级毛片a级免费在线| 免费人成在线观看视频色| 97超视频在线观看视频| 欧美高清性xxxxhd video| 亚洲成人中文字幕在线播放| 夜夜夜夜夜久久久久| 又粗又爽又猛毛片免费看| 久久九九热精品免费| 小说图片视频综合网站| 在线观看午夜福利视频| 老熟妇乱子伦视频在线观看| 一个人观看的视频www高清免费观看| 国产探花极品一区二区| 观看美女的网站| 日日摸夜夜添夜夜添av毛片 | 久久久久性生活片| 日本五十路高清| 狂野欧美白嫩少妇大欣赏| 悠悠久久av| 久久九九热精品免费| 亚洲人成网站在线播放欧美日韩| 亚洲欧美清纯卡通| 精品一区二区三区视频在线观看免费| 午夜精品在线福利| 悠悠久久av| 日韩亚洲欧美综合| 老熟妇仑乱视频hdxx| 亚洲欧美日韩高清专用| 欧美一区二区精品小视频在线| 精品欧美国产一区二区三| 欧美三级亚洲精品| 男人和女人高潮做爰伦理| 亚洲 欧美 日韩 在线 免费| 亚洲在线观看片| 日本与韩国留学比较| 亚洲人成伊人成综合网2020| 自拍偷自拍亚洲精品老妇| aaaaa片日本免费| 久久欧美精品欧美久久欧美| 99久久精品国产亚洲精品| 国产精品久久久久久亚洲av鲁大| 久久久久性生活片| 精品久久久久久,| 欧美丝袜亚洲另类 | 欧美精品国产亚洲| 可以在线观看毛片的网站| 亚洲av成人av| 麻豆一二三区av精品| 成年女人永久免费观看视频| 99久久99久久久精品蜜桃| 国产一区二区三区在线臀色熟女| 亚洲无线观看免费| 日本a在线网址| 欧美丝袜亚洲另类 | 成年女人永久免费观看视频| 久久久久久久久中文| 露出奶头的视频| 9191精品国产免费久久| 亚洲性夜色夜夜综合| 日日摸夜夜添夜夜添av毛片 | 国产精品伦人一区二区| 精品久久久久久久久亚洲 | 亚洲av五月六月丁香网| 中国美女看黄片| 欧美区成人在线视频| 高清毛片免费观看视频网站| 三级国产精品欧美在线观看| bbb黄色大片| 亚洲av成人不卡在线观看播放网| 一级黄片播放器| 国产av在哪里看| 欧美黄色淫秽网站| 久久精品国产自在天天线| 国产精品久久久久久久久免 | 午夜激情欧美在线| 午夜福利18| 老司机午夜福利在线观看视频| 无遮挡黄片免费观看| 老司机午夜福利在线观看视频| 欧美在线黄色| av黄色大香蕉| 久久人人爽人人爽人人片va | 99热只有精品国产| 99精品在免费线老司机午夜| 中文字幕熟女人妻在线| 日本熟妇午夜| 中国美女看黄片| 国产精品久久久久久久电影| 国产真实乱freesex| 又粗又爽又猛毛片免费看| 免费在线观看成人毛片| 日韩成人在线观看一区二区三区| 蜜桃久久精品国产亚洲av| 国产欧美日韩一区二区三| 国产综合懂色| 变态另类丝袜制服| 亚洲国产日韩欧美精品在线观看| 岛国在线免费视频观看| 久久香蕉精品热| 日韩亚洲欧美综合| 国产精品影院久久| 免费看日本二区| 最新中文字幕久久久久| 九色国产91popny在线| 亚洲av成人av| 国产精品不卡视频一区二区 | 欧美三级亚洲精品| 亚洲人与动物交配视频| 亚洲欧美日韩无卡精品| 欧美国产日韩亚洲一区| 一二三四社区在线视频社区8| 看片在线看免费视频| 极品教师在线免费播放| 亚洲av五月六月丁香网| 国产亚洲精品久久久com| 成人av一区二区三区在线看| 国产亚洲欧美98| 中文字幕人成人乱码亚洲影| 观看免费一级毛片| 色综合站精品国产| 天天一区二区日本电影三级| 日韩欧美精品免费久久 | 成人鲁丝片一二三区免费| 午夜福利欧美成人| 又黄又爽又刺激的免费视频.| 亚洲内射少妇av| 国产亚洲精品av在线| 国产高清有码在线观看视频| 日韩中文字幕欧美一区二区| 无人区码免费观看不卡| 亚洲精品成人久久久久久| 在线播放国产精品三级| 国产欧美日韩精品亚洲av| 在线国产一区二区在线| 两个人视频免费观看高清| 麻豆成人av在线观看| 国产欧美日韩一区二区精品| 日本与韩国留学比较| 精品久久久久久成人av| 精品免费久久久久久久清纯| 亚洲va日本ⅴa欧美va伊人久久| 欧美成人a在线观看| 亚洲国产高清在线一区二区三| 禁无遮挡网站| 永久网站在线| 夜夜夜夜夜久久久久| 一区福利在线观看| 亚洲三级黄色毛片| 制服丝袜大香蕉在线| 波野结衣二区三区在线| 别揉我奶头~嗯~啊~动态视频| 免费看a级黄色片| 国产精品久久电影中文字幕| 欧美精品国产亚洲| 久久久久久久久久成人| 18禁裸乳无遮挡免费网站照片| ponron亚洲| 成人鲁丝片一二三区免费| 国产精品av视频在线免费观看| 夜夜躁狠狠躁天天躁| 亚洲性夜色夜夜综合| 成年版毛片免费区| 麻豆成人午夜福利视频| 少妇人妻一区二区三区视频| 国产aⅴ精品一区二区三区波| 国产三级黄色录像| 日韩国内少妇激情av| 性色avwww在线观看| 成人av一区二区三区在线看| 老司机午夜福利在线观看视频| 香蕉av资源在线| 精品久久久久久久人妻蜜臀av| 少妇裸体淫交视频免费看高清| 久久久久国产精品人妻aⅴ院| 国产精华一区二区三区| 久久欧美精品欧美久久欧美| 欧洲精品卡2卡3卡4卡5卡区| 精品久久国产蜜桃| 久久久久国产精品人妻aⅴ院| 青草久久国产| 亚洲精品一区av在线观看| 亚洲不卡免费看| 十八禁网站免费在线| 亚洲一区二区三区不卡视频| 最后的刺客免费高清国语| 好男人电影高清在线观看| 成年女人毛片免费观看观看9| 我的女老师完整版在线观看| netflix在线观看网站| 欧美成人a在线观看| 国产精品综合久久久久久久免费| 精品午夜福利视频在线观看一区| 十八禁网站免费在线| 欧美乱色亚洲激情| 亚洲精华国产精华精| 精品人妻偷拍中文字幕| 亚洲av电影不卡..在线观看| АⅤ资源中文在线天堂| 人妻制服诱惑在线中文字幕| 麻豆国产av国片精品| 91av网一区二区| 精品一区二区三区av网在线观看| 在线观看美女被高潮喷水网站 | 亚洲国产精品成人综合色| 麻豆久久精品国产亚洲av| 国产单亲对白刺激| 天堂动漫精品| 内射极品少妇av片p| 性色avwww在线观看| 99国产极品粉嫩在线观看| 国产精品永久免费网站| a级毛片a级免费在线| 亚洲精品一卡2卡三卡4卡5卡| 国产美女午夜福利| 久久精品国产亚洲av香蕉五月| 天堂av国产一区二区熟女人妻| 日韩av在线大香蕉| 91字幕亚洲| 欧洲精品卡2卡3卡4卡5卡区| 欧美性猛交黑人性爽| 国产精品1区2区在线观看.| 欧美日韩福利视频一区二区| 午夜福利欧美成人| 国产伦精品一区二区三区四那| 啪啪无遮挡十八禁网站| 久久精品人妻少妇| www.熟女人妻精品国产| 久久久精品欧美日韩精品| 国产老妇女一区| 亚洲成a人片在线一区二区| 国产精品免费一区二区三区在线| 欧美日本视频| 99riav亚洲国产免费| 国产三级在线视频| 亚洲av成人精品一区久久| 51午夜福利影视在线观看| 免费在线观看影片大全网站| 特大巨黑吊av在线直播| 国产三级黄色录像| av天堂中文字幕网| 色视频www国产| 男女床上黄色一级片免费看| 老司机深夜福利视频在线观看| 真人一进一出gif抽搐免费| www日本黄色视频网| 人妻丰满熟妇av一区二区三区| 久久6这里有精品| 久久热精品热| av黄色大香蕉| 欧美日韩乱码在线| 成人av一区二区三区在线看| 欧美高清性xxxxhd video| 午夜福利免费观看在线| 亚洲人成网站在线播放欧美日韩| 性欧美人与动物交配| 亚洲18禁久久av| 婷婷亚洲欧美| 很黄的视频免费| 精品乱码久久久久久99久播| 亚洲va日本ⅴa欧美va伊人久久| 简卡轻食公司| 丰满的人妻完整版| 国产午夜精品论理片| 久久久色成人| 日本 av在线| 欧美日本视频| 亚洲欧美日韩高清专用| 热99在线观看视频| 久久久久免费精品人妻一区二区| 国产一区二区三区在线臀色熟女| 成人特级黄色片久久久久久久| 国产精品亚洲av一区麻豆| 哪里可以看免费的av片| 亚洲精品一卡2卡三卡4卡5卡| 久久99热6这里只有精品| www.999成人在线观看| 成年版毛片免费区| aaaaa片日本免费| 国产精品一区二区三区四区久久| 免费无遮挡裸体视频| 久久久久性生活片| 国产精品一区二区三区四区久久| 亚洲色图av天堂| 久久99热6这里只有精品| 免费高清视频大片| 国语自产精品视频在线第100页| 99热这里只有是精品在线观看 | 特级一级黄色大片| 久久久国产成人免费| 色综合亚洲欧美另类图片| 特级一级黄色大片| 熟女人妻精品中文字幕| 久久中文看片网| 欧美激情久久久久久爽电影| 国内精品久久久久久久电影| 亚洲国产欧洲综合997久久,| 婷婷精品国产亚洲av| 国产成人欧美在线观看| 琪琪午夜伦伦电影理论片6080| 日韩中文字幕欧美一区二区| 午夜福利成人在线免费观看|