• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Exact explicit solitary wave and periodic wave solutions and their dynamical behaviors for the Schamel–Korteweg–de Vries equation?

    2021-06-26 03:31:08BinHe何斌andQingMeng蒙清
    Chinese Physics B 2021年6期

    Bin He(何斌) and Qing Meng(蒙清)

    College of Mathematics and Statistics,Honghe University,Mengzi 661100,China

    Keywords: Schamel–Korteweg–de Vries equation,dynamical behavior,solitary wave solution,periodic wave

    1. Introduction

    The Schamel–Korteweg–de Vries (Schamel-KdV)equation[1–18]can be written as

    whereα,βandδare constants anduis the wave potential,which arises in the study of ion acoustic solitons in plasma physics when electron trapping is present, and also it governs the electrostatic potential for a certain electron distribution in velocity space.[1,2]We mention that Eq.(1)reduces to the well-known KdV equation[3,4]whenα=0 and reduces to the Schamel equation[5–7]whenβ=0. It is known that the KdV equation has other kinds of explicit solutions,particularly rational solutions,[8]which provide better approximations to real physical nonlinear waves in terms of the complexity and computational time. More generally, lump solutions could exist in the Kadomtsev–Petviashvili equation[9]and other(2+1)-generalizations of the KdV equation.[10]Due to the wide range of applications of Eq.(1),it is important to find its new exact wave solutions.Khateret al.[11]obtained the periodic wave solutions using the F-expansion method. Lee and Sakthivel[12]proposed the Exp-function method to generate a rich class of traveling wave solutions. Using a extended mapping method and the availability of symbolic computation, several classes of exact solutions are expressed by various JEFs and hyperbolic functions.[13]Wu and Liu[14]found two types of nonlinear wave solutions called compacton-like wave and kink-like wave solutions. The hyperbolic function solutions and the trigonometric function solutions with free parameters have been obtained in Ref. [15] using theG'/Gexpansion method. Giresunluet al.[16]obtained exact traveling wave solutions using Lie symmetry analysis together with the simplest equation method and the Kudryashov method,and constructed exact solutions using the conservation laws and symmetries of the underlying equation. Some analytical solutions are given in Ref.[17]using direct integration for negative and positive phase velocities. Applying the direct method and the method of elliptic ordinary differential equations,Kengneet al.[18]found some exact solutions and so forth.

    There are some interesting problems: How do solitary wave and periodic wave solutions depend on parameters of a system? Are there dynamical behaviors of solitary wave and periodic wave solutions to Eq. (1)? To our knowledge, these problems have not been considered before for Eq.(1). In this paper, we consider the existence and dynamical behaviors of the exact explicit solitary wave and periodic wave solutions to Eq. (1) in different regions of the parametric space. We also give all possible exact explicit parametric representations for solitary wave and periodic wave solutions to Eq.(1). The present results more completely answer the above problems and enrich the results of Refs.[11–18].

    In order to study the dynamical behaviors and to obtain the exact explicit traveling solutions to Eq. (1), we use the transformation

    where?∞<v(ξ)<+∞, andc(c/=0) is the wave speed,to reduce Eq. (1) to the following ordinary differential equation(ODE):

    where the primes represent the derivatives with respect toξ.Integrating Eq.(3)once with respect toξ,we have

    From Refs. [19–24], we know that a solitary wave solution to Eq. (4) corresponds to a homoclinic orbit of system(5), a peakon (or a periodic cusp wave) solution to Eq. (4)corresponds to a heteroclinic orbit (or the so-called connecting orbit)of system(5). Similarly, a periodic orbit of system(5)corresponds to a smooth periodic wave solution to Eq.(4).Thus, to investigate all possible solitary waves, peakons and periodic waves of Eq.(4),we need to find all homoclinic,heteroclinic and periodic annuli of system(5), which depend on the system parametersa,b,kandg. For simplicity, we only investigate the case ofa <0 in this paper. The case ofa >0 can be considered similarly,we omit it here.

    where?1=9b2?32ak. Additionally,

    2. Bifurcation sets and phase portraits of system(5)

    Using the transformation dξ=2vdτ,we obtain the associated Hamiltonian system of system(5)

    For a fixedh,the level curveH(v,y)=hdefined by Eq.(7)determines a set of invariant curves of system(6),which contains different branches of curves. Ashvaries, it defines different families of orbits of system(6)with different dynamical behaviors.

    Let

    LetM(ve,ye) be the coefficient matrix of the linearized system of Eq.(6)at equilibrium point(ve,ye)andJ(ve,ye)=det(M(ve,ye)),we have

    For an equilibrium point(ve,ye)of system(6),we know that(ve,ye)is a saddle point ifJ(ve,ye)<0, a center point ifJ(ve,ye)>0,a cusp ifJ(ve,ye)=0 and the Poincar′e index of(ve,ye)is zero.

    For fixedaandb,using the properties of the equilibrium points and the approach of dynamical system,[19–24]we can obtain the following bifurcation curves of system(6):

    Since both systems (5) and (6) have the same first integral (7), the two systems have the same topological phase portraits except the straight linev=0. Therefore we can obtain the bifurcation sets and phase portraits of system(5)from those of system(6).

    Fig.1. Bifurcation sets and phase portraits of system(5)when a <0.Parameters:(a)(k,b,g)∈A1.(b)(k,b,g)∈A2.(c)(k,b,g)∈A3.(d)(k,b,g)∈A4.(e)(k,b,g)∈A5. (f)(k,b,g)∈A6. (g)(k,b,g)∈A7. (h)(k,b,g)∈A8. (i)(k,b,g)∈A9. (j)(k,b,g)∈A10. (k)(k,b,g)∈A11. (l)(k,b,g)∈A12. (m)(k,b,g)∈A13. (n)(k,b,g)∈A14. (o)(k,b,g)∈A15. (p)(k,b,g)∈A16. (q)(k,b,g)∈A17. (r)(k,b,g)∈A18. (s)(k,b,g)∈A19. (t)(k,b,g)∈A20. (u)(k,b,g)∈A21.(v)(k,b,g)∈A22.(w)(k,b,g)∈A23.(x)(k,b,g)∈A24.(y)(k,b,g)∈A25.(z)(k,b,g)∈A26.(aa)(k,b,g)∈A27.(bb)(k,b,g)∈A28.(cc)(k,b,g)∈A29. (dd)(k,b,g)∈A30. (ee)(k,b,g)∈A31. (ff)(k,b,g)∈A32. (gg)(k,b,g)∈A33. (hh)(k,b,g)∈A34. (ii)(k,b,g)∈A35. (jj)(k,b,g)∈A36.

    Let

    we show that bifurcation sets and phase portraits of system(5)in Fig.1.

    3. Exact explicit solitary wave and periodic wave solutions to Eq.(1)

    According to Fig. 1 and the approach of dynamical system,[19–24]we present some exact explicit solitary wave and periodic wave solutions to Eq.(1)as follows.

    Proposition 3.1. Whena <0,(k,b,g)∈A13,Eq.(1)has oneω-shape solitary wave solution

    Substituting Eqs.(11)–(13)into dv/dξ=yand integrating them along the homoclinic orbit, the heteroclinic orbits,respectively,we have

    Completing the integrals in Eqs. (14)–(17), we can obtain one solitary wave solution, one peakon solution and one periodic cusp wave solution to Eq.(4)as follows:

    From Eqs.(2),(18)–(20),we can obtain oneω-shape solitary wave solution,one solitary wave solution and one periodic wave solution to Eq.(1)as Eqs.(8)–(10),respectively.

    The proof of Proposition 3.1 is completed.

    Proposition 3.2. Whena <0,(k,b,g)∈A14,Eq.(1)has oneω-shape solitary wave solution as Eq. (8), one solitary wave solution

    Substituting Eqs.(23)–(25)into dv/dξ=yand integrating them along the homoclinic orbit, the heteroclinic orbits,respectively,we have

    Completing the integrals in Eqs.(26)–(29),we can obtain one solitary wave solution to Eq.(4)as Eq.(18), one peakon solution and one periodic cusp wave solution to Eq.(4)as follows:

    From Eqs.(2),(18),(30)and(31),we can obtain oneωshape solitary wave solution, one solitary wave solution and one periodic wave solution to Eq. (1) as Eqs. (8), (21) and(22),respectively.

    The proof of Proposition 3.2 is completed.

    Proposition 3.3. Whena <0,(k,b,g)∈A21,Eq.(1)has oneω-shape solitary wave solution

    two solitary wave solutions

    Substituting Eqs.(36)–(39)into dv/dξ=yand integrating them along the homoclinic orbits, the heteroclinic orbits,respectively,we have

    Lettingv →α2in Eq.(43),we obtain

    Completing the integrals in Eqs. (40)–(44), we can obtain two solitary wave solutions,one peakon solution and one periodic cusp wave solution to Eq.(4)as follows:

    where

    From Eqs. (2), (45)–(48), we obtain oneω-shape solitary wave solution, two solitary wave solutions and one periodic wave solution to Eq.(1)as Eqs.(32)–(35),respectively.

    The proof of Proposition 3.3 is completed.

    Proposition 3.4. Whena <0,(k,b,g)∈A22,Eq.(1)has oneω-shape solitary wave solution

    two solitary wave solutions

    and one periodic wave solution

    where

    Substituting Eqs.(53)–(56)into dv/dξ=yand integrating them along the homoclinic orbits, the heteroclinic orbits,respectively,we have

    Lettingv →α5in Eq.(60),we obtain

    Completing the integrals in Eqs. (57)–(61), we can obtain two solitary wave solutions,one peakon solution and one periodic cusp wave solution to Eq.(4)as follows:

    where

    From Eqs.(2),(62)–(65),we obtain oneω-shape solitary wave solution, two solitary wave solutions and one periodic wave solution to Eq.(1)as Eqs.(49)–(52),respectively.

    The proof of Proposition 3.4 is completed.

    Substituting Eqs. (68) and (69) into dv/dξ=yand integrating them along the homoclinic orbits, respectively, we have

    Completing the integrals in Eqs. (70) and (71), we can obtain two solitary wave solutions to Eq.(4)as follows:

    From Eqs.(2),(72)and(73),we obtain two solitary wave solutions to Eq.(1)as Eqs.(66)and(67).

    The proof of Proposition 3.5 is completed.

    Completing the integrals in Eqs. (78) and (79), we can obtain two periodic wave solutions to Eq.(4)as follows:

    From Eqs.(2),(80)and(81),we obtain two periodic wave solutions to Eq.(1)as Eqs.(74)and(75).

    The proof of Proposition 3.6 is completed.

    Proposition 3.7. Whena <0,(k,b,g)∈A19,Eq.(1)has a periodic wave solution as Eq.(74). Whena <0, (k,b,g)∈A20,Eq.(1)has a periodic wave solution as Eq.(75).

    Completing the integral in Eq. (85), we can obtain one periodic wave solution to Eq. (4) as Eq. (80). From Eqs. (2)and (80), we obtain one periodic wave solution to Eq. (1) as Eq.(74).

    Completing the integral in Eq. (89), we can obtain one periodic wave solution to Eq. (4) as Eq. (81). From Eqs. (2)and (81), we obtain one periodic wave solution to Eq. (1) as Eq.(75).

    The proof of Proposition 3.7 is completed.

    Fig. 2. The level curves defined by H(v,y)=0 when a <0. Parameters: (a) (k,b,g)∈A13. (b) (k,b,g)∈A14. (c) (k,b,g)∈A21. (d)(k,b,g)∈A22.(e)(k,b,g)∈A35.(f)(k,b,g)∈A36.(g)(k,b,g)∈A33.(h)(k,b,g)∈A34.(i)(k,b,g)∈A19.(j)(k,b,g)∈A20.(k)(k,b,g)∈A27.(l)(k,b,g)∈A28. (m)(k,b,g)∈A29. (n)(k,b,g)∈A30. (o)(k,b,g)∈A31. (p)(k,b,g)∈A32.

    Proof For givenh= 0 in Figs. 1(aa)–1(ff), the level curves are shown in Figs. 2(k)–2(p), respectively. From Figs. 2(k)–2(p), we see that the graph defined byH(v,y)=0 consists of one periodic orbit whena <0, (k,b,g)∈A27(ora <0,(k,b,g)∈A28ora <0,(k,b,g)∈A29ora <0,(k,b,g)∈A30ora <0,(k,b,g)∈A31ora <0,(k,b,g)∈A32),the periodic orbit passing through points(γ6,0),(γ5,0).In(v,y)-plane,its expression is

    Substituting Eq. (91) into dv/dξ=yand integrating it along the periodic orbit,we have

    Completing the integral in Eq. (92), we can obtain one periodic wave solution to Eq.(4)as follows:

    From Eqs.(2)and(93),we obtain one periodic wave solution to Eq.(1)as Eq.(90).

    The proof of Proposition 3.8 is completed.

    4. Numerical simulations

    In this section, we simulate the analytical results along with above details of the analysis.

    Under the parameter conditionsa <0,(k,b,g)∈A13,we can draw the profiles of Eqs.(18)–(20)and Eqs.(8)–(10). For example,takinga=?1.2,b=?1.5,the profiles of Eqs.(18)–(20) and Eqs. (8)–(10) are shown in Figs. 3(a)–3(f), respectively.

    Fig.3. Profiles of Eqs.(18)–(20)and Eqs.(8)–(10).

    Under the parameter conditionsa <0,(k,b,g)∈A14,we can draw the profiles of Eqs.(18),(30), (31),(8),(21)and(22).For example, takinga=?1.2,b=1.5, the profiles of Eqs. (18), (30), (31), (8), (21) and (22) are shown in Figs. 4(a)–4(f),respectively.

    Fig.4. Profiles of Eqs.(18),(30),(31),(8),(21)and(22).

    Fig.5. Profiles of Eqs.(45)–(48)and Eqs.(32)–(35).

    Under the parameter conditionsa <0,(k,b,g)∈A35(ora <0, (k,b,g)∈A36) we can draw the profiles of Eqs. (72),(73),(66)and(67). For example,takinga=?1.5,b=?1.2,k=0.5,the profiles of Eqs.(72),(73),(66),and(67)are shown in Figs.7(a)–7(d),respectively.

    Fig.6. Profiles of Eqs.(62)–(65)and Eqs.(49)–(52).

    Fig.7. Profiles of Eqs.(72),(73),(66),and(67).

    Fig.8. Profiles of Eqs.(80),(81),(74)and(75).

    Fig.9. Profiles of Eqs.(93)and(90).

    5. Conclusion

    In summary,we have investigated the existences and dynamical behaviors of exact explicit solitary wave and periodic wave solutions of the Schamel–Korteweg–de Vries equation (1) in different regions of the parametric space. Some exact explicit solitary wave and periodic wave solutions to Eq.(1)whena <0,(k,b,g)∈A13(ora <0,(k,b,g)∈A14ora <0,(k,b,g)∈A21ora <0,(k,b,g)∈A22ora <0,(k,b,g)∈A35ora <0,(k,b,g)∈A36ora <0,(k,b,g)∈A33ora <0,(k,b,g)∈A34ora <0,(k,b,g)∈A19ora <0,(k,b,g)∈A20ora <0,(k,b,g)∈A27ora <0,(k,b,g)∈A28ora <0,(k,b,g)∈A29ora <0,(k,b,g)∈A30ora <0,(k,b,g)∈A31ora <0,(k,b,g)∈A32) are given in Propositions 3.1–3.8.Comparing with the results of[11–18], we obtain some new traveling wave solutions such asω-shape solitary wave solutions (8), (32), (49), solitary wave solutions (9), (21), (34),(51), and periodic wave solutions (10), (22), (35), (52), etc.Obviously, there are still many works of Eq. (1) for studying in future,for examples,does the Eq.(1)exist loop soliton and periodic loop soliton solutions? How to obtain more nontraveling wave solutions to Eq. (1)? We will study Eq. (1)further.

    亚洲熟妇中文字幕五十中出| 亚洲av不卡在线观看| 看片在线看免费视频| 亚洲中文字幕日韩| 精品一区二区免费观看| 久久韩国三级中文字幕| 男人狂女人下面高潮的视频| 尾随美女入室| 天天躁夜夜躁狠狠久久av| 日本精品一区二区三区蜜桃| 一边摸一边抽搐一进一小说| 亚洲美女搞黄在线观看 | 少妇被粗大猛烈的视频| 天美传媒精品一区二区| 97超级碰碰碰精品色视频在线观看| 日韩一区二区视频免费看| 波野结衣二区三区在线| 日韩欧美一区二区三区在线观看| 亚洲精品久久国产高清桃花| 亚洲天堂国产精品一区在线| 国产熟女欧美一区二区| 亚洲av免费在线观看| 精品久久久久久久末码| 天堂影院成人在线观看| 日本熟妇午夜| 亚洲成人精品中文字幕电影| 国产精品精品国产色婷婷| 久99久视频精品免费| 欧美一级a爱片免费观看看| 亚洲成人av在线免费| 黄片wwwwww| 午夜亚洲福利在线播放| 校园春色视频在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 国产男靠女视频免费网站| 九九热线精品视视频播放| 成人av在线播放网站| 国产大屁股一区二区在线视频| 国产黄片美女视频| 久久久久久久久大av| 亚洲高清免费不卡视频| 丝袜喷水一区| av在线蜜桃| 国产精品一区二区三区四区久久| 99久国产av精品国产电影| 级片在线观看| 日本黄大片高清| 亚洲自偷自拍三级| 日韩亚洲欧美综合| 免费一级毛片在线播放高清视频| 此物有八面人人有两片| 亚洲性夜色夜夜综合| 热99re8久久精品国产| 美女被艹到高潮喷水动态| 老熟妇仑乱视频hdxx| 国产av不卡久久| 99久国产av精品国产电影| 精品一区二区三区av网在线观看| 午夜福利高清视频| 国国产精品蜜臀av免费| 麻豆精品久久久久久蜜桃| 国产精品三级大全| 国产美女午夜福利| 色5月婷婷丁香| 国产三级在线视频| 嫩草影院新地址| 一级av片app| 国产午夜精品论理片| 2021天堂中文幕一二区在线观| a级毛片a级免费在线| 热99re8久久精品国产| 久久久久久久久中文| 欧美+亚洲+日韩+国产| 噜噜噜噜噜久久久久久91| 非洲黑人性xxxx精品又粗又长| 男女那种视频在线观看| 免费在线观看影片大全网站| 噜噜噜噜噜久久久久久91| 欧美色欧美亚洲另类二区| 日日摸夜夜添夜夜添av毛片| 日韩欧美精品v在线| 日韩欧美免费精品| 欧美高清性xxxxhd video| 欧美最新免费一区二区三区| 亚洲精品色激情综合| 久久午夜亚洲精品久久| 人妻丰满熟妇av一区二区三区| av在线蜜桃| 97在线视频观看| 美女 人体艺术 gogo| 97超碰精品成人国产| 免费看a级黄色片| 少妇裸体淫交视频免费看高清| 免费看日本二区| 人妻制服诱惑在线中文字幕| 高清日韩中文字幕在线| 日韩亚洲欧美综合| 91狼人影院| 精品人妻视频免费看| 国产黄色小视频在线观看| 国产精品久久久久久久久免| 亚洲成人av在线免费| 日韩欧美三级三区| 秋霞在线观看毛片| 成人高潮视频无遮挡免费网站| 男女下面进入的视频免费午夜| 欧美成人a在线观看| 亚洲第一电影网av| av在线蜜桃| 成人特级av手机在线观看| 日本撒尿小便嘘嘘汇集6| 久久久久久久久久成人| 久久久成人免费电影| 国产成人影院久久av| 国产色婷婷99| 国产三级在线视频| 69av精品久久久久久| 高清毛片免费看| 在线观看免费视频日本深夜| 国产精品日韩av在线免费观看| 99热6这里只有精品| 亚洲性久久影院| 3wmmmm亚洲av在线观看| 插阴视频在线观看视频| 看片在线看免费视频| 久久人人精品亚洲av| 日本a在线网址| 欧洲精品卡2卡3卡4卡5卡区| 人妻夜夜爽99麻豆av| a级毛片免费高清观看在线播放| 久久99热6这里只有精品| 少妇熟女aⅴ在线视频| 久久精品国产亚洲av香蕉五月| 春色校园在线视频观看| 尾随美女入室| 99热只有精品国产| 日韩 亚洲 欧美在线| 国产午夜精品论理片| 一区福利在线观看| 日韩高清综合在线| 国产精品电影一区二区三区| 少妇人妻一区二区三区视频| 最后的刺客免费高清国语| 欧美最黄视频在线播放免费| 亚洲精品日韩av片在线观看| 男插女下体视频免费在线播放| 亚洲丝袜综合中文字幕| 亚洲自拍偷在线| 色播亚洲综合网| 午夜久久久久精精品| 1000部很黄的大片| 黄色视频,在线免费观看| 午夜福利成人在线免费观看| av在线蜜桃| 亚洲性夜色夜夜综合| 亚洲人成网站在线播| h日本视频在线播放| 91麻豆精品激情在线观看国产| 别揉我奶头~嗯~啊~动态视频| 亚洲精华国产精华液的使用体验 | 岛国在线免费视频观看| 成人一区二区视频在线观看| 精品久久久久久久久亚洲| 18禁在线无遮挡免费观看视频 | 国产一区二区三区在线臀色熟女| 老司机福利观看| 插逼视频在线观看| 女生性感内裤真人,穿戴方法视频| 成人二区视频| 高清午夜精品一区二区三区 | 一级黄片播放器| 少妇熟女aⅴ在线视频| 精品乱码久久久久久99久播| 国产精品伦人一区二区| 亚洲中文字幕一区二区三区有码在线看| 一级毛片电影观看 | 性插视频无遮挡在线免费观看| 精品一区二区三区av网在线观看| eeuss影院久久| 久久久久九九精品影院| 亚洲性久久影院| 久久久久久伊人网av| 国产精品美女特级片免费视频播放器| 国产精品一区二区三区四区免费观看 | 欧美xxxx黑人xx丫x性爽| 精品一区二区三区av网在线观看| 3wmmmm亚洲av在线观看| 午夜激情福利司机影院| 女同久久另类99精品国产91| 深爱激情五月婷婷| 久久久精品大字幕| 日韩精品有码人妻一区| 久久人人爽人人片av| 精品福利观看| 成年女人永久免费观看视频| 蜜桃亚洲精品一区二区三区| 身体一侧抽搐| 毛片一级片免费看久久久久| 赤兔流量卡办理| 久久精品国产自在天天线| 亚洲av免费高清在线观看| 亚洲,欧美,日韩| 美女黄网站色视频| 一卡2卡三卡四卡精品乱码亚洲| 国产老妇女一区| 日韩强制内射视频| 午夜久久久久精精品| 午夜福利在线在线| 一本一本综合久久| 国产成人freesex在线 | 欧美+日韩+精品| 日韩欧美三级三区| 国产精品伦人一区二区| 久久精品91蜜桃| 欧美性感艳星| 乱码一卡2卡4卡精品| 久久精品人妻少妇| 在线观看午夜福利视频| 国产精品99久久久久久久久| 国产精品人妻久久久影院| 久久精品国产99精品国产亚洲性色| 国产精品久久久久久久电影| 两个人视频免费观看高清| 人妻丰满熟妇av一区二区三区| 精华霜和精华液先用哪个| 老司机影院成人| 少妇熟女aⅴ在线视频| АⅤ资源中文在线天堂| 欧美国产日韩亚洲一区| 国产男靠女视频免费网站| 男插女下体视频免费在线播放| 伦精品一区二区三区| 亚洲av美国av| 精品久久久久久成人av| 神马国产精品三级电影在线观看| 高清毛片免费观看视频网站| 99久久九九国产精品国产免费| 亚洲内射少妇av| 蜜桃久久精品国产亚洲av| 欧美+亚洲+日韩+国产| 在线观看午夜福利视频| 伦精品一区二区三区| 亚洲自偷自拍三级| 又爽又黄a免费视频| 国产三级在线视频| 熟女人妻精品中文字幕| 国产成人精品久久久久久| 午夜亚洲福利在线播放| 午夜日韩欧美国产| 91麻豆精品激情在线观看国产| 日本黄色片子视频| 91久久精品电影网| 嫩草影院入口| 人妻制服诱惑在线中文字幕| 九九热线精品视视频播放| 亚洲天堂国产精品一区在线| 看非洲黑人一级黄片| 国产黄色视频一区二区在线观看 | 欧美激情久久久久久爽电影| 乱人视频在线观看| 亚洲三级黄色毛片| 久久中文看片网| 男人狂女人下面高潮的视频| 91午夜精品亚洲一区二区三区| 欧美xxxx黑人xx丫x性爽| 伦精品一区二区三区| 亚洲熟妇熟女久久| 十八禁国产超污无遮挡网站| 精品久久久久久久久亚洲| 最近2019中文字幕mv第一页| 国内精品美女久久久久久| 女人十人毛片免费观看3o分钟| 日韩一区二区视频免费看| 国产蜜桃级精品一区二区三区| 久久久久性生活片| 日韩人妻高清精品专区| 久久久色成人| 精品熟女少妇av免费看| 日韩欧美精品免费久久| 老熟妇乱子伦视频在线观看| 69人妻影院| 午夜免费男女啪啪视频观看 | 亚洲,欧美,日韩| 成年女人永久免费观看视频| 免费观看精品视频网站| 亚洲精品色激情综合| 免费黄网站久久成人精品| 蜜臀久久99精品久久宅男| 欧美色视频一区免费| 亚洲av二区三区四区| 超碰av人人做人人爽久久| 免费一级毛片在线播放高清视频| 国产亚洲91精品色在线| 内地一区二区视频在线| 少妇被粗大猛烈的视频| 欧美成人免费av一区二区三区| 亚洲精品亚洲一区二区| 日韩 亚洲 欧美在线| 亚洲欧美精品自产自拍| 午夜免费激情av| 网址你懂的国产日韩在线| 国产精品爽爽va在线观看网站| 久久久精品大字幕| 国产精品人妻久久久影院| 久久精品国产鲁丝片午夜精品| 亚洲成人中文字幕在线播放| 欧美中文日本在线观看视频| 欧美日韩在线观看h| 中文字幕精品亚洲无线码一区| 欧美日韩一区二区视频在线观看视频在线 | a级毛片免费高清观看在线播放| 国产成人a区在线观看| 久久久成人免费电影| 欧美成人免费av一区二区三区| 国产三级在线视频| 成年免费大片在线观看| 国产av在哪里看| 亚洲人与动物交配视频| 日韩人妻高清精品专区| 欧美xxxx性猛交bbbb| 国产精品一区二区性色av| 最后的刺客免费高清国语| 网址你懂的国产日韩在线| 亚洲七黄色美女视频| 91狼人影院| 日韩强制内射视频| 日韩一区二区视频免费看| 天堂动漫精品| 精品一区二区三区av网在线观看| 国产高清视频在线观看网站| 乱码一卡2卡4卡精品| 男女做爰动态图高潮gif福利片| 国产v大片淫在线免费观看| 最好的美女福利视频网| 美女高潮的动态| 嫩草影视91久久| 成人av在线播放网站| 午夜福利在线观看免费完整高清在 | 男人和女人高潮做爰伦理| 亚洲色图av天堂| 日本a在线网址| 久久久久久久久久成人| 日韩成人av中文字幕在线观看 | 六月丁香七月| 免费av不卡在线播放| 色播亚洲综合网| 黄色配什么色好看| 免费人成视频x8x8入口观看| 黄色日韩在线| 18禁裸乳无遮挡免费网站照片| 国内精品一区二区在线观看| 亚洲aⅴ乱码一区二区在线播放| 欧美+日韩+精品| 亚洲性夜色夜夜综合| 18+在线观看网站| 九色成人免费人妻av| 青春草视频在线免费观看| 亚洲熟妇中文字幕五十中出| 美女被艹到高潮喷水动态| 变态另类丝袜制服| 99久久精品一区二区三区| 国产欧美日韩精品亚洲av| 国产色爽女视频免费观看| 国产精品,欧美在线| 尤物成人国产欧美一区二区三区| 99久久中文字幕三级久久日本| 国产在视频线在精品| 国产成人91sexporn| 国产乱人偷精品视频| 热99在线观看视频| 在线播放国产精品三级| 久久中文看片网| 真实男女啪啪啪动态图| 亚洲精品色激情综合| 久久久久久久亚洲中文字幕| 国产av不卡久久| 欧美潮喷喷水| 亚洲欧美成人综合另类久久久 | 久久久国产成人精品二区| 国产一区二区三区av在线 | 人妻夜夜爽99麻豆av| 亚洲av免费高清在线观看| 亚洲欧美精品自产自拍| 国产精品美女特级片免费视频播放器| 欧美又色又爽又黄视频| 久久精品国产99精品国产亚洲性色| 欧美日韩在线观看h| 亚洲精品456在线播放app| av在线观看视频网站免费| 99热全是精品| 色在线成人网| 午夜福利成人在线免费观看| 日韩欧美一区二区三区在线观看| 级片在线观看| 久久人人爽人人爽人人片va| a级一级毛片免费在线观看| 色哟哟·www| 少妇的逼水好多| 最近视频中文字幕2019在线8| 亚洲无线观看免费| 久久6这里有精品| 国产白丝娇喘喷水9色精品| 欧美成人a在线观看| 在线a可以看的网站| 高清毛片免费观看视频网站| 国产女主播在线喷水免费视频网站 | 国产成人freesex在线 | 国产乱人视频| 亚洲成a人片在线一区二区| 无遮挡黄片免费观看| 晚上一个人看的免费电影| 午夜a级毛片| 精品久久久久久成人av| 在线免费观看的www视频| 天堂网av新在线| 国产黄a三级三级三级人| 午夜视频国产福利| 观看美女的网站| 久久久久国产精品人妻aⅴ院| 成人午夜高清在线视频| 99视频精品全部免费 在线| 给我免费播放毛片高清在线观看| 22中文网久久字幕| 久久久国产成人精品二区| 欧美bdsm另类| 国产高清三级在线| 国产一区二区亚洲精品在线观看| 91狼人影院| 欧美激情在线99| 日本成人三级电影网站| 亚洲国产色片| 久久久午夜欧美精品| 久久精品国产99精品国产亚洲性色| 最新中文字幕久久久久| av在线老鸭窝| 九九热线精品视视频播放| 国产精品亚洲美女久久久| 亚洲一级一片aⅴ在线观看| 天堂影院成人在线观看| 97超视频在线观看视频| 麻豆一二三区av精品| 我要看日韩黄色一级片| 成年版毛片免费区| 日本一二三区视频观看| 国产乱人视频| 欧美成人精品欧美一级黄| 国产蜜桃级精品一区二区三区| 日韩欧美国产在线观看| 国国产精品蜜臀av免费| 免费看光身美女| 中国美女看黄片| 日本-黄色视频高清免费观看| 99在线视频只有这里精品首页| 国产三级中文精品| 国产v大片淫在线免费观看| 日韩欧美一区二区三区在线观看| 久久久精品大字幕| 美女xxoo啪啪120秒动态图| 久久久久国产精品人妻aⅴ院| 一级毛片我不卡| 免费在线观看影片大全网站| 美女高潮的动态| eeuss影院久久| 一本精品99久久精品77| 色哟哟·www| 特级一级黄色大片| 亚洲五月天丁香| 欧美日韩一区二区视频在线观看视频在线 | 少妇的逼好多水| 成人精品一区二区免费| 亚洲欧美日韩卡通动漫| 欧美三级亚洲精品| 日韩 亚洲 欧美在线| 久久国产乱子免费精品| 尤物成人国产欧美一区二区三区| 国产一区二区激情短视频| 久久久久久久久久成人| 国产精品久久视频播放| 久久久久久九九精品二区国产| 97超级碰碰碰精品色视频在线观看| 最新中文字幕久久久久| 大又大粗又爽又黄少妇毛片口| av在线天堂中文字幕| 亚洲经典国产精华液单| 能在线免费观看的黄片| 亚洲精品成人久久久久久| 观看免费一级毛片| 亚洲性夜色夜夜综合| 一个人看的www免费观看视频| 亚洲av免费高清在线观看| 亚洲真实伦在线观看| 欧美高清性xxxxhd video| 黑人高潮一二区| 中文字幕av在线有码专区| 一夜夜www| 欧美日韩综合久久久久久| 国产成人aa在线观看| 国产一区二区在线观看日韩| 日韩大尺度精品在线看网址| 一夜夜www| 女同久久另类99精品国产91| 一级黄片播放器| 国产精品av视频在线免费观看| 99精品在免费线老司机午夜| av在线播放精品| 国产午夜福利久久久久久| a级毛色黄片| 一a级毛片在线观看| 国产大屁股一区二区在线视频| 99在线人妻在线中文字幕| 伊人久久精品亚洲午夜| 99riav亚洲国产免费| 波多野结衣高清无吗| 亚洲精品乱码久久久v下载方式| 99热只有精品国产| 在线播放无遮挡| 欧美xxxx黑人xx丫x性爽| 大型黄色视频在线免费观看| 亚洲精品456在线播放app| 高清日韩中文字幕在线| 久久亚洲国产成人精品v| 国产精品久久久久久av不卡| 精品人妻偷拍中文字幕| 亚洲美女搞黄在线观看 | 亚洲精华国产精华液的使用体验 | 最近最新中文字幕大全电影3| 露出奶头的视频| av天堂中文字幕网| 国产中年淑女户外野战色| 久久精品久久久久久噜噜老黄 | 亚洲在线自拍视频| 欧美日韩乱码在线| 国内精品美女久久久久久| 成年女人毛片免费观看观看9| 日本精品一区二区三区蜜桃| 一个人看视频在线观看www免费| 男插女下体视频免费在线播放| 最好的美女福利视频网| av在线老鸭窝| 日本爱情动作片www.在线观看 | 成年免费大片在线观看| 日韩欧美三级三区| 两性午夜刺激爽爽歪歪视频在线观看| 日韩亚洲欧美综合| 久久精品国产自在天天线| 午夜精品一区二区三区免费看| 激情 狠狠 欧美| av天堂中文字幕网| a级毛色黄片| 国产精品国产三级国产av玫瑰| 亚洲欧美成人精品一区二区| 国模一区二区三区四区视频| 久久热精品热| 久久久久久久久久久丰满| 噜噜噜噜噜久久久久久91| 99视频精品全部免费 在线| 成年免费大片在线观看| 日本精品一区二区三区蜜桃| 特级一级黄色大片| 久久国内精品自在自线图片| 国产真实伦视频高清在线观看| 亚洲在线观看片| av视频在线观看入口| 天天躁夜夜躁狠狠久久av| 亚洲久久久久久中文字幕| 国产黄a三级三级三级人| 三级经典国产精品| 国产淫片久久久久久久久| 日本 av在线| 一级毛片aaaaaa免费看小| 嫩草影院入口| 亚洲精品日韩在线中文字幕 | 亚洲精品一卡2卡三卡4卡5卡| 韩国av在线不卡| 一进一出好大好爽视频| 国产伦在线观看视频一区| 日本一二三区视频观看| 国产精品无大码| 大又大粗又爽又黄少妇毛片口| 久久韩国三级中文字幕| 亚洲av成人精品一区久久| 两个人视频免费观看高清| 大型黄色视频在线免费观看| av黄色大香蕉| 男女之事视频高清在线观看| 午夜福利高清视频| 乱码一卡2卡4卡精品| 一夜夜www| 国产高潮美女av| 特大巨黑吊av在线直播| 久久久久久久午夜电影| 亚洲中文字幕日韩| 欧美成人免费av一区二区三区| 一级毛片电影观看 | 国产成人a区在线观看| 欧美zozozo另类| 日韩一本色道免费dvd| 最近最新中文字幕大全电影3| av在线播放精品| 久久久久久九九精品二区国产| 国产乱人偷精品视频| 日韩成人av中文字幕在线观看 | 成人亚洲精品av一区二区| 国产一区二区激情短视频| 亚洲人成网站在线播放欧美日韩| 国产精品久久久久久久久免| 久久久久久久午夜电影| av.在线天堂| 免费黄网站久久成人精品| 俄罗斯特黄特色一大片| 色哟哟哟哟哟哟| 亚洲国产精品国产精品| 一夜夜www| 久久欧美精品欧美久久欧美| 天堂网av新在线|