• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Darboux Transformation for a Negative Order AKNS Equation

    2019-08-20 09:24:40WajahatRiaz
    Communications in Theoretical Physics 2019年8期

    H.Wajahat A.Riaz

    Department of Physics,University of Punjab,Quaid-e-Azam Campus,Lahore-54590,Pakistan

    AbstractUsing a quasideterminant Darboux matrix,we compute soliton solutions of a negative order AKNS(AKNS(?1))equation.Darboux transformation(DT)is defined on the solutions to the Lax pair and the AKNS(?1)equation.By iterated DT to K-times,we obtain multisoliton solutions.It has been shown that multisoliton solutions can be expressed in terms of quasideterminants and shown to be related with the dressed solutions as obtained by dressing method.

    Key words:integrable systems,solitons,Darboux transformation,quasideterminants

    1 Introduction

    Many integrable systems,such as Korteweg de Vries(KdV),mKdV equation admit both positive and negative hierarchy

    where R is referred to as recursion operator,whereas n with the negative values correspond to negative flow of hierarchy and n with positive values are referred to as positive flow of hierarchy.A well known example of negative hierarchy is the sine-Gordon equation(which has potential applications in Josephson transmission line,[1?2]ultrashort pulse propagation in a resonant medium[3])can be derived from the mKdV equation.The coupled dispersionless integrable equations are negative flow of the non-linear Schrdinger hierarchy.Various integrable equations,such as Camnassa-Holm equation,[4?5]Degasperis-Procesi equation,[6]and the short-pulse equation[7?8]are associated to negative order equations through reciprocal transformations.The significance of the negative order equations is that one can generate infinitely many symmetries for nonisospectral Ablowitz-Ladik lattice hierarchy.[9]Note that infinitely many symmetries are usually obtained in case of isospectral hierarchies.So negative order flows provide some new interesting results not only from the point of view of integrability,but also interesting dynamically,both mathematically and physically.

    Many systematic methods–inverse scattering transform(IST),Bcklund transformation,Hirota bilinear method,Darboux transformation,the trigonometric function series method,the modified mapping method and the extended mapping method,the bifurcation method etc.,have been used to compute exact solutions of various nonlinear partial differential equations in the literature(see Refs.[10]–[17]and references therein).Darboux transformation(DT)is one of the powerful and effective technique used to generate solutions of a given nonlinear integrable equation in soliton theory.Various integrable equations have been studied successfully by the approach of DT and obtained explicit solutions.Meanwhile the solutions are expressed in terms of Wronskian,quasi-Wronskian,Grammian,quasi-Grammian,and quasi-determinants in the literature.[18?24]

    The present work is about to study the DT of the negative order AKNS(denoted by AKNS(?1))equation.The AKNS(?1)equation and its multi-component generalizations have been studied by virtue of Hirota method and the soliton solutions have been investigated.[25?26]Noncommutative generalization of the AKNS(?1)equation has been discussed in Ref.[27].Meanwhile,DTs and soliton solutions have also been offered.

    In this paper,we study the DT of AKNS(?1)equation.We define a DT in terms of Darboux matrix on the solutions to the Lax pair and the solutions of the AKNS(?1)equation.The K-soliton solution is expressed in terms of quasideterminants.Further,quasideterminant solutions are shown to be related with the dressed solutions.We compute soliton solutions of the AKNS(?1)equation.One-,two-,and three-soliton solutions have been computed explicitly.

    2 Lax Pair

    We start with the Lax pair of the AKNS(?1)equation attribute to[25]

    where ? = ?(x,t, η)is a 2 × 2 eigen-matrix,which depends on x,t and the spectral parameter η.The matrices A and B are given by

    with

    where u(x,t)and v(x,t)are scalar functions,whereas ω = ??1(uv)and ?x??1= ??1?x=1, ?x≡ ?/?x.The compatibility condition i.e.,?xt= ?txof the Lax pair(2)–(3)implies a zero-curvature condition i.e.,At? Bx+[A,B]=0,which is equivalent to the equation of motion given by

    Equation(6)is referred to as matrix AKNS(?1)equation.By using Eq.(5),matrix AKNS(?1)equation(6)for the scalar functions u(x,t)and v(x,t)reads

    under the boundary conditions u→0,v→0 for|x|→∞.For u=v,Eq.(7)can be written as

    And upon using u=ˉv in Eq.(7),one can obtain complex AKNS(?1)equation given by

    It should be noted that in the case of the reductions u=v or u=ˉv,which are most important for applications(these reductions are considered in Sec.4,the system(2.6)reduces to well-studied equations.By use of the variable ω=(uv)introduced earlier,this system is written as

    The elimination of ω brings to the system

    For u=v,the further substitution ut=sinq brings to the sine-Gordon equation

    which coincide with the Maxwell-Bloch system,up to a scaling and interchange of x and t.

    The solutions of the Lax pair(2)–(3)and Eq.(6)can be obtained by using DT.In the next section,we define DT by means of a Darrboux matrix on the solutions to the Lax pair and the solutions of the nonlinear evolution equation(6).

    3 Darboux Transformation

    In what follows,we apply DT on the Lax pair(2)–(3)and the AKNS(?1)equation(6)to obtain soliton solutions.We define a DT on the solutions of the Lax pair equations(2)–(3)by means of a 2 × 2 Darboux matrix D(x,t;η).The Darboux matrix D(x,t;η)acts on the solution ? of the Lax pair(2)–(3)to give another solutioni.e.,

    The covariance of the Lax pair(2)–(3)under the DT requires that the new solutionsatisfies the same Lax pair equations,but with the matricesi.e.,

    with

    where

    To find a DT on the matrices,and.For this,we consider Darboux matrix to be

    where I is the 2×2 identity matrix and N is the 2×2 auxiliary matrix,can be defined as

    where Θ is the 2×2 particular matrix solution to the Lax pair(2)–(3),which is constructed by the eigen-matrix ? evaluated at different values of η,whereas the matrix Λ is a 2×2 diagonal matrix with eigenvalues η1, η2.Therefore,matrix Θ reads

    In Eq.(21)|e1,|e2are the two constant column basis vectors,andin the matrix Θ is a column vector solution to the Lax pair(2)and(3).For η= ηi(i=1,2),we have

    For Λ =diag(η1, η2),the Lax pair(22)–(23)can be written in matrix form as

    where Θ is a particular matrix solution to the Lax pair(2)–(3)at a particular eigen-value matrix Λ.

    Based on the above findings,one can prove the following propositions.

    Proposition 1Under the DT(19),the new matrix solutionsandgiven in Eq.(18)have the same form as V in Eq.(5),provided the matrix N satisfies the following conditions

    ProofThe relation betweenand V is established and given in Eq.(26).We now show that the choice of matrix N= ΘΛΘ?1satisfies the condition(27).For this,let us operate?xon the matrix N= ΘΛΘ?1and use Eq.(24),we have

    which is condition(27).Thus,the proof is complete.

    Proposition 2The new solutionsandgiven by Eq.(18)have the same form as in Eq.(5),if the following conditions are ful filled

    ProofTo proof the condition(30),let us operate?ton N= ΘΛΘ?1and use Eq.(25),we have

    which is condition(30).This completes the proof.

    Remark 1We remark here that Darboux transformation preserves the system i.e.,if ? and V,W,V0are respectively,the solutions of the Lax pair(2)–(3)and nonlinear evolution equation(6),then ?[K]and V[K],W[K],(that correspond to multi-soliton solutions)are also the solutions of the same equations.

    In this paper,we will use quasideterminants that are expanded about q×q matrix.The quasideterminant expression of Q×Q expanded about q×q matrix is given as

    For details and properties see e.g.,Refs.[28]–[29].

    For N= ΘΛΘ?1,it seems appropriate here to express the solutions ?[K],V[K],,W[K]in terms of quasideterminants.The matrix solutionto the Lax pair(2)–(3)with the particular matrix solution Θ in terms of quasideterminant can be expressed as

    For the matrix solutions Θkat Λ = Λk(k=1,2,...,K)to the Lax pair(2)–(3),the K-times repeated DT ?[K]in terms of quasideterminant is written as(using the notation=?[1],Θ1=Θ,Λ1=Λ)

    Similarly,the quasideterminant solutions V[K],,and W[K]can be expressed as

    For an inductive proof of the obtained results similar to in Eqs.(34)–(36),reader is referred to see Ref.[18].The K-fold DT(34)can also be written in an appropriate form as

    where T(K)is the 2×2 matrix,whereas,and ? are 2K×2,2×2K,and 2K×2K matrices respectively,given by

    whereTrepresents usual transpose.Similarly,re-written the expression(36)as

    where M(K)is the 2×2 matrix andis the 2K×2 matrix.The components(or elements)of the matrices T(K)and M(K)can be decomposed as

    The quasideterminant solutions of the AKNS(?1)equation can also be related with the dressed solutions obtained by Darboux-dressing transformation.[30]In this method,matrix D referred to as dressing function(or Darboux-dressing matrix)is studied in the extended complex η-plane.The dressing function should be meromorphic in the complex plane i.e.it has some pole in the domain of η.It has a singular behavior at η= μ and can be expressed in terms of Hermitian projectors.To relate quasideterminant solutions with dressed solutions,we re-write the matrix N as

    Let us define column solutions|θ1,|θ2of the Lax pair(2)–(3)at η = η1and η = η2(η1η2)respectively,then we have

    By taking η1=μ,η2=,we may write the matrix N in terms of superposition of Hermitian projectors i.e.,

    where P is a Hermitian projector that satisfy P2=P,P+P⊥=I.It should be noted that projector P can be completely described by the background of two subspaces S1=ImP spanned by the basis|eiand S2=KerP spanned by|ej(ij).This yields the following interpretation:

    By using P⊥=I?P in Eq.(45),we have

    Now Darboux matrix D in terms of Hermitian projector can be written as

    where|θ1is the column vector solution to the Lax pair(2)–(3).The K-times repeated DT on the matrix ?[K]in terms of Hermitian projector can be written as

    Similarly,the expression for W[K]in terms of Hermitian projector is

    where

    In the same way,one can also write expression for V[K],in terms of P.

    4 Soliton Solutions

    In this section,we shall discuss two cases i.e.,(u=reduction)that correspond to complex AKNS(?1)equation(9)and(u=v reduction)that correspond to Eq.(8)and compute explicitly one-,two-,and three-soliton solutions for both of the equations.In order to obtain soliton solution,let us take u=v=0 as a trivial solution,so that the Lax pair(2)–(3)with this seed(or trivial solution)are written as

    Equation(52)is satisfied if

    where ζ(ηk)= ηkx+(1/4ηk)t+ ηk0,k=1,...,K.

    4.1 u= Reduction

    In what follows,by expanding quasideterminant Darboux matrix,we express DTs on the solutions to the complex AKNS(?1)equation as a ratio of determinants.

    For a complex AKNS(?1)equation(9),matrix W in Eq.(5)takes the form

    The particular matrix solution Θ to the Lax pair of the complex AKNS(?1)equation can be written as

    By iterating particular matrix Θ to K-times,one can obtain the multi solutions to the Lax pair of the complex AKNS(?1)equation.For k=1,2,...,K,Eq.(55)reads

    From Eqs.(39)and(54),we obtain the K-fold DTs to the solutions of the complex AKNS(?1)equation given by

    It may be noted that,from Eq.(35)one can find the same results for the DT on the solutions of the complex AKNS(?1)equation as in Eq.(57).To get one-soliton solution let us take K=1,so that the matrices(1),Θ1,Λ1are written as

    Therefore the matrix elementin the matrix M(1)can be computed as

    Similarly,

    From Eqs.(61)and(62),it can be verified that=.Using Eq.(53),particular matrix solution to the Lax pair of the complex AKNS(?1)equation is given by

    By using Eqs.(61)and(63)in Eq.(57),we obtain

    The solution(64)is plotted in Fig.1.For two-soliton K=2,the matrices(2),?,being 4×2,4×4,2×4 respectively,to be taken as follow

    The two-fold DT on the solution to the complex AKNS(?1)equation is

    Similarly,one can also expressas a ratio of two determinants.By substitutingin Eqs.(65)with(66),we obtain two-soliton solution to the complex AKNS(?1)equation(9).The two-soliton solutions are depicted in Figs.2 and 3.

    Fig.1 (Color online)One-soliton solution to the complex AKNS(?1)equation(9)with the choice of parameters:η1=0.5 ?0.5i,η10=0.

    Fig.2 (Color online)Two-soliton solution to the complex AKNS(?1)equation for the choice of parameters: η1=?0.4?0.4i,η2=0.3+0.3i.

    In Fig.2(a)for η10=0, η20= ?5,it can be seen that two solitons traveling parallel and are far from each other with their respective shapes and motions.However,when η10=0, η20=0(Fig.2(b)),soliton with the shorter amplitude interact elastically with other soliton having taller amplitude and both of them are trying to exchange their energies,while in Fig.2(c)for η10=0, η20=5,two solitons recover their respective original profiles and move parallel far from to each other as the beginning.Similar phenomena is observed for periodic solitons Figs.3(a)–(3c).

    Fig.4 (Color online)Scattering of two solitons with the velocities nearby close to each other.

    Fig.5 (Color online)Scattering of two solitons with the same velocities.

    Fig.6 (Color online)(a)shows scattering of three solitons with their relative velocities,while(b)shows scattering of three solitons with the velocities are close to each other for Eq.(9).

    We now consider another configuration of two soliton solution that has been shown in Figs.4 and 5.In Figs.4 and 5,we observe different effects of two-soliton solution to the complex AKNS(?1)equation with respect to particular values of their spectral parameters.Figure 4 shows the interaction between two solitons propagating with the velocities nearby close to each other.Figure 5 depicts the interaction of two solitons with their bound states having the same velocities(i.e.,?z=z1?z2=0,where z represents the velocity of each soliton).The bright area means the amplitude is largest,while the area with the cyanic background shows the amplitude is nearly to zero.Three-soliton solution numerically is shown in Fig.6.

    4.2 u=v Reduction

    For u=v,matrix W in Eq.(5)takes the form

    The K-fold DT to the solution of the AKNS(?1)equation(8)yields

    Similarly

    Equations(69)and(70)imply that.By using Eq.(69)in Eq.(68),one-soliton(K=1)solution to the AKNS(?1)equation(8)given by

    Fig.7 (Color online)One-,two-,and three-soliton solutions to the AKNS(?1)equation(8).

    The asymptotic limit i.e.,when t→ ∞,we have ζ→∞,Eq.(71)becomes

    So we get the much simpler expression of the onesoliton solution in the asymptotic limit.Similarly,K-soliton solution in the asymptotic limit reads

    5 Concluding Remarks

    In this paper,we have discussed Darboux transformation for a negative order AKNS equation.Using quasideterminant Darboux matrix,we have computed multisoliton solutions of the AKNS(?1)equation.The K-soliton solutions have been expressed in simple quasideterminant form through iteration process and shown to be related with the dressed solutions as obtained by dressing method.As an example,we have presented one-,two-,and threesoliton solutions of the AKNS(?1)equation.It has also been shown that,each envelope soliton able to resume its original shape after collision,which shows that collision between envelope solitons is elastic collision.It would be interesting to study the discrete,semi-discrete and supersymmetric generalization of the model via Darboux transformation.

    成人亚洲精品av一区二区| 白带黄色成豆腐渣| 日本五十路高清| 久久精品国产清高在天天线| 亚洲七黄色美女视频| 久久久国产成人免费| 国产久久久一区二区三区| 麻豆一二三区av精品| 国产精品亚洲一级av第二区| 色综合亚洲欧美另类图片| 国产三级黄色录像| 男人和女人高潮做爰伦理| 成年免费大片在线观看| 韩国av一区二区三区四区| 不卡一级毛片| 欧美黑人欧美精品刺激| 一边摸一边抽搐一进一小说| 在线播放国产精品三级| 国产精品98久久久久久宅男小说| 丁香欧美五月| 成年女人永久免费观看视频| 99精品久久久久人妻精品| 国内久久婷婷六月综合欲色啪| 亚洲一区二区三区不卡视频| 日韩人妻高清精品专区| 琪琪午夜伦伦电影理论片6080| 一本久久中文字幕| 中文在线观看免费www的网站| 欧美乱色亚洲激情| 女人高潮潮喷娇喘18禁视频| 精品久久久久久久毛片微露脸| 男人和女人高潮做爰伦理| 丰满人妻熟妇乱又伦精品不卡| 9191精品国产免费久久| 亚洲精品一区av在线观看| 亚洲精品美女久久av网站| 亚洲五月天丁香| 欧美中文日本在线观看视频| 亚洲自偷自拍图片 自拍| 日韩免费av在线播放| 色吧在线观看| 午夜福利视频1000在线观看| xxx96com| 我的老师免费观看完整版| 91麻豆精品激情在线观看国产| а√天堂www在线а√下载| 精品一区二区三区四区五区乱码| 看免费av毛片| 久久久久久九九精品二区国产| 亚洲av美国av| 1024手机看黄色片| 国产精品电影一区二区三区| 国产乱人视频| 午夜福利免费观看在线| 久久久久性生活片| 欧美日本视频| 搡老岳熟女国产| 99国产综合亚洲精品| 99久久国产精品久久久| 中文字幕高清在线视频| 成人国产一区最新在线观看| or卡值多少钱| 久久久国产成人精品二区| 色综合婷婷激情| 一区二区三区高清视频在线| 国产一区二区在线av高清观看| 国产亚洲精品久久久com| 欧美国产日韩亚洲一区| 在线观看66精品国产| 美女午夜性视频免费| 亚洲九九香蕉| 在线看三级毛片| 国产精品野战在线观看| 日韩免费av在线播放| 国产欧美日韩精品亚洲av| 少妇熟女aⅴ在线视频| 99国产精品一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 亚洲国产精品合色在线| 三级男女做爰猛烈吃奶摸视频| 在线观看免费视频日本深夜| 亚洲精品在线观看二区| 97人妻精品一区二区三区麻豆| 国产又色又爽无遮挡免费看| 哪里可以看免费的av片| 性色av乱码一区二区三区2| 国产成人精品久久二区二区91| 日本 欧美在线| 国产亚洲精品久久久com| 99精品久久久久人妻精品| 最近在线观看免费完整版| 热99re8久久精品国产| 久久精品国产99精品国产亚洲性色| 精品日产1卡2卡| 国产精品永久免费网站| 身体一侧抽搐| 国产一区二区三区在线臀色熟女| 91麻豆av在线| 国产亚洲av高清不卡| 成人鲁丝片一二三区免费| 中文字幕最新亚洲高清| 两个人的视频大全免费| 欧美一区二区国产精品久久精品| 亚洲欧美激情综合另类| 国产免费男女视频| 黄色女人牲交| 久9热在线精品视频| 中文字幕久久专区| 日韩精品青青久久久久久| 成人特级av手机在线观看| 国产成人aa在线观看| 丁香六月欧美| 日韩成人在线观看一区二区三区| 亚洲九九香蕉| 亚洲色图 男人天堂 中文字幕| xxxwww97欧美| 久久久久精品国产欧美久久久| 国产高清三级在线| 亚洲午夜理论影院| 午夜两性在线视频| 亚洲精品在线观看二区| 国产欧美日韩一区二区三| 视频区欧美日本亚洲| 免费看十八禁软件| 国产97色在线日韩免费| 黑人欧美特级aaaaaa片| 一本综合久久免费| 999久久久精品免费观看国产| 色在线成人网| 国产精品av视频在线免费观看| 久久久国产精品麻豆| 性色avwww在线观看| 特大巨黑吊av在线直播| 色综合婷婷激情| 男人舔女人的私密视频| 哪里可以看免费的av片| 国产亚洲av嫩草精品影院| 午夜久久久久精精品| 757午夜福利合集在线观看| 亚洲av成人不卡在线观看播放网| 欧美黑人欧美精品刺激| 两性夫妻黄色片| 久久伊人香网站| 真人做人爱边吃奶动态| 免费av不卡在线播放| 无遮挡黄片免费观看| 欧美绝顶高潮抽搐喷水| 精品久久久久久久末码| 久久亚洲精品不卡| 在线观看66精品国产| 日本三级黄在线观看| 黄片大片在线免费观看| 女生性感内裤真人,穿戴方法视频| 精品国产美女av久久久久小说| 女人高潮潮喷娇喘18禁视频| 国产精品久久久久久久电影 | 岛国在线观看网站| 国产精品99久久久久久久久| 中文在线观看免费www的网站| 日本三级黄在线观看| 中文字幕最新亚洲高清| 精品久久蜜臀av无| x7x7x7水蜜桃| 欧美中文日本在线观看视频| 国内精品久久久久久久电影| or卡值多少钱| 91麻豆精品激情在线观看国产| 在线免费观看的www视频| 日韩成人在线观看一区二区三区| 国产真人三级小视频在线观看| 亚洲片人在线观看| 在线免费观看的www视频| 久久久国产精品麻豆| 亚洲av熟女| 国产淫片久久久久久久久 | 精品无人区乱码1区二区| 在线观看午夜福利视频| 中亚洲国语对白在线视频| 99riav亚洲国产免费| 一本一本综合久久| 狂野欧美白嫩少妇大欣赏| 午夜精品在线福利| 99在线视频只有这里精品首页| 丝袜人妻中文字幕| 18禁裸乳无遮挡免费网站照片| 女警被强在线播放| 免费看日本二区| 制服人妻中文乱码| 国产激情偷乱视频一区二区| 成人永久免费在线观看视频| 夜夜看夜夜爽夜夜摸| 午夜免费成人在线视频| 久久精品国产亚洲av香蕉五月| 国产成人福利小说| 精品国产乱码久久久久久男人| 欧美xxxx黑人xx丫x性爽| 青草久久国产| 国产高清视频在线观看网站| 国产野战对白在线观看| 嫩草影视91久久| 在线观看66精品国产| 欧美绝顶高潮抽搐喷水| 日本熟妇午夜| 国产又黄又爽又无遮挡在线| 久久性视频一级片| 欧美色视频一区免费| 亚洲一区高清亚洲精品| 国内久久婷婷六月综合欲色啪| 中文字幕av在线有码专区| 亚洲av五月六月丁香网| 亚洲专区中文字幕在线| 日韩欧美一区二区三区在线观看| 国产一区二区激情短视频| 18禁美女被吸乳视频| 亚洲人成电影免费在线| 日韩欧美在线二视频| 国产成人av激情在线播放| 看片在线看免费视频| 久久久久精品国产欧美久久久| 国产av一区在线观看免费| 久久久久国产一级毛片高清牌| 欧美国产日韩亚洲一区| 精品久久久久久久久久久久久| 亚洲avbb在线观看| 精品午夜福利视频在线观看一区| 搡老岳熟女国产| 欧美另类亚洲清纯唯美| 成人av在线播放网站| 亚洲激情在线av| 亚洲精品美女久久久久99蜜臀| 久久久水蜜桃国产精品网| 最近最新免费中文字幕在线| 偷拍熟女少妇极品色| 18禁黄网站禁片免费观看直播| 俄罗斯特黄特色一大片| 狂野欧美激情性xxxx| 国产伦在线观看视频一区| 国产乱人伦免费视频| 国产男靠女视频免费网站| 久久久国产精品麻豆| 热99re8久久精品国产| 天堂网av新在线| 欧美日韩瑟瑟在线播放| 久久这里只有精品中国| a级毛片在线看网站| 国产高清videossex| 精品久久久久久久久久免费视频| 亚洲专区国产一区二区| 天天躁狠狠躁夜夜躁狠狠躁| 欧美日本亚洲视频在线播放| 少妇的逼水好多| 91九色精品人成在线观看| 久久香蕉精品热| 国产野战对白在线观看| 99精品欧美一区二区三区四区| 噜噜噜噜噜久久久久久91| 免费看十八禁软件| 狂野欧美激情性xxxx| 亚洲欧美日韩高清在线视频| 人人妻人人看人人澡| h日本视频在线播放| 国内少妇人妻偷人精品xxx网站 | 天堂√8在线中文| 日本a在线网址| bbb黄色大片| 久久久精品大字幕| 免费av不卡在线播放| 午夜福利18| 精品人妻1区二区| 日韩欧美三级三区| 一进一出好大好爽视频| 精品国产乱码久久久久久男人| 黄色视频,在线免费观看| 成在线人永久免费视频| 男人舔奶头视频| 一级黄色大片毛片| 久久人人精品亚洲av| 成人精品一区二区免费| 欧美日韩综合久久久久久 | 久久中文字幕人妻熟女| 精品欧美国产一区二区三| 欧美日韩亚洲国产一区二区在线观看| 亚洲av片天天在线观看| 在线a可以看的网站| 又粗又爽又猛毛片免费看| 在线永久观看黄色视频| 黄色视频,在线免费观看| 禁无遮挡网站| 无人区码免费观看不卡| 非洲黑人性xxxx精品又粗又长| 很黄的视频免费| 中出人妻视频一区二区| 久久久久久久久免费视频了| 国产伦在线观看视频一区| 欧美激情久久久久久爽电影| 国产精品久久久久久久电影 | 免费在线观看日本一区| 成人精品一区二区免费| 91九色精品人成在线观看| 岛国在线观看网站| 亚洲精品在线美女| 国产av在哪里看| 宅男免费午夜| 成在线人永久免费视频| 久久精品91无色码中文字幕| 国产真实乱freesex| 亚洲第一欧美日韩一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 国产成人av激情在线播放| 又紧又爽又黄一区二区| 日本免费一区二区三区高清不卡| 免费电影在线观看免费观看| 岛国在线免费视频观看| av女优亚洲男人天堂 | 熟女电影av网| 久久99热这里只有精品18| 久久久久久久精品吃奶| 欧美丝袜亚洲另类 | 法律面前人人平等表现在哪些方面| 级片在线观看| 久久精品国产综合久久久| 老司机深夜福利视频在线观看| 99久久久亚洲精品蜜臀av| 他把我摸到了高潮在线观看| 久久中文字幕一级| 桃色一区二区三区在线观看| 亚洲精品乱码久久久v下载方式 | 欧美黄色淫秽网站| 亚洲国产欧美网| 1000部很黄的大片| 亚洲av日韩精品久久久久久密| 成年人黄色毛片网站| 久久久久久久久免费视频了| 午夜两性在线视频| 国产私拍福利视频在线观看| 欧美日韩乱码在线| 两人在一起打扑克的视频| 亚洲成av人片在线播放无| 97碰自拍视频| 国产亚洲欧美在线一区二区| 日韩有码中文字幕| 国产av麻豆久久久久久久| 每晚都被弄得嗷嗷叫到高潮| 99在线人妻在线中文字幕| 国产午夜精品久久久久久| 亚洲精华国产精华精| 成人无遮挡网站| 亚洲精品456在线播放app | 色播亚洲综合网| 久久久久九九精品影院| 亚洲人成伊人成综合网2020| 欧洲精品卡2卡3卡4卡5卡区| 亚洲午夜精品一区,二区,三区| 伊人久久大香线蕉亚洲五| 精品乱码久久久久久99久播| 熟女人妻精品中文字幕| 国产伦精品一区二区三区四那| 国产伦一二天堂av在线观看| 91字幕亚洲| 国产精品爽爽va在线观看网站| 国产成人av教育| 波多野结衣巨乳人妻| 又粗又爽又猛毛片免费看| 久久精品综合一区二区三区| 国产麻豆成人av免费视频| 午夜日韩欧美国产| 亚洲 欧美 日韩 在线 免费| 全区人妻精品视频| 亚洲国产精品sss在线观看| 综合色av麻豆| 亚洲片人在线观看| 在线观看美女被高潮喷水网站 | 听说在线观看完整版免费高清| 一本一本综合久久| 级片在线观看| 日韩精品中文字幕看吧| 97人妻精品一区二区三区麻豆| 香蕉丝袜av| 美女高潮的动态| 国产伦在线观看视频一区| 亚洲自拍偷在线| 我要搜黄色片| 欧美日韩亚洲国产一区二区在线观看| 欧美乱色亚洲激情| 男女午夜视频在线观看| 亚洲av第一区精品v没综合| 亚洲一区高清亚洲精品| 少妇熟女aⅴ在线视频| 热99在线观看视频| 中国美女看黄片| 久久人妻av系列| 每晚都被弄得嗷嗷叫到高潮| 国产一区二区三区在线臀色熟女| av片东京热男人的天堂| 一个人看的www免费观看视频| 岛国视频午夜一区免费看| 免费在线观看成人毛片| 亚洲欧美日韩东京热| 久久精品国产清高在天天线| 狂野欧美白嫩少妇大欣赏| www日本在线高清视频| 精品国产美女av久久久久小说| 亚洲国产欧美人成| 亚洲成人久久爱视频| 中文字幕高清在线视频| 免费看a级黄色片| 日韩av在线大香蕉| 精品国产乱子伦一区二区三区| 精品人妻1区二区| 欧美在线一区亚洲| 亚洲国产精品久久男人天堂| 九九在线视频观看精品| 亚洲无线在线观看| 亚洲av电影不卡..在线观看| 国产99白浆流出| 舔av片在线| 日韩欧美在线二视频| 国产高潮美女av| 制服丝袜大香蕉在线| 真实男女啪啪啪动态图| 国产三级中文精品| 18美女黄网站色大片免费观看| 国产av麻豆久久久久久久| 国产一区二区在线观看日韩 | 久久国产乱子伦精品免费另类| 国产精品 国内视频| 小蜜桃在线观看免费完整版高清| 三级国产精品欧美在线观看 | 女生性感内裤真人,穿戴方法视频| 禁无遮挡网站| 伦理电影免费视频| 国产高潮美女av| 久久久水蜜桃国产精品网| 97超级碰碰碰精品色视频在线观看| 色尼玛亚洲综合影院| av黄色大香蕉| 日本免费一区二区三区高清不卡| 一个人免费在线观看电影 | 精品久久久久久,| 亚洲精品久久国产高清桃花| 99热精品在线国产| 搡老岳熟女国产| 成年人黄色毛片网站| 亚洲国产欧美网| 一个人看的www免费观看视频| 国产真人三级小视频在线观看| 又大又爽又粗| 精品久久久久久久人妻蜜臀av| 日韩成人在线观看一区二区三区| 久久精品91无色码中文字幕| 亚洲 欧美一区二区三区| 色在线成人网| 日本一二三区视频观看| 99久久99久久久精品蜜桃| 色噜噜av男人的天堂激情| 欧美成人一区二区免费高清观看 | 最新中文字幕久久久久 | 欧美一级毛片孕妇| 亚洲国产高清在线一区二区三| 亚洲av日韩精品久久久久久密| 人妻久久中文字幕网| 大型黄色视频在线免费观看| 久久久久国内视频| 9191精品国产免费久久| 九九久久精品国产亚洲av麻豆 | 一本精品99久久精品77| av中文乱码字幕在线| 男插女下体视频免费在线播放| 一本综合久久免费| 亚洲精品美女久久av网站| 亚洲第一电影网av| 日韩成人在线观看一区二区三区| 亚洲色图 男人天堂 中文字幕| 国产精品亚洲美女久久久| 国产蜜桃级精品一区二区三区| 狂野欧美白嫩少妇大欣赏| 国内精品一区二区在线观看| 欧美黑人欧美精品刺激| 成年女人毛片免费观看观看9| 身体一侧抽搐| 99久久无色码亚洲精品果冻| 亚洲中文日韩欧美视频| 久久天堂一区二区三区四区| 黄色片一级片一级黄色片| 九九在线视频观看精品| 性色av乱码一区二区三区2| 看免费av毛片| 他把我摸到了高潮在线观看| 久久久久性生活片| 色哟哟哟哟哟哟| 精品久久久久久久末码| 亚洲一区二区三区不卡视频| 亚洲精品美女久久久久99蜜臀| 精品久久久久久成人av| 婷婷精品国产亚洲av在线| 久久性视频一级片| 欧美激情久久久久久爽电影| 欧美日韩中文字幕国产精品一区二区三区| 法律面前人人平等表现在哪些方面| 亚洲真实伦在线观看| 嫁个100分男人电影在线观看| 国产精品乱码一区二三区的特点| 久久久国产精品麻豆| 亚洲第一电影网av| 悠悠久久av| 69av精品久久久久久| 成人欧美大片| www日本黄色视频网| 国产成人一区二区三区免费视频网站| 欧美精品啪啪一区二区三区| 国产精品久久久久久精品电影| 少妇的丰满在线观看| av福利片在线观看| 九色成人免费人妻av| 狂野欧美激情性xxxx| 欧美日韩综合久久久久久 | 亚洲无线观看免费| 亚洲18禁久久av| 一本精品99久久精品77| 国内揄拍国产精品人妻在线| 成人鲁丝片一二三区免费| 又粗又爽又猛毛片免费看| 两性夫妻黄色片| 曰老女人黄片| 性色av乱码一区二区三区2| 人人妻人人看人人澡| 久久久水蜜桃国产精品网| 中文在线观看免费www的网站| 少妇丰满av| 狂野欧美激情性xxxx| 精品人妻1区二区| 女警被强在线播放| 中文亚洲av片在线观看爽| 国产精品 国内视频| 久久精品亚洲精品国产色婷小说| 久久久久久大精品| 夜夜躁狠狠躁天天躁| 国产欧美日韩一区二区三| 欧美一级毛片孕妇| 午夜免费成人在线视频| 最近在线观看免费完整版| 成年版毛片免费区| 最近视频中文字幕2019在线8| 久久热在线av| 热99在线观看视频| 日本撒尿小便嘘嘘汇集6| av在线蜜桃| 午夜免费激情av| 亚洲专区国产一区二区| 黄频高清免费视频| 国产成人精品久久二区二区免费| 老汉色av国产亚洲站长工具| 国产伦精品一区二区三区视频9 | 宅男免费午夜| 日本在线视频免费播放| 男女下面进入的视频免费午夜| 亚洲成a人片在线一区二区| 两个人的视频大全免费| 18美女黄网站色大片免费观看| 欧美日韩瑟瑟在线播放| 少妇裸体淫交视频免费看高清| 小蜜桃在线观看免费完整版高清| 免费高清视频大片| 国产 一区 欧美 日韩| 日韩欧美一区二区三区在线观看| 精品久久久久久成人av| 丁香欧美五月| 国产97色在线日韩免费| 亚洲精品在线观看二区| 桃色一区二区三区在线观看| 免费看a级黄色片| 成年免费大片在线观看| 男女午夜视频在线观看| 国产亚洲欧美98| 午夜影院日韩av| 欧美黄色淫秽网站| 成人三级黄色视频| 一卡2卡三卡四卡精品乱码亚洲| 中文字幕人成人乱码亚洲影| 狂野欧美白嫩少妇大欣赏| www.自偷自拍.com| 精品一区二区三区四区五区乱码| 久久久国产欧美日韩av| 国产成人欧美在线观看| 精品久久久久久,| 欧美极品一区二区三区四区| 最新中文字幕久久久久 | 99久久成人亚洲精品观看| 国产精品久久久久久精品电影| 亚洲avbb在线观看| 亚洲国产看品久久| 91麻豆av在线| 97人妻精品一区二区三区麻豆| 成人三级做爰电影| av欧美777| 日本三级黄在线观看| 他把我摸到了高潮在线观看| 午夜久久久久精精品| 日韩欧美三级三区| 真实男女啪啪啪动态图| 天天躁狠狠躁夜夜躁狠狠躁| 老司机午夜福利在线观看视频| 中文字幕人成人乱码亚洲影| 99热这里只有精品一区 | 成人特级av手机在线观看| 少妇的逼水好多| 黄色视频,在线免费观看| 又黄又粗又硬又大视频| 狠狠狠狠99中文字幕| 国产精品99久久99久久久不卡| 色精品久久人妻99蜜桃| 九九在线视频观看精品| 最近在线观看免费完整版| 亚洲 国产 在线| 国内精品久久久久久久电影|