• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Noether Symmetry and Conserved Quantities of Fractional Birkhoffian System in Terms of Herglotz Variational Problem?

    2018-09-10 06:39:38XueTian田雪andYiZhang張毅
    Communications in Theoretical Physics 2018年9期
    關(guān)鍵詞:張毅

    Xue Tian(田雪)and Yi Zhang(張毅)

    1College of Mathematics and Physics,Suzhou University of Science and Technology,Suzhou 215009,China

    2School of Science,Nanjing University of Science and Technology,Nanjing 210094,China

    3College of Civil Engineering,Suzhou University of Science and Technology,Suzhou 215011,China

    AbstractThe aim of this paper is to study the Herglotz variational principle of the fractional Birkhoffian system and its Noether symmetry and conserved quantities.First,the fractional Pfa ff-Herglotz action and the fractional Pfa ff-Herglotz principle are presented.Second,based on different definitions of fractional derivatives,four kinds of fractional Birkho ff’s equations in terms of the Herglotz variational principle are established.Further,the definition and criterion of Noether symmetry of the fractional Birkhoffian system in terms of the Herglotz variational problem are given.According to the relationship between the symmetry and the conserved quantities,the Noether’s theorems within four different fractional derivatives are derived,which can reduce to the Noether’s theorem of the Birkhoffian system in terms of the Herglotz variational principle under the classical conditions.As applications of the Noether’s t heorems of the fractional Birkhoffian system in terms of the Herglotz variational principle,an example is given at the end of this paper.

    Key words:fractional Birkhoffian system,Herglotz variational problem,Noether symmetry,conserved quantity

    1 Introduction

    As is well known,the symmetry and the conserved quantity play important roles in the fields of mathematics,physics,dynamics,optimal control,and so on.The symmetry of a mechanical system is described by the invariance under an in finitesimal transformation,which has a profound in fluence on the dynamic behaviors and qualitative properties of a system.[1]The conserved quantity can reduce the dimensions and simplify the integral of the differential equation via reducing the degrees of freedom of a system.In 1918,Emmy Noether[2]noted the relationship between the symmetry and the conservation quantity and put forward Noether’s theorem.Since Noether’s theorem explains all the conservation laws of Newtonian mechanics,the studies of Noether’s symmetry and the conserved quantity have been one of the hot topics in the study of analytical mechanics and their applications in recent decades. So far,Noether symmetry and the conserved quantity have been studied in Lagrangian systems,[3?5]Hamiltonian systems,[6?8]Birkhoffian systems[9?11]as well as nonholonomic systems,[12?13]and so on.Not only that,but some scholars have studied Noether symmetry and conserved quantity in the model of fractional calculus.

    The origin of the concept of fractional calculus was advanced in 1695 when L’Hopital and Leibniz discussed the significance of a function in the order of 1/2.However,the theories of fractional calculus were rarely studied because of the research difficulties and ambiguity of the research significance.Until in the end of the 1970s,Mandelbrot[14]discovered that a large number of fractional dimension examples exists in nature.Then,it is found that fractional calculus has a wide range of applications in quantum mechanics,chaotic dynamics,long-range dissipation,signal processing and so on.[15?19]In recent years,various models of fractional integral and derivative have been developed,such as Riemann-Liouville fractional derivatives,Caputo fractional derivatives,Riesz-Riemann-Liouville fractional derivatives,Riesz-Caputo fractional derivatives,and so on.In this paper,we will study these four kinds of fractional derivatives. In addition,fractional calculus has applied in a variety of mechanical systems.[20?29]Since Birkhoffian systems are natural generalizations of Lagrangian systems and Hamiltonian systems,it is significant to propose the theory of fractional Birkhoffian systems.Up to now,there are a series of results and applications of fractional Birkhoffian systems.[30?36]Besides,in 2014,Almeida and Malinowska[37]considered the fractional Herglotz variational principle,where fractionality stands in the dependence of the Lagrangian by Caputo fractional derivatives of Herglotz variables.

    Herglotz variational principle,[38]proposed by Gustav Herglotz in 1930 firstly,gives a variational principle description of nonconservative systems even when the Lagrangian does not depend on time.The functional of Herglotz variational principle is defined by a differential equation,which generalizes the classical ones defining the functional by an integral.Before Georgieva and Guenther,[39]Noether’s theorems were applicable only to the classical variational principle and were not applied to the functional defined by different equations.Torres and his co-workers presented Noether’s theorem of higher-order variational problems of Herglotz type[40]and Noether’s first theorem based on Herglotz variational problems with time delay.[41]Besides,they also proposed Noether’s theorem for fractional Herglotz variational problems.[42?43]Zhang studied Noether’s theorem based on Herglotz variational problems in phase space and of Birkhoffian system.[44?46]However,applications of fractional Birkhoffian systems for the Herglotz variational principle have been not investigated in previous works.

    In this paper,we will study Noether symmetry and conserved quantities of the fractional Birkhoffian system in terms of the Herglotz variational problem.First of all,a brief summery of fractional derivatives and their properties are presented in Sec.2.In Sec.3,we present the fractional Pfa ff-Herglotz action and the fractional Pfa ff-Herglotz principle.In Sec.4,according to the fractional Pfa ff-Herglotz principle,we establish four kinds of fractional Birkho ff’s equations based on different definitions of fractional derivatives in terms of the Herglotz variational problem.In Sec.5,we give the definition and criterion of Noether symmetry of the fractional Birkhoffian system in terms of the Herglotz variational problem,and we derive the Noether’s theorems of the fractional Birkhoffian system in terms of the Herglotz variational problem.In Sec.6,in order to illustrate the method and results,we give an example and find four kinds of conserved quantities based on different definitions of fractional derivatives.Finally,we give the conclusions in Sec.7.

    2 Fractional Derivatives and Properties

    For the convenience of readers,we introduce the representations of Riemann-Liouville derivatives,Caputo derivatives,Riesz-Riemann-Liouville derivatives and Riesz-Caputo derivatives.Assume that the function f(ξ)is continuous and integrable in every finite interval(a,t)and(t,b). The left and the right Riemann-Liouville derivatives are[47]

    The left and the right Caputo derivatives are[47]

    The Riesz-Riemann-Liouville and Riesz-Caputo derivatives are[47]

    Here,D is the traditional derivative operator,α is the order of fractional derivatives such that n?1≤α

    Here γ ∈ t[0,1],γ means the dispensed quantities of the left and the right fractional derivatives,which can be distributed as needed.

    In this paper,we will need formulae for fractional integration by parts as follows given in Ref.[49]:

    3 Herglotz Variational Principle of Fractional Birkhoffian System

    According to the ideas of the generalized variational principle proposed by Herglotz,[38]the Herglotz variational problem of the fractional Birkhoffian system can be formulated as follows.

    Determine the trajectories aν(t)satisfying the boundary conditions

    for fixed real numbers a,b,and the function z satis fies the differential equation

    subject to the initial condition

    then z(b)is the extreme(minimize or maximize value),i.e.

    where B(t,aμ(t),z(t))is the Birkhoffian,Rν(t,aμ(t),z(t))areBirkho ff’sfunctions,aν(t)(ν=1,2,...,2n)are Birkho ff ’s variables,is a unified symbol ofandand zaare constants.We refer to the above variational problem as the Herglotz variational problem of the fractional Birkhoffian system.Then,functional z is the fractional Pfa ff-Herglotz action if z satis fies Eq.(16).

    Taking the calculation of the variation to Eq.(16),we have

    Considering the commutative relation δ˙z=(d/dt)δz,the formula(19)can be written as follows

    where

    And Eq.(20)satis fies the initial condition

    The solution of the above initial value problem is

    When t=b,the functional z(t)yields its extremum,and we obtain δz(b)=0.Let

    From the formula(22)and Eq.(23),we have

    Equation(24)is called fractional Pfa ff-Herglotz principle.

    Remark 1 When α,β → 1,the fractional Pfa ff-Herglotz principle(24)can be reduced to the integer Pfa ff-Herglotz principle[49]

    4 Fractional Birkho ff’s Equations in Terms of Herglotz Variational Problem

    Using the above Pfa ff-Herglotz principle,we can deduce to fractional Birkho ff’s equations in terms of the Herglotz variational problem based on different definitions of fractional derivatives.

    Let

    when 0< α,β <1,using Eqs.(9)and(10),we have

    Using Eqs.(26)and(27),Eq.(24)can be expressed as

    According to the fundamental lemma of the calculus of variations,we obtain

    De finition 1 Equations(29)are called fractional Birkho ff’s equations in terms of the Herglotz variational problem based on combined Riemann-Liouville derivatives.

    When γ =1,Eqs.(29)are reduced to left fractional Birkho ff ’s equations in terms of the Herglotz variational problem based on Riemann-Liouville derivatives

    where

    When γ =0,Eqs.(29)are reduced to right fractional Birkho ff ’s equations in terms of the Herglotz variational problem based on Riemann-Liouville derivatives

    where

    De finition 2 Let

    when 0<α<1,we have

    Then,Eqs.(32)are called fractional Birkho ff’s equations in terms of the Herglotz variational problem based on Riesz-Riemann-Liouville derivatives.

    De finition 3 Let

    when 0<α,β<1,we have

    Then,Eqs.(33)are called fractional Birkho ff’s equations in terms of the Herglotz variational problem based on combined Caputo derivatives.

    When γ =1,Eqs.(33)are reduced to left fractional Birkhof’s equations in terms of the Herglotz variational problem based on Caputo derivatives

    where

    When γ =0,Eqs.(33)are reduced to right fractional Birkho ff ’s equations in terms of the Herglotz variational problem based on Caputo derivatives

    where

    De finition 4 Let

    when 0<α<1,we have

    Then,Eqs.(36)are called fractional Birkho ff’s equations in terms of the Herglotz variational problem based on Riesz-Caputo derivatives.

    Remark 2 In fact,selecting γ =1/2 and β = α,Eq.(32)can also be obtained by Eq.(29),and Eqs.(36)can also be obtained by Eqs.(33).When α,β → 1,fractional Birkho ff’s equations in terms of the Herglotz variational problem(29)–(36)can be reduced to the classical Birkho ff’s equations in terms of the Herglotz variational problem[45]

    5 Noether Symmetry and Conserved Quantities of Fractional Birkhoffian System in Terms of Herglotz Variational Problem

    Introducing the in finitesimal transformations of r-parameter finite transformation group Grwith respect to time t and Birkho ff ’s variables aν,they are

    and their expansion formulae are

    where εσ(σ=1,2,...,r)are the in finitesimal parameters,τσandare the generators of the in finitesimal transformations.Under the action of the transformations(37),the corresponding Pfa ff-Herglotz action z will be transformed to the following form

    For any function F(t),we haveAnd noting the commutative relationwe can get easily

    Calculating the total variation for the differential equation(16),we have

    Using the formula(39)and considering Eq.(16),from Eq.(40)we have

    The solution?z(t)of Eq.(41)is given by

    Obviously?z(a)=0,the formula(42)can be changed to

    Since

    and considering

    the formulae(42)and(43)can be expressed as

    where

    According to the concepts of Noether symmetry,[2]we can establish the definition and criterion of Noether symmetric transformations of the fractional Birkhoffian system in terms of the Herglotz variational problem as follows.

    De finition 5 If the fractional Pfa ff-Herglotz action is invariant for t=b under the in finitesimal transformations(37)of group,i.e.for each of the in finitesimal transformation,the formula

    holds,then the in finitesimal transformations are called the Noether symmetric transformations of the fractional Birkhoffian system in terms of the Herglotz variational problem.

    By use of the definition,fractional Birkho ff’s equations in terms of the Herglotz variational problem and formulae(46),we obtain the following criterion.

    Criterion 1 For the fractional Birkhoffian system in terms of the Herglotz variational problem,if the in finitesimal transformations(38)satisfy the following condition

    then the transformations(38)are the Noether symmetric transformations of the fractional Birkhoffian system in terms of the Herglotz variational problem.Now,let us derive the Noether’s theorems of the fractional Birkhoffian systems based on the different definitions of fractional derivatives in terms of the Herglotz variational problem.

    Theorem 1 For the fractional Birkhoffian system in terms of the Herglotz variational problem based on combined Riemann-Liouville derivatives,if the in finitesimal transformations(38)of group are the Noether symmetric transformations,the system exists with r-linear independent conserved quantities,which are

    Proof Because the in finitesimal transformations(38)are the Noether symmetric transformations of the system,according to the definition,we have

    Substituting the formulae(7)and(47)into the above formula,we obtain

    Substituting the fractional Birkho ff’s equations in terms of the Herglotz variational problem(29)into the above expression,considering the independence of εσand the arbitrariness of the integral interval[a,b],we get

    Integrating it,we can obtain the conserved quantities(51),and thus,the theorem is proved.

    Theorem 1 is called Noether’s theorem of the fractional Birkhoffian system based on combined Riemann-Liouville derivatives in terms of the Herglotz variational problem.Similarly,we can get the following theorems.

    Theorem 2 For the fractional Birkhoffian system in terms of the Herglotz variational problem based on Riesz-Riemann-Liouville derivatives,if the in finitesimal transformations(38)of group are the Noether symmetric transformations,the system exists with r-linear independent conserved quantities,which are

    Theorem 3 For the fractional Birkhoffian system in terms of the Herglotz variational problem based on combined Caputo derivatives,if the in finitesimal transformations(38)of group are the Noether symmetric transformations,the system exists with r-linear independent conserved quantities,which are

    Theorem 4 For the fractional Birkhoffian system in terms of the Herglotz variational problem based on Riesz-Caputo derivatives,if the in finitesimal transformations(38)of group are the Noether symmetric transformations,the system exists with r-linear independent conserved quantities,which are

    Theorems 2,3,4 are called Noether’s theorem of the fractional Birkhoffian system in terms of the Herglotz variational problem based on Riesz-Riemann-Liouville derivatives,combined Caputo derivatives and Riesz-Caputo derivatives.

    When α,β → 1,Theorems 1–4 can be reduced to the classical Noether’s theorem of Birkhoffian system in terms of the Herglotz variational problem:

    Remark 3 For the Birkhoffian system in terms of the Herglotz variational problem,if the in finitesimal transformations(38)of group are the Noether symmetric transformations,then the system exists with r-linear independent conserved quantities,which are

    Remark 3 is the classical Noether’s theorem of the Birkhoffian system in terms of the Herglotz variational problem.[45]

    6 Example

    Try to find the conserved quantities of the following fractional Birkhoffian system in terms of the Herglotz variational problem

    where the functional z is defined by the differential equation

    First,substituting Eqs.(56)into thefractional Birkho ff’s equations in terms of the Herglotz variational problem based on combined Riemann-Liouville derivatives(29),we can obtain

    According to the criterion,the formula(50)can be changed to

    Equation(59)has a solution

    By Theorem 1,we obtain

    When γ =1/2 and β = α,Eqs.(58)and(59)are reduced to the fractional Birkho ff’s equations and criterion in terms of the Herglotz variational problem based on Riesz-Riemann-Liouville derivatives.Then,we can find the solution(60)is also one of the transformations.By Theorem 2,we obtain

    Next,substituting Eqs.(56)into thefractional Birkho ff’s equations in terms of the Herglotz variational problem based on combined Caputo derivatives(33),we can obtain

    At the moment,the formula(50)can be changed to

    Equation(64)has a solution

    By Theorem 3,we obtain

    Similarly,when γ =1/2 and β = α,we can obtain the Noether’s theorem of the fractional Birkhoffian system in terms of the Herglotz variational problem based on Riesz-Caputo derivatives

    7 Conclusion

    In this paper,we define the fractional Pfa ff-Herglotz action and present the fractional Pfa ff-Herglotz principle firstly.And then,fractional Birkho ff’s equations,criterion of Noether symmetry and Noether’s theorems of the fractional Birkhoffian system in terms of the Herglotz variational problem based on four different definitions of fractional derivatives are obtained.The theorems not only can reduce to the Noether’s theorem of the Birkhoffian system for the Herglotz variational problem under classical conditions,but also can become the Noether’s theorem of the Birkhoffian system when the functional z is independent of time.The traditional Lagrangian,Hamiltonian and Birkhoffian systems,the fractional Lagrangian,Hamiltonian and Birkhoffian systems,as well as the traditional Lagrangian,Hamiltonian and Birkhoffian systems for the Herglotz variational problem are special cases of the fractional Birkhoffian system for the Herglotz variational problem.Obviously,the method and results in this letter are of more universal significance. Besides,fractional Herglotz variational principle provides an effective method to deal with fractional conservative and nonconservative systems systematically.Therefore,fractional mechanical systems in terms of the Herglotz variational problem may be taken a deeper study in future.

    猜你喜歡
    張毅
    二月二—龍?zhí)ь^
    當代作家(2023年3期)2023-04-23 21:26:58
    張士卿基于敏濕熱瘀辨治過敏性紫癜經(jīng)驗
    《秋水共長天一色》
    青年生活(2019年6期)2019-09-10 17:55:38
    Isolation and callus formation of Gracilariopsis bailiniae(Gracilariales, Rhodophyta) protoplasts*
    隨便走走(短篇小說)
    當代小說(2017年11期)2018-01-08 09:31:32
    “執(zhí)著”的代價
    宮“?!彪u丁
    性格變更
    Perturbation to Noether Symmetries and Adiabatic Invariants for Generalized Birkhoff Systems Based on El-Nabulsi Dynamical Model
    Fractional Action-Like Variational Problem and Its Noether Symmetries for a Nonholonomic System
    高清不卡的av网站| 建设人人有责人人尽责人人享有的| 国产精品国产三级国产专区5o| 亚洲精品第二区| 天堂俺去俺来也www色官网| 中文字幕制服av| 乱人伦中国视频| av天堂在线播放| 国产精品久久久av美女十八| 精品免费久久久久久久清纯 | a级毛片黄视频| 新久久久久国产一级毛片| 九草在线视频观看| 国产欧美日韩综合在线一区二区| 国产1区2区3区精品| 啦啦啦啦在线视频资源| 丝袜喷水一区| 亚洲av美国av| 男女免费视频国产| 男人操女人黄网站| 中文字幕色久视频| 天堂8中文在线网| 亚洲国产欧美网| 亚洲一区中文字幕在线| 午夜视频精品福利| 国产精品香港三级国产av潘金莲 | 少妇裸体淫交视频免费看高清 | 黄色视频不卡| 在线看a的网站| 如日韩欧美国产精品一区二区三区| 欧美人与性动交α欧美精品济南到| 在线av久久热| 国精品久久久久久国模美| 午夜福利影视在线免费观看| 日韩一区二区三区影片| 极品少妇高潮喷水抽搐| 18禁国产床啪视频网站| 欧美激情高清一区二区三区| 日韩一本色道免费dvd| 日本av免费视频播放| 久久精品久久久久久噜噜老黄| 欧美日韩成人在线一区二区| 亚洲激情五月婷婷啪啪| 久久天躁狠狠躁夜夜2o2o | 一区二区av电影网| 美女大奶头黄色视频| 1024视频免费在线观看| 免费不卡黄色视频| 一级毛片电影观看| 中文字幕精品免费在线观看视频| 又紧又爽又黄一区二区| 国产精品久久久av美女十八| 天天添夜夜摸| 国产黄频视频在线观看| 日本vs欧美在线观看视频| 欧美日韩亚洲国产一区二区在线观看 | 精品卡一卡二卡四卡免费| a级毛片黄视频| 嫩草影视91久久| 亚洲国产毛片av蜜桃av| 看免费成人av毛片| 欧美在线一区亚洲| 婷婷色麻豆天堂久久| 国产精品国产三级专区第一集| 欧美成狂野欧美在线观看| av又黄又爽大尺度在线免费看| 50天的宝宝边吃奶边哭怎么回事| 狂野欧美激情性bbbbbb| 美女中出高潮动态图| 亚洲男人天堂网一区| 香蕉丝袜av| 久久99精品国语久久久| 美女扒开内裤让男人捅视频| 国产免费一区二区三区四区乱码| 午夜激情av网站| 久久久久久久大尺度免费视频| 久久国产精品男人的天堂亚洲| 久久亚洲国产成人精品v| 国产精品一区二区在线观看99| 中国美女看黄片| 少妇人妻 视频| 久久ye,这里只有精品| 99九九在线精品视频| 欧美性长视频在线观看| 成年av动漫网址| 男女无遮挡免费网站观看| 看十八女毛片水多多多| 日本av免费视频播放| 中文精品一卡2卡3卡4更新| 久久99热这里只频精品6学生| 婷婷色综合www| 中文字幕亚洲精品专区| 欧美激情 高清一区二区三区| 狠狠婷婷综合久久久久久88av| 国产精品成人在线| 亚洲国产av影院在线观看| 丰满迷人的少妇在线观看| 咕卡用的链子| 国产野战对白在线观看| 黄片小视频在线播放| 中文欧美无线码| 久久久久久亚洲精品国产蜜桃av| 久久久久视频综合| 欧美性长视频在线观看| 欧美黄色片欧美黄色片| 日本wwww免费看| 欧美乱码精品一区二区三区| 男女无遮挡免费网站观看| 日韩av不卡免费在线播放| 男女高潮啪啪啪动态图| 纯流量卡能插随身wifi吗| 性高湖久久久久久久久免费观看| 午夜激情久久久久久久| 在线观看www视频免费| 精品人妻熟女毛片av久久网站| 99香蕉大伊视频| 少妇猛男粗大的猛烈进出视频| 国产深夜福利视频在线观看| 亚洲欧美一区二区三区黑人| 国产亚洲午夜精品一区二区久久| 亚洲av综合色区一区| 国产在线视频一区二区| 少妇的丰满在线观看| 亚洲午夜精品一区,二区,三区| 人妻 亚洲 视频| 免费人妻精品一区二区三区视频| 午夜日韩欧美国产| 久久精品aⅴ一区二区三区四区| 18在线观看网站| 91老司机精品| 午夜福利视频在线观看免费| 亚洲五月婷婷丁香| 天天躁日日躁夜夜躁夜夜| 亚洲国产毛片av蜜桃av| 日韩av在线免费看完整版不卡| 亚洲情色 制服丝袜| 天天躁夜夜躁狠狠躁躁| 一级毛片黄色毛片免费观看视频| 一本色道久久久久久精品综合| 中文字幕av电影在线播放| 亚洲精品日本国产第一区| 国产视频一区二区在线看| 老汉色∧v一级毛片| 欧美97在线视频| 高清黄色对白视频在线免费看| 免费观看a级毛片全部| 午夜福利视频精品| 老汉色∧v一级毛片| 欧美黄色片欧美黄色片| 两性夫妻黄色片| 中国国产av一级| 建设人人有责人人尽责人人享有的| 国产午夜精品一二区理论片| 日本欧美视频一区| 丝袜美足系列| 国产高清videossex| 在现免费观看毛片| 国产xxxxx性猛交| 中文字幕另类日韩欧美亚洲嫩草| 国产麻豆69| 亚洲av片天天在线观看| 97在线人人人人妻| 亚洲国产av影院在线观看| 一本—道久久a久久精品蜜桃钙片| 91老司机精品| 晚上一个人看的免费电影| 久久亚洲国产成人精品v| 久久九九热精品免费| 久久国产精品人妻蜜桃| 亚洲 欧美一区二区三区| 久久国产亚洲av麻豆专区| 嫩草影视91久久| 在线天堂中文资源库| 后天国语完整版免费观看| 久久午夜综合久久蜜桃| 久久国产精品影院| 欧美变态另类bdsm刘玥| 久久99一区二区三区| 2018国产大陆天天弄谢| 99久久综合免费| 99热全是精品| 青春草视频在线免费观看| 成人亚洲欧美一区二区av| 亚洲欧美成人综合另类久久久| 国产精品三级大全| 国产黄色视频一区二区在线观看| 少妇精品久久久久久久| 99精国产麻豆久久婷婷| 精品熟女少妇八av免费久了| 一区二区三区四区激情视频| 久久人人爽人人片av| 国产成人一区二区在线| 这个男人来自地球电影免费观看| 久久久久精品国产欧美久久久 | 色婷婷av一区二区三区视频| 午夜免费鲁丝| 激情视频va一区二区三区| 99国产精品免费福利视频| 18在线观看网站| xxxhd国产人妻xxx| 国产爽快片一区二区三区| 99国产综合亚洲精品| 久久这里只有精品19| 久久热在线av| 国产亚洲一区二区精品| 免费看不卡的av| 又大又爽又粗| 搡老乐熟女国产| 777久久人妻少妇嫩草av网站| 久久狼人影院| 视频在线观看一区二区三区| 久久久久视频综合| 中文乱码字字幕精品一区二区三区| 欧美在线黄色| 久久久亚洲精品成人影院| 免费久久久久久久精品成人欧美视频| 高清欧美精品videossex| 亚洲伊人色综图| 久久人妻福利社区极品人妻图片 | 国产一级毛片在线| kizo精华| 国产熟女午夜一区二区三区| 免费在线观看日本一区| 久久国产精品影院| 免费黄频网站在线观看国产| 美女脱内裤让男人舔精品视频| 亚洲免费av在线视频| av一本久久久久| 无限看片的www在线观看| 国产在线一区二区三区精| 午夜福利,免费看| 成人手机av| 欧美久久黑人一区二区| 日韩 亚洲 欧美在线| 久久精品熟女亚洲av麻豆精品| 亚洲av国产av综合av卡| 免费av中文字幕在线| 在线观看www视频免费| 最近中文字幕2019免费版| 欧美另类一区| 在线亚洲精品国产二区图片欧美| 美女脱内裤让男人舔精品视频| 国产人伦9x9x在线观看| 欧美+亚洲+日韩+国产| 久久久久久久久久久久大奶| 午夜免费鲁丝| 欧美av亚洲av综合av国产av| 超色免费av| 色播在线永久视频| 国产精品国产av在线观看| 人人妻人人澡人人看| 手机成人av网站| 99国产精品免费福利视频| 狂野欧美激情性xxxx| 久久久精品区二区三区| 久久国产精品大桥未久av| 国产高清videossex| 国产在线一区二区三区精| 国产亚洲精品久久久久5区| 精品一区在线观看国产| 美女视频免费永久观看网站| 欧美日韩综合久久久久久| 可以免费在线观看a视频的电影网站| 欧美精品亚洲一区二区| 99re6热这里在线精品视频| 国产欧美日韩综合在线一区二区| 婷婷色综合www| 国产午夜精品一二区理论片| 99香蕉大伊视频| 亚洲欧美清纯卡通| 国产午夜精品一二区理论片| 后天国语完整版免费观看| 中文字幕av电影在线播放| 新久久久久国产一级毛片| 精品免费久久久久久久清纯 | 久久久久久亚洲精品国产蜜桃av| 男男h啪啪无遮挡| 狠狠精品人妻久久久久久综合| 男女床上黄色一级片免费看| 久久免费观看电影| 久久久久国产一级毛片高清牌| 高清欧美精品videossex| 国产精品麻豆人妻色哟哟久久| 国产伦人伦偷精品视频| 国产麻豆69| 不卡av一区二区三区| av视频免费观看在线观看| 汤姆久久久久久久影院中文字幕| 50天的宝宝边吃奶边哭怎么回事| 天天躁夜夜躁狠狠躁躁| 中文字幕人妻丝袜制服| 夫妻午夜视频| 午夜两性在线视频| 美女高潮到喷水免费观看| 欧美国产精品va在线观看不卡| av视频免费观看在线观看| 一区在线观看完整版| 午夜日韩欧美国产| 国产精品久久久av美女十八| 国产熟女午夜一区二区三区| 亚洲成人免费电影在线观看 | 啦啦啦啦在线视频资源| 汤姆久久久久久久影院中文字幕| 97精品久久久久久久久久精品| 中文字幕人妻丝袜制服| 夜夜骑夜夜射夜夜干| 国产亚洲欧美在线一区二区| 中文字幕av电影在线播放| 亚洲男人天堂网一区| 欧美另类一区| 亚洲人成网站在线观看播放| 成年女人毛片免费观看观看9 | 亚洲激情五月婷婷啪啪| 丝袜脚勾引网站| 国产精品av久久久久免费| 一级毛片女人18水好多 | 国产成人免费无遮挡视频| 久久亚洲国产成人精品v| 男女边吃奶边做爰视频| 国产精品香港三级国产av潘金莲 | 亚洲第一青青草原| 在线观看国产h片| 久久亚洲精品不卡| 2018国产大陆天天弄谢| av欧美777| 亚洲国产欧美在线一区| 免费少妇av软件| e午夜精品久久久久久久| 久久久久久久国产电影| 黄色片一级片一级黄色片| 妹子高潮喷水视频| 成人手机av| 国产精品国产三级国产专区5o| 男女免费视频国产| 中文字幕精品免费在线观看视频| 黑丝袜美女国产一区| 中文字幕高清在线视频| 国产高清不卡午夜福利| av电影中文网址| 色网站视频免费| 男男h啪啪无遮挡| 国产在线免费精品| 精品一区在线观看国产| 十八禁高潮呻吟视频| 日本a在线网址| 亚洲综合色网址| 久久久久久人人人人人| 久久精品国产亚洲av高清一级| 国产一区亚洲一区在线观看| 又紧又爽又黄一区二区| 亚洲av欧美aⅴ国产| 又黄又粗又硬又大视频| 狠狠婷婷综合久久久久久88av| 久久精品国产综合久久久| 色94色欧美一区二区| 真人做人爱边吃奶动态| 女性生殖器流出的白浆| netflix在线观看网站| 成人亚洲精品一区在线观看| 王馨瑶露胸无遮挡在线观看| 久久人妻福利社区极品人妻图片 | 日韩一本色道免费dvd| 老司机在亚洲福利影院| 国产黄色免费在线视频| 久久人人爽人人片av| 亚洲av国产av综合av卡| 精品国产超薄肉色丝袜足j| 婷婷色麻豆天堂久久| 久久国产精品影院| 91国产中文字幕| 亚洲精品在线美女| 亚洲色图 男人天堂 中文字幕| 免费看av在线观看网站| 亚洲人成电影免费在线| 人人妻,人人澡人人爽秒播 | 欧美日韩亚洲高清精品| 18禁黄网站禁片午夜丰满| 999久久久国产精品视频| 久久精品久久久久久噜噜老黄| 三上悠亚av全集在线观看| 中文字幕人妻熟女乱码| 亚洲 国产 在线| 国产成人一区二区三区免费视频网站 | 亚洲视频免费观看视频| 国产成人av激情在线播放| 一二三四社区在线视频社区8| 校园人妻丝袜中文字幕| 日韩熟女老妇一区二区性免费视频| 国精品久久久久久国模美| av有码第一页| 一本久久精品| 亚洲欧美精品自产自拍| 一级a爱视频在线免费观看| 日韩av不卡免费在线播放| 精品少妇一区二区三区视频日本电影| 亚洲美女黄色视频免费看| 丝袜在线中文字幕| 久久精品久久久久久噜噜老黄| 韩国精品一区二区三区| 18禁裸乳无遮挡动漫免费视频| 亚洲成人免费av在线播放| 首页视频小说图片口味搜索 | 久久综合国产亚洲精品| 国产一区二区激情短视频 | 十八禁高潮呻吟视频| 日韩大片免费观看网站| h视频一区二区三区| 欧美日韩亚洲国产一区二区在线观看 | 男的添女的下面高潮视频| 一级a爱视频在线免费观看| 最新的欧美精品一区二区| 啦啦啦啦在线视频资源| 亚洲欧美成人综合另类久久久| 亚洲少妇的诱惑av| 2018国产大陆天天弄谢| 亚洲,欧美精品.| 一级毛片女人18水好多 | 一边摸一边抽搐一进一出视频| cao死你这个sao货| 久久久久国产精品人妻一区二区| 后天国语完整版免费观看| 亚洲精品国产av蜜桃| 日本vs欧美在线观看视频| 亚洲欧美色中文字幕在线| 啦啦啦在线观看免费高清www| 青春草视频在线免费观看| www.熟女人妻精品国产| 亚洲精品美女久久av网站| 国产成人精品久久二区二区免费| 欧美激情高清一区二区三区| 亚洲精品自拍成人| 久久青草综合色| 欧美老熟妇乱子伦牲交| 黑人猛操日本美女一级片| 人妻 亚洲 视频| 男女高潮啪啪啪动态图| 欧美精品高潮呻吟av久久| 精品久久久久久电影网| 天天躁夜夜躁狠狠躁躁| 黄色片一级片一级黄色片| 热re99久久精品国产66热6| 久久中文字幕一级| 91精品国产国语对白视频| 日韩精品免费视频一区二区三区| 欧美日韩亚洲国产一区二区在线观看 | 黄片播放在线免费| 久久亚洲精品不卡| xxx大片免费视频| 无遮挡黄片免费观看| 精品一区二区三区四区五区乱码 | 欧美av亚洲av综合av国产av| 亚洲国产av影院在线观看| 伊人久久大香线蕉亚洲五| 男女边摸边吃奶| 在现免费观看毛片| 黑丝袜美女国产一区| 久久精品国产a三级三级三级| 免费观看人在逋| 久久国产精品人妻蜜桃| 青春草视频在线免费观看| 国产成人91sexporn| 老司机靠b影院| 免费高清在线观看视频在线观看| 精品少妇一区二区三区视频日本电影| cao死你这个sao货| 日韩 亚洲 欧美在线| 久久免费观看电影| 免费日韩欧美在线观看| 免费观看人在逋| 99国产精品99久久久久| 十八禁网站网址无遮挡| 欧美大码av| 午夜免费男女啪啪视频观看| 亚洲国产av影院在线观看| 久久人人97超碰香蕉20202| 欧美日韩视频精品一区| 妹子高潮喷水视频| 91国产中文字幕| 久久国产精品影院| 日韩av在线免费看完整版不卡| 免费日韩欧美在线观看| 国产亚洲精品久久久久5区| 久久 成人 亚洲| 黄色一级大片看看| 校园人妻丝袜中文字幕| 午夜免费男女啪啪视频观看| 成人影院久久| 在线观看免费视频网站a站| 人人妻人人澡人人看| 亚洲精品国产区一区二| 亚洲人成电影观看| 国产视频一区二区在线看| 母亲3免费完整高清在线观看| 亚洲国产精品成人久久小说| 成在线人永久免费视频| 午夜91福利影院| 国产伦人伦偷精品视频| 一本久久精品| 黄频高清免费视频| 久久精品国产综合久久久| 久久中文字幕一级| av电影中文网址| 性色av乱码一区二区三区2| 热99国产精品久久久久久7| 色网站视频免费| 一区二区三区乱码不卡18| 久久中文字幕一级| 亚洲一区中文字幕在线| 亚洲国产欧美一区二区综合| 亚洲精品成人av观看孕妇| 亚洲精品日韩在线中文字幕| 欧美精品亚洲一区二区| 男的添女的下面高潮视频| 777久久人妻少妇嫩草av网站| 亚洲国产精品一区二区三区在线| 91精品伊人久久大香线蕉| 国产男女超爽视频在线观看| 热re99久久国产66热| 久久中文字幕一级| 久久精品国产综合久久久| 叶爱在线成人免费视频播放| 最近手机中文字幕大全| 黄频高清免费视频| 国产片特级美女逼逼视频| 最近最新中文字幕大全免费视频 | 精品一品国产午夜福利视频| 国产精品 欧美亚洲| 国产av一区二区精品久久| 两个人看的免费小视频| 午夜福利,免费看| 国精品久久久久久国模美| 国产男女超爽视频在线观看| 国产免费一区二区三区四区乱码| 成年美女黄网站色视频大全免费| 国产精品久久久久成人av| 国产在线免费精品| 久久99热这里只频精品6学生| 国产亚洲欧美在线一区二区| 欧美乱码精品一区二区三区| 欧美日韩亚洲综合一区二区三区_| 老司机亚洲免费影院| 一级,二级,三级黄色视频| 99热全是精品| 亚洲熟女精品中文字幕| 久久人人97超碰香蕉20202| 欧美日韩一级在线毛片| 人人妻,人人澡人人爽秒播 | 老司机影院成人| 男女下面插进去视频免费观看| 国产精品99久久99久久久不卡| 亚洲av国产av综合av卡| 欧美亚洲日本最大视频资源| 精品久久久久久电影网| 免费少妇av软件| 激情五月婷婷亚洲| 亚洲视频免费观看视频| 亚洲精品久久午夜乱码| 国产成人精品在线电影| 婷婷色综合www| 日韩人妻精品一区2区三区| 欧美日韩黄片免| 久久精品久久久久久噜噜老黄| av天堂在线播放| 久久久久国产一级毛片高清牌| 午夜福利乱码中文字幕| 国产精品一区二区免费欧美 | 亚洲欧美一区二区三区黑人| 国产精品一区二区精品视频观看| 又大又爽又粗| 纯流量卡能插随身wifi吗| 国产麻豆69| 国产精品国产三级专区第一集| 飞空精品影院首页| 国产麻豆69| 精品一区二区三卡| 日本猛色少妇xxxxx猛交久久| 亚洲人成网站在线观看播放| 天堂8中文在线网| 久久鲁丝午夜福利片| 精品少妇内射三级| 国产亚洲精品久久久久5区| 欧美精品亚洲一区二区| 久久性视频一级片| 自线自在国产av| 日韩一卡2卡3卡4卡2021年| 丝袜喷水一区| 高清av免费在线| 亚洲国产精品999| 亚洲色图综合在线观看| av有码第一页| 欧美人与性动交α欧美软件| 丝袜人妻中文字幕| 久久久久久久国产电影| 可以免费在线观看a视频的电影网站| 久久久精品免费免费高清| 一区二区三区四区激情视频| 免费女性裸体啪啪无遮挡网站| 一级黄片播放器| 黄色片一级片一级黄色片| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精品国产色婷婷电影| 国产亚洲欧美在线一区二区| 99国产精品一区二区三区| 国产黄色免费在线视频| 中文字幕制服av| 可以免费在线观看a视频的电影网站| 国产91精品成人一区二区三区 | 波野结衣二区三区在线| www日本在线高清视频| 丝袜人妻中文字幕| 好男人电影高清在线观看| 两人在一起打扑克的视频| 赤兔流量卡办理| 看免费av毛片| 叶爱在线成人免费视频播放|