• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Noether Symmetry and Conserved Quantities of Fractional Birkhoffian System in Terms of Herglotz Variational Problem?

    2018-09-10 06:39:38XueTian田雪andYiZhang張毅
    Communications in Theoretical Physics 2018年9期
    關(guān)鍵詞:張毅

    Xue Tian(田雪)and Yi Zhang(張毅)

    1College of Mathematics and Physics,Suzhou University of Science and Technology,Suzhou 215009,China

    2School of Science,Nanjing University of Science and Technology,Nanjing 210094,China

    3College of Civil Engineering,Suzhou University of Science and Technology,Suzhou 215011,China

    AbstractThe aim of this paper is to study the Herglotz variational principle of the fractional Birkhoffian system and its Noether symmetry and conserved quantities.First,the fractional Pfa ff-Herglotz action and the fractional Pfa ff-Herglotz principle are presented.Second,based on different definitions of fractional derivatives,four kinds of fractional Birkho ff’s equations in terms of the Herglotz variational principle are established.Further,the definition and criterion of Noether symmetry of the fractional Birkhoffian system in terms of the Herglotz variational problem are given.According to the relationship between the symmetry and the conserved quantities,the Noether’s theorems within four different fractional derivatives are derived,which can reduce to the Noether’s theorem of the Birkhoffian system in terms of the Herglotz variational principle under the classical conditions.As applications of the Noether’s t heorems of the fractional Birkhoffian system in terms of the Herglotz variational principle,an example is given at the end of this paper.

    Key words:fractional Birkhoffian system,Herglotz variational problem,Noether symmetry,conserved quantity

    1 Introduction

    As is well known,the symmetry and the conserved quantity play important roles in the fields of mathematics,physics,dynamics,optimal control,and so on.The symmetry of a mechanical system is described by the invariance under an in finitesimal transformation,which has a profound in fluence on the dynamic behaviors and qualitative properties of a system.[1]The conserved quantity can reduce the dimensions and simplify the integral of the differential equation via reducing the degrees of freedom of a system.In 1918,Emmy Noether[2]noted the relationship between the symmetry and the conservation quantity and put forward Noether’s theorem.Since Noether’s theorem explains all the conservation laws of Newtonian mechanics,the studies of Noether’s symmetry and the conserved quantity have been one of the hot topics in the study of analytical mechanics and their applications in recent decades. So far,Noether symmetry and the conserved quantity have been studied in Lagrangian systems,[3?5]Hamiltonian systems,[6?8]Birkhoffian systems[9?11]as well as nonholonomic systems,[12?13]and so on.Not only that,but some scholars have studied Noether symmetry and conserved quantity in the model of fractional calculus.

    The origin of the concept of fractional calculus was advanced in 1695 when L’Hopital and Leibniz discussed the significance of a function in the order of 1/2.However,the theories of fractional calculus were rarely studied because of the research difficulties and ambiguity of the research significance.Until in the end of the 1970s,Mandelbrot[14]discovered that a large number of fractional dimension examples exists in nature.Then,it is found that fractional calculus has a wide range of applications in quantum mechanics,chaotic dynamics,long-range dissipation,signal processing and so on.[15?19]In recent years,various models of fractional integral and derivative have been developed,such as Riemann-Liouville fractional derivatives,Caputo fractional derivatives,Riesz-Riemann-Liouville fractional derivatives,Riesz-Caputo fractional derivatives,and so on.In this paper,we will study these four kinds of fractional derivatives. In addition,fractional calculus has applied in a variety of mechanical systems.[20?29]Since Birkhoffian systems are natural generalizations of Lagrangian systems and Hamiltonian systems,it is significant to propose the theory of fractional Birkhoffian systems.Up to now,there are a series of results and applications of fractional Birkhoffian systems.[30?36]Besides,in 2014,Almeida and Malinowska[37]considered the fractional Herglotz variational principle,where fractionality stands in the dependence of the Lagrangian by Caputo fractional derivatives of Herglotz variables.

    Herglotz variational principle,[38]proposed by Gustav Herglotz in 1930 firstly,gives a variational principle description of nonconservative systems even when the Lagrangian does not depend on time.The functional of Herglotz variational principle is defined by a differential equation,which generalizes the classical ones defining the functional by an integral.Before Georgieva and Guenther,[39]Noether’s theorems were applicable only to the classical variational principle and were not applied to the functional defined by different equations.Torres and his co-workers presented Noether’s theorem of higher-order variational problems of Herglotz type[40]and Noether’s first theorem based on Herglotz variational problems with time delay.[41]Besides,they also proposed Noether’s theorem for fractional Herglotz variational problems.[42?43]Zhang studied Noether’s theorem based on Herglotz variational problems in phase space and of Birkhoffian system.[44?46]However,applications of fractional Birkhoffian systems for the Herglotz variational principle have been not investigated in previous works.

    In this paper,we will study Noether symmetry and conserved quantities of the fractional Birkhoffian system in terms of the Herglotz variational problem.First of all,a brief summery of fractional derivatives and their properties are presented in Sec.2.In Sec.3,we present the fractional Pfa ff-Herglotz action and the fractional Pfa ff-Herglotz principle.In Sec.4,according to the fractional Pfa ff-Herglotz principle,we establish four kinds of fractional Birkho ff’s equations based on different definitions of fractional derivatives in terms of the Herglotz variational problem.In Sec.5,we give the definition and criterion of Noether symmetry of the fractional Birkhoffian system in terms of the Herglotz variational problem,and we derive the Noether’s theorems of the fractional Birkhoffian system in terms of the Herglotz variational problem.In Sec.6,in order to illustrate the method and results,we give an example and find four kinds of conserved quantities based on different definitions of fractional derivatives.Finally,we give the conclusions in Sec.7.

    2 Fractional Derivatives and Properties

    For the convenience of readers,we introduce the representations of Riemann-Liouville derivatives,Caputo derivatives,Riesz-Riemann-Liouville derivatives and Riesz-Caputo derivatives.Assume that the function f(ξ)is continuous and integrable in every finite interval(a,t)and(t,b). The left and the right Riemann-Liouville derivatives are[47]

    The left and the right Caputo derivatives are[47]

    The Riesz-Riemann-Liouville and Riesz-Caputo derivatives are[47]

    Here,D is the traditional derivative operator,α is the order of fractional derivatives such that n?1≤α

    Here γ ∈ t[0,1],γ means the dispensed quantities of the left and the right fractional derivatives,which can be distributed as needed.

    In this paper,we will need formulae for fractional integration by parts as follows given in Ref.[49]:

    3 Herglotz Variational Principle of Fractional Birkhoffian System

    According to the ideas of the generalized variational principle proposed by Herglotz,[38]the Herglotz variational problem of the fractional Birkhoffian system can be formulated as follows.

    Determine the trajectories aν(t)satisfying the boundary conditions

    for fixed real numbers a,b,and the function z satis fies the differential equation

    subject to the initial condition

    then z(b)is the extreme(minimize or maximize value),i.e.

    where B(t,aμ(t),z(t))is the Birkhoffian,Rν(t,aμ(t),z(t))areBirkho ff’sfunctions,aν(t)(ν=1,2,...,2n)are Birkho ff ’s variables,is a unified symbol ofandand zaare constants.We refer to the above variational problem as the Herglotz variational problem of the fractional Birkhoffian system.Then,functional z is the fractional Pfa ff-Herglotz action if z satis fies Eq.(16).

    Taking the calculation of the variation to Eq.(16),we have

    Considering the commutative relation δ˙z=(d/dt)δz,the formula(19)can be written as follows

    where

    And Eq.(20)satis fies the initial condition

    The solution of the above initial value problem is

    When t=b,the functional z(t)yields its extremum,and we obtain δz(b)=0.Let

    From the formula(22)and Eq.(23),we have

    Equation(24)is called fractional Pfa ff-Herglotz principle.

    Remark 1 When α,β → 1,the fractional Pfa ff-Herglotz principle(24)can be reduced to the integer Pfa ff-Herglotz principle[49]

    4 Fractional Birkho ff’s Equations in Terms of Herglotz Variational Problem

    Using the above Pfa ff-Herglotz principle,we can deduce to fractional Birkho ff’s equations in terms of the Herglotz variational problem based on different definitions of fractional derivatives.

    Let

    when 0< α,β <1,using Eqs.(9)and(10),we have

    Using Eqs.(26)and(27),Eq.(24)can be expressed as

    According to the fundamental lemma of the calculus of variations,we obtain

    De finition 1 Equations(29)are called fractional Birkho ff’s equations in terms of the Herglotz variational problem based on combined Riemann-Liouville derivatives.

    When γ =1,Eqs.(29)are reduced to left fractional Birkho ff ’s equations in terms of the Herglotz variational problem based on Riemann-Liouville derivatives

    where

    When γ =0,Eqs.(29)are reduced to right fractional Birkho ff ’s equations in terms of the Herglotz variational problem based on Riemann-Liouville derivatives

    where

    De finition 2 Let

    when 0<α<1,we have

    Then,Eqs.(32)are called fractional Birkho ff’s equations in terms of the Herglotz variational problem based on Riesz-Riemann-Liouville derivatives.

    De finition 3 Let

    when 0<α,β<1,we have

    Then,Eqs.(33)are called fractional Birkho ff’s equations in terms of the Herglotz variational problem based on combined Caputo derivatives.

    When γ =1,Eqs.(33)are reduced to left fractional Birkhof’s equations in terms of the Herglotz variational problem based on Caputo derivatives

    where

    When γ =0,Eqs.(33)are reduced to right fractional Birkho ff ’s equations in terms of the Herglotz variational problem based on Caputo derivatives

    where

    De finition 4 Let

    when 0<α<1,we have

    Then,Eqs.(36)are called fractional Birkho ff’s equations in terms of the Herglotz variational problem based on Riesz-Caputo derivatives.

    Remark 2 In fact,selecting γ =1/2 and β = α,Eq.(32)can also be obtained by Eq.(29),and Eqs.(36)can also be obtained by Eqs.(33).When α,β → 1,fractional Birkho ff’s equations in terms of the Herglotz variational problem(29)–(36)can be reduced to the classical Birkho ff’s equations in terms of the Herglotz variational problem[45]

    5 Noether Symmetry and Conserved Quantities of Fractional Birkhoffian System in Terms of Herglotz Variational Problem

    Introducing the in finitesimal transformations of r-parameter finite transformation group Grwith respect to time t and Birkho ff ’s variables aν,they are

    and their expansion formulae are

    where εσ(σ=1,2,...,r)are the in finitesimal parameters,τσandare the generators of the in finitesimal transformations.Under the action of the transformations(37),the corresponding Pfa ff-Herglotz action z will be transformed to the following form

    For any function F(t),we haveAnd noting the commutative relationwe can get easily

    Calculating the total variation for the differential equation(16),we have

    Using the formula(39)and considering Eq.(16),from Eq.(40)we have

    The solution?z(t)of Eq.(41)is given by

    Obviously?z(a)=0,the formula(42)can be changed to

    Since

    and considering

    the formulae(42)and(43)can be expressed as

    where

    According to the concepts of Noether symmetry,[2]we can establish the definition and criterion of Noether symmetric transformations of the fractional Birkhoffian system in terms of the Herglotz variational problem as follows.

    De finition 5 If the fractional Pfa ff-Herglotz action is invariant for t=b under the in finitesimal transformations(37)of group,i.e.for each of the in finitesimal transformation,the formula

    holds,then the in finitesimal transformations are called the Noether symmetric transformations of the fractional Birkhoffian system in terms of the Herglotz variational problem.

    By use of the definition,fractional Birkho ff’s equations in terms of the Herglotz variational problem and formulae(46),we obtain the following criterion.

    Criterion 1 For the fractional Birkhoffian system in terms of the Herglotz variational problem,if the in finitesimal transformations(38)satisfy the following condition

    then the transformations(38)are the Noether symmetric transformations of the fractional Birkhoffian system in terms of the Herglotz variational problem.Now,let us derive the Noether’s theorems of the fractional Birkhoffian systems based on the different definitions of fractional derivatives in terms of the Herglotz variational problem.

    Theorem 1 For the fractional Birkhoffian system in terms of the Herglotz variational problem based on combined Riemann-Liouville derivatives,if the in finitesimal transformations(38)of group are the Noether symmetric transformations,the system exists with r-linear independent conserved quantities,which are

    Proof Because the in finitesimal transformations(38)are the Noether symmetric transformations of the system,according to the definition,we have

    Substituting the formulae(7)and(47)into the above formula,we obtain

    Substituting the fractional Birkho ff’s equations in terms of the Herglotz variational problem(29)into the above expression,considering the independence of εσand the arbitrariness of the integral interval[a,b],we get

    Integrating it,we can obtain the conserved quantities(51),and thus,the theorem is proved.

    Theorem 1 is called Noether’s theorem of the fractional Birkhoffian system based on combined Riemann-Liouville derivatives in terms of the Herglotz variational problem.Similarly,we can get the following theorems.

    Theorem 2 For the fractional Birkhoffian system in terms of the Herglotz variational problem based on Riesz-Riemann-Liouville derivatives,if the in finitesimal transformations(38)of group are the Noether symmetric transformations,the system exists with r-linear independent conserved quantities,which are

    Theorem 3 For the fractional Birkhoffian system in terms of the Herglotz variational problem based on combined Caputo derivatives,if the in finitesimal transformations(38)of group are the Noether symmetric transformations,the system exists with r-linear independent conserved quantities,which are

    Theorem 4 For the fractional Birkhoffian system in terms of the Herglotz variational problem based on Riesz-Caputo derivatives,if the in finitesimal transformations(38)of group are the Noether symmetric transformations,the system exists with r-linear independent conserved quantities,which are

    Theorems 2,3,4 are called Noether’s theorem of the fractional Birkhoffian system in terms of the Herglotz variational problem based on Riesz-Riemann-Liouville derivatives,combined Caputo derivatives and Riesz-Caputo derivatives.

    When α,β → 1,Theorems 1–4 can be reduced to the classical Noether’s theorem of Birkhoffian system in terms of the Herglotz variational problem:

    Remark 3 For the Birkhoffian system in terms of the Herglotz variational problem,if the in finitesimal transformations(38)of group are the Noether symmetric transformations,then the system exists with r-linear independent conserved quantities,which are

    Remark 3 is the classical Noether’s theorem of the Birkhoffian system in terms of the Herglotz variational problem.[45]

    6 Example

    Try to find the conserved quantities of the following fractional Birkhoffian system in terms of the Herglotz variational problem

    where the functional z is defined by the differential equation

    First,substituting Eqs.(56)into thefractional Birkho ff’s equations in terms of the Herglotz variational problem based on combined Riemann-Liouville derivatives(29),we can obtain

    According to the criterion,the formula(50)can be changed to

    Equation(59)has a solution

    By Theorem 1,we obtain

    When γ =1/2 and β = α,Eqs.(58)and(59)are reduced to the fractional Birkho ff’s equations and criterion in terms of the Herglotz variational problem based on Riesz-Riemann-Liouville derivatives.Then,we can find the solution(60)is also one of the transformations.By Theorem 2,we obtain

    Next,substituting Eqs.(56)into thefractional Birkho ff’s equations in terms of the Herglotz variational problem based on combined Caputo derivatives(33),we can obtain

    At the moment,the formula(50)can be changed to

    Equation(64)has a solution

    By Theorem 3,we obtain

    Similarly,when γ =1/2 and β = α,we can obtain the Noether’s theorem of the fractional Birkhoffian system in terms of the Herglotz variational problem based on Riesz-Caputo derivatives

    7 Conclusion

    In this paper,we define the fractional Pfa ff-Herglotz action and present the fractional Pfa ff-Herglotz principle firstly.And then,fractional Birkho ff’s equations,criterion of Noether symmetry and Noether’s theorems of the fractional Birkhoffian system in terms of the Herglotz variational problem based on four different definitions of fractional derivatives are obtained.The theorems not only can reduce to the Noether’s theorem of the Birkhoffian system for the Herglotz variational problem under classical conditions,but also can become the Noether’s theorem of the Birkhoffian system when the functional z is independent of time.The traditional Lagrangian,Hamiltonian and Birkhoffian systems,the fractional Lagrangian,Hamiltonian and Birkhoffian systems,as well as the traditional Lagrangian,Hamiltonian and Birkhoffian systems for the Herglotz variational problem are special cases of the fractional Birkhoffian system for the Herglotz variational problem.Obviously,the method and results in this letter are of more universal significance. Besides,fractional Herglotz variational principle provides an effective method to deal with fractional conservative and nonconservative systems systematically.Therefore,fractional mechanical systems in terms of the Herglotz variational problem may be taken a deeper study in future.

    猜你喜歡
    張毅
    二月二—龍?zhí)ь^
    當代作家(2023年3期)2023-04-23 21:26:58
    張士卿基于敏濕熱瘀辨治過敏性紫癜經(jīng)驗
    《秋水共長天一色》
    青年生活(2019年6期)2019-09-10 17:55:38
    Isolation and callus formation of Gracilariopsis bailiniae(Gracilariales, Rhodophyta) protoplasts*
    隨便走走(短篇小說)
    當代小說(2017年11期)2018-01-08 09:31:32
    “執(zhí)著”的代價
    宮“?!彪u丁
    性格變更
    Perturbation to Noether Symmetries and Adiabatic Invariants for Generalized Birkhoff Systems Based on El-Nabulsi Dynamical Model
    Fractional Action-Like Variational Problem and Its Noether Symmetries for a Nonholonomic System
    av在线观看视频网站免费| 黄色怎么调成土黄色| 国产黄片视频在线免费观看| 亚洲精品成人av观看孕妇| 少妇精品久久久久久久| 亚洲精品美女久久av网站| 日韩人妻高清精品专区| 亚洲内射少妇av| 久久国内精品自在自线图片| 午夜精品国产一区二区电影| 国产在线免费精品| 日本av免费视频播放| 97在线视频观看| 一级毛片我不卡| 精品99又大又爽又粗少妇毛片| 人人妻人人爽人人添夜夜欢视频| 国产精品国产三级专区第一集| 午夜久久久在线观看| 免费观看的影片在线观看| 另类精品久久| 国产毛片在线视频| 欧美日韩精品成人综合77777| 丰满迷人的少妇在线观看| 最近2019中文字幕mv第一页| 成人综合一区亚洲| 在线看a的网站| 中国三级夫妇交换| 国产老妇伦熟女老妇高清| 久久久国产欧美日韩av| 大话2 男鬼变身卡| 黑人猛操日本美女一级片| 亚洲国产色片| 国产不卡av网站在线观看| 91久久精品电影网| 色哟哟·www| 大香蕉97超碰在线| 国产色爽女视频免费观看| 精品国产露脸久久av麻豆| 精品国产一区二区久久| 男男h啪啪无遮挡| 999精品在线视频| 人妻一区二区av| 免费人妻精品一区二区三区视频| 狂野欧美激情性xxxx在线观看| 欧美精品亚洲一区二区| 国产成人一区二区在线| 男人爽女人下面视频在线观看| 能在线免费看毛片的网站| 久久99精品国语久久久| 天天操日日干夜夜撸| 国产一区二区三区av在线| 精品午夜福利在线看| 少妇猛男粗大的猛烈进出视频| 精品久久久精品久久久| 少妇人妻精品综合一区二区| 国产欧美日韩一区二区三区在线 | 最近最新中文字幕免费大全7| 亚洲美女黄色视频免费看| 日本vs欧美在线观看视频| 黑人猛操日本美女一级片| 夜夜骑夜夜射夜夜干| 99热这里只有精品一区| 人妻 亚洲 视频| 99视频精品全部免费 在线| 男女啪啪激烈高潮av片| 国产精品国产三级国产av玫瑰| 久久人人爽av亚洲精品天堂| 99久国产av精品国产电影| 国产精品99久久99久久久不卡 | 国产在线视频一区二区| 亚洲成人av在线免费| 久久国产精品大桥未久av| 少妇丰满av| 亚洲,一卡二卡三卡| 国产精品久久久久久久久免| 国产精品一区二区三区四区免费观看| 一级毛片 在线播放| 国产在视频线精品| 男人添女人高潮全过程视频| 只有这里有精品99| 黄色毛片三级朝国网站| 蜜桃久久精品国产亚洲av| 精品酒店卫生间| 少妇人妻 视频| 亚洲精品av麻豆狂野| 熟妇人妻不卡中文字幕| 国产成人精品久久久久久| 大片电影免费在线观看免费| 久久精品国产亚洲网站| 日韩成人伦理影院| 亚洲欧洲国产日韩| 国内精品宾馆在线| 国产伦理片在线播放av一区| 国产伦精品一区二区三区视频9| 精品少妇内射三级| 亚洲欧美色中文字幕在线| 天天操日日干夜夜撸| av一本久久久久| 丰满饥渴人妻一区二区三| 国产精品99久久久久久久久| 亚洲怡红院男人天堂| av国产久精品久网站免费入址| videos熟女内射| 欧美日韩一区二区视频在线观看视频在线| 免费av中文字幕在线| 人妻系列 视频| 亚洲性久久影院| 美女主播在线视频| 丰满少妇做爰视频| 日韩精品免费视频一区二区三区 | 欧美人与性动交α欧美精品济南到 | 一区二区日韩欧美中文字幕 | 精品久久久久久电影网| 丝袜脚勾引网站| a级片在线免费高清观看视频| 中文欧美无线码| 日日爽夜夜爽网站| 国产日韩欧美在线精品| 一区二区三区精品91| av国产精品久久久久影院| 蜜桃久久精品国产亚洲av| 欧美日韩一区二区视频在线观看视频在线| 搡老乐熟女国产| 国产无遮挡羞羞视频在线观看| 人妻制服诱惑在线中文字幕| av又黄又爽大尺度在线免费看| 国产黄色视频一区二区在线观看| 国产欧美亚洲国产| 一边亲一边摸免费视频| 国产一级毛片在线| 精品熟女少妇av免费看| 国产亚洲午夜精品一区二区久久| 亚洲国产成人一精品久久久| 人体艺术视频欧美日本| 黄片播放在线免费| 亚洲欧美色中文字幕在线| 91午夜精品亚洲一区二区三区| 黑人欧美特级aaaaaa片| 97在线人人人人妻| 91国产中文字幕| 久久国产亚洲av麻豆专区| 老女人水多毛片| 日韩av在线免费看完整版不卡| 黄片播放在线免费| 午夜影院在线不卡| 成人黄色视频免费在线看| 一区二区三区免费毛片| 91精品一卡2卡3卡4卡| 少妇丰满av| 99久国产av精品国产电影| 久久久欧美国产精品| 观看av在线不卡| 一级毛片我不卡| 久久这里有精品视频免费| 亚洲色图 男人天堂 中文字幕 | 久久久久精品性色| av有码第一页| 97在线视频观看| 久热久热在线精品观看| 中文天堂在线官网| 亚洲精品久久午夜乱码| 免费人成在线观看视频色| 国产 一区精品| 王馨瑶露胸无遮挡在线观看| 国产又色又爽无遮挡免| 最新中文字幕久久久久| 热99国产精品久久久久久7| 亚洲精华国产精华液的使用体验| 一本色道久久久久久精品综合| 九色亚洲精品在线播放| 久久国产精品大桥未久av| 夫妻午夜视频| 在线观看人妻少妇| 国产黄频视频在线观看| 中文字幕精品免费在线观看视频 | 超色免费av| 99久久综合免费| 久久这里有精品视频免费| 看非洲黑人一级黄片| 在现免费观看毛片| 中国美白少妇内射xxxbb| 亚洲美女视频黄频| 久久精品国产亚洲网站| 欧美xxⅹ黑人| 91久久精品国产一区二区成人| 国产色爽女视频免费观看| 国产精品国产三级专区第一集| 99久久综合免费| 精品人妻在线不人妻| 国产极品粉嫩免费观看在线 | 国精品久久久久久国模美| 亚洲av在线观看美女高潮| 交换朋友夫妻互换小说| 91精品伊人久久大香线蕉| 两个人免费观看高清视频| 国产国语露脸激情在线看| 老司机影院成人| 免费看光身美女| 大码成人一级视频| 亚洲人成网站在线播| 久久热精品热| 能在线免费看毛片的网站| 久久久欧美国产精品| 精品一区二区免费观看| 久热久热在线精品观看| 婷婷色麻豆天堂久久| 国模一区二区三区四区视频| 一个人看视频在线观看www免费| 日韩大片免费观看网站| 亚洲av不卡在线观看| 三级国产精品欧美在线观看| 日本av手机在线免费观看| 亚洲国产毛片av蜜桃av| 免费人妻精品一区二区三区视频| 亚洲欧美中文字幕日韩二区| 国产熟女欧美一区二区| 在线观看免费高清a一片| 两个人免费观看高清视频| 草草在线视频免费看| 亚洲欧美一区二区三区国产| 免费观看在线日韩| 丝袜美足系列| 99re6热这里在线精品视频| 色吧在线观看| 精品99又大又爽又粗少妇毛片| 国产精品 国内视频| 卡戴珊不雅视频在线播放| h视频一区二区三区| 少妇人妻 视频| 99热6这里只有精品| 美女脱内裤让男人舔精品视频| 制服人妻中文乱码| 老女人水多毛片| 亚洲天堂av无毛| 国产老妇伦熟女老妇高清| av有码第一页| 天美传媒精品一区二区| 欧美变态另类bdsm刘玥| 国产国拍精品亚洲av在线观看| 熟妇人妻不卡中文字幕| 只有这里有精品99| 国产黄色视频一区二区在线观看| 你懂的网址亚洲精品在线观看| 欧美日韩视频高清一区二区三区二| 精品一区二区三卡| 少妇被粗大猛烈的视频| 国产精品国产三级国产专区5o| 狠狠婷婷综合久久久久久88av| 亚洲精品久久午夜乱码| 亚洲国产精品999| 国产男人的电影天堂91| 十八禁高潮呻吟视频| av播播在线观看一区| 亚洲国产色片| 亚洲国产精品一区二区三区在线| 午夜福利影视在线免费观看| 成人亚洲精品一区在线观看| 久久精品久久精品一区二区三区| 欧美激情 高清一区二区三区| 大码成人一级视频| 久久久a久久爽久久v久久| 五月伊人婷婷丁香| 啦啦啦啦在线视频资源| 蜜臀久久99精品久久宅男| av不卡在线播放| 亚洲国产日韩一区二区| 人人妻人人添人人爽欧美一区卜| 熟女av电影| 女人精品久久久久毛片| 下体分泌物呈黄色| 大又大粗又爽又黄少妇毛片口| 国产深夜福利视频在线观看| 色网站视频免费| 成人国语在线视频| 一本大道久久a久久精品| 欧美激情 高清一区二区三区| 精品一区二区免费观看| 国产视频内射| 九九在线视频观看精品| 97在线视频观看| 高清欧美精品videossex| 国产免费又黄又爽又色| 免费观看在线日韩| 国产精品一区二区在线不卡| 亚洲精品国产av成人精品| 赤兔流量卡办理| av免费观看日本| 日日摸夜夜添夜夜爱| 如何舔出高潮| 人人妻人人澡人人爽人人夜夜| 美女国产视频在线观看| 精品人妻熟女av久视频| 久久毛片免费看一区二区三区| 国产极品粉嫩免费观看在线 | 亚洲av电影在线观看一区二区三区| 99久久人妻综合| 免费高清在线观看视频在线观看| 日日爽夜夜爽网站| 免费看不卡的av| 久久久久视频综合| 免费看av在线观看网站| 亚洲经典国产精华液单| 国产精品欧美亚洲77777| 嘟嘟电影网在线观看| 99视频精品全部免费 在线| 久久久久人妻精品一区果冻| 极品少妇高潮喷水抽搐| 黄片无遮挡物在线观看| av电影中文网址| 成年人免费黄色播放视频| 欧美精品人与动牲交sv欧美| 少妇猛男粗大的猛烈进出视频| 免费人成在线观看视频色| 少妇人妻 视频| 建设人人有责人人尽责人人享有的| 欧美最新免费一区二区三区| 激情五月婷婷亚洲| 国产精品国产三级国产专区5o| 熟女电影av网| 久久ye,这里只有精品| 精品亚洲乱码少妇综合久久| 国产黄色免费在线视频| 日本欧美国产在线视频| 亚洲国产精品999| 免费久久久久久久精品成人欧美视频 | www.av在线官网国产| 一级毛片电影观看| 国产精品蜜桃在线观看| 亚洲国产精品999| 七月丁香在线播放| 欧美 日韩 精品 国产| 边亲边吃奶的免费视频| 国精品久久久久久国模美| 日韩在线高清观看一区二区三区| 又粗又硬又长又爽又黄的视频| 成年av动漫网址| 18在线观看网站| 国产老妇伦熟女老妇高清| 人妻制服诱惑在线中文字幕| 欧美国产精品一级二级三级| 亚洲少妇的诱惑av| 超色免费av| 在线 av 中文字幕| 性高湖久久久久久久久免费观看| 精品久久久久久久久av| av在线app专区| 亚洲色图 男人天堂 中文字幕 | 91精品一卡2卡3卡4卡| 18在线观看网站| 成人毛片60女人毛片免费| 国产综合精华液| 精品人妻一区二区三区麻豆| a级毛片在线看网站| 成人无遮挡网站| 熟女av电影| 久久久国产一区二区| 五月天丁香电影| 99久久人妻综合| 亚洲人成77777在线视频| av又黄又爽大尺度在线免费看| 国产亚洲一区二区精品| 人妻制服诱惑在线中文字幕| 又大又黄又爽视频免费| 韩国av在线不卡| 亚洲欧美一区二区三区黑人 | 国产永久视频网站| 一级毛片 在线播放| 国产乱来视频区| 国产免费福利视频在线观看| 国产av国产精品国产| 国产精品不卡视频一区二区| 高清av免费在线| 在线观看www视频免费| 夫妻性生交免费视频一级片| 一级毛片 在线播放| 少妇 在线观看| 国产精品.久久久| 黑人欧美特级aaaaaa片| 亚洲美女搞黄在线观看| 熟女电影av网| 午夜福利视频精品| 欧美激情 高清一区二区三区| 日本猛色少妇xxxxx猛交久久| 在线观看人妻少妇| 一区在线观看完整版| 日韩欧美精品免费久久| 黄色配什么色好看| 中文精品一卡2卡3卡4更新| 亚洲av不卡在线观看| 日韩av在线免费看完整版不卡| 亚洲精品国产av成人精品| 日韩,欧美,国产一区二区三区| 免费久久久久久久精品成人欧美视频 | 国产精品偷伦视频观看了| av电影中文网址| 伦理电影大哥的女人| 高清不卡的av网站| 国产伦理片在线播放av一区| 五月玫瑰六月丁香| 久久精品国产亚洲av天美| freevideosex欧美| 插阴视频在线观看视频| 另类亚洲欧美激情| 五月伊人婷婷丁香| 久久久精品区二区三区| 亚洲经典国产精华液单| 黄片播放在线免费| 少妇被粗大的猛进出69影院 | 纵有疾风起免费观看全集完整版| 国产免费视频播放在线视频| 日韩电影二区| www.色视频.com| 亚洲国产色片| .国产精品久久| 成人影院久久| 久久亚洲国产成人精品v| 爱豆传媒免费全集在线观看| 内地一区二区视频在线| 这个男人来自地球电影免费观看 | 一级毛片aaaaaa免费看小| 国产永久视频网站| 日韩亚洲欧美综合| 精品少妇黑人巨大在线播放| 有码 亚洲区| 久久精品熟女亚洲av麻豆精品| 日韩三级伦理在线观看| 精品亚洲成a人片在线观看| 国产极品天堂在线| 王馨瑶露胸无遮挡在线观看| 蜜桃在线观看..| 一区在线观看完整版| 亚洲五月色婷婷综合| 伊人久久精品亚洲午夜| 午夜激情久久久久久久| 青春草视频在线免费观看| av免费观看日本| 国产69精品久久久久777片| 男女啪啪激烈高潮av片| 久久久久网色| 日韩成人伦理影院| 97在线视频观看| 中文字幕久久专区| 各种免费的搞黄视频| 精品人妻一区二区三区麻豆| 日韩精品有码人妻一区| 国产精品久久久久久精品古装| 免费人妻精品一区二区三区视频| 日韩一区二区三区影片| 国产高清不卡午夜福利| 国产视频首页在线观看| 一级爰片在线观看| www.色视频.com| 纯流量卡能插随身wifi吗| 欧美精品人与动牲交sv欧美| videossex国产| 国产成人精品福利久久| 国产日韩一区二区三区精品不卡 | 成年女人在线观看亚洲视频| 大话2 男鬼变身卡| 有码 亚洲区| 久久久精品免费免费高清| 2018国产大陆天天弄谢| 黑人巨大精品欧美一区二区蜜桃 | 激情五月婷婷亚洲| 日韩一区二区视频免费看| 亚洲av男天堂| 内地一区二区视频在线| 亚洲天堂av无毛| 国产成人免费无遮挡视频| 亚洲人成77777在线视频| 精品国产国语对白av| 女性生殖器流出的白浆| 18禁在线播放成人免费| 91精品一卡2卡3卡4卡| 日韩制服骚丝袜av| 精品99又大又爽又粗少妇毛片| 精品久久久久久久久亚洲| 18禁观看日本| 成人毛片a级毛片在线播放| 少妇 在线观看| 亚洲一区二区三区欧美精品| 99热6这里只有精品| 国产极品天堂在线| 黄色怎么调成土黄色| 看免费成人av毛片| 最近中文字幕高清免费大全6| 国产成人精品福利久久| 精品人妻熟女av久视频| 国产免费现黄频在线看| 美女福利国产在线| 日韩熟女老妇一区二区性免费视频| 91精品伊人久久大香线蕉| 人妻 亚洲 视频| 久久人人爽人人爽人人片va| 成年av动漫网址| 69精品国产乱码久久久| 欧美成人精品欧美一级黄| 汤姆久久久久久久影院中文字幕| 下体分泌物呈黄色| 天堂中文最新版在线下载| 啦啦啦中文免费视频观看日本| 日韩成人伦理影院| av一本久久久久| 在线精品无人区一区二区三| 久久精品久久精品一区二区三区| 九草在线视频观看| 美女福利国产在线| 日韩熟女老妇一区二区性免费视频| 久久午夜综合久久蜜桃| 国产av一区二区精品久久| 成人国语在线视频| 国产一区有黄有色的免费视频| 大香蕉久久成人网| 一级黄片播放器| av在线观看视频网站免费| 成年人午夜在线观看视频| 在线看a的网站| 国产精品久久久久久精品电影小说| 交换朋友夫妻互换小说| 简卡轻食公司| 亚洲精品视频女| 亚洲五月色婷婷综合| 亚洲精品久久久久久婷婷小说| 青春草国产在线视频| 亚洲美女黄色视频免费看| 国产一级毛片在线| 精品国产乱码久久久久久小说| 18禁观看日本| 菩萨蛮人人尽说江南好唐韦庄| 新久久久久国产一级毛片| 一本—道久久a久久精品蜜桃钙片| 国产色爽女视频免费观看| 国产男人的电影天堂91| 免费人成在线观看视频色| a级毛片免费高清观看在线播放| 中国美白少妇内射xxxbb| 天美传媒精品一区二区| 黄色一级大片看看| 午夜91福利影院| 美女脱内裤让男人舔精品视频| 高清欧美精品videossex| 纵有疾风起免费观看全集完整版| 午夜激情福利司机影院| 街头女战士在线观看网站| 国产精品久久久久久久久免| 又大又黄又爽视频免费| 日韩精品免费视频一区二区三区 | 人妻人人澡人人爽人人| 国产精品成人在线| 又黄又爽又刺激的免费视频.| 午夜免费鲁丝| 亚洲精品aⅴ在线观看| 18禁观看日本| 亚洲精品国产色婷婷电影| 亚洲成人av在线免费| 韩国高清视频一区二区三区| 国产一区亚洲一区在线观看| 91精品三级在线观看| 一级毛片我不卡| 亚洲美女黄色视频免费看| 欧美一级a爱片免费观看看| 亚洲色图综合在线观看| 久久久亚洲精品成人影院| av线在线观看网站| 一级二级三级毛片免费看| 天堂中文最新版在线下载| 欧美成人精品欧美一级黄| 一级a做视频免费观看| .国产精品久久| 国产精品一二三区在线看| 色吧在线观看| 国产一区二区三区综合在线观看 | 两个人免费观看高清视频| 国模一区二区三区四区视频| 欧美精品一区二区免费开放| 男人添女人高潮全过程视频| 热re99久久国产66热| 国产极品天堂在线| 一级爰片在线观看| 久久 成人 亚洲| 婷婷色麻豆天堂久久| av在线老鸭窝| 最近中文字幕高清免费大全6| 母亲3免费完整高清在线观看 | 免费观看无遮挡的男女| 亚洲av中文av极速乱| 丝袜喷水一区| 亚洲色图综合在线观看| 亚洲精品亚洲一区二区| 丝袜喷水一区| 久久 成人 亚洲| 国产极品天堂在线| 日本欧美视频一区| 日日爽夜夜爽网站| 18在线观看网站| 亚洲第一av免费看| 免费观看无遮挡的男女| 最新的欧美精品一区二区| 一级爰片在线观看| 男男h啪啪无遮挡| 久久99蜜桃精品久久| 亚洲欧美色中文字幕在线| 91精品国产国语对白视频| av在线观看视频网站免费| 中文字幕久久专区| av国产久精品久网站免费入址| 午夜av观看不卡| 午夜视频国产福利| 亚洲精品国产av成人精品| 欧美bdsm另类| 中国美白少妇内射xxxbb| 亚洲国产精品成人久久小说| 日韩制服骚丝袜av| 精品人妻熟女毛片av久久网站| 久久精品夜色国产|