• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improving the Performance of Practical Decoy-State Measurement-Device-Independent Quantum Key Distribution with Biased Basis Choice?

    2018-09-10 06:39:48ChunHuiZhang張春輝ChunMeiZhang張春梅andQinWang王琴
    Communications in Theoretical Physics 2018年9期

    Chun-Hui Zhang(張春輝),Chun-Mei Zhang(張春梅),and Qin Wang(王琴)

    Institute of Signal Processing Transmission,Nanjing University of Posts and Telecommunications,Nanjing 210003,China Key Lab of Broadband Wireless Communication and Sensor Network Technology,Nanjing University of Posts and Telecommunications,Ministry of Education,Nanjing 210003,China

    AbstractStatistical fluctuations are unavoidable in realistic quantum key distribution(QKD)due to finite-size effect.Based on the four-intensity proposal on measurement-device-independent QKD(MDI-QKD)in[Phys.Rev.A 93(2016)042324],we particularly analyze the scenario that only three intensities are used,namely a three-intensity decoy-state MDI-QKD with biased basis choice.After performing full parameter optimization method,simulations results demonstrate that this scenario can obtain distinct enhancement compared with the conventional unbiased threeintensity decoy-state method,e.g.Xu et al.’s[Phys.Rev.A 89(2014)052333].Furthermore,results also show that it works more efficiently by using HSPS than using WCS at longer transmission distance.

    Key words:measurement-device-independent quantum key distribution,statistical fluctuations,biased basis choice

    1 Introduction

    Based on the laws of quantum mechanics,quantum key distribution(QKD)in principle can possess unconditional security,which permits two legitimate users,usually called Alice and Bob,to share secret keys.[1]To date,many security proofs have been given by established models.[2?10]However,a malicious eavesdropper(Eve)can still make use of loopholes existing in practical QKD devices,launch specific attacks and crack them.[11?14]To solve those problems,various protocols have been put forward,such as the decoy-state method,[15?17]the measurementdevice-independent QKD(MDI-QKD),[18?19]the deviceindependent QKD,[20?21]or the round-robin differential phase shift(RRDPS)protocol,[22?23]etc.Among them,the decoy-state method can close those loopholes caused by imperfect light sources,[24?27]and the MDI-QKD protocol can get rid of all side-channel attacks directed on detecting devices.The combination of the decoy-state method and the MDI-QKD protocol seems to contain the highest level of security within current technology,and thus has been extensively studied.[28?42]

    In real-life implementations of decoy-state MDI-QKD,the finite-size effect has to be taken into account due to finite number of pulses used,which significantly depresses the performance of practical QKD.Till today,different approaches have been reported to improve it,[32,34]in which the four-intensity proposal with biased basis choice[34]is the most promising method,significantly improving the performance of MDI-QKD.Here in this paper,we simplified the four-intensity proposal[34]into a biased threeintensity decoy-state MDI-QKD scheme.Moreover,we use two mostly used light sources,e.g.,the weak coherent source(WCS)and the heralded single-photon source(HSPS),as examples and carry out corresponding numerical simulations.After performing full parameter optimization,we demonstrate that,especially with HSPS,this scheme can achieve substantial improvement in both the key generation rate and the secure transmission distance compared with former three-intensity decoy-state MDIQKD.[32]

    The article is organized as follows: First,threeintensity decoy-state MDI-QKD with biased basis choice is introduced in Sec.2;Second,corresponding numerical simulations are carried out in Sec.3;Finally,discussions and conclusions are given in Sec.4.

    2 The Biased Three-Intensity Decoy-State MDI-QKD

    Here,the three-intensity decoy-state method with biased basis choice in MDI-QKD is described as follows:

    (i)Alice(Bob)randomly prepares signal state ρμin Z,and X bases with certain probabilities.

    (ii)Alice(Bob)prepares decoy state ρvonly in X basis.

    (iii)When preparing vacuum state ρo,Alice(Bob)does not choose any basis.

    It is different from the normal three-intensity decoystate MDI-QKD protocol,[43]such asXu etal.’s method,[32]as shown in Table 1.In this scheme,the redundancy on preparing states in Z basis for the decoy states is removed.

    Table 1 The difference on preparing states between normal 3-intensity decoy-state method and ours in MDI-QKD.The “-” here denotes that Alice(Bob)does not need to choose X basis or Z basis for vacuum state.

    In a three-intensity decoy-state MDI-QKD protocol,Alice and Bob individually prepare their light pulses into three different states,i.e.,the vacuum state(ρo=|0??0|),the decoy state(ρv)and the signal state(ρμ).In the photon-number space,the vacuum,decoy and signal states of Alice and Bob can be written as

    where|n?is an n-photon state;the subscript A or B each denotes Alice or Bob;corresponds to the photonnumber distribution of source lA(rB)at Alice’s(Bob’s)side,(l,r=o,v,μ).For any light sources with convex photon-number distribution functions,,and for n>2,they satisfy the condition:[36]

    When Alice sends pulses with state ρlAand Bob sends pulses with state ρrB,the average counting rate(Slr)and quantum-bit errors(Tlr=:SlrElr)at the untrustworthy third party(UTP)’s side can be expressed as:

    where Yjkand ejkeach denotes the yield and the error rate when Alice sends a j-photon state and Bob sends a k-photon state,Elrcorresponds to the average quantumbit error-rate(QBER),and the notation lr here indicates the two-pulse source when Alice uses source lAand Bob uses source rBto generate a pulse pair.

    Evidently,it is hard to give precise estimation for the yield of two-single-photon pulses in Z basis()by employing only the observed data in Z basis,since no decoy pulses have been prepared in Z basis.Interestingly,Ref.[34]has provided a theorem:The yield of two-single-photon pulses in all bases(X and Z)can be tightly lower bounded by using the observed data in the X basis.It has also given a detailed proof for this theorem.Note that Ref.[34]implements four-intensity decoy states,while we need only three different intensities in the simplified scheme.It can not only simplify the complexity of the QKD system,but also reduce the cost of random numbers by using three-intensity decoy-states instead of using four-intensity decoy states in practical QKD system.

    To avoid redundancy,hereafter,we just borrow the conclusive result from Ref.[34]and use the observed data in X basis to estimate the lower bound of.Then we can obtain:[31?32]

    where

    The phase- flip error-rate of the two-single-photon pulses in Z basis can be upper bounded by the quantum-bit errorrate(QBER)of the two-single-photon pulses in X basis,given by:[31?32]

    where γ is a constant coefficient depending on the failure probability ε;refers to the number of pulse-pairs when Alice sends state ρlAand Bob sends state ρrBboth in X basis.Here for simplification,we consider the finite-size effect with the standard statistical fluctuations,[28]but it would not in fluence the main conclusion even with other analysis methods,such as the Cherno ffbound method.[44]

    With the above formulae,we can calculate the final secure key rate as:[32]

    where pμA(pμB)denotes the probability that Alice(Bob)chooses state ρμA(ρμB),and pZ|μA(pZ|μB)corresponds to the probability that Alice(Bob)sends pulses with state ρμA(ρμB)in Z basis;f is the inefficiency of error correction,here we reasonably assume f=1.16;[19,32]H2(p)is the binary Shannon information function,defined as H2(p):=?plog2(p)?(1?p)log2(1?p);andeach denotes the average counting rate and the average QBER in Z basis.

    3 Numerical Simulations

    In this section,we employ two kinds of light sources,i.e.,the WCS and the HSPS,as examples to investigate the performance of our method and the representative decoy-state MDI-QKD scheme,[32]both carrying out the full parameter optimization method presented in Ref.[32].

    As we know,a WCS usually possesses a poissonian photon-number distribution:[28]

    and an HSPS follows a subpossonian photon-number distribution:[30]

    whereμrepresents the average photon number per pulse,|n?denotes an n-photon state,ηAand dAeach corresponds to the detection efficiency and dark count rate of Alice(or Bob)’s local detector in HSPS.

    To simplify the numerical simulation,here we assume the symmetrical case,i.e.,the UTP is located in the middle between Alice and Bob,and has identical detectors(with the same dark count rates and detection efficiencies).Besides,Alice and Bob possess the same optical and QKD systems.For the case of using HSPS,Alice and Bob own the same local detectors.Then we have,for all n,and pvA=pvB=pv,pμA=pμB=pμ,pZ|μA=pZ|μB=pZ|μ.Moreover,when accounting for statistical fluctuations,we reasonably set the confidence interval as γ=5.3,corresponding to a failure probability of 10?7.[30,32]We use the same experimental parameters as in Ref.[32]in our simulation,as listed in Table 2.

    Table 2 The systematic parameters used in our numerical simulations.α represents the loss coefficient of standard commercial single-modefibers;e0denotes the error rate of vacuum pulses;edrefers to the misalignment probability of the whole optical system;ηdand Y0each corresponds to the detection efficiency and the dark count rate of detectors at the UTP’s side; ηAand dAare the detection efficiency and the dark count rate of the commercial silicon detector at Alice(or Bob)’s side when applying HSPS.

    In the following,for a fair comparison,we use the same full parameter optimization method presented in Ref.[32],i.e.,the local search algorithm(LSA),for both Xu et al.’s method and our method,which includes the intensities of the signal states(μ)and the decoy states(v),the probabilities of choosing different intensities(pμ,pv)and the probabilities of choosing different bases in corresponding intensities(pX|μ,pX|vin Xu et al.’s method,and pX|μin ours).Corresponding simulation results are displayed out in Figs.1–4.

    In order to show the consistence of the scheme with other former work,we calculate the final key generation rate of using this method and Xu et al.’s work[32]when both taking statistical fluctuations into account,while setting the number of pulses with a very large value,e.g.,N=1025.Moreover,we also calculate the key generation rate of using standard three-intensity decoy-state MDI-QKD without considering statistical fluctuations,as shown in Fig.1.We can see from Fig.1(a)that when the number of pulses is very large,e.g.,N=1025,both our method(W2(H2))and Xu et al.’s work(W1(H1))approach very closely to the ideal case of without accounting for statistical fluctuations(W0(H0)).Moreover,in order to illustrate it more clearly,we also display the relative key rate in Fig.1(b).It denotes the ratio of the key rate between using practical three-intensity decoy-state methods and corresponding asymptotic case of using in finite number of pulses,which again verifies the the consistence of our method with Xu et al.’s work.Below we also give analytical explanations on it.

    Fig.1 (Color online)Asymptotic comparison of the if nal key generation rate between Xu et al.’s work and our work.(a)The absolute values of the final key rates with logarithm scale:W0(H0)refers to the results of using standard three-intensity decoy-state MDI-QKD with WCS(HSPS)without considering statistical fluctuations;W1(H1)represents the results of employing Xu et al.’s three-intensity decoy-state MDI-QKD with WCS(HSPS)by accounting for statistical fluctuations;W2(H2)corresponds to applying our method with WCS(HSPS)when taking statistical fluctuations into account.(b)The relative values of final key generation rates.We

    In the limit N→∞,the density matrices satisfy=,which means the quantum states of twosingle-photon pulses in X basis or Z basis are completely the same.Then,the counting rates of two-single-photon pulses satisfy=.Besides,in Eqs.(4)–(7),→0 and→0.As a result,the key rates of both our method and Xu et al.’s work approach very closely to the ideal case of without accounting for statistical fluctuations.

    Fig.2 (Color online)Comparisons of the two-single-photon-pulse contributions between Xu et al.’s work and ours.(a)and(c)correspond to the results of using WCS,while(b)and(d)denote using HSPS.W1(H1)refers to implementing Xu et al.’s three-intensity decoy-state method,and W2(H2)represents applying our method.Here we reasonably set the number of pulses as N=1011.

    In Fig.2,we do comparison on the contributions of two-single-photon pulses,i.e.,its conditional counting rate()and the phase- flip error-rate()between Xu et al.’s work[32]and our method using either WCS or HSPS.Here the data size of the pulse number is reasonably set as N=1011.We can see from Figs.2(a)and 2(b)that,both methods present comparable values of.While for the values of,our method presents much lower values than the former as shown in Figs.2(c)and 2(d).Obviously,our method can achieve more precise estimation forcompared with Xu et al.’s work.Because we have removed the redundancy on preparing states in Z basis for the decoy states and without in fluencing the security.Then there will be more data in X basis to be applied to estimate the value of.Correspondingly,our method will su ff er less finite-size effect and can thus show significant enhancement in both the key generation rate and the secure transmission distance compared with Xu et al.’s work.[32]

    Figure 3 shows comparisons of the final key generation rate between our method and Xu et al.’s method using either WCS or HSPS and considering different data sizes.Figures 3(a)and 3(b)refer to the absolute key generation rates with logarithmic coordinate,while Figs.3(c)and 3(d)correspond to the relative values with linear scale.Obviously,our method can drastically improve the key generation rate compared with Xu et al.’s work using either WCS or HSPS.And the smaller data size,the more distinct enhancement we can achieve.Moreover,our method applying HSPS works more efficiently than using WCS.For example,at the data size of N=1011and at the distance of 100 km,there is no key can be generated by using WCS,while a relative high key rate can still be obtained by applying HSPS.Moreover,when both using HSPS,we can get more than 40%enhancement in the key generation rate at the data size of N=1012,and 300%enhancement at N=1011when compared with Xu et al.’s method.Those enhancements can be attributed to two inherent merits of HSPS:(i)The neglectable dark count rate;(ii)The significantly lower probability for events with two photons presenting on the same side of the beamsplitter during Bell-projection measurements.

    Moreover,to demonstrate that the merits of the present scheme will not change even when the Cherno ffbound[44]is applied in analyzing statistical fluctuations,we plot Fig.4 by implementing the Cherno ffbound method on the above two schemes.Here the data size is reasonably set N=1011.The absolute values and the relative values are respectively shown in Figs.4(a)and 4(b).Obviously,we can find the same trends as in Fig.3.

    Fig.4 (Color online)Comparisons of the final key generation rate between Xu et al.’s method and ours by applying the Cherno ffbound analysis.(a)displays the absolute key generation rates with logarithmic coordinate,and(b)exhibits the relative values with linear scale.W1(H1)represents the results of Xu et al.’s method,and W2(H2)denotes ours.Here the number of pulses is reasonably set at N=1011.

    4 Conclusions

    In conclusion,we have applied the idea of biased basis choice in Ref.[34]into the three-intensity decoy-state MDI-QKD scheme and carried out full parameter optimization on it.Compared with Xu et al.’s three-intensity scheme,[34]here the main difference is that the decoy pulses only prepared in X basis,which leads to more data in X basis for estimating the quantum-bit errorrate of two-single-photon pulses accurately.Therefore,this method su ff ers less finite-size effect during parameter estimations and can achieve better performance in the key distillation.Furthermore,numerical simulation results show that this method works more efficiently by using HSPS than using WCS at longer transmission distance.This attributes to the negligible dark count rate in HSPS,and dramatically lower probability for events with two photons presenting on the same side of the beamsplitter in HSPS than in WCS.In addition,this method can be easily realized with current technology,and thus looks very promising in the implementation of the quantum communication.

    国产精品久久久久久精品古装| 亚洲专区字幕在线| h视频一区二区三区| 嫩草影视91久久| 香蕉国产在线看| 免费观看av网站的网址| 亚洲av美国av| 亚洲欧洲精品一区二区精品久久久| avwww免费| www.熟女人妻精品国产| 一区二区av电影网| 18在线观看网站| 国产免费福利视频在线观看| 人人妻人人澡人人爽人人夜夜| 高清视频免费观看一区二区| 国产又色又爽无遮挡免费看| 国产亚洲欧美精品永久| 最黄视频免费看| 1024视频免费在线观看| 欧美激情高清一区二区三区| 免费一级毛片在线播放高清视频 | 可以免费在线观看a视频的电影网站| 精品人妻1区二区| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲成人免费电影在线观看| 免费人妻精品一区二区三区视频| 啪啪无遮挡十八禁网站| 久久久久网色| 成人永久免费在线观看视频 | 日韩欧美一区二区三区在线观看 | 久久国产精品人妻蜜桃| 亚洲男人天堂网一区| 国产又爽黄色视频| 久久精品国产a三级三级三级| 久久久久久人人人人人| 亚洲精品成人av观看孕妇| 曰老女人黄片| 欧美人与性动交α欧美软件| 亚洲av成人一区二区三| 大陆偷拍与自拍| 欧美黑人精品巨大| 国产精品久久电影中文字幕 | 日本精品一区二区三区蜜桃| 制服人妻中文乱码| 2018国产大陆天天弄谢| 99热网站在线观看| 色婷婷av一区二区三区视频| 操出白浆在线播放| 在线观看人妻少妇| 韩国精品一区二区三区| 久久久久久久国产电影| 麻豆乱淫一区二区| 一级黄色大片毛片| 成人手机av| 一级片免费观看大全| 99国产精品一区二区蜜桃av | 80岁老熟妇乱子伦牲交| 成年动漫av网址| 91成人精品电影| av天堂在线播放| 亚洲第一欧美日韩一区二区三区 | 久久精品国产综合久久久| netflix在线观看网站| 香蕉丝袜av| 久久中文字幕人妻熟女| 欧美精品亚洲一区二区| 亚洲精品一卡2卡三卡4卡5卡| 又大又爽又粗| 国产精品国产av在线观看| 国产精品二区激情视频| 欧美激情 高清一区二区三区| 宅男免费午夜| 国产不卡av网站在线观看| 亚洲精品一二三| 99国产精品免费福利视频| 岛国毛片在线播放| 国产成人精品在线电影| 性色av乱码一区二区三区2| 少妇 在线观看| 日韩中文字幕欧美一区二区| 日韩大片免费观看网站| 成人国语在线视频| 精品午夜福利视频在线观看一区 | 在线av久久热| 无遮挡黄片免费观看| 亚洲精品乱久久久久久| av又黄又爽大尺度在线免费看| 欧美成人免费av一区二区三区 | 日本黄色日本黄色录像| 99在线人妻在线中文字幕 | 国产精品香港三级国产av潘金莲| 国产亚洲欧美精品永久| 免费在线观看黄色视频的| 一区二区av电影网| av片东京热男人的天堂| 午夜老司机福利片| 人人妻,人人澡人人爽秒播| 国产精品免费大片| 国产男女内射视频| 国产成人啪精品午夜网站| 日韩视频在线欧美| 两个人免费观看高清视频| 成年动漫av网址| 久久av网站| 亚洲精品美女久久久久99蜜臀| 不卡av一区二区三区| 久久精品亚洲熟妇少妇任你| 老鸭窝网址在线观看| 精品福利永久在线观看| 母亲3免费完整高清在线观看| av电影中文网址| 免费在线观看视频国产中文字幕亚洲| 久久精品成人免费网站| 精品国产超薄肉色丝袜足j| 亚洲精品中文字幕在线视频| 99国产极品粉嫩在线观看| svipshipincom国产片| 他把我摸到了高潮在线观看 | 老司机午夜十八禁免费视频| 欧美精品高潮呻吟av久久| 国产野战对白在线观看| 无遮挡黄片免费观看| 久久久国产一区二区| 黑人猛操日本美女一级片| 成人18禁高潮啪啪吃奶动态图| 精品第一国产精品| 日日摸夜夜添夜夜添小说| 久久久国产精品麻豆| 精品免费久久久久久久清纯 | 国产精品 欧美亚洲| 国产成人欧美在线观看 | 国产区一区二久久| 午夜免费成人在线视频| 欧美久久黑人一区二区| 纵有疾风起免费观看全集完整版| 青草久久国产| 色婷婷av一区二区三区视频| 欧美一级毛片孕妇| 久久久久精品人妻al黑| 亚洲av电影在线进入| 亚洲av日韩在线播放| 男女下面插进去视频免费观看| 国产黄色免费在线视频| 热99re8久久精品国产| 日韩欧美一区视频在线观看| 99re6热这里在线精品视频| 国产成人精品在线电影| 1024视频免费在线观看| 最黄视频免费看| 成人国语在线视频| 我要看黄色一级片免费的| 欧美精品亚洲一区二区| 蜜桃国产av成人99| 黑人操中国人逼视频| 亚洲av欧美aⅴ国产| a在线观看视频网站| 欧美在线黄色| 99国产精品免费福利视频| 国产av精品麻豆| 中国美女看黄片| 精品一区二区三卡| 黄片小视频在线播放| 99精国产麻豆久久婷婷| 最近最新免费中文字幕在线| 亚洲成人免费av在线播放| 十八禁高潮呻吟视频| 麻豆成人av在线观看| 女警被强在线播放| 午夜福利一区二区在线看| 国产精品二区激情视频| 99精品欧美一区二区三区四区| 男女高潮啪啪啪动态图| 大型av网站在线播放| 老熟妇乱子伦视频在线观看| 国产欧美日韩一区二区三| 精品人妻熟女毛片av久久网站| 久久久精品区二区三区| 亚洲午夜理论影院| 啪啪无遮挡十八禁网站| 搡老岳熟女国产| 欧美中文综合在线视频| 中文字幕色久视频| 国产区一区二久久| 热99久久久久精品小说推荐| 国产日韩欧美亚洲二区| 纯流量卡能插随身wifi吗| 午夜福利视频在线观看免费| 欧美日韩亚洲高清精品| 欧美日韩精品网址| 热99国产精品久久久久久7| 精品国产亚洲在线| 午夜老司机福利片| 丁香欧美五月| 丰满人妻熟妇乱又伦精品不卡| 宅男免费午夜| 欧美变态另类bdsm刘玥| 1024香蕉在线观看| videosex国产| 欧美黄色片欧美黄色片| 国产精品免费一区二区三区在线 | 久久人妻熟女aⅴ| 男女床上黄色一级片免费看| 亚洲熟女毛片儿| 三级毛片av免费| 日韩 欧美 亚洲 中文字幕| 最新美女视频免费是黄的| 久久久国产精品麻豆| av有码第一页| 涩涩av久久男人的天堂| 亚洲中文字幕日韩| 美女扒开内裤让男人捅视频| 午夜福利欧美成人| 男女高潮啪啪啪动态图| av又黄又爽大尺度在线免费看| 色婷婷av一区二区三区视频| 青青草视频在线视频观看| 精品第一国产精品| 久久影院123| 淫妇啪啪啪对白视频| 高清黄色对白视频在线免费看| 男女免费视频国产| 最近最新中文字幕大全免费视频| 亚洲午夜精品一区,二区,三区| 久久性视频一级片| 午夜精品国产一区二区电影| 国产亚洲一区二区精品| 日本黄色视频三级网站网址 | 亚洲午夜理论影院| 精品国产超薄肉色丝袜足j| 纯流量卡能插随身wifi吗| 午夜福利乱码中文字幕| 国产精品一区二区在线观看99| 一个人免费在线观看的高清视频| 国产成人精品久久二区二区免费| 男女之事视频高清在线观看| 一级黄色大片毛片| 日韩一卡2卡3卡4卡2021年| 男人操女人黄网站| 桃红色精品国产亚洲av| 成人特级黄色片久久久久久久 | 欧美精品av麻豆av| 午夜福利影视在线免费观看| 热99国产精品久久久久久7| 国产精品一区二区精品视频观看| 日韩有码中文字幕| 久久久久久久国产电影| 9191精品国产免费久久| 国精品久久久久久国模美| 午夜免费鲁丝| 国产精品电影一区二区三区 | 免费女性裸体啪啪无遮挡网站| 国内毛片毛片毛片毛片毛片| 女性被躁到高潮视频| 麻豆乱淫一区二区| 老汉色∧v一级毛片| 美国免费a级毛片| 婷婷成人精品国产| 日韩制服丝袜自拍偷拍| 国产精品麻豆人妻色哟哟久久| 国产一区有黄有色的免费视频| 丝瓜视频免费看黄片| 波多野结衣av一区二区av| 久久亚洲精品不卡| 老司机深夜福利视频在线观看| 男女下面插进去视频免费观看| 麻豆av在线久日| 免费高清在线观看日韩| 麻豆国产av国片精品| 国产真人三级小视频在线观看| 中文字幕av电影在线播放| 成人永久免费在线观看视频 | 高清欧美精品videossex| 免费在线观看影片大全网站| 亚洲综合色网址| 一区二区av电影网| 日本wwww免费看| 中文字幕人妻熟女乱码| 国产极品粉嫩免费观看在线| 丰满迷人的少妇在线观看| 两个人看的免费小视频| 色综合婷婷激情| 国产成人精品久久二区二区91| 亚洲精品成人av观看孕妇| 12—13女人毛片做爰片一| 一级片'在线观看视频| 国产高清国产精品国产三级| 免费在线观看视频国产中文字幕亚洲| 亚洲av日韩在线播放| 亚洲精品自拍成人| 国产av又大| 日韩精品免费视频一区二区三区| 国产精品免费一区二区三区在线 | 制服人妻中文乱码| 少妇猛男粗大的猛烈进出视频| 999精品在线视频| 91成人精品电影| 亚洲,欧美精品.| 中国美女看黄片| av天堂在线播放| 法律面前人人平等表现在哪些方面| 极品教师在线免费播放| 亚洲专区中文字幕在线| 国产欧美日韩一区二区精品| 午夜福利视频在线观看免费| 男女无遮挡免费网站观看| 妹子高潮喷水视频| 国产一卡二卡三卡精品| 黄片播放在线免费| 久久人妻熟女aⅴ| 一区二区日韩欧美中文字幕| 国产av精品麻豆| 久久中文字幕一级| 欧美久久黑人一区二区| 国产极品粉嫩免费观看在线| 精品国产乱码久久久久久小说| 婷婷丁香在线五月| 久久精品熟女亚洲av麻豆精品| 亚洲,欧美精品.| 午夜福利,免费看| 欧美亚洲 丝袜 人妻 在线| 欧美亚洲 丝袜 人妻 在线| 肉色欧美久久久久久久蜜桃| 大香蕉久久成人网| 欧美日韩一级在线毛片| 亚洲第一欧美日韩一区二区三区 | 搡老乐熟女国产| 啦啦啦中文免费视频观看日本| 女性被躁到高潮视频| 一区福利在线观看| 老汉色av国产亚洲站长工具| 成人亚洲精品一区在线观看| 久久精品成人免费网站| 欧美激情极品国产一区二区三区| 热99久久久久精品小说推荐| 色94色欧美一区二区| 亚洲一区二区三区欧美精品| 亚洲成a人片在线一区二区| 人成视频在线观看免费观看| 国产一区二区三区在线臀色熟女 | 黄色视频不卡| 12—13女人毛片做爰片一| 99精品在免费线老司机午夜| 精品熟女少妇八av免费久了| 99在线人妻在线中文字幕 | 老汉色av国产亚洲站长工具| 久久人妻熟女aⅴ| 午夜激情久久久久久久| 我的亚洲天堂| 变态另类成人亚洲欧美熟女 | 久久久久久久久久久久大奶| 国产极品粉嫩免费观看在线| 国产精品电影一区二区三区 | 精品国产乱码久久久久久男人| 一级片免费观看大全| 波多野结衣一区麻豆| 欧美另类亚洲清纯唯美| 国产伦理片在线播放av一区| 一个人免费在线观看的高清视频| 久久狼人影院| 久久久水蜜桃国产精品网| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久国产成人免费| 国产欧美日韩一区二区三| 变态另类成人亚洲欧美熟女 | 久久久久久亚洲精品国产蜜桃av| 免费看十八禁软件| av视频免费观看在线观看| 一二三四社区在线视频社区8| 女人被躁到高潮嗷嗷叫费观| h视频一区二区三区| 亚洲精品自拍成人| 成年女人毛片免费观看观看9 | 宅男免费午夜| 精品国产乱码久久久久久男人| 波多野结衣一区麻豆| www.精华液| 亚洲三区欧美一区| 国产在线观看jvid| 高清欧美精品videossex| 久久久久久久大尺度免费视频| 欧美黑人精品巨大| av天堂在线播放| 黄色a级毛片大全视频| 极品人妻少妇av视频| 久久人人爽av亚洲精品天堂| 亚洲午夜理论影院| 黄片播放在线免费| 一边摸一边抽搐一进一出视频| 免费av中文字幕在线| 亚洲中文日韩欧美视频| 精品午夜福利视频在线观看一区 | 国产精品偷伦视频观看了| 91麻豆av在线| 两性夫妻黄色片| 夫妻午夜视频| 欧美性长视频在线观看| 日日摸夜夜添夜夜添小说| 女人久久www免费人成看片| 日韩人妻精品一区2区三区| 精品少妇久久久久久888优播| 在线 av 中文字幕| 天天躁夜夜躁狠狠躁躁| 亚洲,欧美精品.| 叶爱在线成人免费视频播放| 午夜久久久在线观看| 国产aⅴ精品一区二区三区波| 亚洲天堂av无毛| 国产高清国产精品国产三级| 久久国产精品影院| 在线播放国产精品三级| 日本av免费视频播放| √禁漫天堂资源中文www| 天天躁日日躁夜夜躁夜夜| 亚洲va日本ⅴa欧美va伊人久久| 精品少妇内射三级| 亚洲国产欧美网| 午夜视频精品福利| 黑人操中国人逼视频| 老司机福利观看| 这个男人来自地球电影免费观看| 99re6热这里在线精品视频| 亚洲av日韩在线播放| 欧美黄色淫秽网站| 老司机影院毛片| 大香蕉久久成人网| 人妻久久中文字幕网| 性色av乱码一区二区三区2| 国产av一区二区精品久久| 国产男女超爽视频在线观看| 超色免费av| 亚洲欧洲日产国产| 亚洲精品一卡2卡三卡4卡5卡| av不卡在线播放| 亚洲专区中文字幕在线| 久久99热这里只频精品6学生| av电影中文网址| 国产亚洲av高清不卡| 老司机福利观看| 这个男人来自地球电影免费观看| 美女高潮喷水抽搐中文字幕| 亚洲欧美日韩另类电影网站| 久久久久久久大尺度免费视频| 中文字幕人妻丝袜制服| 操出白浆在线播放| 国产精品九九99| 99国产极品粉嫩在线观看| 国产成+人综合+亚洲专区| 中文字幕最新亚洲高清| 大片免费播放器 马上看| 黑人巨大精品欧美一区二区蜜桃| av有码第一页| 桃红色精品国产亚洲av| 亚洲一区二区三区欧美精品| 国产一区二区 视频在线| 黑人巨大精品欧美一区二区蜜桃| 成人亚洲精品一区在线观看| 成人三级做爰电影| 制服诱惑二区| 亚洲精品国产色婷婷电影| 免费日韩欧美在线观看| 国产不卡av网站在线观看| 90打野战视频偷拍视频| 汤姆久久久久久久影院中文字幕| 2018国产大陆天天弄谢| 999精品在线视频| a级片在线免费高清观看视频| cao死你这个sao货| 深夜精品福利| 久久香蕉激情| 免费观看人在逋| 一边摸一边做爽爽视频免费| 日本欧美视频一区| 亚洲第一av免费看| 精品国产乱码久久久久久小说| 美女福利国产在线| 精品一品国产午夜福利视频| 国产成人精品久久二区二区91| 久久久精品免费免费高清| 国产男女超爽视频在线观看| 国产精品秋霞免费鲁丝片| 一级毛片女人18水好多| 久久久久久久久免费视频了| 中文亚洲av片在线观看爽 | 亚洲va日本ⅴa欧美va伊人久久| 久久这里只有精品19| 一区二区三区国产精品乱码| 成人国产av品久久久| 19禁男女啪啪无遮挡网站| 午夜免费成人在线视频| 欧美 亚洲 国产 日韩一| 91字幕亚洲| 欧美 亚洲 国产 日韩一| 精品人妻1区二区| 99久久人妻综合| 日韩精品免费视频一区二区三区| 1024视频免费在线观看| 9色porny在线观看| 欧美 日韩 精品 国产| 国产精品 国内视频| 欧美日韩亚洲国产一区二区在线观看 | 亚洲美女黄片视频| 日韩中文字幕欧美一区二区| 咕卡用的链子| 亚洲少妇的诱惑av| 亚洲精品中文字幕一二三四区 | 操出白浆在线播放| 三级毛片av免费| 国产成人影院久久av| 18禁国产床啪视频网站| tocl精华| 精品福利永久在线观看| 亚洲精品国产色婷婷电影| 亚洲精品中文字幕在线视频| 国产成人精品无人区| 免费久久久久久久精品成人欧美视频| 侵犯人妻中文字幕一二三四区| 国产精品av久久久久免费| www.精华液| 超碰97精品在线观看| cao死你这个sao货| 亚洲人成77777在线视频| 亚洲成a人片在线一区二区| 99国产精品一区二区蜜桃av | 久久精品国产亚洲av香蕉五月 | 99久久人妻综合| 成人亚洲精品一区在线观看| 又大又爽又粗| 亚洲av日韩精品久久久久久密| 日韩 欧美 亚洲 中文字幕| 免费黄频网站在线观看国产| 久久人妻福利社区极品人妻图片| 中文字幕人妻丝袜一区二区| 国产又爽黄色视频| 51午夜福利影视在线观看| 国产欧美亚洲国产| 美女主播在线视频| 女人爽到高潮嗷嗷叫在线视频| 成人18禁高潮啪啪吃奶动态图| 国产精品久久久久久精品古装| 亚洲中文av在线| 亚洲免费av在线视频| 国产成人欧美在线观看 | 欧美日韩亚洲综合一区二区三区_| 成年动漫av网址| 欧美精品一区二区大全| 亚洲情色 制服丝袜| 国产视频一区二区在线看| 99国产精品99久久久久| 高清av免费在线| a级毛片黄视频| 亚洲精品一二三| 国产欧美日韩综合在线一区二区| 黄网站色视频无遮挡免费观看| 精品人妻熟女毛片av久久网站| 亚洲九九香蕉| 国产精品二区激情视频| 久久久精品国产亚洲av高清涩受| 99久久99久久久精品蜜桃| 最近最新中文字幕大全电影3 | 这个男人来自地球电影免费观看| 日本黄色视频三级网站网址 | 啦啦啦视频在线资源免费观看| av线在线观看网站| 国产极品粉嫩免费观看在线| 久久人妻av系列| 午夜激情久久久久久久| 国产精品亚洲一级av第二区| 久久精品亚洲熟妇少妇任你| 成人永久免费在线观看视频 | 免费观看av网站的网址| √禁漫天堂资源中文www| 午夜福利影视在线免费观看| 国产免费现黄频在线看| 亚洲第一欧美日韩一区二区三区 | 九色亚洲精品在线播放| 国产精品久久久人人做人人爽| 美女高潮喷水抽搐中文字幕| 亚洲中文字幕日韩| 亚洲欧美激情在线| 一本大道久久a久久精品| 亚洲国产毛片av蜜桃av| 黄片大片在线免费观看| 久久人妻福利社区极品人妻图片| 国产一区二区三区综合在线观看| 中文字幕色久视频| 一级黄色大片毛片| 丝瓜视频免费看黄片| 国产不卡av网站在线观看| 精品国产乱码久久久久久小说| 99精品在免费线老司机午夜| 午夜激情久久久久久久| 午夜激情av网站| 母亲3免费完整高清在线观看| cao死你这个sao货| 在线看a的网站| 人人澡人人妻人| 亚洲第一av免费看| 色精品久久人妻99蜜桃| 免费观看a级毛片全部| 午夜激情久久久久久久| 精品一区二区三区视频在线观看免费 | 欧美成人免费av一区二区三区 | 免费看a级黄色片| 两个人免费观看高清视频| av超薄肉色丝袜交足视频| 免费在线观看黄色视频的| 中文字幕精品免费在线观看视频| 国产男靠女视频免费网站| 久久久欧美国产精品| 美女主播在线视频| 欧美精品啪啪一区二区三区| 午夜日韩欧美国产| 色在线成人网| 丝袜喷水一区| 亚洲精品自拍成人|