• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improving the Performance of Practical Decoy-State Measurement-Device-Independent Quantum Key Distribution with Biased Basis Choice?

    2018-09-10 06:39:48ChunHuiZhang張春輝ChunMeiZhang張春梅andQinWang王琴
    Communications in Theoretical Physics 2018年9期

    Chun-Hui Zhang(張春輝),Chun-Mei Zhang(張春梅),and Qin Wang(王琴)

    Institute of Signal Processing Transmission,Nanjing University of Posts and Telecommunications,Nanjing 210003,China Key Lab of Broadband Wireless Communication and Sensor Network Technology,Nanjing University of Posts and Telecommunications,Ministry of Education,Nanjing 210003,China

    AbstractStatistical fluctuations are unavoidable in realistic quantum key distribution(QKD)due to finite-size effect.Based on the four-intensity proposal on measurement-device-independent QKD(MDI-QKD)in[Phys.Rev.A 93(2016)042324],we particularly analyze the scenario that only three intensities are used,namely a three-intensity decoy-state MDI-QKD with biased basis choice.After performing full parameter optimization method,simulations results demonstrate that this scenario can obtain distinct enhancement compared with the conventional unbiased threeintensity decoy-state method,e.g.Xu et al.’s[Phys.Rev.A 89(2014)052333].Furthermore,results also show that it works more efficiently by using HSPS than using WCS at longer transmission distance.

    Key words:measurement-device-independent quantum key distribution,statistical fluctuations,biased basis choice

    1 Introduction

    Based on the laws of quantum mechanics,quantum key distribution(QKD)in principle can possess unconditional security,which permits two legitimate users,usually called Alice and Bob,to share secret keys.[1]To date,many security proofs have been given by established models.[2?10]However,a malicious eavesdropper(Eve)can still make use of loopholes existing in practical QKD devices,launch specific attacks and crack them.[11?14]To solve those problems,various protocols have been put forward,such as the decoy-state method,[15?17]the measurementdevice-independent QKD(MDI-QKD),[18?19]the deviceindependent QKD,[20?21]or the round-robin differential phase shift(RRDPS)protocol,[22?23]etc.Among them,the decoy-state method can close those loopholes caused by imperfect light sources,[24?27]and the MDI-QKD protocol can get rid of all side-channel attacks directed on detecting devices.The combination of the decoy-state method and the MDI-QKD protocol seems to contain the highest level of security within current technology,and thus has been extensively studied.[28?42]

    In real-life implementations of decoy-state MDI-QKD,the finite-size effect has to be taken into account due to finite number of pulses used,which significantly depresses the performance of practical QKD.Till today,different approaches have been reported to improve it,[32,34]in which the four-intensity proposal with biased basis choice[34]is the most promising method,significantly improving the performance of MDI-QKD.Here in this paper,we simplified the four-intensity proposal[34]into a biased threeintensity decoy-state MDI-QKD scheme.Moreover,we use two mostly used light sources,e.g.,the weak coherent source(WCS)and the heralded single-photon source(HSPS),as examples and carry out corresponding numerical simulations.After performing full parameter optimization,we demonstrate that,especially with HSPS,this scheme can achieve substantial improvement in both the key generation rate and the secure transmission distance compared with former three-intensity decoy-state MDIQKD.[32]

    The article is organized as follows: First,threeintensity decoy-state MDI-QKD with biased basis choice is introduced in Sec.2;Second,corresponding numerical simulations are carried out in Sec.3;Finally,discussions and conclusions are given in Sec.4.

    2 The Biased Three-Intensity Decoy-State MDI-QKD

    Here,the three-intensity decoy-state method with biased basis choice in MDI-QKD is described as follows:

    (i)Alice(Bob)randomly prepares signal state ρμin Z,and X bases with certain probabilities.

    (ii)Alice(Bob)prepares decoy state ρvonly in X basis.

    (iii)When preparing vacuum state ρo,Alice(Bob)does not choose any basis.

    It is different from the normal three-intensity decoystate MDI-QKD protocol,[43]such asXu etal.’s method,[32]as shown in Table 1.In this scheme,the redundancy on preparing states in Z basis for the decoy states is removed.

    Table 1 The difference on preparing states between normal 3-intensity decoy-state method and ours in MDI-QKD.The “-” here denotes that Alice(Bob)does not need to choose X basis or Z basis for vacuum state.

    In a three-intensity decoy-state MDI-QKD protocol,Alice and Bob individually prepare their light pulses into three different states,i.e.,the vacuum state(ρo=|0??0|),the decoy state(ρv)and the signal state(ρμ).In the photon-number space,the vacuum,decoy and signal states of Alice and Bob can be written as

    where|n?is an n-photon state;the subscript A or B each denotes Alice or Bob;corresponds to the photonnumber distribution of source lA(rB)at Alice’s(Bob’s)side,(l,r=o,v,μ).For any light sources with convex photon-number distribution functions,,and for n>2,they satisfy the condition:[36]

    When Alice sends pulses with state ρlAand Bob sends pulses with state ρrB,the average counting rate(Slr)and quantum-bit errors(Tlr=:SlrElr)at the untrustworthy third party(UTP)’s side can be expressed as:

    where Yjkand ejkeach denotes the yield and the error rate when Alice sends a j-photon state and Bob sends a k-photon state,Elrcorresponds to the average quantumbit error-rate(QBER),and the notation lr here indicates the two-pulse source when Alice uses source lAand Bob uses source rBto generate a pulse pair.

    Evidently,it is hard to give precise estimation for the yield of two-single-photon pulses in Z basis()by employing only the observed data in Z basis,since no decoy pulses have been prepared in Z basis.Interestingly,Ref.[34]has provided a theorem:The yield of two-single-photon pulses in all bases(X and Z)can be tightly lower bounded by using the observed data in the X basis.It has also given a detailed proof for this theorem.Note that Ref.[34]implements four-intensity decoy states,while we need only three different intensities in the simplified scheme.It can not only simplify the complexity of the QKD system,but also reduce the cost of random numbers by using three-intensity decoy-states instead of using four-intensity decoy states in practical QKD system.

    To avoid redundancy,hereafter,we just borrow the conclusive result from Ref.[34]and use the observed data in X basis to estimate the lower bound of.Then we can obtain:[31?32]

    where

    The phase- flip error-rate of the two-single-photon pulses in Z basis can be upper bounded by the quantum-bit errorrate(QBER)of the two-single-photon pulses in X basis,given by:[31?32]

    where γ is a constant coefficient depending on the failure probability ε;refers to the number of pulse-pairs when Alice sends state ρlAand Bob sends state ρrBboth in X basis.Here for simplification,we consider the finite-size effect with the standard statistical fluctuations,[28]but it would not in fluence the main conclusion even with other analysis methods,such as the Cherno ffbound method.[44]

    With the above formulae,we can calculate the final secure key rate as:[32]

    where pμA(pμB)denotes the probability that Alice(Bob)chooses state ρμA(ρμB),and pZ|μA(pZ|μB)corresponds to the probability that Alice(Bob)sends pulses with state ρμA(ρμB)in Z basis;f is the inefficiency of error correction,here we reasonably assume f=1.16;[19,32]H2(p)is the binary Shannon information function,defined as H2(p):=?plog2(p)?(1?p)log2(1?p);andeach denotes the average counting rate and the average QBER in Z basis.

    3 Numerical Simulations

    In this section,we employ two kinds of light sources,i.e.,the WCS and the HSPS,as examples to investigate the performance of our method and the representative decoy-state MDI-QKD scheme,[32]both carrying out the full parameter optimization method presented in Ref.[32].

    As we know,a WCS usually possesses a poissonian photon-number distribution:[28]

    and an HSPS follows a subpossonian photon-number distribution:[30]

    whereμrepresents the average photon number per pulse,|n?denotes an n-photon state,ηAand dAeach corresponds to the detection efficiency and dark count rate of Alice(or Bob)’s local detector in HSPS.

    To simplify the numerical simulation,here we assume the symmetrical case,i.e.,the UTP is located in the middle between Alice and Bob,and has identical detectors(with the same dark count rates and detection efficiencies).Besides,Alice and Bob possess the same optical and QKD systems.For the case of using HSPS,Alice and Bob own the same local detectors.Then we have,for all n,and pvA=pvB=pv,pμA=pμB=pμ,pZ|μA=pZ|μB=pZ|μ.Moreover,when accounting for statistical fluctuations,we reasonably set the confidence interval as γ=5.3,corresponding to a failure probability of 10?7.[30,32]We use the same experimental parameters as in Ref.[32]in our simulation,as listed in Table 2.

    Table 2 The systematic parameters used in our numerical simulations.α represents the loss coefficient of standard commercial single-modefibers;e0denotes the error rate of vacuum pulses;edrefers to the misalignment probability of the whole optical system;ηdand Y0each corresponds to the detection efficiency and the dark count rate of detectors at the UTP’s side; ηAand dAare the detection efficiency and the dark count rate of the commercial silicon detector at Alice(or Bob)’s side when applying HSPS.

    In the following,for a fair comparison,we use the same full parameter optimization method presented in Ref.[32],i.e.,the local search algorithm(LSA),for both Xu et al.’s method and our method,which includes the intensities of the signal states(μ)and the decoy states(v),the probabilities of choosing different intensities(pμ,pv)and the probabilities of choosing different bases in corresponding intensities(pX|μ,pX|vin Xu et al.’s method,and pX|μin ours).Corresponding simulation results are displayed out in Figs.1–4.

    In order to show the consistence of the scheme with other former work,we calculate the final key generation rate of using this method and Xu et al.’s work[32]when both taking statistical fluctuations into account,while setting the number of pulses with a very large value,e.g.,N=1025.Moreover,we also calculate the key generation rate of using standard three-intensity decoy-state MDI-QKD without considering statistical fluctuations,as shown in Fig.1.We can see from Fig.1(a)that when the number of pulses is very large,e.g.,N=1025,both our method(W2(H2))and Xu et al.’s work(W1(H1))approach very closely to the ideal case of without accounting for statistical fluctuations(W0(H0)).Moreover,in order to illustrate it more clearly,we also display the relative key rate in Fig.1(b).It denotes the ratio of the key rate between using practical three-intensity decoy-state methods and corresponding asymptotic case of using in finite number of pulses,which again verifies the the consistence of our method with Xu et al.’s work.Below we also give analytical explanations on it.

    Fig.1 (Color online)Asymptotic comparison of the if nal key generation rate between Xu et al.’s work and our work.(a)The absolute values of the final key rates with logarithm scale:W0(H0)refers to the results of using standard three-intensity decoy-state MDI-QKD with WCS(HSPS)without considering statistical fluctuations;W1(H1)represents the results of employing Xu et al.’s three-intensity decoy-state MDI-QKD with WCS(HSPS)by accounting for statistical fluctuations;W2(H2)corresponds to applying our method with WCS(HSPS)when taking statistical fluctuations into account.(b)The relative values of final key generation rates.We

    In the limit N→∞,the density matrices satisfy=,which means the quantum states of twosingle-photon pulses in X basis or Z basis are completely the same.Then,the counting rates of two-single-photon pulses satisfy=.Besides,in Eqs.(4)–(7),→0 and→0.As a result,the key rates of both our method and Xu et al.’s work approach very closely to the ideal case of without accounting for statistical fluctuations.

    Fig.2 (Color online)Comparisons of the two-single-photon-pulse contributions between Xu et al.’s work and ours.(a)and(c)correspond to the results of using WCS,while(b)and(d)denote using HSPS.W1(H1)refers to implementing Xu et al.’s three-intensity decoy-state method,and W2(H2)represents applying our method.Here we reasonably set the number of pulses as N=1011.

    In Fig.2,we do comparison on the contributions of two-single-photon pulses,i.e.,its conditional counting rate()and the phase- flip error-rate()between Xu et al.’s work[32]and our method using either WCS or HSPS.Here the data size of the pulse number is reasonably set as N=1011.We can see from Figs.2(a)and 2(b)that,both methods present comparable values of.While for the values of,our method presents much lower values than the former as shown in Figs.2(c)and 2(d).Obviously,our method can achieve more precise estimation forcompared with Xu et al.’s work.Because we have removed the redundancy on preparing states in Z basis for the decoy states and without in fluencing the security.Then there will be more data in X basis to be applied to estimate the value of.Correspondingly,our method will su ff er less finite-size effect and can thus show significant enhancement in both the key generation rate and the secure transmission distance compared with Xu et al.’s work.[32]

    Figure 3 shows comparisons of the final key generation rate between our method and Xu et al.’s method using either WCS or HSPS and considering different data sizes.Figures 3(a)and 3(b)refer to the absolute key generation rates with logarithmic coordinate,while Figs.3(c)and 3(d)correspond to the relative values with linear scale.Obviously,our method can drastically improve the key generation rate compared with Xu et al.’s work using either WCS or HSPS.And the smaller data size,the more distinct enhancement we can achieve.Moreover,our method applying HSPS works more efficiently than using WCS.For example,at the data size of N=1011and at the distance of 100 km,there is no key can be generated by using WCS,while a relative high key rate can still be obtained by applying HSPS.Moreover,when both using HSPS,we can get more than 40%enhancement in the key generation rate at the data size of N=1012,and 300%enhancement at N=1011when compared with Xu et al.’s method.Those enhancements can be attributed to two inherent merits of HSPS:(i)The neglectable dark count rate;(ii)The significantly lower probability for events with two photons presenting on the same side of the beamsplitter during Bell-projection measurements.

    Moreover,to demonstrate that the merits of the present scheme will not change even when the Cherno ffbound[44]is applied in analyzing statistical fluctuations,we plot Fig.4 by implementing the Cherno ffbound method on the above two schemes.Here the data size is reasonably set N=1011.The absolute values and the relative values are respectively shown in Figs.4(a)and 4(b).Obviously,we can find the same trends as in Fig.3.

    Fig.4 (Color online)Comparisons of the final key generation rate between Xu et al.’s method and ours by applying the Cherno ffbound analysis.(a)displays the absolute key generation rates with logarithmic coordinate,and(b)exhibits the relative values with linear scale.W1(H1)represents the results of Xu et al.’s method,and W2(H2)denotes ours.Here the number of pulses is reasonably set at N=1011.

    4 Conclusions

    In conclusion,we have applied the idea of biased basis choice in Ref.[34]into the three-intensity decoy-state MDI-QKD scheme and carried out full parameter optimization on it.Compared with Xu et al.’s three-intensity scheme,[34]here the main difference is that the decoy pulses only prepared in X basis,which leads to more data in X basis for estimating the quantum-bit errorrate of two-single-photon pulses accurately.Therefore,this method su ff ers less finite-size effect during parameter estimations and can achieve better performance in the key distillation.Furthermore,numerical simulation results show that this method works more efficiently by using HSPS than using WCS at longer transmission distance.This attributes to the negligible dark count rate in HSPS,and dramatically lower probability for events with two photons presenting on the same side of the beamsplitter in HSPS than in WCS.In addition,this method can be easily realized with current technology,and thus looks very promising in the implementation of the quantum communication.

    国产精品一区二区在线不卡| 欧美亚洲 丝袜 人妻 在线| 男人添女人高潮全过程视频| 一级a爱视频在线免费观看| 成人18禁高潮啪啪吃奶动态图| 丝袜人妻中文字幕| 大香蕉久久网| 高清在线视频一区二区三区| 亚洲欧美中文字幕日韩二区| 亚洲欧洲精品一区二区精品久久久 | 成人黄色视频免费在线看| 亚洲国产日韩一区二区| 91成人精品电影| 狂野欧美激情性bbbbbb| 最近中文字幕高清免费大全6| 国产97色在线日韩免费| 老鸭窝网址在线观看| 国产精品一区二区在线观看99| 午夜影院在线不卡| 欧美日韩av久久| 日本av手机在线免费观看| 欧美国产精品一级二级三级| 欧美亚洲 丝袜 人妻 在线| 久久久久久久久久人人人人人人| 国产淫语在线视频| 18禁动态无遮挡网站| 99久久精品国产国产毛片| 久久影院123| 亚洲伊人久久精品综合| 天天躁夜夜躁狠狠久久av| 亚洲成av片中文字幕在线观看 | 在线精品无人区一区二区三| 国产精品麻豆人妻色哟哟久久| 侵犯人妻中文字幕一二三四区| 一二三四中文在线观看免费高清| 国产男人的电影天堂91| 一区在线观看完整版| 国产熟女欧美一区二区| 久久毛片免费看一区二区三区| 国产深夜福利视频在线观看| a 毛片基地| 免费观看性生交大片5| 中文精品一卡2卡3卡4更新| 波多野结衣一区麻豆| 亚洲av电影在线进入| 精品一区二区三卡| 久久青草综合色| 极品人妻少妇av视频| 精品酒店卫生间| 在线观看免费视频网站a站| 在现免费观看毛片| 久久午夜综合久久蜜桃| 26uuu在线亚洲综合色| 久久99一区二区三区| 波野结衣二区三区在线| 在线观看人妻少妇| 久久精品久久久久久久性| 国产片特级美女逼逼视频| 热re99久久国产66热| 欧美国产精品一级二级三级| 视频区图区小说| 视频在线观看一区二区三区| 欧美激情高清一区二区三区 | 国产亚洲av片在线观看秒播厂| 麻豆精品久久久久久蜜桃| 老司机亚洲免费影院| 看免费av毛片| 亚洲欧洲日产国产| 精品一区二区三区四区五区乱码 | 精品久久蜜臀av无| 又大又黄又爽视频免费| 1024视频免费在线观看| 女人久久www免费人成看片| 国产日韩欧美在线精品| 丝袜在线中文字幕| 久久人人爽人人片av| 嫩草影院入口| 免费日韩欧美在线观看| 亚洲婷婷狠狠爱综合网| 熟女少妇亚洲综合色aaa.| 人人妻人人澡人人看| 91aial.com中文字幕在线观看| 免费观看在线日韩| 免费大片黄手机在线观看| 久热这里只有精品99| 久久精品国产鲁丝片午夜精品| 性色av一级| 九色亚洲精品在线播放| 日韩欧美精品免费久久| 亚洲婷婷狠狠爱综合网| 久久久久久久久免费视频了| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲欧洲国产日韩| 久久这里只有精品19| 久久精品亚洲av国产电影网| 男女免费视频国产| 亚洲欧洲国产日韩| 最新的欧美精品一区二区| 亚洲av日韩在线播放| 夫妻性生交免费视频一级片| 国产成人一区二区在线| 成年动漫av网址| 国产乱人偷精品视频| 如何舔出高潮| 超碰97精品在线观看| 一级黄片播放器| a级毛片黄视频| 中文字幕精品免费在线观看视频| 亚洲综合精品二区| 一二三四中文在线观看免费高清| 成人漫画全彩无遮挡| 色哟哟·www| 夫妻午夜视频| 国产成人精品婷婷| 99热网站在线观看| 久久精品久久久久久噜噜老黄| 精品福利永久在线观看| 丝袜美腿诱惑在线| 性高湖久久久久久久久免费观看| 亚洲欧美成人精品一区二区| 午夜福利乱码中文字幕| 成年动漫av网址| 美女午夜性视频免费| 老汉色∧v一级毛片| 亚洲三区欧美一区| a级毛片黄视频| 日本欧美国产在线视频| 国产免费一区二区三区四区乱码| 久久97久久精品| 亚洲成人手机| 久久97久久精品| 91在线精品国自产拍蜜月| 丰满迷人的少妇在线观看| 亚洲av电影在线观看一区二区三区| 中文精品一卡2卡3卡4更新| 国产成人免费观看mmmm| 久久这里只有精品19| 国产精品秋霞免费鲁丝片| 最黄视频免费看| 午夜av观看不卡| 国产精品国产三级专区第一集| 亚洲欧美精品自产自拍| 亚洲经典国产精华液单| 欧美日本中文国产一区发布| 国产伦理片在线播放av一区| 国产又色又爽无遮挡免| av视频免费观看在线观看| 日韩精品免费视频一区二区三区| 美女午夜性视频免费| 欧美97在线视频| 人妻 亚洲 视频| 亚洲国产看品久久| 亚洲精品久久成人aⅴ小说| 青春草视频在线免费观看| 成年动漫av网址| 精品人妻在线不人妻| 亚洲人成网站在线观看播放| 热99久久久久精品小说推荐| 欧美变态另类bdsm刘玥| 国产精品国产av在线观看| 国产午夜精品一二区理论片| 久久久欧美国产精品| 亚洲成av片中文字幕在线观看 | 制服丝袜香蕉在线| 男女免费视频国产| 中文天堂在线官网| 伊人亚洲综合成人网| 日本av免费视频播放| 日本爱情动作片www.在线观看| 黑人猛操日本美女一级片| 久久综合国产亚洲精品| av国产精品久久久久影院| 国产成人精品婷婷| 久久青草综合色| 国产一区二区 视频在线| 久久综合国产亚洲精品| 亚洲国产精品一区三区| 黄色怎么调成土黄色| 一二三四中文在线观看免费高清| 色播在线永久视频| 高清不卡的av网站| 啦啦啦视频在线资源免费观看| 高清不卡的av网站| 丰满少妇做爰视频| 五月天丁香电影| 狂野欧美激情性bbbbbb| 欧美 日韩 精品 国产| 丝瓜视频免费看黄片| 国产日韩欧美亚洲二区| 国产无遮挡羞羞视频在线观看| 丝袜在线中文字幕| 久久精品国产a三级三级三级| av在线app专区| 日本欧美视频一区| 秋霞伦理黄片| 80岁老熟妇乱子伦牲交| 尾随美女入室| 国产在线免费精品| 天堂中文最新版在线下载| 男女免费视频国产| 美女大奶头黄色视频| 日产精品乱码卡一卡2卡三| 亚洲色图 男人天堂 中文字幕| 日本av免费视频播放| 亚洲人成电影观看| 久久精品国产自在天天线| 色吧在线观看| 久久久久久久久免费视频了| 一级毛片我不卡| 精品亚洲成a人片在线观看| 国产日韩欧美在线精品| 国产亚洲av片在线观看秒播厂| 在线观看人妻少妇| 精品人妻一区二区三区麻豆| 日本欧美视频一区| 久久精品熟女亚洲av麻豆精品| 秋霞伦理黄片| 亚洲成av片中文字幕在线观看 | 最近最新中文字幕大全免费视频 | 女性被躁到高潮视频| 久久人人爽人人片av| 久久久久久久国产电影| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精品美女久久久久99蜜臀 | √禁漫天堂资源中文www| 久久热在线av| 中国国产av一级| 亚洲精品久久午夜乱码| 一区二区三区四区激情视频| 中国国产av一级| 午夜福利影视在线免费观看| 午夜激情av网站| 亚洲精品第二区| 男女午夜视频在线观看| 欧美黄色片欧美黄色片| 国产精品偷伦视频观看了| 国产成人av激情在线播放| 纯流量卡能插随身wifi吗| 国产成人欧美| 国产一区有黄有色的免费视频| 国产一区二区激情短视频 | 欧美日韩成人在线一区二区| 免费播放大片免费观看视频在线观看| 伦理电影免费视频| a级毛片黄视频| 一二三四在线观看免费中文在| 欧美人与性动交α欧美软件| 亚洲五月色婷婷综合| 18禁动态无遮挡网站| 久久久久久人妻| 波多野结衣av一区二区av| 国产精品不卡视频一区二区| 免费高清在线观看日韩| 男女边摸边吃奶| 美女主播在线视频| 日韩三级伦理在线观看| 26uuu在线亚洲综合色| 亚洲国产av影院在线观看| 成人国语在线视频| 看免费av毛片| 国产片内射在线| 性色avwww在线观看| 成年人午夜在线观看视频| av线在线观看网站| 伦理电影大哥的女人| 欧美日韩一级在线毛片| 精品人妻熟女毛片av久久网站| 超碰97精品在线观看| 国产精品不卡视频一区二区| 视频在线观看一区二区三区| 色哟哟·www| 日韩 亚洲 欧美在线| 国产精品麻豆人妻色哟哟久久| 丝袜美腿诱惑在线| 国产成人91sexporn| 最近手机中文字幕大全| 久久久久久久大尺度免费视频| 亚洲三级黄色毛片| 国产福利在线免费观看视频| 国产精品亚洲av一区麻豆 | 看非洲黑人一级黄片| 免费不卡的大黄色大毛片视频在线观看| 午夜久久久在线观看| 9色porny在线观看| 日韩一区二区三区影片| 日韩 亚洲 欧美在线| 中文字幕人妻丝袜一区二区 | 高清黄色对白视频在线免费看| 日韩一本色道免费dvd| 一级毛片 在线播放| 久久综合国产亚洲精品| 亚洲欧美清纯卡通| 中文字幕亚洲精品专区| 成年女人在线观看亚洲视频| 久久99一区二区三区| av网站在线播放免费| 91精品伊人久久大香线蕉| 狠狠精品人妻久久久久久综合| 熟女av电影| 久久99蜜桃精品久久| 人人澡人人妻人| 下体分泌物呈黄色| 午夜福利乱码中文字幕| 五月开心婷婷网| 一区二区av电影网| 老司机亚洲免费影院| 赤兔流量卡办理| 视频在线观看一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 久久午夜综合久久蜜桃| 曰老女人黄片| 国产日韩欧美在线精品| 国产免费现黄频在线看| 18在线观看网站| 啦啦啦在线观看免费高清www| 精品卡一卡二卡四卡免费| 丝袜在线中文字幕| 亚洲精华国产精华液的使用体验| 纵有疾风起免费观看全集完整版| 各种免费的搞黄视频| 亚洲国产欧美网| 久久久久久人人人人人| 欧美+日韩+精品| 男女边摸边吃奶| 国产一区亚洲一区在线观看| 国产成人a∨麻豆精品| 晚上一个人看的免费电影| 在线观看一区二区三区激情| 欧美激情极品国产一区二区三区| 亚洲色图 男人天堂 中文字幕| 国产人伦9x9x在线观看 | 欧美黄色片欧美黄色片| 久久久亚洲精品成人影院| 日日撸夜夜添| 久久国产亚洲av麻豆专区| 欧美 日韩 精品 国产| 熟女av电影| 亚洲欧美精品综合一区二区三区 | 两个人免费观看高清视频| 成人毛片a级毛片在线播放| 国产麻豆69| 高清不卡的av网站| 亚洲精品国产av蜜桃| 在线精品无人区一区二区三| 黄片无遮挡物在线观看| 久久精品久久精品一区二区三区| 99热全是精品| 国产欧美亚洲国产| 制服诱惑二区| 国产成人av激情在线播放| 丝袜脚勾引网站| 涩涩av久久男人的天堂| 高清黄色对白视频在线免费看| 日韩中文字幕视频在线看片| 日本欧美国产在线视频| 免费少妇av软件| 交换朋友夫妻互换小说| 七月丁香在线播放| 一区二区三区乱码不卡18| 国产精品麻豆人妻色哟哟久久| 国产女主播在线喷水免费视频网站| 午夜激情久久久久久久| 亚洲av免费高清在线观看| 一级爰片在线观看| 99精国产麻豆久久婷婷| 一本—道久久a久久精品蜜桃钙片| 色吧在线观看| 国产精品女同一区二区软件| 免费看av在线观看网站| 亚洲精品美女久久av网站| 99久久中文字幕三级久久日本| 美女国产高潮福利片在线看| 亚洲精华国产精华液的使用体验| 国产国语露脸激情在线看| 久久久久网色| 一区二区日韩欧美中文字幕| 亚洲精品自拍成人| 亚洲精品av麻豆狂野| 久久久久久久国产电影| 大香蕉久久网| 可以免费在线观看a视频的电影网站 | 亚洲人成网站在线观看播放| 狠狠婷婷综合久久久久久88av| 桃花免费在线播放| 黄色毛片三级朝国网站| 精品人妻在线不人妻| 午夜福利在线观看免费完整高清在| 亚洲国产欧美在线一区| 一本大道久久a久久精品| 18禁观看日本| 美女高潮到喷水免费观看| 国产精品成人在线| 制服人妻中文乱码| 免费看av在线观看网站| 亚洲精品一二三| 波多野结衣一区麻豆| 亚洲四区av| 亚洲,欧美,日韩| 18禁裸乳无遮挡动漫免费视频| 亚洲欧美精品综合一区二区三区 | 香蕉国产在线看| 国语对白做爰xxxⅹ性视频网站| 国产av一区二区精品久久| 亚洲一区二区三区欧美精品| 搡老乐熟女国产| 伊人久久大香线蕉亚洲五| 国产免费福利视频在线观看| 成人影院久久| tube8黄色片| 国产 一区精品| 久久青草综合色| 国产在视频线精品| 欧美精品高潮呻吟av久久| 精品国产露脸久久av麻豆| 有码 亚洲区| 丝袜在线中文字幕| 看十八女毛片水多多多| 国产精品亚洲av一区麻豆 | 午夜福利影视在线免费观看| 亚洲三级黄色毛片| 中文欧美无线码| 亚洲欧美一区二区三区久久| 国产精品香港三级国产av潘金莲 | 国产精品久久久久久精品古装| 欧美日本中文国产一区发布| 搡女人真爽免费视频火全软件| 热99国产精品久久久久久7| 欧美老熟妇乱子伦牲交| 1024视频免费在线观看| 成人影院久久| 久久人人97超碰香蕉20202| 肉色欧美久久久久久久蜜桃| 男女高潮啪啪啪动态图| 亚洲av综合色区一区| 亚洲成人av在线免费| 免费久久久久久久精品成人欧美视频| 丰满饥渴人妻一区二区三| videosex国产| av网站在线播放免费| 国产精品一二三区在线看| 国产精品.久久久| 国产一区亚洲一区在线观看| 日韩一区二区三区影片| 亚洲经典国产精华液单| 久久久国产一区二区| 国产精品国产三级国产专区5o| 高清视频免费观看一区二区| 精品久久久久久电影网| 午夜激情av网站| 国产一区二区激情短视频 | 国产成人精品无人区| 国产激情久久老熟女| 亚洲欧美一区二区三区国产| 亚洲在久久综合| 欧美日韩亚洲国产一区二区在线观看 | 欧美日韩精品网址| 亚洲人成网站在线观看播放| 七月丁香在线播放| 亚洲国产欧美日韩在线播放| 男女下面插进去视频免费观看| 婷婷色麻豆天堂久久| 天天躁夜夜躁狠狠久久av| 成人国产av品久久久| www.av在线官网国产| 亚洲精品国产一区二区精华液| 在线亚洲精品国产二区图片欧美| 国产成人精品无人区| 9191精品国产免费久久| 亚洲第一青青草原| 国产精品人妻久久久影院| 久热久热在线精品观看| 1024视频免费在线观看| 又黄又粗又硬又大视频| 午夜福利乱码中文字幕| 两性夫妻黄色片| 在现免费观看毛片| 宅男免费午夜| 大码成人一级视频| 在线观看www视频免费| 看十八女毛片水多多多| 久久久久久久精品精品| 日日啪夜夜爽| 美女大奶头黄色视频| 久久国内精品自在自线图片| 久久婷婷青草| 免费观看a级毛片全部| 老司机亚洲免费影院| 久热这里只有精品99| 少妇的丰满在线观看| 如何舔出高潮| 久久久亚洲精品成人影院| 在现免费观看毛片| 午夜福利在线免费观看网站| 天美传媒精品一区二区| kizo精华| 有码 亚洲区| 在线观看人妻少妇| 日韩精品有码人妻一区| 亚洲成人一二三区av| 日产精品乱码卡一卡2卡三| 免费日韩欧美在线观看| 国产熟女欧美一区二区| 午夜福利视频精品| 国产毛片在线视频| 久久久精品94久久精品| 免费少妇av软件| 成人国语在线视频| 久久精品国产亚洲av天美| 久久精品国产自在天天线| 飞空精品影院首页| 久久精品久久久久久噜噜老黄| 欧美日韩亚洲高清精品| 欧美亚洲 丝袜 人妻 在线| 水蜜桃什么品种好| 大陆偷拍与自拍| 一区二区三区四区激情视频| 国产av一区二区精品久久| 极品人妻少妇av视频| 如何舔出高潮| 这个男人来自地球电影免费观看 | 久久久精品94久久精品| 波多野结衣av一区二区av| 五月伊人婷婷丁香| 国产精品国产三级国产专区5o| 国产免费福利视频在线观看| 国产成人a∨麻豆精品| 欧美人与善性xxx| 伦理电影免费视频| 男女无遮挡免费网站观看| av免费在线看不卡| 伊人久久大香线蕉亚洲五| 街头女战士在线观看网站| 九色亚洲精品在线播放| 免费观看av网站的网址| 王馨瑶露胸无遮挡在线观看| 国产精品二区激情视频| 青春草亚洲视频在线观看| 国产成人精品一,二区| 久久这里只有精品19| 黄色 视频免费看| 国产精品国产三级专区第一集| 国产老妇伦熟女老妇高清| 国产成人精品在线电影| 91在线精品国自产拍蜜月| 亚洲视频免费观看视频| 国产男女内射视频| 在线观看一区二区三区激情| 亚洲国产av影院在线观看| 飞空精品影院首页| 欧美日韩成人在线一区二区| 下体分泌物呈黄色| 久久精品国产亚洲av高清一级| 亚洲婷婷狠狠爱综合网| 免费大片黄手机在线观看| 青青草视频在线视频观看| 赤兔流量卡办理| 亚洲精品乱久久久久久| 伊人久久国产一区二区| 99热国产这里只有精品6| 999精品在线视频| av在线观看视频网站免费| 黄色视频在线播放观看不卡| 高清黄色对白视频在线免费看| 欧美日韩国产mv在线观看视频| 欧美变态另类bdsm刘玥| av又黄又爽大尺度在线免费看| 国产乱人偷精品视频| 免费播放大片免费观看视频在线观看| 亚洲成人一二三区av| 中文欧美无线码| 亚洲精品在线美女| 青草久久国产| 久久久久久免费高清国产稀缺| 亚洲av国产av综合av卡| 国产精品久久久久久精品电影小说| 黄频高清免费视频| 国产在视频线精品| 国产av码专区亚洲av| 日韩免费高清中文字幕av| 狠狠婷婷综合久久久久久88av| 女性被躁到高潮视频| 交换朋友夫妻互换小说| 97精品久久久久久久久久精品| 2022亚洲国产成人精品| 亚洲三区欧美一区| 制服诱惑二区| 免费观看性生交大片5| 精品一品国产午夜福利视频| 国产亚洲最大av| 亚洲精品美女久久久久99蜜臀 | 日本欧美视频一区| av又黄又爽大尺度在线免费看| 在线观看一区二区三区激情| 国产精品人妻久久久影院| 国产色婷婷99| 国产精品欧美亚洲77777| 欧美老熟妇乱子伦牲交| 午夜免费鲁丝| 成人免费观看视频高清| 久久 成人 亚洲| 久久久国产精品麻豆| 亚洲婷婷狠狠爱综合网| 熟女电影av网| 曰老女人黄片| 欧美日韩成人在线一区二区| 欧美日韩综合久久久久久| 国产精品久久久久成人av| 在线看a的网站| 亚洲精品第二区| 日本av免费视频播放| 自线自在国产av| 久久久久视频综合| 在线观看免费视频网站a站| 亚洲精品国产色婷婷电影| 午夜福利,免费看|