• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improving the Performance of Practical Decoy-State Measurement-Device-Independent Quantum Key Distribution with Biased Basis Choice?

    2018-09-10 06:39:48ChunHuiZhang張春輝ChunMeiZhang張春梅andQinWang王琴
    Communications in Theoretical Physics 2018年9期

    Chun-Hui Zhang(張春輝),Chun-Mei Zhang(張春梅),and Qin Wang(王琴)

    Institute of Signal Processing Transmission,Nanjing University of Posts and Telecommunications,Nanjing 210003,China Key Lab of Broadband Wireless Communication and Sensor Network Technology,Nanjing University of Posts and Telecommunications,Ministry of Education,Nanjing 210003,China

    AbstractStatistical fluctuations are unavoidable in realistic quantum key distribution(QKD)due to finite-size effect.Based on the four-intensity proposal on measurement-device-independent QKD(MDI-QKD)in[Phys.Rev.A 93(2016)042324],we particularly analyze the scenario that only three intensities are used,namely a three-intensity decoy-state MDI-QKD with biased basis choice.After performing full parameter optimization method,simulations results demonstrate that this scenario can obtain distinct enhancement compared with the conventional unbiased threeintensity decoy-state method,e.g.Xu et al.’s[Phys.Rev.A 89(2014)052333].Furthermore,results also show that it works more efficiently by using HSPS than using WCS at longer transmission distance.

    Key words:measurement-device-independent quantum key distribution,statistical fluctuations,biased basis choice

    1 Introduction

    Based on the laws of quantum mechanics,quantum key distribution(QKD)in principle can possess unconditional security,which permits two legitimate users,usually called Alice and Bob,to share secret keys.[1]To date,many security proofs have been given by established models.[2?10]However,a malicious eavesdropper(Eve)can still make use of loopholes existing in practical QKD devices,launch specific attacks and crack them.[11?14]To solve those problems,various protocols have been put forward,such as the decoy-state method,[15?17]the measurementdevice-independent QKD(MDI-QKD),[18?19]the deviceindependent QKD,[20?21]or the round-robin differential phase shift(RRDPS)protocol,[22?23]etc.Among them,the decoy-state method can close those loopholes caused by imperfect light sources,[24?27]and the MDI-QKD protocol can get rid of all side-channel attacks directed on detecting devices.The combination of the decoy-state method and the MDI-QKD protocol seems to contain the highest level of security within current technology,and thus has been extensively studied.[28?42]

    In real-life implementations of decoy-state MDI-QKD,the finite-size effect has to be taken into account due to finite number of pulses used,which significantly depresses the performance of practical QKD.Till today,different approaches have been reported to improve it,[32,34]in which the four-intensity proposal with biased basis choice[34]is the most promising method,significantly improving the performance of MDI-QKD.Here in this paper,we simplified the four-intensity proposal[34]into a biased threeintensity decoy-state MDI-QKD scheme.Moreover,we use two mostly used light sources,e.g.,the weak coherent source(WCS)and the heralded single-photon source(HSPS),as examples and carry out corresponding numerical simulations.After performing full parameter optimization,we demonstrate that,especially with HSPS,this scheme can achieve substantial improvement in both the key generation rate and the secure transmission distance compared with former three-intensity decoy-state MDIQKD.[32]

    The article is organized as follows: First,threeintensity decoy-state MDI-QKD with biased basis choice is introduced in Sec.2;Second,corresponding numerical simulations are carried out in Sec.3;Finally,discussions and conclusions are given in Sec.4.

    2 The Biased Three-Intensity Decoy-State MDI-QKD

    Here,the three-intensity decoy-state method with biased basis choice in MDI-QKD is described as follows:

    (i)Alice(Bob)randomly prepares signal state ρμin Z,and X bases with certain probabilities.

    (ii)Alice(Bob)prepares decoy state ρvonly in X basis.

    (iii)When preparing vacuum state ρo,Alice(Bob)does not choose any basis.

    It is different from the normal three-intensity decoystate MDI-QKD protocol,[43]such asXu etal.’s method,[32]as shown in Table 1.In this scheme,the redundancy on preparing states in Z basis for the decoy states is removed.

    Table 1 The difference on preparing states between normal 3-intensity decoy-state method and ours in MDI-QKD.The “-” here denotes that Alice(Bob)does not need to choose X basis or Z basis for vacuum state.

    In a three-intensity decoy-state MDI-QKD protocol,Alice and Bob individually prepare their light pulses into three different states,i.e.,the vacuum state(ρo=|0??0|),the decoy state(ρv)and the signal state(ρμ).In the photon-number space,the vacuum,decoy and signal states of Alice and Bob can be written as

    where|n?is an n-photon state;the subscript A or B each denotes Alice or Bob;corresponds to the photonnumber distribution of source lA(rB)at Alice’s(Bob’s)side,(l,r=o,v,μ).For any light sources with convex photon-number distribution functions,,and for n>2,they satisfy the condition:[36]

    When Alice sends pulses with state ρlAand Bob sends pulses with state ρrB,the average counting rate(Slr)and quantum-bit errors(Tlr=:SlrElr)at the untrustworthy third party(UTP)’s side can be expressed as:

    where Yjkand ejkeach denotes the yield and the error rate when Alice sends a j-photon state and Bob sends a k-photon state,Elrcorresponds to the average quantumbit error-rate(QBER),and the notation lr here indicates the two-pulse source when Alice uses source lAand Bob uses source rBto generate a pulse pair.

    Evidently,it is hard to give precise estimation for the yield of two-single-photon pulses in Z basis()by employing only the observed data in Z basis,since no decoy pulses have been prepared in Z basis.Interestingly,Ref.[34]has provided a theorem:The yield of two-single-photon pulses in all bases(X and Z)can be tightly lower bounded by using the observed data in the X basis.It has also given a detailed proof for this theorem.Note that Ref.[34]implements four-intensity decoy states,while we need only three different intensities in the simplified scheme.It can not only simplify the complexity of the QKD system,but also reduce the cost of random numbers by using three-intensity decoy-states instead of using four-intensity decoy states in practical QKD system.

    To avoid redundancy,hereafter,we just borrow the conclusive result from Ref.[34]and use the observed data in X basis to estimate the lower bound of.Then we can obtain:[31?32]

    where

    The phase- flip error-rate of the two-single-photon pulses in Z basis can be upper bounded by the quantum-bit errorrate(QBER)of the two-single-photon pulses in X basis,given by:[31?32]

    where γ is a constant coefficient depending on the failure probability ε;refers to the number of pulse-pairs when Alice sends state ρlAand Bob sends state ρrBboth in X basis.Here for simplification,we consider the finite-size effect with the standard statistical fluctuations,[28]but it would not in fluence the main conclusion even with other analysis methods,such as the Cherno ffbound method.[44]

    With the above formulae,we can calculate the final secure key rate as:[32]

    where pμA(pμB)denotes the probability that Alice(Bob)chooses state ρμA(ρμB),and pZ|μA(pZ|μB)corresponds to the probability that Alice(Bob)sends pulses with state ρμA(ρμB)in Z basis;f is the inefficiency of error correction,here we reasonably assume f=1.16;[19,32]H2(p)is the binary Shannon information function,defined as H2(p):=?plog2(p)?(1?p)log2(1?p);andeach denotes the average counting rate and the average QBER in Z basis.

    3 Numerical Simulations

    In this section,we employ two kinds of light sources,i.e.,the WCS and the HSPS,as examples to investigate the performance of our method and the representative decoy-state MDI-QKD scheme,[32]both carrying out the full parameter optimization method presented in Ref.[32].

    As we know,a WCS usually possesses a poissonian photon-number distribution:[28]

    and an HSPS follows a subpossonian photon-number distribution:[30]

    whereμrepresents the average photon number per pulse,|n?denotes an n-photon state,ηAand dAeach corresponds to the detection efficiency and dark count rate of Alice(or Bob)’s local detector in HSPS.

    To simplify the numerical simulation,here we assume the symmetrical case,i.e.,the UTP is located in the middle between Alice and Bob,and has identical detectors(with the same dark count rates and detection efficiencies).Besides,Alice and Bob possess the same optical and QKD systems.For the case of using HSPS,Alice and Bob own the same local detectors.Then we have,for all n,and pvA=pvB=pv,pμA=pμB=pμ,pZ|μA=pZ|μB=pZ|μ.Moreover,when accounting for statistical fluctuations,we reasonably set the confidence interval as γ=5.3,corresponding to a failure probability of 10?7.[30,32]We use the same experimental parameters as in Ref.[32]in our simulation,as listed in Table 2.

    Table 2 The systematic parameters used in our numerical simulations.α represents the loss coefficient of standard commercial single-modefibers;e0denotes the error rate of vacuum pulses;edrefers to the misalignment probability of the whole optical system;ηdand Y0each corresponds to the detection efficiency and the dark count rate of detectors at the UTP’s side; ηAand dAare the detection efficiency and the dark count rate of the commercial silicon detector at Alice(or Bob)’s side when applying HSPS.

    In the following,for a fair comparison,we use the same full parameter optimization method presented in Ref.[32],i.e.,the local search algorithm(LSA),for both Xu et al.’s method and our method,which includes the intensities of the signal states(μ)and the decoy states(v),the probabilities of choosing different intensities(pμ,pv)and the probabilities of choosing different bases in corresponding intensities(pX|μ,pX|vin Xu et al.’s method,and pX|μin ours).Corresponding simulation results are displayed out in Figs.1–4.

    In order to show the consistence of the scheme with other former work,we calculate the final key generation rate of using this method and Xu et al.’s work[32]when both taking statistical fluctuations into account,while setting the number of pulses with a very large value,e.g.,N=1025.Moreover,we also calculate the key generation rate of using standard three-intensity decoy-state MDI-QKD without considering statistical fluctuations,as shown in Fig.1.We can see from Fig.1(a)that when the number of pulses is very large,e.g.,N=1025,both our method(W2(H2))and Xu et al.’s work(W1(H1))approach very closely to the ideal case of without accounting for statistical fluctuations(W0(H0)).Moreover,in order to illustrate it more clearly,we also display the relative key rate in Fig.1(b).It denotes the ratio of the key rate between using practical three-intensity decoy-state methods and corresponding asymptotic case of using in finite number of pulses,which again verifies the the consistence of our method with Xu et al.’s work.Below we also give analytical explanations on it.

    Fig.1 (Color online)Asymptotic comparison of the if nal key generation rate between Xu et al.’s work and our work.(a)The absolute values of the final key rates with logarithm scale:W0(H0)refers to the results of using standard three-intensity decoy-state MDI-QKD with WCS(HSPS)without considering statistical fluctuations;W1(H1)represents the results of employing Xu et al.’s three-intensity decoy-state MDI-QKD with WCS(HSPS)by accounting for statistical fluctuations;W2(H2)corresponds to applying our method with WCS(HSPS)when taking statistical fluctuations into account.(b)The relative values of final key generation rates.We

    In the limit N→∞,the density matrices satisfy=,which means the quantum states of twosingle-photon pulses in X basis or Z basis are completely the same.Then,the counting rates of two-single-photon pulses satisfy=.Besides,in Eqs.(4)–(7),→0 and→0.As a result,the key rates of both our method and Xu et al.’s work approach very closely to the ideal case of without accounting for statistical fluctuations.

    Fig.2 (Color online)Comparisons of the two-single-photon-pulse contributions between Xu et al.’s work and ours.(a)and(c)correspond to the results of using WCS,while(b)and(d)denote using HSPS.W1(H1)refers to implementing Xu et al.’s three-intensity decoy-state method,and W2(H2)represents applying our method.Here we reasonably set the number of pulses as N=1011.

    In Fig.2,we do comparison on the contributions of two-single-photon pulses,i.e.,its conditional counting rate()and the phase- flip error-rate()between Xu et al.’s work[32]and our method using either WCS or HSPS.Here the data size of the pulse number is reasonably set as N=1011.We can see from Figs.2(a)and 2(b)that,both methods present comparable values of.While for the values of,our method presents much lower values than the former as shown in Figs.2(c)and 2(d).Obviously,our method can achieve more precise estimation forcompared with Xu et al.’s work.Because we have removed the redundancy on preparing states in Z basis for the decoy states and without in fluencing the security.Then there will be more data in X basis to be applied to estimate the value of.Correspondingly,our method will su ff er less finite-size effect and can thus show significant enhancement in both the key generation rate and the secure transmission distance compared with Xu et al.’s work.[32]

    Figure 3 shows comparisons of the final key generation rate between our method and Xu et al.’s method using either WCS or HSPS and considering different data sizes.Figures 3(a)and 3(b)refer to the absolute key generation rates with logarithmic coordinate,while Figs.3(c)and 3(d)correspond to the relative values with linear scale.Obviously,our method can drastically improve the key generation rate compared with Xu et al.’s work using either WCS or HSPS.And the smaller data size,the more distinct enhancement we can achieve.Moreover,our method applying HSPS works more efficiently than using WCS.For example,at the data size of N=1011and at the distance of 100 km,there is no key can be generated by using WCS,while a relative high key rate can still be obtained by applying HSPS.Moreover,when both using HSPS,we can get more than 40%enhancement in the key generation rate at the data size of N=1012,and 300%enhancement at N=1011when compared with Xu et al.’s method.Those enhancements can be attributed to two inherent merits of HSPS:(i)The neglectable dark count rate;(ii)The significantly lower probability for events with two photons presenting on the same side of the beamsplitter during Bell-projection measurements.

    Moreover,to demonstrate that the merits of the present scheme will not change even when the Cherno ffbound[44]is applied in analyzing statistical fluctuations,we plot Fig.4 by implementing the Cherno ffbound method on the above two schemes.Here the data size is reasonably set N=1011.The absolute values and the relative values are respectively shown in Figs.4(a)and 4(b).Obviously,we can find the same trends as in Fig.3.

    Fig.4 (Color online)Comparisons of the final key generation rate between Xu et al.’s method and ours by applying the Cherno ffbound analysis.(a)displays the absolute key generation rates with logarithmic coordinate,and(b)exhibits the relative values with linear scale.W1(H1)represents the results of Xu et al.’s method,and W2(H2)denotes ours.Here the number of pulses is reasonably set at N=1011.

    4 Conclusions

    In conclusion,we have applied the idea of biased basis choice in Ref.[34]into the three-intensity decoy-state MDI-QKD scheme and carried out full parameter optimization on it.Compared with Xu et al.’s three-intensity scheme,[34]here the main difference is that the decoy pulses only prepared in X basis,which leads to more data in X basis for estimating the quantum-bit errorrate of two-single-photon pulses accurately.Therefore,this method su ff ers less finite-size effect during parameter estimations and can achieve better performance in the key distillation.Furthermore,numerical simulation results show that this method works more efficiently by using HSPS than using WCS at longer transmission distance.This attributes to the negligible dark count rate in HSPS,and dramatically lower probability for events with two photons presenting on the same side of the beamsplitter in HSPS than in WCS.In addition,this method can be easily realized with current technology,and thus looks very promising in the implementation of the quantum communication.

    精品一品国产午夜福利视频| 三级毛片av免费| 久久久久国产一级毛片高清牌| 欧美久久黑人一区二区| 九色亚洲精品在线播放| 丁香六月天网| 亚洲人成77777在线视频| 成年版毛片免费区| 亚洲少妇的诱惑av| 亚洲第一青青草原| 91av网站免费观看| 日韩一卡2卡3卡4卡2021年| 高清在线国产一区| 曰老女人黄片| 久久精品熟女亚洲av麻豆精品| 一区二区日韩欧美中文字幕| 久久人妻熟女aⅴ| 在线观看免费午夜福利视频| 最近最新中文字幕大全电影3 | 国产单亲对白刺激| 人妻久久中文字幕网| 亚洲avbb在线观看| 99久久99久久久精品蜜桃| 黄色成人免费大全| 男女无遮挡免费网站观看| 久久中文字幕人妻熟女| 黄色片一级片一级黄色片| 久久久精品94久久精品| 一本大道久久a久久精品| 黄色成人免费大全| 男女无遮挡免费网站观看| 午夜福利在线免费观看网站| 国产麻豆69| 久久国产精品人妻蜜桃| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲自偷自拍图片 自拍| 女人被躁到高潮嗷嗷叫费观| av有码第一页| 精品熟女少妇八av免费久了| 少妇猛男粗大的猛烈进出视频| 麻豆成人av在线观看| videos熟女内射| 人妻一区二区av| 中亚洲国语对白在线视频| 日韩大片免费观看网站| 欧美日韩国产mv在线观看视频| av不卡在线播放| 亚洲精品在线观看二区| 午夜福利免费观看在线| 中文字幕人妻熟女乱码| 国产成人av激情在线播放| 女同久久另类99精品国产91| 久久毛片免费看一区二区三区| 叶爱在线成人免费视频播放| 女人精品久久久久毛片| 亚洲 欧美一区二区三区| 一二三四在线观看免费中文在| 免费看a级黄色片| 亚洲男人天堂网一区| 狠狠狠狠99中文字幕| 亚洲黑人精品在线| 精品国产乱码久久久久久小说| 男女高潮啪啪啪动态图| av免费在线观看网站| 国产野战对白在线观看| 亚洲性夜色夜夜综合| 波多野结衣一区麻豆| 久久久精品94久久精品| 在线观看66精品国产| 丁香欧美五月| 黑丝袜美女国产一区| 一区二区三区精品91| 婷婷丁香在线五月| 久久久久网色| 精品国产一区二区三区四区第35| 中文字幕人妻丝袜制服| 国产单亲对白刺激| 久久精品亚洲熟妇少妇任你| 精品少妇一区二区三区视频日本电影| 欧美黑人精品巨大| 一级片免费观看大全| 桃花免费在线播放| 大片免费播放器 马上看| 亚洲成人免费电影在线观看| 啦啦啦 在线观看视频| 国产成人影院久久av| 少妇的丰满在线观看| 一本综合久久免费| 男人舔女人的私密视频| 欧美日韩中文字幕国产精品一区二区三区 | 成在线人永久免费视频| 十分钟在线观看高清视频www| 国产成人免费无遮挡视频| 欧美日韩黄片免| 考比视频在线观看| 交换朋友夫妻互换小说| 亚洲欧洲精品一区二区精品久久久| 99国产精品一区二区三区| 人人妻,人人澡人人爽秒播| 99国产精品免费福利视频| 1024视频免费在线观看| 在线播放国产精品三级| 超碰成人久久| 免费看a级黄色片| 成在线人永久免费视频| 久久久久视频综合| 9热在线视频观看99| 亚洲欧美色中文字幕在线| 久久国产精品大桥未久av| 别揉我奶头~嗯~啊~动态视频| 久久国产精品人妻蜜桃| 成人特级黄色片久久久久久久 | 日韩有码中文字幕| 丁香六月欧美| 欧美 日韩 精品 国产| 国产高清激情床上av| 女性生殖器流出的白浆| av网站免费在线观看视频| 久久久久国产一级毛片高清牌| 一本久久精品| 午夜福利视频在线观看免费| 欧美性长视频在线观看| 国产精品国产av在线观看| 人成视频在线观看免费观看| 成人18禁在线播放| 在线十欧美十亚洲十日本专区| 精品亚洲乱码少妇综合久久| 免费女性裸体啪啪无遮挡网站| 精品一区二区三区四区五区乱码| 王馨瑶露胸无遮挡在线观看| 精品亚洲成国产av| 日韩熟女老妇一区二区性免费视频| 别揉我奶头~嗯~啊~动态视频| 精品少妇久久久久久888优播| 亚洲精品成人av观看孕妇| 久久亚洲精品不卡| 视频在线观看一区二区三区| 91大片在线观看| 亚洲熟女毛片儿| 两个人免费观看高清视频| cao死你这个sao货| 国产高清videossex| 麻豆成人av在线观看| 国产精品国产av在线观看| 中国美女看黄片| 国产精品欧美亚洲77777| 手机成人av网站| 久久国产精品男人的天堂亚洲| 91av网站免费观看| 亚洲欧洲日产国产| 动漫黄色视频在线观看| 99国产精品免费福利视频| 麻豆国产av国片精品| 91老司机精品| 大型黄色视频在线免费观看| 国产男女超爽视频在线观看| 国产97色在线日韩免费| av不卡在线播放| 午夜福利欧美成人| 母亲3免费完整高清在线观看| 免费久久久久久久精品成人欧美视频| 国产日韩欧美视频二区| 国产精品.久久久| 欧美日韩一级在线毛片| 美女福利国产在线| 一个人免费看片子| 国产免费福利视频在线观看| svipshipincom国产片| 国产精品免费视频内射| 久久久水蜜桃国产精品网| 国产欧美日韩一区二区精品| 91九色精品人成在线观看| 丝瓜视频免费看黄片| 成在线人永久免费视频| 午夜成年电影在线免费观看| 999精品在线视频| 国产一区二区三区在线臀色熟女 | 亚洲欧美一区二区三区黑人| 熟女少妇亚洲综合色aaa.| 下体分泌物呈黄色| 久久久久精品人妻al黑| 操美女的视频在线观看| 色播在线永久视频| 精品一区二区三卡| 中亚洲国语对白在线视频| 国产日韩一区二区三区精品不卡| 大型黄色视频在线免费观看| 一二三四社区在线视频社区8| 制服诱惑二区| 国产99久久九九免费精品| 大型黄色视频在线免费观看| 纵有疾风起免费观看全集完整版| 国产在线精品亚洲第一网站| 久久久久久久大尺度免费视频| 十八禁网站免费在线| 最黄视频免费看| 精品国产国语对白av| 欧美精品高潮呻吟av久久| 欧美激情高清一区二区三区| 亚洲精品乱久久久久久| 亚洲精品一卡2卡三卡4卡5卡| 欧美老熟妇乱子伦牲交| 性少妇av在线| 99国产精品一区二区三区| 两个人免费观看高清视频| 久久性视频一级片| 香蕉久久夜色| kizo精华| 国产成人影院久久av| 啦啦啦中文免费视频观看日本| 成人国产一区最新在线观看| 一夜夜www| 美女扒开内裤让男人捅视频| 日韩制服丝袜自拍偷拍| 天天操日日干夜夜撸| 50天的宝宝边吃奶边哭怎么回事| 在线观看人妻少妇| 久久久久久久精品吃奶| 国产成人精品久久二区二区免费| 国产淫语在线视频| 一边摸一边抽搐一进一小说 | 欧美成人午夜精品| 免费高清在线观看日韩| 亚洲国产中文字幕在线视频| 乱人伦中国视频| 51午夜福利影视在线观看| 亚洲国产欧美在线一区| 久久国产精品影院| 19禁男女啪啪无遮挡网站| 三级毛片av免费| 两个人看的免费小视频| 日韩 欧美 亚洲 中文字幕| 亚洲五月婷婷丁香| 无限看片的www在线观看| 午夜福利,免费看| 国产精品秋霞免费鲁丝片| 五月天丁香电影| 国产欧美日韩一区二区三| 一区在线观看完整版| 搡老熟女国产l中国老女人| 久久久久久人人人人人| 51午夜福利影视在线观看| 一级毛片女人18水好多| 久久精品熟女亚洲av麻豆精品| 久久九九热精品免费| 精品高清国产在线一区| 国产淫语在线视频| 99香蕉大伊视频| 一级毛片精品| 午夜福利欧美成人| bbb黄色大片| 女性被躁到高潮视频| 少妇被粗大的猛进出69影院| 日韩有码中文字幕| 欧美精品亚洲一区二区| 性色av乱码一区二区三区2| av一本久久久久| 午夜视频精品福利| 天天操日日干夜夜撸| 久久国产精品人妻蜜桃| 日韩欧美国产一区二区入口| 交换朋友夫妻互换小说| 日日爽夜夜爽网站| 999久久久国产精品视频| 亚洲一区二区三区欧美精品| 一边摸一边抽搐一进一出视频| 99在线人妻在线中文字幕 | 久久久国产成人免费| 在线 av 中文字幕| 亚洲中文av在线| 久久国产精品人妻蜜桃| 女同久久另类99精品国产91| 久久久久久久久久久久大奶| 精品少妇内射三级| 欧美黄色片欧美黄色片| 欧美一级毛片孕妇| 国产无遮挡羞羞视频在线观看| 天堂中文最新版在线下载| 久久人人爽av亚洲精品天堂| 国产xxxxx性猛交| 18禁黄网站禁片午夜丰满| 国产精品国产高清国产av | 女性生殖器流出的白浆| 成人影院久久| 老司机靠b影院| 欧美在线一区亚洲| 我的亚洲天堂| 免费少妇av软件| 香蕉国产在线看| 成年版毛片免费区| 国产精品自产拍在线观看55亚洲 | 大片免费播放器 马上看| 国产xxxxx性猛交| 国产熟女午夜一区二区三区| 一边摸一边抽搐一进一出视频| 捣出白浆h1v1| 多毛熟女@视频| 丝瓜视频免费看黄片| 成人手机av| 欧美日韩国产mv在线观看视频| 欧美午夜高清在线| 日韩一卡2卡3卡4卡2021年| 在线观看免费视频日本深夜| 国产精品av久久久久免费| 免费av中文字幕在线| 飞空精品影院首页| 夜夜爽天天搞| 亚洲av片天天在线观看| 欧美激情 高清一区二区三区| 国产麻豆69| 麻豆成人av在线观看| 国产精品一区二区在线观看99| 国产片内射在线| 亚洲伊人色综图| 国产av精品麻豆| 无人区码免费观看不卡 | 又大又爽又粗| 亚洲中文日韩欧美视频| av视频免费观看在线观看| bbb黄色大片| 黄色成人免费大全| 国产亚洲精品久久久久5区| 丰满迷人的少妇在线观看| 丝袜喷水一区| 中文字幕人妻熟女乱码| 97人妻天天添夜夜摸| 国产伦人伦偷精品视频| 国产成人啪精品午夜网站| 天天躁夜夜躁狠狠躁躁| 这个男人来自地球电影免费观看| 一区二区三区乱码不卡18| 亚洲精品美女久久久久99蜜臀| 熟女少妇亚洲综合色aaa.| 韩国精品一区二区三区| 高清黄色对白视频在线免费看| 国产av国产精品国产| 亚洲精品久久成人aⅴ小说| 国产一区二区在线观看av| 老汉色∧v一级毛片| 大型av网站在线播放| 大片免费播放器 马上看| 宅男免费午夜| 亚洲欧洲日产国产| 久久久精品免费免费高清| bbb黄色大片| 建设人人有责人人尽责人人享有的| 俄罗斯特黄特色一大片| 久久人妻av系列| 男女无遮挡免费网站观看| 亚洲国产av新网站| 12—13女人毛片做爰片一| 亚洲av日韩在线播放| 搡老熟女国产l中国老女人| www.999成人在线观看| 久久这里只有精品19| 一级a爱视频在线免费观看| 国内毛片毛片毛片毛片毛片| 日日摸夜夜添夜夜添小说| 亚洲视频免费观看视频| 丰满人妻熟妇乱又伦精品不卡| 国产亚洲精品第一综合不卡| 99精品久久久久人妻精品| 不卡av一区二区三区| 国内毛片毛片毛片毛片毛片| 精品少妇久久久久久888优播| 午夜福利乱码中文字幕| 一本色道久久久久久精品综合| 嫩草影视91久久| 一区二区三区精品91| 免费日韩欧美在线观看| 18禁美女被吸乳视频| 日日摸夜夜添夜夜添小说| av视频免费观看在线观看| 国产精品久久电影中文字幕 | 12—13女人毛片做爰片一| 男女边摸边吃奶| a级毛片黄视频| 日韩视频一区二区在线观看| 免费在线观看日本一区| 国产在线免费精品| 天堂8中文在线网| 久久毛片免费看一区二区三区| 国产成人啪精品午夜网站| 丝袜喷水一区| 亚洲成a人片在线一区二区| 极品少妇高潮喷水抽搐| 久久性视频一级片| 色老头精品视频在线观看| 性色av乱码一区二区三区2| 精品少妇内射三级| 久久久水蜜桃国产精品网| 精品一区二区三区av网在线观看 | 久9热在线精品视频| 国产精品亚洲一级av第二区| 欧美激情高清一区二区三区| 午夜日韩欧美国产| 在线天堂中文资源库| 久久人妻av系列| www.自偷自拍.com| aaaaa片日本免费| 悠悠久久av| 丝袜人妻中文字幕| 欧美激情久久久久久爽电影 | 欧美国产精品一级二级三级| 国产一卡二卡三卡精品| 伦理电影免费视频| 午夜福利乱码中文字幕| 精品久久蜜臀av无| 欧美av亚洲av综合av国产av| 日本撒尿小便嘘嘘汇集6| 精品国产亚洲在线| 男女下面插进去视频免费观看| 精品高清国产在线一区| 精品少妇黑人巨大在线播放| 久久久久精品国产欧美久久久| 国产精品香港三级国产av潘金莲| 如日韩欧美国产精品一区二区三区| 一边摸一边抽搐一进一出视频| 中文字幕另类日韩欧美亚洲嫩草| 国产亚洲精品一区二区www | 精品国产乱码久久久久久男人| 99精品在免费线老司机午夜| 色94色欧美一区二区| 9191精品国产免费久久| 亚洲av第一区精品v没综合| 亚洲成人手机| 色94色欧美一区二区| 亚洲情色 制服丝袜| 国产成人系列免费观看| 久久性视频一级片| 一区二区三区国产精品乱码| 99在线人妻在线中文字幕 | 亚洲精品美女久久av网站| xxxhd国产人妻xxx| 午夜福利免费观看在线| 午夜久久久在线观看| 精品一区二区三卡| 熟女少妇亚洲综合色aaa.| 新久久久久国产一级毛片| 免费在线观看黄色视频的| 欧美日韩黄片免| 十八禁人妻一区二区| av免费在线观看网站| 欧美精品一区二区免费开放| www日本在线高清视频| 满18在线观看网站| 日韩免费高清中文字幕av| 亚洲av电影在线进入| 午夜福利影视在线免费观看| 久久中文字幕人妻熟女| 亚洲自偷自拍图片 自拍| 精品福利永久在线观看| 国产精品一区二区精品视频观看| 免费观看av网站的网址| 国产精品久久久久久精品电影小说| 51午夜福利影视在线观看| 欧美日韩av久久| 交换朋友夫妻互换小说| 国产精品1区2区在线观看. | 免费黄频网站在线观看国产| 国产精品久久电影中文字幕 | 国产在线观看jvid| 99热网站在线观看| 一区二区日韩欧美中文字幕| svipshipincom国产片| 国产精品久久久人人做人人爽| 久久影院123| 精品乱码久久久久久99久播| 人人妻人人添人人爽欧美一区卜| 久久精品人人爽人人爽视色| 亚洲成人手机| 欧美日韩中文字幕国产精品一区二区三区 | 我的亚洲天堂| 亚洲精品美女久久久久99蜜臀| 91老司机精品| 国产一区二区三区综合在线观看| 国产精品久久电影中文字幕 | 国产av一区二区精品久久| 亚洲avbb在线观看| 国产精品国产av在线观看| 久久午夜综合久久蜜桃| 日本精品一区二区三区蜜桃| av一本久久久久| 18禁国产床啪视频网站| 久久热在线av| 久久久久精品人妻al黑| 99国产精品99久久久久| 国产精品一区二区在线观看99| 正在播放国产对白刺激| 一本一本久久a久久精品综合妖精| 精品一区二区三区av网在线观看 | 青草久久国产| 99久久人妻综合| 午夜老司机福利片| 精品亚洲成国产av| 大片电影免费在线观看免费| 精品视频人人做人人爽| 亚洲欧洲日产国产| 捣出白浆h1v1| 亚洲 欧美一区二区三区| 亚洲精品国产精品久久久不卡| 少妇猛男粗大的猛烈进出视频| 在线看a的网站| 日日爽夜夜爽网站| 老司机深夜福利视频在线观看| 亚洲七黄色美女视频| 国产精品久久久久久精品电影小说| 久久精品91无色码中文字幕| 欧美成人午夜精品| 操美女的视频在线观看| 日韩视频在线欧美| 黄色丝袜av网址大全| 99精品欧美一区二区三区四区| 啦啦啦中文免费视频观看日本| 性色av乱码一区二区三区2| 黄色视频在线播放观看不卡| 桃红色精品国产亚洲av| 黄色 视频免费看| 电影成人av| 在线观看免费视频日本深夜| 亚洲五月婷婷丁香| 亚洲精品成人av观看孕妇| 三级毛片av免费| 波多野结衣av一区二区av| 久久久久国产一级毛片高清牌| 午夜福利乱码中文字幕| 久久人人爽av亚洲精品天堂| 一本一本久久a久久精品综合妖精| 午夜免费鲁丝| 91成年电影在线观看| 亚洲专区字幕在线| 精品福利永久在线观看| 激情视频va一区二区三区| 后天国语完整版免费观看| 丁香欧美五月| 国产高清videossex| 亚洲久久久国产精品| av国产精品久久久久影院| 精品国产一区二区三区久久久樱花| 99九九在线精品视频| 日韩欧美免费精品| 老司机在亚洲福利影院| 大香蕉久久成人网| 国产精品久久久av美女十八| 色视频在线一区二区三区| 性色av乱码一区二区三区2| 亚洲精品国产区一区二| 精品欧美一区二区三区在线| 在线天堂中文资源库| 老熟妇乱子伦视频在线观看| 国产熟女午夜一区二区三区| 欧美+亚洲+日韩+国产| 亚洲av电影在线进入| 天天躁日日躁夜夜躁夜夜| 在线天堂中文资源库| 怎么达到女性高潮| 成人亚洲精品一区在线观看| 色尼玛亚洲综合影院| 欧美久久黑人一区二区| 免费在线观看影片大全网站| 国产黄色免费在线视频| av片东京热男人的天堂| 久久国产精品影院| 欧美乱妇无乱码| 欧美日韩精品网址| 中国美女看黄片| 精品国产超薄肉色丝袜足j| 最近最新免费中文字幕在线| 老司机午夜十八禁免费视频| 国产真人三级小视频在线观看| 国产精品电影一区二区三区 | 午夜激情av网站| 日韩大码丰满熟妇| 久久青草综合色| 成人免费观看视频高清| 亚洲av片天天在线观看| 免费女性裸体啪啪无遮挡网站| 亚洲专区国产一区二区| 欧美日韩一级在线毛片| 国产精品久久久久久人妻精品电影 | 美女高潮到喷水免费观看| 午夜福利影视在线免费观看| 亚洲av国产av综合av卡| 在线亚洲精品国产二区图片欧美| 夜夜夜夜夜久久久久| www.999成人在线观看| 成人永久免费在线观看视频 | 精品高清国产在线一区| 大型av网站在线播放| 成人特级黄色片久久久久久久 | 老司机亚洲免费影院| 亚洲色图 男人天堂 中文字幕| 久久精品国产a三级三级三级| 国产成人啪精品午夜网站| 在线天堂中文资源库| 老司机亚洲免费影院| 免费观看人在逋| 999精品在线视频| 国产成人欧美在线观看 | 免费少妇av软件| 午夜老司机福利片| 国产精品久久久久久精品古装| 国产国语露脸激情在线看| 亚洲成人国产一区在线观看| 国产激情久久老熟女| 99在线人妻在线中文字幕 | 大香蕉久久网| 美女国产高潮福利片在线看| 男女床上黄色一级片免费看| 无限看片的www在线观看| avwww免费| 国产亚洲精品一区二区www | 动漫黄色视频在线观看| 亚洲色图 男人天堂 中文字幕| 国产野战对白在线观看|