• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Perturbation to Noether Symmetries and Adiabatic Invariants for Generalized Birkhoff Systems Based on El-Nabulsi Dynamical Model

    2015-11-24 06:57:40SongChuanjing宋傳靜ZhangYi張毅
    關(guān)鍵詞:張毅

    Song Chuanjing(宋傳靜),Zhang Yi(張毅)

    1.College of Science,Nanjing University of Science and Technology,Nanjing 210094,P.R.China;

    2.College of Civil Engineering,Suzhou University of Science and Technology,Suzhou 215011,P.R.China

    Perturbation to Noether Symmetries and Adiabatic Invariants for Generalized Birkhoff Systems Based on El-Nabulsi Dynamical Model

    Song Chuanjing(宋傳靜)1,Zhang Yi(張毅)2*

    1.College of Science,Nanjing University of Science and Technology,Nanjing 210094,P.R.China;

    2.College of Civil Engineering,Suzhou University of Science and Technology,Suzhou 215011,P.R.China

    With the action of small perturbation on generalized El-Nabulsi-Birkhoff fractional equations,the perturbation to Noether symmetries and adiabatic invariants are studied under the framework of El-Nabulsi's fractional model.Eirstly,based on the invariance of El-Nabulsi-Pfaff action under the infinitesimal transformations of group,the exact invariants are given.Secondly,on the basis of the definition of higher order adiabatic invariants of a dynamical system,the adiabatic invariants of the Noether symmetric perturbation for disturbed generalized El-Nabulsi's fractional Birkhoff system are presented under some conditions,and some special cases are discussed.Einally,an example known as Hojman-Urrutia problem is given to illustrate the application of the results.

    perturbation to Noether symmetry;adiabatic invariant;El-Nabulsi dynamical model;generalized Birkhoff system;infinitesimal transformation

    0 Introduction

    In 1927,a new integral variational principle was introduced by an American mathematician—Birkhoff,and a new form of the equations of motion was also obtained in his monograph[1].Erom then on,Birkhoffian dynamics gained significant headways.Eor instance,in 1983,the Birkhoff equations and the transformation theory of Birkhoff equations are studied by Santilli[2];In 1996,the theoretical framework of Birkhoffian dynamics was established by Mei and his co-workers[3](They extended the Birkhoff system to a generalized Birkhoffian system,and obtained a series of results[4-6].);In 1997,the symmetry of the Birkhoffian system is presented[7],to name just a few.

    Eractional calculus can be used to investigate complex dynamical systems and understand complicated physical processes.And based on the fractional calculus,Riewe[8-9]studied the fractional variational problems,and established the fractional Euler-Lagrange equations as well as the fractional Hamilton equations.Since then,many further researches on fractional variational problems have been found[10-18].El-Nabulsi's fractional model,a fractional action-like variational approach based on the fractional calculus,was introduced by El-Nabulsi[19]in 2005 when he was studying nonconservative dynamical modeling. Subsequently,this method was widely used and many results have been obtained.Eor instance,El-Nabulsi generalized the approach to a Lagrangian which depends on Riemann-Liouville fractional derivatives[20],to periodic functional or exponential law[21-22],and to multi-dimentional frac-tional action-like variational problems[23].Apart from these results,in 2011,El-Nabulsi[24]gave the universal fractional action-like Euler-Lagrange equations on the basis of a generalized fractional derivative operator and,Herzallah et al[25]presented the fractional action-like Hamilton-Jacobi theory.In 2013,Zhang and Zhou[26]introduced the idea of El-Nabulsi's fractional model to Birkhoffian mechanics,on the basis of El-Nabulsi's fractional model.They first presented the fractional Pfaff variational problem,established the El-Nabulsi-Birkhoff fractional equations of motion,with which the Birkhoff system is called the El-Nabulsi's fractional Birkhoff system,and obtained the El-Nabulsi's fractional Noether theorems.Moreover,in 2014,Zhang and Ding[27]presented the generalized El-Nabulsi-Birkhoff fractional equations and the generalized El-Nabulsi's fractional Birkhoff system,and established the El-Nabulsi's fractional Noether theorems.

    Perturbation to symmetry and adiabatic invariants for a dynamical system are of great significance in many fields,such as mechanics,mathematics and physics.Adiabatic invariant was first proposed by Burgers in 1917[28].Eor a mechanical system,the relation existing in the integrability and the variations of its symmetries and invariants under the action of small disturbance is so intimate that the researches on perturbation to symmetry and adiabatic invariants are significant. Hence,many results about perturbation to symmetry and adiabatic invariants have been achieved in recent years[29-33].Since El-Nabulsi's fractional model and adiabatic invariants have great theoretical and applied values,both still deserve further academic research.

    Here we combine El-Nabulsi's fractional model with adiabatic invariants for the disturbed generalized Birkhoff system.Exact invariants are firstly presented on the basis of El-Nabulsi's fractional Noether theorem.And then adiabatic invariants for disturbed generalized El-Nabulsi's fractional Birkhoff system are given by investigating the perturbation to Noether symmetry. Einally,the Hojman-Urrutia problem[2]is discussed to illustrate the application of this method and its results.

    1 Noether Symmetric Perturbation and Adiabatic Invariants for Generalized El-Nabulsi′s Fractional Birkhoff System

    In this section,one considers the adiabatic invariants of Noether symmetric perturbation and gives the main results for generalized El-Nabulsi's fractional Birkhoff system.Eirstly,the equations for this system are given.Then,El-Nabulsi-Noether symmetric transformations and conservative quantities are introduced.After that,adiabatic invariants of Noether symmetric perturbation are presented.

    1.1 Generalized El-Nabulsi-Birkhoff fractional equations

    Generalized El-Nabulsi-Birkhoff fractional equations have the form[27]

    Ifα=1,Eqs.(1)reduce to the standard generalized Birkhoff equations.IfΛμ=0,Eqs.(1)reduce to the El-Nabulsi-Birkhoff fractional equations.

    1.2 El-Nabulsi-Noether symmetric transformations and conservative quantities

    The El-Nabulsi-Pfaff action has the form[26]

    Choose the infinitesimal transformations of r-parameter finite transformation group ofτand aμas

    and their expanding forms are

    whereεσ(σ=1,2,…,r )are the infinitesimal parameters,andthe infinitesimal generators of the infinitesimal transformations.

    The basic formula for the variation of El-Nabulsi-Pfaff action[26]can be obtained by the transformations Eq.(4)

    holds for each of the infinitesimal transformations,the infinitesimal transformations are called the El-Nabulsi-Noether symmetric transformations.And one can verify the El-Nabulsi-Noether symmetry for the generalized El-Nabulsi's fractional Birkhoff system.

    If I

    f the following formula[27]

    where G=G(τ,a ),then the infinitesimal transformations are called the El-Nabulsi-Noether quasi-symmetric transformations.Similarly,one can verify the El-Nabulsi-Noether quasi-symmetry for the generalized El-Nabulsi's fractional Birkhoff system.

    Eor the generalized El-Nabulsi's fractional Birkhoff system,if the infinitesimal transformations of group (4)satisfy the following conditions[27]

    Then there exist r linearly independent conservative quantities

    Whenα=1,one can attain Noether symmetry,Noether quasi-symmetry and the corresponding conservative quantities for the standard generalized Birkhoff system.WhenΛμ=0,one can obtain the El-Nabulsi-Noether symmetry,the El-Nabulsi-Noether quasi-symmetry and the corresponding conservative quantities for the El-Nabulsi's fractional Birkhoff system.

    1.3 Noether symmetric perturbation and adiabatic invariants

    Noether symmetric perturbation does not always lead to adiabatic invariants.In the sequel,one presents the conditions under which Noether symmetric perturbation can imply adiabatic invariants.

    Definition[32]If Iz=Izτ,aν,()

    ε is a physical quantity for a mechanical system includingεin which the highest power is z,and its derivative with respect toτis in direct proportion toεz+1,then Izis called a z-th order adiabatic invariants of the mechanical system.

    Specially,when z=0,one can get exact invariants.Hence

    Suppose that the generalizd El-Nabulsi's fractional Birkhoff system is perturbed by small quantitiesεQμ.Then the motion equations of the system become

    Under the action of small forces of perturbationεQμ,the previous symmetries and invariants of the system may vary.Assume that the perturbed generators(σ=1,2,…,r )of infinitesimal transformations are small perturbationon the basis of the generators of symmetric transformations of an unperturbed system,then one has

    In the meanwhile,due to the small perturbation,one also has

    Theorem 2 Eor the generalized El-Nabulsi's fractional Birkhoff system disturbed by small forces of perturbation εQμ,if there exists(m=0,1,2,… )such that the generatorsξof the infinitesimal transformations satisfy

    Then the generalized El-Nabulsi's fractional Birkhoff system has the z-th order adiabatic invariants

    As special cases,one can also obtain the following results.

    Theorem 3[32]Eor the standard generalized Birkhoff system disturbed by small forces of purterbationεQμ,if there exists Gσm(τ,a )such that the generatorsof the infinitesimal transformations satisfy

    Then the standard generalized Birkhoff system has the z-th order adiabatic invariants

    Theorem 4[33]Eor the El-Nabulsi's fractional Birkhoff system disturbed by small forces of perturbation εQμ, if there exists Gσm(τ,a)(m=0,1,2,… )such that the generators ξof the infinitesimal transformations satisfy

    Then the El-Nabulsi's fractional Birkhoff system has the z-th order adiabatic invariants

    2 An Illustrative Example

    Consider a fourth order generalized El-Nabulsi's fractional Birkhoff system,whose Birkhoffian,Birkhoff's functions and the additional items are

    As an example[2],one tries to study its Noether symmetrical perturbation and adiabatic invariants.

    ence,one can obtain an exact invariant from Theorem 1 is disturbed by

    Erom Eqs.(10),one has

    Eq.(22)has a solution

    Using Theorem 2,one can obtain the first order adiabatic invariant as follows

    Eurthermore,the higher order adiabatic invariants can also be obtained.

    3 Conclusions

    Noether symmetric perturbation and adiabatic invariants for the generalized El-Nabulsi's fractional Birkhoff system are investigated.Based on infinitesimal transformations,the exact invariants are given for the generalized El-Nabulsi's fractional Birkhoff system.Then the adiabatic invariants of Noether symmetric perturbation for the disturbed generalized El-Nabulsi's fractional Birkhoff system are obtained.The adiabatic invariants of Noether symmetric perturbation for generalized El-Nabulsi's fractional Birkhoff system are first studied.And the obtained results comprises Eq.(9)of disturbed generalized El-Nabulsi's fractional Birkhoff system,Eq.(10)of Noether symmetric perturbation and Theorem 2.These results present the perturbation and adiabatic invariants for generalized El-Nabulsi's fractional Birkhoff system.Since few researches are about perturbation of Birkhoff system due to its complexity,more such work can be done in depth.Moreover,based on some known results[3,34],it is considered that integration methods for generalized El-Nabulsi's fractional Birkhoff system also deserve further study.

    Acknowledgements

    This work was supported by the National Natural Science Eoundation of China(Nos.10972151,11272227)and the Innovation Program for Scientific Research of Nanjing University of Science and Technology.

    [1] Birkhoff G D.Dynamical systems[M].Providence,USA:AMS College Publisher,1927.

    [2] Santilli R M.Eoundations of theoretical mechanicsⅡ[M].New York,USA:Springer,1983.

    [3] Mei E X,Shi R C,Zhang Y E,et al.Dynamics of Birkhoff systems[M].Beijing,China:Beijing University of Technology,1996.(in Chinese)

    [4] Li Y M.Lie symmetries,perturbation to symmetries and adiabatic invariants of generalized Birkhoff systems[J].Chin Phys Lett,2010,27:010202.

    [5] Li Y M,Mei E X.Stability for manifolds of equilibrium states of generalized Birkhoff system [J].Chin Phys B,2010,19:080302.

    [6] Wang C D,Liu S X,Mei E X.Generalized Pfaff-Birkhoff-d Alembert principle and form invariance of generalized Birkhoff equations [J].Acta Phys Sin,2010,59:8322.

    [7] Galiullin A S,Gafarov G G,Malaishka R P,et al.Analytical dynamics of Helmholtz,Birkhoff and Nambu systems[M].Moscow:UEN,1997.(in Russian)

    [8] Riewe E.Nonconservative Lagrangian and Hamiltonian mechanics [J].Phys Rev E,1996,53(2):1890-1899.

    [9] Riewe E.Mechanics with fractional derivatives[J]. Phys Rev E,1997,55(3):3581-3592.

    [10]Agrawal O P.Eormulation of Euler-Lagrange equations for fractional variational problems[J].J Math Anal Appl,2002,272(1):368-379.

    [11]Agrawal O P,Muslih S I,Baleanu D.Generalized variational calculus in terms of multi-parameters fractional derivatives[J].Commun Nonlinear Sci Numer Simul,2011,16(12):4756-4767.

    [12]Zhou Y,Zhang Y.Eractional Pfaff-Birkhoff principle and Birkhoff's equations in terms of Riesz fractional derivatives[J].Transactions of Nanjing University of Aeronautics and Astronautics,2014,31(1):63-69.

    [13]Baleanu D,Muslih S I,Rabei E M.On fractional Euler-Lagrange and Hamilton equations and the fractional generalization of total time derivative [J]. Nonlinear Dyn,2008,53(1/2):67-74.

    [14]Jarad E,Abdeljawad T,Baleanu D.Eractional variational optimal control problems with delayed arguments[J].Nonlinear Dyn,2010,62(3):609-614.

    [15]Almeida R,Torres D E M.Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives[J].Commun Nonlinear Sci Numer Simul,2011,16(3):1490-1500.

    [16]Herzallah M A E,Baleanu D.Eractional Euler-Lagrange equations revisited [J]. Nonlinear Dyn,2012,69(3):977-982.

    [17]Erederico G S E,Torres D E M.A formulation of Noether's theorem for fractional problems of the calculus of variations[J].J Math Anal Appl,2007,334(2):834-846.

    [18]Atanackovic'T M,Konjik S,Pilipovic'S,et al.Variational problems with fractional derivatives:Invariance conditions and Noether's theorem [J].Nonlinear Anal,2009,71(5/6):1504-1517.

    [19]El-Nabulsi A R.A fractional approach to nonconservative Lagrangian dynamical systems[J].Eizika A,2005,14(4):289-298.

    [20]El-Nabulsi A R,Torres D E M.Necessary optimality conditions for fractional action-like integrals of variational calculus with Riemann-Liouville derivatives of order(α,β)[J].Math Methods Appl Sci,2007,30(15):1931-1939.

    [21]El-Nabulsi A R.A periodic functional approach to the calculus of variations and the problem of time-dependent damped harmonic oscillators[J].Appl Math Lett,2011,24(10):1647-1653.

    [22]El-Nabulsi A R.Eractional variational problems from extended exponentially fractional integral[J].Appl Math Comput,2011,217(22):9492-9496.

    [23]El-Nabulsi A R,Torres D E M.Eractional actionlike variational problems[J].J Math Phys,2008,49:053521.

    [24]El-Nabulsi A R.Universal fractional Euler-Lagrange equation from a generalized fractional derivate operator[J].Cent Eur J Phys,2011,9(1):250-256.

    [25]Herzallah M A E,Muslih S I,Baleanu D,et al. Hamilton-Jacobi and fractional like action with time scaling[J].Nonlinear Dyn,2011,66(4):549-555.

    [26]Zhang Y,Zhou Y.Symmetries and conserved quantities for fractional action-like Pfaffian variational problems[J].Nonlinear Dyn,2013,73(1/2):783-793.

    [27]Zhang Y,Ding J E.Noether symmetries of generalized Birkhoff systems based on El-Nabulsi's fractional model[J].J Nanjing University of Science and Technology,2014,38(3):409-413.(in Chinese)

    [28]Burgers J M.Die adiabatischen invarianten bedingt periodischer systems[J].Ann Phys,1917,357(2):195-202.

    [29]Zhang Y,Ean C X.Perturbation of symmetries and Hojman adiabatic invariants for mechanical systems with unilateral holonomic constraints[J].Commun Theor Phys,2007,47(4):607-610.

    [30]Jiang W A,Luo S K.A new type of non-Noether exact invariants and adiabatic invariants of generalized Hamiltonian systems[J].Nonlinear Dyn,2012,67(1):475-482.

    [31]Jiang W A,Li L,Li Z J,et al.Lie symmetrical per-turbation and a new type of non-Noether adiabatic invariants for disturbed generalized Birkhoffian systems[J].Nonlinear Dyn,2012,67(2):1075-1081.

    [32]Zhang Y.Perturbation to Noether symmetries and adiabatic invariants for generalized Birkhoffian systems[J].Bulletin of Science and Technology,2010,26(4):477-481.

    [33]Chen J,Zhang Y.Perturbation to Noether symmetries and adiabatic invariants for Birkhoffian systems based on El-Nabulsi dynamical models [J].Acta Phys Sin,2014,63(10):104501-104507.

    [34]Zhang Y.Method of Jacobi last multiplier for solving dynamics equations integration of generalized classical mechanics system[J].Journal of Nanjing University of Aeronautics and Astronautics,2012,44(2):262-265.(in Chinese)

    (Executive editor:Zhang Tong)

    O316 Document code:A Article ID:1005-1120(2015)04-0421-07

    *Corresponding author:Zhang Yi,Professor,E-mail:zhy@mail.usts.edu.cn.

    How to cite this article:Song Chuanjing,Zhang Yi.Perturbation to Noether symmetries and adiabatic invariants for generalized Birkhoff systems based on El-Nabulsi dynamical model[J].Trans.Nanjing U.Aero.Astro.,2015,32(4):421-427.

    http://dx.doi.org/10.16356/j.1005-1120.2015.04.421

    (Received 23 August 2014;revised 25 November 2014;accepted 10 December 2014)

    猜你喜歡
    張毅
    二月二—龍?zhí)ь^
    張士卿基于敏濕熱瘀辨治過敏性紫癜經(jīng)驗(yàn)
    《秋水共長(zhǎng)天一色》
    青年生活(2019年6期)2019-09-10 17:55:38
    Isolation and callus formation of Gracilariopsis bailiniae(Gracilariales, Rhodophyta) protoplasts*
    Noether Symmetry and Conserved Quantities of Fractional Birkhoffian System in Terms of Herglotz Variational Problem?
    隨便走走(短篇小說)
    “執(zhí)著”的代價(jià)
    宮“保”雞丁
    性格變更
    Fractional Action-Like Variational Problem and Its Noether Symmetries for a Nonholonomic System
    国产精品亚洲一级av第二区| av片东京热男人的天堂| 亚洲色图 男人天堂 中文字幕| 国产欧美亚洲国产| 久久精品国产亚洲av高清一级| 亚洲国产精品一区二区三区在线| 桃红色精品国产亚洲av| 丝袜人妻中文字幕| 久久久精品国产亚洲av高清涩受| 精品久久久久久电影网| 欧美日韩亚洲国产一区二区在线观看 | svipshipincom国产片| 最新美女视频免费是黄的| 最新美女视频免费是黄的| 久久影院123| 十分钟在线观看高清视频www| av福利片在线| 成人三级做爰电影| 久久人妻av系列| 18禁黄网站禁片午夜丰满| 大型av网站在线播放| 19禁男女啪啪无遮挡网站| 韩国av一区二区三区四区| 欧洲精品卡2卡3卡4卡5卡区| 人人妻人人添人人爽欧美一区卜| 欧美乱码精品一区二区三区| 国产亚洲精品久久久久久毛片 | 国产一区二区三区在线臀色熟女 | 天天操日日干夜夜撸| 午夜精品久久久久久毛片777| 女人被狂操c到高潮| 久久影院123| 激情在线观看视频在线高清 | 18禁裸乳无遮挡免费网站照片 | 最近最新中文字幕大全免费视频| 99精国产麻豆久久婷婷| 极品教师在线免费播放| 最新的欧美精品一区二区| 巨乳人妻的诱惑在线观看| 久久婷婷成人综合色麻豆| 久久国产精品影院| 又黄又粗又硬又大视频| 成人精品一区二区免费| 精品久久久久久久久久免费视频 | 老司机影院毛片| 99国产精品免费福利视频| 久久精品国产清高在天天线| 巨乳人妻的诱惑在线观看| 他把我摸到了高潮在线观看| 国产一区二区三区综合在线观看| 深夜精品福利| 黄色视频不卡| 男女免费视频国产| 成人手机av| 男人的好看免费观看在线视频 | 国产精品国产高清国产av | 国产一区二区三区综合在线观看| 亚洲av美国av| 亚洲熟妇中文字幕五十中出 | 电影成人av| 黄片大片在线免费观看| 国产精品一区二区免费欧美| 女人被躁到高潮嗷嗷叫费观| 国产精品av久久久久免费| 很黄的视频免费| 亚洲中文日韩欧美视频| 亚洲成人免费av在线播放| 成在线人永久免费视频| 中出人妻视频一区二区| 亚洲欧美精品综合一区二区三区| 另类亚洲欧美激情| 一级片免费观看大全| 国产精品永久免费网站| 老汉色∧v一级毛片| 天堂√8在线中文| 久9热在线精品视频| 人人妻人人添人人爽欧美一区卜| 久久人人97超碰香蕉20202| 国产欧美日韩精品亚洲av| 亚洲色图 男人天堂 中文字幕| 夜夜躁狠狠躁天天躁| 妹子高潮喷水视频| 成人亚洲精品一区在线观看| 可以免费在线观看a视频的电影网站| 高清欧美精品videossex| 午夜影院日韩av| 国内毛片毛片毛片毛片毛片| 老司机福利观看| 色婷婷久久久亚洲欧美| 日韩欧美一区二区三区在线观看 | 久久精品国产综合久久久| 人人妻,人人澡人人爽秒播| 午夜福利在线免费观看网站| 中文字幕色久视频| 黑人巨大精品欧美一区二区mp4| 国产精品久久久人人做人人爽| 欧美精品人与动牲交sv欧美| 搡老乐熟女国产| 变态另类成人亚洲欧美熟女 | 午夜影院日韩av| 51午夜福利影视在线观看| 亚洲综合色网址| 成年版毛片免费区| 亚洲精品美女久久久久99蜜臀| 欧美乱妇无乱码| 一级毛片女人18水好多| 亚洲伊人色综图| 丝袜美腿诱惑在线| 亚洲精品国产一区二区精华液| 老司机在亚洲福利影院| 亚洲精品美女久久久久99蜜臀| 99精品久久久久人妻精品| 美女福利国产在线| 国产男靠女视频免费网站| 久久中文字幕一级| 多毛熟女@视频| 一区二区三区激情视频| 成人亚洲精品一区在线观看| 久久久精品国产亚洲av高清涩受| 欧美激情久久久久久爽电影 | 欧美日韩亚洲高清精品| 男女免费视频国产| 黄色怎么调成土黄色| 每晚都被弄得嗷嗷叫到高潮| 99精国产麻豆久久婷婷| 欧美大码av| 亚洲精品中文字幕在线视频| 少妇裸体淫交视频免费看高清 | 校园春色视频在线观看| 在线观看www视频免费| www.999成人在线观看| 美女 人体艺术 gogo| 欧美乱色亚洲激情| 国产91精品成人一区二区三区| 亚洲一区二区三区欧美精品| 人人澡人人妻人| 婷婷成人精品国产| 一夜夜www| 久久久久国产一级毛片高清牌| 久久精品亚洲熟妇少妇任你| 黄色女人牲交| 国产成人精品久久二区二区91| 午夜福利,免费看| 高清欧美精品videossex| 1024视频免费在线观看| 国产三级黄色录像| 99国产精品免费福利视频| 夜夜爽天天搞| 老司机午夜十八禁免费视频| 9色porny在线观看| 欧美不卡视频在线免费观看 | 成人手机av| 久久久久精品国产欧美久久久| 亚洲午夜理论影院| 热99国产精品久久久久久7| 少妇粗大呻吟视频| 亚洲成人免费av在线播放| 19禁男女啪啪无遮挡网站| 人成视频在线观看免费观看| 婷婷丁香在线五月| 在线观看舔阴道视频| 少妇 在线观看| 久久精品熟女亚洲av麻豆精品| 国产高清激情床上av| 精品久久久久久久毛片微露脸| 亚洲人成电影观看| 亚洲综合色网址| 国产亚洲精品一区二区www | 久久天堂一区二区三区四区| 99精国产麻豆久久婷婷| 黄片大片在线免费观看| 久久午夜亚洲精品久久| 日本vs欧美在线观看视频| 正在播放国产对白刺激| 咕卡用的链子| 免费黄频网站在线观看国产| 国产三级黄色录像| 后天国语完整版免费观看| 大片电影免费在线观看免费| 精品久久久精品久久久| 12—13女人毛片做爰片一| 91麻豆精品激情在线观看国产 | videosex国产| 久久这里只有精品19| 又黄又粗又硬又大视频| 十八禁网站免费在线| 黄色片一级片一级黄色片| 岛国在线观看网站| 成人免费观看视频高清| 成人影院久久| 欧美老熟妇乱子伦牲交| 亚洲,欧美精品.| 国产精品自产拍在线观看55亚洲 | svipshipincom国产片| 国产精品一区二区免费欧美| 97人妻天天添夜夜摸| www.自偷自拍.com| 91麻豆精品激情在线观看国产 | 19禁男女啪啪无遮挡网站| 久久人妻福利社区极品人妻图片| 两性夫妻黄色片| 亚洲在线自拍视频| 亚洲欧美激情在线| 日韩欧美一区视频在线观看| 性色av乱码一区二区三区2| 国产成人av教育| 午夜91福利影院| 国产深夜福利视频在线观看| 免费在线观看完整版高清| 久久久久久久精品吃奶| 久久久久视频综合| 色播在线永久视频| 999久久久精品免费观看国产| av在线播放免费不卡| 日本精品一区二区三区蜜桃| 女性生殖器流出的白浆| 丝袜美腿诱惑在线| 成人手机av| 久久精品国产99精品国产亚洲性色 | 一进一出好大好爽视频| 免费观看a级毛片全部| 亚洲av成人一区二区三| 1024香蕉在线观看| 成熟少妇高潮喷水视频| www.自偷自拍.com| 久久天躁狠狠躁夜夜2o2o| 美女福利国产在线| 亚洲成人国产一区在线观看| 亚洲avbb在线观看| videos熟女内射| 日韩大码丰满熟妇| av电影中文网址| 亚洲成人国产一区在线观看| 久久久国产成人精品二区 | 亚洲片人在线观看| 精品熟女少妇八av免费久了| 久久香蕉精品热| 亚洲九九香蕉| 国产精品电影一区二区三区 | 精品第一国产精品| 91成人精品电影| 欧美精品一区二区免费开放| 久久精品亚洲熟妇少妇任你| 免费高清在线观看日韩| 国产99久久九九免费精品| 久久狼人影院| 一级作爱视频免费观看| 精品高清国产在线一区| 亚洲少妇的诱惑av| 国产精品九九99| 亚洲一卡2卡3卡4卡5卡精品中文| 美女国产高潮福利片在线看| 香蕉丝袜av| 黄色a级毛片大全视频| 欧美精品高潮呻吟av久久| 欧美日韩视频精品一区| 成年版毛片免费区| 男女之事视频高清在线观看| 色综合婷婷激情| 精品国产美女av久久久久小说| 国产国语露脸激情在线看| 九色亚洲精品在线播放| 免费观看人在逋| 我的亚洲天堂| 在线永久观看黄色视频| 成熟少妇高潮喷水视频| 无遮挡黄片免费观看| 制服诱惑二区| 少妇 在线观看| 91av网站免费观看| 丝袜美足系列| 啦啦啦 在线观看视频| √禁漫天堂资源中文www| 欧美成人午夜精品| 欧美黑人精品巨大| 国产男女超爽视频在线观看| 国产精品 国内视频| 色婷婷av一区二区三区视频| 女人爽到高潮嗷嗷叫在线视频| 久久香蕉精品热| 黑人巨大精品欧美一区二区蜜桃| 黄色女人牲交| 天堂中文最新版在线下载| 亚洲一卡2卡3卡4卡5卡精品中文| x7x7x7水蜜桃| 制服人妻中文乱码| 水蜜桃什么品种好| 大型黄色视频在线免费观看| 宅男免费午夜| 91精品三级在线观看| 国产成人精品在线电影| 国内久久婷婷六月综合欲色啪| 成年版毛片免费区| 人人妻人人澡人人爽人人夜夜| 久久久久精品国产欧美久久久| 精品亚洲成a人片在线观看| 国产欧美日韩一区二区精品| 丰满饥渴人妻一区二区三| 在线看a的网站| 男男h啪啪无遮挡| 欧美老熟妇乱子伦牲交| 正在播放国产对白刺激| 两个人免费观看高清视频| 国产97色在线日韩免费| 夜夜夜夜夜久久久久| 精品一区二区三区视频在线观看免费 | 欧美日韩一级在线毛片| av一本久久久久| 热re99久久国产66热| 嫩草影视91久久| 精品乱码久久久久久99久播| 69av精品久久久久久| 三级毛片av免费| 人人澡人人妻人| 精品国产亚洲在线| 在线永久观看黄色视频| 久久久久久久精品吃奶| 国产亚洲欧美精品永久| 50天的宝宝边吃奶边哭怎么回事| 一本综合久久免费| 丝瓜视频免费看黄片| 一个人免费在线观看的高清视频| 一区在线观看完整版| 国产精品免费大片| 999久久久精品免费观看国产| 亚洲欧美一区二区三区黑人| av电影中文网址| 国产亚洲欧美在线一区二区| 亚洲精品av麻豆狂野| 精品乱码久久久久久99久播| 制服人妻中文乱码| 国产欧美日韩一区二区三| 成熟少妇高潮喷水视频| 亚洲国产看品久久| av网站在线播放免费| 新久久久久国产一级毛片| 国产国语露脸激情在线看| 欧美亚洲日本最大视频资源| 欧美色视频一区免费| 国产亚洲一区二区精品| 99riav亚洲国产免费| 国产精品99久久99久久久不卡| 午夜亚洲福利在线播放| 两性午夜刺激爽爽歪歪视频在线观看 | 飞空精品影院首页| 99香蕉大伊视频| 亚洲熟女毛片儿| 亚洲国产欧美一区二区综合| a级毛片黄视频| 男女之事视频高清在线观看| 国产精品乱码一区二三区的特点 | 欧美午夜高清在线| 黄色丝袜av网址大全| av欧美777| 成年女人毛片免费观看观看9 | 如日韩欧美国产精品一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 亚洲美女黄片视频| 日韩视频一区二区在线观看| 欧美日韩成人在线一区二区| 黑人猛操日本美女一级片| 亚洲精品一卡2卡三卡4卡5卡| 一本一本久久a久久精品综合妖精| 中文字幕人妻熟女乱码| 午夜日韩欧美国产| 啦啦啦免费观看视频1| 中国美女看黄片| 怎么达到女性高潮| 精品久久久久久,| 男女下面插进去视频免费观看| 少妇的丰满在线观看| 热99国产精品久久久久久7| 丁香欧美五月| 大香蕉久久成人网| 国产精品电影一区二区三区 | 丰满的人妻完整版| 午夜免费观看网址| 亚洲国产欧美一区二区综合| 如日韩欧美国产精品一区二区三区| 黑人操中国人逼视频| 男女午夜视频在线观看| 欧美人与性动交α欧美精品济南到| av不卡在线播放| 久久中文看片网| 久久久久视频综合| 一级片'在线观看视频| 久久青草综合色| 少妇 在线观看| 人妻一区二区av| 少妇的丰满在线观看| 国产高清videossex| 建设人人有责人人尽责人人享有的| 日本黄色日本黄色录像| 亚洲免费av在线视频| 手机成人av网站| 亚洲熟妇中文字幕五十中出 | 久久国产精品人妻蜜桃| 在线免费观看的www视频| 最新美女视频免费是黄的| 欧美黄色片欧美黄色片| 久久青草综合色| 啦啦啦 在线观看视频| 免费一级毛片在线播放高清视频 | av视频免费观看在线观看| 国产精品欧美亚洲77777| 国产蜜桃级精品一区二区三区 | 欧美激情极品国产一区二区三区| 一区二区三区国产精品乱码| 国产男女超爽视频在线观看| 超碰成人久久| 亚洲aⅴ乱码一区二区在线播放 | 成年动漫av网址| svipshipincom国产片| 国产精品国产av在线观看| 制服人妻中文乱码| 久久久水蜜桃国产精品网| 一级毛片精品| 久久国产精品大桥未久av| 亚洲一区二区三区不卡视频| 99国产精品一区二区蜜桃av | 青草久久国产| 12—13女人毛片做爰片一| 国产极品粉嫩免费观看在线| 午夜福利视频在线观看免费| 国产男女内射视频| 人妻一区二区av| 怎么达到女性高潮| 亚洲人成77777在线视频| 高清欧美精品videossex| 亚洲一码二码三码区别大吗| 久热爱精品视频在线9| 一区二区三区精品91| 久久婷婷成人综合色麻豆| 国产极品粉嫩免费观看在线| 村上凉子中文字幕在线| av网站在线播放免费| 国产av一区二区精品久久| 国产高清videossex| 99精品欧美一区二区三区四区| 成人18禁高潮啪啪吃奶动态图| 宅男免费午夜| 黄色毛片三级朝国网站| 精品国产乱码久久久久久男人| 欧美精品啪啪一区二区三区| 这个男人来自地球电影免费观看| 黄色 视频免费看| 精品国产一区二区久久| 他把我摸到了高潮在线观看| 午夜福利在线免费观看网站| 国产成人精品久久二区二区免费| 少妇裸体淫交视频免费看高清 | 亚洲午夜精品一区,二区,三区| a级毛片在线看网站| 久久香蕉精品热| 精品熟女少妇八av免费久了| 91成人精品电影| 欧美日韩亚洲国产一区二区在线观看 | 欧美黑人精品巨大| 国产在线精品亚洲第一网站| 国产免费现黄频在线看| 欧美 亚洲 国产 日韩一| 男女免费视频国产| 欧美日韩亚洲综合一区二区三区_| 一区二区三区激情视频| 精品免费久久久久久久清纯 | 国产不卡一卡二| 国产麻豆69| 亚洲欧美日韩另类电影网站| 1024香蕉在线观看| 很黄的视频免费| 国产99白浆流出| 色精品久久人妻99蜜桃| 两个人看的免费小视频| 国产精品免费一区二区三区在线 | 久热爱精品视频在线9| 亚洲中文av在线| 丰满迷人的少妇在线观看| 99re在线观看精品视频| 两人在一起打扑克的视频| 欧美+亚洲+日韩+国产| 国产av又大| 欧美日韩精品网址| 18禁美女被吸乳视频| 亚洲av片天天在线观看| 岛国毛片在线播放| 亚洲 欧美一区二区三区| 免费在线观看完整版高清| 欧美精品av麻豆av| 国产不卡一卡二| 校园春色视频在线观看| tube8黄色片| 亚洲免费av在线视频| tube8黄色片| 两人在一起打扑克的视频| 亚洲全国av大片| 如日韩欧美国产精品一区二区三区| 水蜜桃什么品种好| 久久精品91无色码中文字幕| 欧美精品亚洲一区二区| 日本a在线网址| 老司机深夜福利视频在线观看| 免费女性裸体啪啪无遮挡网站| 天天躁日日躁夜夜躁夜夜| 国产精品一区二区在线观看99| 黑人猛操日本美女一级片| 村上凉子中文字幕在线| 午夜福利在线观看吧| 麻豆乱淫一区二区| 国产精品久久久久久人妻精品电影| 少妇猛男粗大的猛烈进出视频| 亚洲男人天堂网一区| 国产精品一区二区免费欧美| 久久天堂一区二区三区四区| 久久久国产成人精品二区 | 国产精品亚洲一级av第二区| 欧美日韩乱码在线| 欧美日韩国产mv在线观看视频| 亚洲熟妇中文字幕五十中出 | 人人澡人人妻人| 精品乱码久久久久久99久播| 国产aⅴ精品一区二区三区波| 国产亚洲精品第一综合不卡| 亚洲熟女精品中文字幕| 欧美精品亚洲一区二区| a级毛片在线看网站| 九色亚洲精品在线播放| 一级,二级,三级黄色视频| 老司机在亚洲福利影院| 国产精品久久视频播放| 又紧又爽又黄一区二区| 69av精品久久久久久| 成在线人永久免费视频| 久久 成人 亚洲| 大香蕉久久网| 99国产精品99久久久久| 大型av网站在线播放| 午夜视频精品福利| 大码成人一级视频| 欧美日本中文国产一区发布| 中文字幕精品免费在线观看视频| 黄片大片在线免费观看| 亚洲精品在线美女| 久久香蕉激情| 伊人久久大香线蕉亚洲五| 日本vs欧美在线观看视频| 欧美大码av| 一进一出好大好爽视频| av网站免费在线观看视频| 黄网站色视频无遮挡免费观看| 国产色视频综合| 每晚都被弄得嗷嗷叫到高潮| x7x7x7水蜜桃| 一级a爱片免费观看的视频| 午夜久久久在线观看| 亚洲视频免费观看视频| 日韩欧美在线二视频 | 99热国产这里只有精品6| 国产日韩欧美亚洲二区| 最新在线观看一区二区三区| 午夜精品国产一区二区电影| 日本撒尿小便嘘嘘汇集6| 日韩 欧美 亚洲 中文字幕| 正在播放国产对白刺激| 亚洲精品美女久久av网站| 在线国产一区二区在线| 最近最新中文字幕大全免费视频| 黄色成人免费大全| 超色免费av| ponron亚洲| 女人被狂操c到高潮| 80岁老熟妇乱子伦牲交| 淫妇啪啪啪对白视频| 成人免费观看视频高清| 国产在视频线精品| 在线看a的网站| 老熟妇乱子伦视频在线观看| 欧美精品人与动牲交sv欧美| 欧美不卡视频在线免费观看 | 涩涩av久久男人的天堂| 老司机午夜福利在线观看视频| 欧美精品高潮呻吟av久久| 熟女少妇亚洲综合色aaa.| 他把我摸到了高潮在线观看| 黄片播放在线免费| 国产欧美亚洲国产| 亚洲国产欧美网| 国产亚洲精品久久久久5区| 欧美不卡视频在线免费观看 | 日韩欧美三级三区| 国产免费男女视频| 99精品久久久久人妻精品| 久久精品aⅴ一区二区三区四区| 99国产精品99久久久久| 在线观看午夜福利视频| 波多野结衣av一区二区av| 久久人人爽av亚洲精品天堂| cao死你这个sao货| 亚洲av成人不卡在线观看播放网| 色尼玛亚洲综合影院| 俄罗斯特黄特色一大片| 欧美成人午夜精品| 亚洲第一欧美日韩一区二区三区| 美女高潮喷水抽搐中文字幕| 757午夜福利合集在线观看| bbb黄色大片| 日韩欧美一区二区三区在线观看 | 91精品三级在线观看| 手机成人av网站| 日韩一卡2卡3卡4卡2021年| 99精品欧美一区二区三区四区| 岛国在线观看网站| 精品无人区乱码1区二区| 日韩欧美三级三区| 国产精品国产高清国产av | 久久精品熟女亚洲av麻豆精品|