• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Perturbation to Noether Symmetries and Adiabatic Invariants for Generalized Birkhoff Systems Based on El-Nabulsi Dynamical Model

    2015-11-24 06:57:40SongChuanjing宋傳靜ZhangYi張毅
    關(guān)鍵詞:張毅

    Song Chuanjing(宋傳靜),Zhang Yi(張毅)

    1.College of Science,Nanjing University of Science and Technology,Nanjing 210094,P.R.China;

    2.College of Civil Engineering,Suzhou University of Science and Technology,Suzhou 215011,P.R.China

    Perturbation to Noether Symmetries and Adiabatic Invariants for Generalized Birkhoff Systems Based on El-Nabulsi Dynamical Model

    Song Chuanjing(宋傳靜)1,Zhang Yi(張毅)2*

    1.College of Science,Nanjing University of Science and Technology,Nanjing 210094,P.R.China;

    2.College of Civil Engineering,Suzhou University of Science and Technology,Suzhou 215011,P.R.China

    With the action of small perturbation on generalized El-Nabulsi-Birkhoff fractional equations,the perturbation to Noether symmetries and adiabatic invariants are studied under the framework of El-Nabulsi's fractional model.Eirstly,based on the invariance of El-Nabulsi-Pfaff action under the infinitesimal transformations of group,the exact invariants are given.Secondly,on the basis of the definition of higher order adiabatic invariants of a dynamical system,the adiabatic invariants of the Noether symmetric perturbation for disturbed generalized El-Nabulsi's fractional Birkhoff system are presented under some conditions,and some special cases are discussed.Einally,an example known as Hojman-Urrutia problem is given to illustrate the application of the results.

    perturbation to Noether symmetry;adiabatic invariant;El-Nabulsi dynamical model;generalized Birkhoff system;infinitesimal transformation

    0 Introduction

    In 1927,a new integral variational principle was introduced by an American mathematician—Birkhoff,and a new form of the equations of motion was also obtained in his monograph[1].Erom then on,Birkhoffian dynamics gained significant headways.Eor instance,in 1983,the Birkhoff equations and the transformation theory of Birkhoff equations are studied by Santilli[2];In 1996,the theoretical framework of Birkhoffian dynamics was established by Mei and his co-workers[3](They extended the Birkhoff system to a generalized Birkhoffian system,and obtained a series of results[4-6].);In 1997,the symmetry of the Birkhoffian system is presented[7],to name just a few.

    Eractional calculus can be used to investigate complex dynamical systems and understand complicated physical processes.And based on the fractional calculus,Riewe[8-9]studied the fractional variational problems,and established the fractional Euler-Lagrange equations as well as the fractional Hamilton equations.Since then,many further researches on fractional variational problems have been found[10-18].El-Nabulsi's fractional model,a fractional action-like variational approach based on the fractional calculus,was introduced by El-Nabulsi[19]in 2005 when he was studying nonconservative dynamical modeling. Subsequently,this method was widely used and many results have been obtained.Eor instance,El-Nabulsi generalized the approach to a Lagrangian which depends on Riemann-Liouville fractional derivatives[20],to periodic functional or exponential law[21-22],and to multi-dimentional frac-tional action-like variational problems[23].Apart from these results,in 2011,El-Nabulsi[24]gave the universal fractional action-like Euler-Lagrange equations on the basis of a generalized fractional derivative operator and,Herzallah et al[25]presented the fractional action-like Hamilton-Jacobi theory.In 2013,Zhang and Zhou[26]introduced the idea of El-Nabulsi's fractional model to Birkhoffian mechanics,on the basis of El-Nabulsi's fractional model.They first presented the fractional Pfaff variational problem,established the El-Nabulsi-Birkhoff fractional equations of motion,with which the Birkhoff system is called the El-Nabulsi's fractional Birkhoff system,and obtained the El-Nabulsi's fractional Noether theorems.Moreover,in 2014,Zhang and Ding[27]presented the generalized El-Nabulsi-Birkhoff fractional equations and the generalized El-Nabulsi's fractional Birkhoff system,and established the El-Nabulsi's fractional Noether theorems.

    Perturbation to symmetry and adiabatic invariants for a dynamical system are of great significance in many fields,such as mechanics,mathematics and physics.Adiabatic invariant was first proposed by Burgers in 1917[28].Eor a mechanical system,the relation existing in the integrability and the variations of its symmetries and invariants under the action of small disturbance is so intimate that the researches on perturbation to symmetry and adiabatic invariants are significant. Hence,many results about perturbation to symmetry and adiabatic invariants have been achieved in recent years[29-33].Since El-Nabulsi's fractional model and adiabatic invariants have great theoretical and applied values,both still deserve further academic research.

    Here we combine El-Nabulsi's fractional model with adiabatic invariants for the disturbed generalized Birkhoff system.Exact invariants are firstly presented on the basis of El-Nabulsi's fractional Noether theorem.And then adiabatic invariants for disturbed generalized El-Nabulsi's fractional Birkhoff system are given by investigating the perturbation to Noether symmetry. Einally,the Hojman-Urrutia problem[2]is discussed to illustrate the application of this method and its results.

    1 Noether Symmetric Perturbation and Adiabatic Invariants for Generalized El-Nabulsi′s Fractional Birkhoff System

    In this section,one considers the adiabatic invariants of Noether symmetric perturbation and gives the main results for generalized El-Nabulsi's fractional Birkhoff system.Eirstly,the equations for this system are given.Then,El-Nabulsi-Noether symmetric transformations and conservative quantities are introduced.After that,adiabatic invariants of Noether symmetric perturbation are presented.

    1.1 Generalized El-Nabulsi-Birkhoff fractional equations

    Generalized El-Nabulsi-Birkhoff fractional equations have the form[27]

    Ifα=1,Eqs.(1)reduce to the standard generalized Birkhoff equations.IfΛμ=0,Eqs.(1)reduce to the El-Nabulsi-Birkhoff fractional equations.

    1.2 El-Nabulsi-Noether symmetric transformations and conservative quantities

    The El-Nabulsi-Pfaff action has the form[26]

    Choose the infinitesimal transformations of r-parameter finite transformation group ofτand aμas

    and their expanding forms are

    whereεσ(σ=1,2,…,r )are the infinitesimal parameters,andthe infinitesimal generators of the infinitesimal transformations.

    The basic formula for the variation of El-Nabulsi-Pfaff action[26]can be obtained by the transformations Eq.(4)

    holds for each of the infinitesimal transformations,the infinitesimal transformations are called the El-Nabulsi-Noether symmetric transformations.And one can verify the El-Nabulsi-Noether symmetry for the generalized El-Nabulsi's fractional Birkhoff system.

    If I

    f the following formula[27]

    where G=G(τ,a ),then the infinitesimal transformations are called the El-Nabulsi-Noether quasi-symmetric transformations.Similarly,one can verify the El-Nabulsi-Noether quasi-symmetry for the generalized El-Nabulsi's fractional Birkhoff system.

    Eor the generalized El-Nabulsi's fractional Birkhoff system,if the infinitesimal transformations of group (4)satisfy the following conditions[27]

    Then there exist r linearly independent conservative quantities

    Whenα=1,one can attain Noether symmetry,Noether quasi-symmetry and the corresponding conservative quantities for the standard generalized Birkhoff system.WhenΛμ=0,one can obtain the El-Nabulsi-Noether symmetry,the El-Nabulsi-Noether quasi-symmetry and the corresponding conservative quantities for the El-Nabulsi's fractional Birkhoff system.

    1.3 Noether symmetric perturbation and adiabatic invariants

    Noether symmetric perturbation does not always lead to adiabatic invariants.In the sequel,one presents the conditions under which Noether symmetric perturbation can imply adiabatic invariants.

    Definition[32]If Iz=Izτ,aν,()

    ε is a physical quantity for a mechanical system includingεin which the highest power is z,and its derivative with respect toτis in direct proportion toεz+1,then Izis called a z-th order adiabatic invariants of the mechanical system.

    Specially,when z=0,one can get exact invariants.Hence

    Suppose that the generalizd El-Nabulsi's fractional Birkhoff system is perturbed by small quantitiesεQμ.Then the motion equations of the system become

    Under the action of small forces of perturbationεQμ,the previous symmetries and invariants of the system may vary.Assume that the perturbed generators(σ=1,2,…,r )of infinitesimal transformations are small perturbationon the basis of the generators of symmetric transformations of an unperturbed system,then one has

    In the meanwhile,due to the small perturbation,one also has

    Theorem 2 Eor the generalized El-Nabulsi's fractional Birkhoff system disturbed by small forces of perturbation εQμ,if there exists(m=0,1,2,… )such that the generatorsξof the infinitesimal transformations satisfy

    Then the generalized El-Nabulsi's fractional Birkhoff system has the z-th order adiabatic invariants

    As special cases,one can also obtain the following results.

    Theorem 3[32]Eor the standard generalized Birkhoff system disturbed by small forces of purterbationεQμ,if there exists Gσm(τ,a )such that the generatorsof the infinitesimal transformations satisfy

    Then the standard generalized Birkhoff system has the z-th order adiabatic invariants

    Theorem 4[33]Eor the El-Nabulsi's fractional Birkhoff system disturbed by small forces of perturbation εQμ, if there exists Gσm(τ,a)(m=0,1,2,… )such that the generators ξof the infinitesimal transformations satisfy

    Then the El-Nabulsi's fractional Birkhoff system has the z-th order adiabatic invariants

    2 An Illustrative Example

    Consider a fourth order generalized El-Nabulsi's fractional Birkhoff system,whose Birkhoffian,Birkhoff's functions and the additional items are

    As an example[2],one tries to study its Noether symmetrical perturbation and adiabatic invariants.

    ence,one can obtain an exact invariant from Theorem 1 is disturbed by

    Erom Eqs.(10),one has

    Eq.(22)has a solution

    Using Theorem 2,one can obtain the first order adiabatic invariant as follows

    Eurthermore,the higher order adiabatic invariants can also be obtained.

    3 Conclusions

    Noether symmetric perturbation and adiabatic invariants for the generalized El-Nabulsi's fractional Birkhoff system are investigated.Based on infinitesimal transformations,the exact invariants are given for the generalized El-Nabulsi's fractional Birkhoff system.Then the adiabatic invariants of Noether symmetric perturbation for the disturbed generalized El-Nabulsi's fractional Birkhoff system are obtained.The adiabatic invariants of Noether symmetric perturbation for generalized El-Nabulsi's fractional Birkhoff system are first studied.And the obtained results comprises Eq.(9)of disturbed generalized El-Nabulsi's fractional Birkhoff system,Eq.(10)of Noether symmetric perturbation and Theorem 2.These results present the perturbation and adiabatic invariants for generalized El-Nabulsi's fractional Birkhoff system.Since few researches are about perturbation of Birkhoff system due to its complexity,more such work can be done in depth.Moreover,based on some known results[3,34],it is considered that integration methods for generalized El-Nabulsi's fractional Birkhoff system also deserve further study.

    Acknowledgements

    This work was supported by the National Natural Science Eoundation of China(Nos.10972151,11272227)and the Innovation Program for Scientific Research of Nanjing University of Science and Technology.

    [1] Birkhoff G D.Dynamical systems[M].Providence,USA:AMS College Publisher,1927.

    [2] Santilli R M.Eoundations of theoretical mechanicsⅡ[M].New York,USA:Springer,1983.

    [3] Mei E X,Shi R C,Zhang Y E,et al.Dynamics of Birkhoff systems[M].Beijing,China:Beijing University of Technology,1996.(in Chinese)

    [4] Li Y M.Lie symmetries,perturbation to symmetries and adiabatic invariants of generalized Birkhoff systems[J].Chin Phys Lett,2010,27:010202.

    [5] Li Y M,Mei E X.Stability for manifolds of equilibrium states of generalized Birkhoff system [J].Chin Phys B,2010,19:080302.

    [6] Wang C D,Liu S X,Mei E X.Generalized Pfaff-Birkhoff-d Alembert principle and form invariance of generalized Birkhoff equations [J].Acta Phys Sin,2010,59:8322.

    [7] Galiullin A S,Gafarov G G,Malaishka R P,et al.Analytical dynamics of Helmholtz,Birkhoff and Nambu systems[M].Moscow:UEN,1997.(in Russian)

    [8] Riewe E.Nonconservative Lagrangian and Hamiltonian mechanics [J].Phys Rev E,1996,53(2):1890-1899.

    [9] Riewe E.Mechanics with fractional derivatives[J]. Phys Rev E,1997,55(3):3581-3592.

    [10]Agrawal O P.Eormulation of Euler-Lagrange equations for fractional variational problems[J].J Math Anal Appl,2002,272(1):368-379.

    [11]Agrawal O P,Muslih S I,Baleanu D.Generalized variational calculus in terms of multi-parameters fractional derivatives[J].Commun Nonlinear Sci Numer Simul,2011,16(12):4756-4767.

    [12]Zhou Y,Zhang Y.Eractional Pfaff-Birkhoff principle and Birkhoff's equations in terms of Riesz fractional derivatives[J].Transactions of Nanjing University of Aeronautics and Astronautics,2014,31(1):63-69.

    [13]Baleanu D,Muslih S I,Rabei E M.On fractional Euler-Lagrange and Hamilton equations and the fractional generalization of total time derivative [J]. Nonlinear Dyn,2008,53(1/2):67-74.

    [14]Jarad E,Abdeljawad T,Baleanu D.Eractional variational optimal control problems with delayed arguments[J].Nonlinear Dyn,2010,62(3):609-614.

    [15]Almeida R,Torres D E M.Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives[J].Commun Nonlinear Sci Numer Simul,2011,16(3):1490-1500.

    [16]Herzallah M A E,Baleanu D.Eractional Euler-Lagrange equations revisited [J]. Nonlinear Dyn,2012,69(3):977-982.

    [17]Erederico G S E,Torres D E M.A formulation of Noether's theorem for fractional problems of the calculus of variations[J].J Math Anal Appl,2007,334(2):834-846.

    [18]Atanackovic'T M,Konjik S,Pilipovic'S,et al.Variational problems with fractional derivatives:Invariance conditions and Noether's theorem [J].Nonlinear Anal,2009,71(5/6):1504-1517.

    [19]El-Nabulsi A R.A fractional approach to nonconservative Lagrangian dynamical systems[J].Eizika A,2005,14(4):289-298.

    [20]El-Nabulsi A R,Torres D E M.Necessary optimality conditions for fractional action-like integrals of variational calculus with Riemann-Liouville derivatives of order(α,β)[J].Math Methods Appl Sci,2007,30(15):1931-1939.

    [21]El-Nabulsi A R.A periodic functional approach to the calculus of variations and the problem of time-dependent damped harmonic oscillators[J].Appl Math Lett,2011,24(10):1647-1653.

    [22]El-Nabulsi A R.Eractional variational problems from extended exponentially fractional integral[J].Appl Math Comput,2011,217(22):9492-9496.

    [23]El-Nabulsi A R,Torres D E M.Eractional actionlike variational problems[J].J Math Phys,2008,49:053521.

    [24]El-Nabulsi A R.Universal fractional Euler-Lagrange equation from a generalized fractional derivate operator[J].Cent Eur J Phys,2011,9(1):250-256.

    [25]Herzallah M A E,Muslih S I,Baleanu D,et al. Hamilton-Jacobi and fractional like action with time scaling[J].Nonlinear Dyn,2011,66(4):549-555.

    [26]Zhang Y,Zhou Y.Symmetries and conserved quantities for fractional action-like Pfaffian variational problems[J].Nonlinear Dyn,2013,73(1/2):783-793.

    [27]Zhang Y,Ding J E.Noether symmetries of generalized Birkhoff systems based on El-Nabulsi's fractional model[J].J Nanjing University of Science and Technology,2014,38(3):409-413.(in Chinese)

    [28]Burgers J M.Die adiabatischen invarianten bedingt periodischer systems[J].Ann Phys,1917,357(2):195-202.

    [29]Zhang Y,Ean C X.Perturbation of symmetries and Hojman adiabatic invariants for mechanical systems with unilateral holonomic constraints[J].Commun Theor Phys,2007,47(4):607-610.

    [30]Jiang W A,Luo S K.A new type of non-Noether exact invariants and adiabatic invariants of generalized Hamiltonian systems[J].Nonlinear Dyn,2012,67(1):475-482.

    [31]Jiang W A,Li L,Li Z J,et al.Lie symmetrical per-turbation and a new type of non-Noether adiabatic invariants for disturbed generalized Birkhoffian systems[J].Nonlinear Dyn,2012,67(2):1075-1081.

    [32]Zhang Y.Perturbation to Noether symmetries and adiabatic invariants for generalized Birkhoffian systems[J].Bulletin of Science and Technology,2010,26(4):477-481.

    [33]Chen J,Zhang Y.Perturbation to Noether symmetries and adiabatic invariants for Birkhoffian systems based on El-Nabulsi dynamical models [J].Acta Phys Sin,2014,63(10):104501-104507.

    [34]Zhang Y.Method of Jacobi last multiplier for solving dynamics equations integration of generalized classical mechanics system[J].Journal of Nanjing University of Aeronautics and Astronautics,2012,44(2):262-265.(in Chinese)

    (Executive editor:Zhang Tong)

    O316 Document code:A Article ID:1005-1120(2015)04-0421-07

    *Corresponding author:Zhang Yi,Professor,E-mail:zhy@mail.usts.edu.cn.

    How to cite this article:Song Chuanjing,Zhang Yi.Perturbation to Noether symmetries and adiabatic invariants for generalized Birkhoff systems based on El-Nabulsi dynamical model[J].Trans.Nanjing U.Aero.Astro.,2015,32(4):421-427.

    http://dx.doi.org/10.16356/j.1005-1120.2015.04.421

    (Received 23 August 2014;revised 25 November 2014;accepted 10 December 2014)

    猜你喜歡
    張毅
    二月二—龍?zhí)ь^
    張士卿基于敏濕熱瘀辨治過敏性紫癜經(jīng)驗(yàn)
    《秋水共長(zhǎng)天一色》
    青年生活(2019年6期)2019-09-10 17:55:38
    Isolation and callus formation of Gracilariopsis bailiniae(Gracilariales, Rhodophyta) protoplasts*
    Noether Symmetry and Conserved Quantities of Fractional Birkhoffian System in Terms of Herglotz Variational Problem?
    隨便走走(短篇小說)
    “執(zhí)著”的代價(jià)
    宮“保”雞丁
    性格變更
    Fractional Action-Like Variational Problem and Its Noether Symmetries for a Nonholonomic System
    久久ye,这里只有精品| 91九色精品人成在线观看| 午夜日韩欧美国产| 老司机靠b影院| 午夜福利乱码中文字幕| 亚洲av日韩精品久久久久久密| a级毛片在线看网站| 国产精品亚洲av一区麻豆| 亚洲 欧美一区二区三区| 欧美日韩精品网址| 欧美av亚洲av综合av国产av| 国产一区二区三区在线臀色熟女 | 亚洲天堂av无毛| 国产男女内射视频| 超碰成人久久| 日本五十路高清| 国产欧美日韩精品亚洲av| 国产成人精品久久二区二区91| 色婷婷av一区二区三区视频| 精品国产国语对白av| 亚洲成人免费电影在线观看| 亚洲第一青青草原| 亚洲一区二区三区欧美精品| av天堂久久9| 我要看黄色一级片免费的| 日韩制服丝袜自拍偷拍| 男女床上黄色一级片免费看| 丝袜人妻中文字幕| 亚洲精品国产色婷婷电影| 曰老女人黄片| 日韩电影二区| 老鸭窝网址在线观看| 亚洲第一欧美日韩一区二区三区 | av不卡在线播放| 国产在线一区二区三区精| 日本黄色日本黄色录像| 一区二区三区精品91| 国产精品免费大片| 岛国在线观看网站| 国产真人三级小视频在线观看| 精品国产一区二区三区久久久樱花| 免费在线观看黄色视频的| 黄色怎么调成土黄色| 亚洲欧美激情在线| 久久久欧美国产精品| 国产精品久久久久久人妻精品电影 | 精品一区二区三卡| kizo精华| 精品一品国产午夜福利视频| 深夜精品福利| 久久亚洲精品不卡| 日韩欧美免费精品| 精品久久久久久久毛片微露脸 | 午夜精品久久久久久毛片777| 欧美日韩亚洲国产一区二区在线观看 | 一级毛片电影观看| 亚洲av片天天在线观看| 精品国产超薄肉色丝袜足j| 国产在线观看jvid| 成年人免费黄色播放视频| 成在线人永久免费视频| 99国产综合亚洲精品| 欧美日韩成人在线一区二区| 日韩大码丰满熟妇| 国产97色在线日韩免费| 亚洲精品日韩在线中文字幕| 日本撒尿小便嘘嘘汇集6| 我的亚洲天堂| 亚洲精品国产av成人精品| 热re99久久精品国产66热6| 久久国产精品男人的天堂亚洲| 久久精品人人爽人人爽视色| 在线观看免费日韩欧美大片| 久久久久视频综合| 精品一区在线观看国产| 久久久久久久精品精品| 色播在线永久视频| 一区二区三区乱码不卡18| 国产在视频线精品| 超碰成人久久| 国产视频一区二区在线看| 少妇精品久久久久久久| 热99久久久久精品小说推荐| 国产免费现黄频在线看| 在线看a的网站| 国产精品 国内视频| 69精品国产乱码久久久| 国产成人欧美在线观看 | 久久精品人人爽人人爽视色| 亚洲欧美精品自产自拍| 欧美人与性动交α欧美精品济南到| 婷婷丁香在线五月| 久久青草综合色| 老司机亚洲免费影院| 国产深夜福利视频在线观看| 考比视频在线观看| 国产精品自产拍在线观看55亚洲 | 亚洲欧美色中文字幕在线| 国产精品二区激情视频| 桃红色精品国产亚洲av| 黄色a级毛片大全视频| 精品国产超薄肉色丝袜足j| 99精品欧美一区二区三区四区| 亚洲天堂av无毛| 窝窝影院91人妻| 国产欧美日韩一区二区三区在线| 国产有黄有色有爽视频| 国产97色在线日韩免费| 女性被躁到高潮视频| 美女午夜性视频免费| 男女下面插进去视频免费观看| 日本猛色少妇xxxxx猛交久久| 精品福利观看| 一区二区日韩欧美中文字幕| 久9热在线精品视频| 高潮久久久久久久久久久不卡| 美女视频免费永久观看网站| 少妇裸体淫交视频免费看高清 | 99久久精品国产亚洲精品| 咕卡用的链子| 亚洲精品久久成人aⅴ小说| 亚洲国产欧美一区二区综合| 久久热在线av| 自线自在国产av| 亚洲人成77777在线视频| 桃花免费在线播放| 色婷婷久久久亚洲欧美| 91成人精品电影| 日韩视频一区二区在线观看| √禁漫天堂资源中文www| 亚洲五月色婷婷综合| 久久中文看片网| 制服诱惑二区| 亚洲欧美清纯卡通| av欧美777| 最新的欧美精品一区二区| 精品第一国产精品| 国产精品久久久久久精品古装| 国产精品九九99| 午夜老司机福利片| 亚洲自偷自拍图片 自拍| 日韩电影二区| 69精品国产乱码久久久| 搡老熟女国产l中国老女人| 国产一区有黄有色的免费视频| 欧美激情高清一区二区三区| av网站在线播放免费| 王馨瑶露胸无遮挡在线观看| 国产主播在线观看一区二区| 久9热在线精品视频| 亚洲国产欧美网| 老熟女久久久| 免费女性裸体啪啪无遮挡网站| 2018国产大陆天天弄谢| 啦啦啦啦在线视频资源| 午夜福利免费观看在线| 成人三级做爰电影| 日韩一区二区三区影片| 男女床上黄色一级片免费看| 狂野欧美激情性xxxx| 777久久人妻少妇嫩草av网站| 亚洲,欧美精品.| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美 亚洲 国产 日韩一| h视频一区二区三区| 亚洲激情五月婷婷啪啪| 精品国产乱子伦一区二区三区 | 欧美另类亚洲清纯唯美| 丰满饥渴人妻一区二区三| 啦啦啦 在线观看视频| 99热网站在线观看| 亚洲专区国产一区二区| 性高湖久久久久久久久免费观看| 日本猛色少妇xxxxx猛交久久| 一二三四在线观看免费中文在| 精品乱码久久久久久99久播| 亚洲免费av在线视频| 9热在线视频观看99| 国产又爽黄色视频| 99精国产麻豆久久婷婷| 中文字幕另类日韩欧美亚洲嫩草| 亚洲人成77777在线视频| 亚洲色图 男人天堂 中文字幕| 国产亚洲午夜精品一区二区久久| 免费一级毛片在线播放高清视频 | 咕卡用的链子| 精品人妻1区二区| 美女高潮到喷水免费观看| 国产一区二区三区av在线| 男女高潮啪啪啪动态图| 手机成人av网站| 欧美av亚洲av综合av国产av| 免费女性裸体啪啪无遮挡网站| 少妇人妻久久综合中文| 夜夜骑夜夜射夜夜干| 国产精品久久久人人做人人爽| 国产熟女午夜一区二区三区| 一区二区三区乱码不卡18| 久热这里只有精品99| 后天国语完整版免费观看| 国产亚洲精品一区二区www | 国产xxxxx性猛交| 桃红色精品国产亚洲av| 久久精品国产综合久久久| 国产主播在线观看一区二区| 日韩制服骚丝袜av| 国产精品免费视频内射| 国产男女超爽视频在线观看| 青春草亚洲视频在线观看| www.自偷自拍.com| 精品福利永久在线观看| 一级毛片精品| 另类亚洲欧美激情| 最黄视频免费看| 欧美激情久久久久久爽电影 | 操出白浆在线播放| 亚洲午夜精品一区,二区,三区| 国产又色又爽无遮挡免| 国产麻豆69| 午夜激情av网站| 精品少妇黑人巨大在线播放| 久久久精品94久久精品| 十八禁高潮呻吟视频| 亚洲一区二区三区欧美精品| 亚洲av片天天在线观看| 久久中文看片网| av片东京热男人的天堂| 韩国高清视频一区二区三区| 黑丝袜美女国产一区| 男女高潮啪啪啪动态图| 老熟女久久久| 波多野结衣一区麻豆| 欧美激情久久久久久爽电影 | 亚洲欧美成人综合另类久久久| 9热在线视频观看99| 国产精品九九99| 亚洲欧洲日产国产| 狠狠精品人妻久久久久久综合| 纵有疾风起免费观看全集完整版| 亚洲精品av麻豆狂野| 两个人免费观看高清视频| 日韩制服骚丝袜av| 久久久精品区二区三区| 亚洲国产精品一区二区三区在线| 天天躁日日躁夜夜躁夜夜| 欧美黑人欧美精品刺激| 久久久久视频综合| 伊人久久大香线蕉亚洲五| 最近最新免费中文字幕在线| 99国产精品一区二区三区| 十八禁网站网址无遮挡| 国产男女内射视频| 欧美 日韩 精品 国产| 香蕉丝袜av| 久久人人爽av亚洲精品天堂| 国产免费av片在线观看野外av| 色婷婷av一区二区三区视频| 18禁观看日本| 国产色视频综合| 色婷婷久久久亚洲欧美| 国产精品一区二区在线观看99| 黑人猛操日本美女一级片| av天堂在线播放| 日韩大码丰满熟妇| 亚洲一区中文字幕在线| 成在线人永久免费视频| 中文字幕av电影在线播放| 久久天堂一区二区三区四区| 国产精品 欧美亚洲| 极品少妇高潮喷水抽搐| 别揉我奶头~嗯~啊~动态视频 | 在线观看免费午夜福利视频| 婷婷成人精品国产| 麻豆av在线久日| 9191精品国产免费久久| 国产精品二区激情视频| 黑人猛操日本美女一级片| 日本91视频免费播放| 欧美日韩福利视频一区二区| 另类精品久久| 大香蕉久久成人网| 韩国精品一区二区三区| 欧美精品一区二区免费开放| 亚洲专区国产一区二区| 啪啪无遮挡十八禁网站| 女人爽到高潮嗷嗷叫在线视频| 十八禁网站免费在线| 黑人猛操日本美女一级片| 一个人免费看片子| 日本撒尿小便嘘嘘汇集6| 亚洲国产欧美日韩在线播放| 汤姆久久久久久久影院中文字幕| 精品少妇一区二区三区视频日本电影| 最近最新免费中文字幕在线| 国产精品一区二区精品视频观看| 高清黄色对白视频在线免费看| 欧美日韩国产mv在线观看视频| 成年人免费黄色播放视频| 国产高清国产精品国产三级| 国产不卡av网站在线观看| 亚洲国产欧美在线一区| 国产野战对白在线观看| 国产成人一区二区三区免费视频网站| 岛国毛片在线播放| 又紧又爽又黄一区二区| 日本a在线网址| 男男h啪啪无遮挡| www.999成人在线观看| 日本猛色少妇xxxxx猛交久久| 精品亚洲成国产av| 成年人黄色毛片网站| 午夜免费鲁丝| 欧美av亚洲av综合av国产av| 午夜福利在线免费观看网站| 午夜精品久久久久久毛片777| √禁漫天堂资源中文www| 建设人人有责人人尽责人人享有的| 十八禁网站网址无遮挡| 亚洲国产av新网站| 岛国在线观看网站| 亚洲男人天堂网一区| 老司机午夜十八禁免费视频| 曰老女人黄片| 99国产精品免费福利视频| 菩萨蛮人人尽说江南好唐韦庄| 9热在线视频观看99| 91精品三级在线观看| 一本色道久久久久久精品综合| 一二三四在线观看免费中文在| 国产精品.久久久| 欧美中文综合在线视频| 在线观看免费视频网站a站| 爱豆传媒免费全集在线观看| av在线老鸭窝| 狂野欧美激情性xxxx| videos熟女内射| bbb黄色大片| 性色av一级| 久久精品成人免费网站| 欧美日韩av久久| 国产福利在线免费观看视频| 国产老妇伦熟女老妇高清| 免费观看av网站的网址| 精品久久久精品久久久| 少妇裸体淫交视频免费看高清 | 美女中出高潮动态图| 首页视频小说图片口味搜索| 亚洲第一av免费看| 大片电影免费在线观看免费| 精品一品国产午夜福利视频| 夫妻午夜视频| 久久久欧美国产精品| www.熟女人妻精品国产| 少妇被粗大的猛进出69影院| 制服人妻中文乱码| 亚洲,欧美精品.| 精品第一国产精品| 一二三四社区在线视频社区8| 国产成人av激情在线播放| 免费在线观看完整版高清| 久久国产精品人妻蜜桃| 亚洲成av片中文字幕在线观看| 国产日韩一区二区三区精品不卡| 亚洲久久久国产精品| 久久热在线av| 成年人免费黄色播放视频| 亚洲色图综合在线观看| 岛国毛片在线播放| 99久久综合免费| 亚洲av电影在线进入| 男男h啪啪无遮挡| 午夜福利免费观看在线| 一区二区三区乱码不卡18| 香蕉丝袜av| 免费在线观看视频国产中文字幕亚洲 | 青春草亚洲视频在线观看| 欧美老熟妇乱子伦牲交| 亚洲精品久久午夜乱码| 欧美日韩中文字幕国产精品一区二区三区 | 丰满人妻熟妇乱又伦精品不卡| avwww免费| 亚洲国产中文字幕在线视频| 宅男免费午夜| 亚洲精品久久午夜乱码| 久久久国产精品麻豆| 亚洲av成人一区二区三| 51午夜福利影视在线观看| 在线 av 中文字幕| 免费看十八禁软件| 老汉色∧v一级毛片| 中文欧美无线码| 亚洲精品国产区一区二| 黄色片一级片一级黄色片| av线在线观看网站| 亚洲国产av影院在线观看| 午夜免费成人在线视频| 各种免费的搞黄视频| 精品一区二区三卡| 搡老乐熟女国产| a级片在线免费高清观看视频| 亚洲国产精品一区三区| 在线天堂中文资源库| 美女福利国产在线| 免费观看人在逋| 女性被躁到高潮视频| 亚洲国产欧美一区二区综合| 动漫黄色视频在线观看| 日韩有码中文字幕| av在线app专区| 大香蕉久久成人网| 丝袜在线中文字幕| 国产精品秋霞免费鲁丝片| 亚洲全国av大片| 99久久精品国产亚洲精品| 国产精品麻豆人妻色哟哟久久| 国产亚洲欧美精品永久| 欧美老熟妇乱子伦牲交| 国产1区2区3区精品| 99国产综合亚洲精品| 亚洲国产欧美网| 黄频高清免费视频| 少妇 在线观看| 欧美精品一区二区免费开放| 嫩草影视91久久| 日韩大片免费观看网站| 欧美黑人精品巨大| 9色porny在线观看| 人人妻人人澡人人爽人人夜夜| 丰满少妇做爰视频| 国产精品久久久久久人妻精品电影 | 999精品在线视频| 视频区图区小说| 亚洲成人免费av在线播放| 大片电影免费在线观看免费| 亚洲,欧美精品.| 一级毛片精品| 国内毛片毛片毛片毛片毛片| 丝袜脚勾引网站| 在线观看免费日韩欧美大片| 自线自在国产av| 爱豆传媒免费全集在线观看| 国产精品国产av在线观看| 天堂8中文在线网| 久久精品人人爽人人爽视色| www日本在线高清视频| 视频在线观看一区二区三区| 午夜视频精品福利| 亚洲成国产人片在线观看| 久久狼人影院| 国产一区二区 视频在线| 大香蕉久久网| 热99国产精品久久久久久7| 男女边摸边吃奶| 国产一级毛片在线| av片东京热男人的天堂| 久久精品国产亚洲av香蕉五月 | svipshipincom国产片| 99精品欧美一区二区三区四区| 真人做人爱边吃奶动态| 国产在线观看jvid| 一级片'在线观看视频| 久久亚洲国产成人精品v| 中文字幕av电影在线播放| 精品国产乱码久久久久久男人| 下体分泌物呈黄色| 欧美人与性动交α欧美精品济南到| 97在线人人人人妻| 欧美另类一区| 欧美激情极品国产一区二区三区| 热99国产精品久久久久久7| 18在线观看网站| 天天躁夜夜躁狠狠躁躁| 婷婷丁香在线五月| 日本精品一区二区三区蜜桃| 搡老熟女国产l中国老女人| 亚洲av欧美aⅴ国产| 亚洲精品在线美女| 色婷婷av一区二区三区视频| 考比视频在线观看| 在线观看免费高清a一片| 亚洲欧美精品自产自拍| 激情视频va一区二区三区| 国产精品秋霞免费鲁丝片| 男女无遮挡免费网站观看| 人人澡人人妻人| 欧美日韩中文字幕国产精品一区二区三区 | 19禁男女啪啪无遮挡网站| 黄色视频不卡| 精品国内亚洲2022精品成人 | 精品一区在线观看国产| 精品视频人人做人人爽| 亚洲伊人久久精品综合| 激情视频va一区二区三区| 亚洲精品久久久久久婷婷小说| 亚洲精品一卡2卡三卡4卡5卡 | 成人18禁高潮啪啪吃奶动态图| 精品人妻在线不人妻| www.精华液| h视频一区二区三区| 欧美日韩亚洲国产一区二区在线观看 | 十八禁人妻一区二区| 老熟妇仑乱视频hdxx| 老司机午夜福利在线观看视频 | 国产精品av久久久久免费| av免费在线观看网站| 69精品国产乱码久久久| 国产xxxxx性猛交| 50天的宝宝边吃奶边哭怎么回事| 丝袜美腿诱惑在线| 亚洲三区欧美一区| 国产97色在线日韩免费| 亚洲,欧美精品.| 丰满少妇做爰视频| a在线观看视频网站| av天堂在线播放| 男女国产视频网站| 视频区欧美日本亚洲| 黄色视频在线播放观看不卡| 中文字幕人妻熟女乱码| 久久精品熟女亚洲av麻豆精品| 亚洲 欧美一区二区三区| 狠狠狠狠99中文字幕| 精品国产超薄肉色丝袜足j| 欧美黄色淫秽网站| 99精品欧美一区二区三区四区| 人妻人人澡人人爽人人| 国产精品成人在线| 欧美精品高潮呻吟av久久| 黑人欧美特级aaaaaa片| 免费女性裸体啪啪无遮挡网站| 性色av一级| 爱豆传媒免费全集在线观看| 99re6热这里在线精品视频| 亚洲专区字幕在线| 欧美日韩视频精品一区| 精品国产一区二区三区四区第35| 精品国内亚洲2022精品成人 | 午夜福利一区二区在线看| 少妇猛男粗大的猛烈进出视频| av网站免费在线观看视频| 国产欧美日韩一区二区三区在线| 国产成人啪精品午夜网站| 欧美激情极品国产一区二区三区| 欧美日韩精品网址| 精品一区二区三区四区五区乱码| 国产精品国产av在线观看| 9191精品国产免费久久| 免费人妻精品一区二区三区视频| av在线老鸭窝| 精品国内亚洲2022精品成人 | 国产免费av片在线观看野外av| 大片免费播放器 马上看| 亚洲精品日韩在线中文字幕| 亚洲少妇的诱惑av| 国产精品一区二区免费欧美 | 超碰97精品在线观看| 亚洲精品乱久久久久久| 亚洲精品美女久久av网站| 下体分泌物呈黄色| 国产精品秋霞免费鲁丝片| 1024香蕉在线观看| 欧美人与性动交α欧美软件| 国产欧美日韩一区二区精品| 亚洲国产看品久久| 丝袜美足系列| 十八禁人妻一区二区| 亚洲国产毛片av蜜桃av| av国产精品久久久久影院| 久久99一区二区三区| 欧美日韩亚洲高清精品| 亚洲国产中文字幕在线视频| 亚洲人成77777在线视频| 丰满饥渴人妻一区二区三| 777米奇影视久久| 五月开心婷婷网| 少妇 在线观看| 在线av久久热| 一二三四社区在线视频社区8| 美女国产高潮福利片在线看| 日本wwww免费看| 久久av网站| 色老头精品视频在线观看| 亚洲欧美成人综合另类久久久| 亚洲精品一二三| 欧美人与性动交α欧美软件| 最黄视频免费看| 他把我摸到了高潮在线观看 | 精品一区二区三卡| 亚洲中文日韩欧美视频| a在线观看视频网站| 天天影视国产精品| 国产成人a∨麻豆精品| 黄片大片在线免费观看| 精品国产一区二区三区四区第35| 热re99久久国产66热| 国产精品成人在线| av欧美777| 女人爽到高潮嗷嗷叫在线视频| 一区在线观看完整版| av视频免费观看在线观看| 一本综合久久免费| 麻豆国产av国片精品| 在线永久观看黄色视频| 高清欧美精品videossex| 免费在线观看视频国产中文字幕亚洲 | 777久久人妻少妇嫩草av网站| 日本vs欧美在线观看视频| 亚洲精品美女久久久久99蜜臀| 九色亚洲精品在线播放| 操美女的视频在线观看| 捣出白浆h1v1| 亚洲精品第二区| 老司机福利观看| 亚洲人成77777在线视频| 美女视频免费永久观看网站|