• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimization Method for Departure Flight Scheduling Problem Based on Genetic Algorithm

    2015-11-24 06:57:48ZhangHaifeng張海峰HuMinghua胡明華

    Zhang Haifeng(張海峰),Hu Minghua(胡明華)

    College of Civil Aviation,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China

    Optimization Method for Departure Flight Scheduling Problem Based on Genetic Algorithm

    Zhang Haifeng(張海峰)*,Hu Minghua(胡明華)

    College of Civil Aviation,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China

    Except for the bad weather or other uncontrollable reasons,a reasonable queue of departure and arrival flights is one of the important methods to reduce the delay on busy airports.Here focusing on the Pareto optimization of departure flights,the take-off sequencing is taken as a single machine scheduling problem with two objective functions,i.e.,the minimum of total weighted delayed number of departure flights and the latest delay time of delayed flight.And the integer programming model is established and solved by multi-objective genetic algorithm. The simulation results show that the method can obtain the better goal,and provide a variety of options for controllers considering the scene situation,thus improving the flexibility and effectivity of flight plan.

    air transportation;pareto optimization;genetic algorithm;scheduling departure of flight

    0 Introduction

    It is estimated in the“Twelfth Five-Year Plan”of civil aviation development that normal rates of flights will be higher than 80%.In 2011,China Civil Aviation scheduled flight punctuality rate was 77.2%,and the flight punctuality rate become a hot issue of social concerns.The factors impacting flight punctuality rate include airline's own reason,flow control,weather and other reasons.The core issue for improving flights'punctuality rate is how to arrange reasonable arrival and departure sequences of the flights.It requires the air traffic management to minimize the delay of the flights with actual airspace capacity limitation and runway safety interval constraint conditions,so as to reduce the loss for airlines and customers and to improve flights punctuality rate[1].

    Collaborative decision making(CDM)systems have been used by several regional air traffic management bureaus to reduce the delay in some airports since 2012,e.g.Guangzhou airport. Since current CDM system can only use simple rules for departure flights sequencing,the experience of controller is still indispensible.Therefore,the flight scheduling in China is mainly directed based on experiences of air traffic controllers with high labor intensity,especially when the delay of flight occurring in a large area.The usual sequence strategy involves:(1)First come first served,i.e.scheduling the flights by departure preparation time;(2)Scheduling the flights by urgency of departures,i.e.scheduling by the ticket times of the flights,earlier time earlier departed.

    Currently,the operating mode of runway in some airports is one for departure and one for arrival,i.e.one runway is dedicated for take-off and one runway for landing.Therefore,the whole system can be regarded as separate runway systems for both runways.This paper focuses on discussing optimization of take-off sequence for the flights.

    Li et al.[2]used moving or controlled dynamic ant colony algorithm optimization to study arrival sequencing and scheduling issues for theflights in dynamic environment.Chen et al.[3]built a mixed integer programming model for arrival sequencing and scheduling issues,and raised heuristic algorithm of priority concept.Shi et al.[4]investigated dynamic sequencing model,optimization method and sorting system designing for the flights arriving and departing the terminal area with multi-runways.In the researches mentioned above,the target value of flight departure is single.However,from perspective of airlines'service quality,the objective function of flight departure is usually multi-objects.Popular objective is to keep the minimum of total take-off delays of the flights.When several flights are waiting for take-off,with the requirements of this objective function,reasonable strategy is to keep some flights delay and thus to enable other flights can depart on time.But at the same time,the waiting time for the delayed flights will be very long,causing serious impact on the service quality once the flight was delayed for too long time.Therefore,scheduling the departure sequence for the flights can be regarded as a machine scheduling problem with two objective functions.

    (1)The minimum of total number of flight take-off delays:give a certain weight to each flight,when it has to be delayed,and start adjusting the flights with low weight.The weight can be confirmed by referring to the numbers of passengers in the flights,i.e.,the greater the number of passengers,the higher the priority of the weight,and vice versa.

    (2)The minimum of latest time of delayed flights:it is because that when several flights have the conflict of delayed time,the lengths of their delayed time needs to be compared for making choice.

    In research of multi-objective issues,Smiths first raised the Pareto optimization strategy[5],and looked for more balanced solution among efficient solutions.Setting double objective issues as f and g,the efficient solution of the Pareto optimization is defined as:no feasible solution can meet the following conditions:f(π')≤f(π)and g(π')≤g(π).The Pareto optimization can find as many efficient solutions as possible on the basis of meeting the above conditions,and easily select the applicable solution in most situations.This paper uses the Pareto optimization to find the solution.

    When f and g are the minimizing optimization objectives,according to the above definition,the efficient solution area is shown by the bold line in Fig.1.But the real efficient solution is unknown in actual application of the algorithm. Hence,one can only solve the approximation area E(P)(shown in the dotted line in Fig.1)of the efficient solutions as an alternative objective.

    Fig.1 Approximation of effective solutions

    1 Mathematic Models

    1.1 Departure process

    Taking the flights’departure process as an example(Fig 2),the flight receives instructions of being ready for take-off from control tower—taxis from apron to runway—start take-off—enter into complete route of airport's airspace sector—start departure from the appointed place. For air traffic controller who faces the complex decision in the limitation of capacity of runway,the input data include all basic information of departure flights,such as ticket time,the importance of flight,time required for take off,and the output is the sequence of departing flights.Then the number and delay time of delayed flights are known.

    1.2 Model introduction

    From the perspective of scheduling theory,one can regard the time when the flight receives take-off instruction to be ready for entering the runway as the release time,and the departure time on the flight ticket as due time.If the actual take-off time of the flight is later than the due time,the flight will be delayed,which should be avoided as much as possible in actual situation. From the start to the end of take-offs after finishing the waiting time on the runaway,such period can be regarded as the processing time,and the detailed value can be calculated by statistics data or overall consideration of flying distance and speed.

    Fig.2 Process of flight's departure

    It is assumed that there are n arrived flights waiting for take-off,and only one flight can take off from the runway at the same time;earliest time,due time and latest time for each flight are different and can be confirmed when the time is 0.

    (1)Definition of symbols

    j Flight's serial number,j=1,…,n

    i The i th location in the take-off sequence,

    i=1,…,n

    (2)Constants

    rjEarliest time the flight j can take off

    djDue time for flight j

    wjWeight of flight j

    pjTime required for the flight j to take off

    M A big integer

    (3)Decision variables

    SiActual start take-off time for the i th sequence flight

    LiDelay time of the i th sequence flight,if no delay,Li=0

    xijxij=1 means the flight j is arranged to take off at sequence i.

    UiUi=1 means flight arranged for sequence i is delayed

    (4)Objective function and constraints

    This paper is to solve the so-called Pareto optimization objectives,and the two objective functions are as follows

    The minimum of total flight weighted number ofdelay

    The minimum of the longest delay time of the delayed flights

    Constraint conditions

    Constraints(1),(2)ensure the corresponding relationship between flight j and sequence i,constraints(3),(4)ensure the starting take-off time for the flight arranged at sequence i is later than the earliest take-off time and the actual ending take-off time of previous flight,and constraint(5)ensures Ui=1 if the actual take-off time of the flight at sequence i,or Ui=0.Constraints(6)and(7)ensure Li=0 if there is no delay,or Li=0 should be equal to the difference between the actual take-off time and the latest take-off time of the flight at sequence i.Solve the above model and get xij,as well as a sequenceπ discribing the original issue.

    1.3 Explanation

    On the basis of the above model,if any new situation comes out,the air traffic controller only needs to update the above estimate value and input parameters according to the latest situation,thus providing intuitive and timely initial plan for further decision.For example,after the bad weather occurs,all flights cannot depart from the airport.When the weather permits,the information of flights will be renewed,that is,the earliest time the flight,due time,etc.After all input data replacement,the new solution will be calculated by the model.For a specific flight,the expected departing time can be estimated and announced to customers,the good service quality will be accepted by customers.

    2 Multi-objective Optimization

    According to the scheduling theory,when earliest take-off time of all flights is 0,the minimum number of total delayed departure flights can obtain the optimal solution within polynomial time,and the minimum of the longest delayed time is NP-complete[6].If the earliest take-off time of all flights are different,the above two issues are all NP-hard issue[7].

    As both the objective functions f and g in this paper are NP-hard,it is difficult for traditional method of operational research to gain satisfied results.So currently when solving the issue with single machine and two objectives,the most commonly used method is artificial intelligence,including genetic algorithm[8],Tabu search,simulated annealing,etc.

    Genetic algorithm is one useful tool to realize the simulation of biological system evolution process via crossover and mutation between chromosomes and the evalution via searching space multiple solutions[9-14],so as to find the overall optimal solution for the issue.This method has the impliciting concurrency and overall solution space searching capacity.

    2.1 Coding

    The solution for the issue can be expressed by sequence number of each flight,and the integer coding is expressed in Fig.3,where ijrepresents that the flight i is scheduled at the location ij.

    Fig.3 Chromosome coding

    2.2 Fitness value

    Fitness value is used to decide the performance of the solution for the population during the interative process of the algorithm.There are two methods.One is to consider both two objective functions f and g.In order to find out E(P)to form the appropriate area of the effective solution,it needs to share fitness value information[15-16]between these two objective functions. Firstly calculate the Euclidean distance between objective space(0,1)after standardization of two solutionsπ1andπ2,secondly calculate the niche count for solutionπ∈E(P),based on which,calculate the final fitness value.The other is to search along the boundary space of current known effective solution area without consideration of sharing fitted value information[11],and adopt crowding distance as the evaluation to describe the distance between the points on the boundary and other neighboring points,bigger value means more uniform distribution of the solution,the more possibility it should be selected.

    Step 1 Sort the current R effective solutions according to objective functions f and g respectively and set them as f1,f2,…,fRand g1,g2,…,gR,corresponding to the points of the boundary j=1,…,R.

    Step 2 Set y[k,f]and y[k,g]respectively represent sorting of current R effective solutionsπkaccording to objective functions f and g,if cd1(y[1,f])=∞,cd1(y[1,g])=∞,cd1(y[R,f])=∞and cd1(y[R,g])=∞,for others'k=2,…,R-1,

    there will be

    where fmax,gmaxand fmin,gminare the maximum values and minimum values of the objective functions f and g respectively.

    Step 3 After the above results are calculated,the final crowding distance will be

    where cd(πk)is taken as the fitness value of the solution.But for single objective issue,it can directly adopt the f or g value as the fitness value.

    2.3 Population initialization and crossover

    According to the above coding principle,randomly generating a set of 1 to n arrangement to form the initial solutions,repeating this process,and the initial solution set with numbers of P can be obtained.

    Crossover operator will form matching library of crossover operation via the parity individuals in father generation.Identify a crossover location according to crossover probability Pc(0<Pc<1),and then change the gene string after that location.This article uses one-point crossover to replace the coding after the crossover point.In order to ensure the feasibility of the solution,coding after the crossover point in father generation one will be sorted by sequence in father generation two,similarly,coding in father generation two will be sorted by sequence in father generation one.In Fig.4,{1,2,4}in the Father generation 1 are sorted as{4,2,1}per sequence in the Father generation 2,similarly,{5,1,3}in the Father generation two are changed to be{5,3,1}.

    Fig.4 Crossover

    2.4 Mutation

    Mutation operator is used to prevent the population from early convergence to local optimal solution,and converse the code to other value after selecting mutation location.Moreover,in order to keep the feasibility of the solution,it needs to converse the code at original location to the code at mutation location with the probability val-ue of Pm(0<Pm<1)(Fig.5).

    Fig.5 Mutation

    2.5 Selection and termination conditions

    Combine the definition of fitness value and use the probability of fitness value for individuals to decide whether it participates in crossover or mutation processes,and select the probability Ps(0<Ps<1).Each time select the effective solution boundary after combining the father generation and offspring sets,if the number of current effective solution is less than P,then calculate all crowding distance of all current effective solutions successively,and list them in a descending order per the distance.Select successively until the current population quantity reaches P.

    The termination conditions are as follows:(1)Iterations are completed;(2)No change happens in fitted values between continuous several generations.

    3 Numerical Examples Validation

    The following is to validate the function of genetic algorithm for multi-objective optimization issue when the number of take-off flight is m= 40,80,100 respectively.Given time pj,the flight j take-off time meets the average distribution of[1,100],the weight wjis the average distribution of[1,5],and the earliest take-off time rjmeets the average distribution of[1,MS]. Time window(dj-rj)meets the average distribution between[(1-T-R/2)×MS,(1-T+R/ 2)×MS],where MS is the sum of pjfor all the flights,and the value ranges of T and R are 0.2,0.4,0.6 and 0.4,0.6,0.8,respectively.Parameters for the genetic algorithm are as follows:population size P=100,selection probability Ps=0.1,crossover probability Pc=0.6,mutation probability Pm=0.1.Five cases for each parameter group are calculated.

    In order to evaluate multi-objective genetic algorithm,(The optimal value obtained from single objective genetic algorithm sums f and g is also added into the effective solution boundary)this paper compares the results sorting by first come first serve(FCFS),departure urgency(smaller Δ=dj-rj,more urgency)with(fΔ,gΔ).In Fig.2,|E(P)|avgis the average value for numbers of effective solutions in E(P),and bigger value means more solutions.The results show that most of the calculations can find out 5—8 effective solutions to select based on site conditions(Table 1).(favg-fmin)/fminshows the difference between average value of current effective solutions at objective value f and single object optimal solution obtained from genetic algorithm fmin,and the smaller distance indicates the better result of the effective solution if taking f as the standard.In addition,the definition of(gavggmin)/gminis similar.favg/fFCFSshows the comparison between the average value of the effective solution at objective value f and the result from FCFS.Comparing with the single objective by the genetic algorithm,the results show that the average performance of the proposed algorithm is more stable,which is better than the traditional heuristic method.

    Fig.6 shows the effective solution boundaries in a group of examples under different m,T,R.

    4 Conclusions

    The frequent flight delay in busy airports is literally unpleasant.This paper models a take-off scheduling problem as a single machine scheduling problem with two objective functions(the minimum of total amount of delayed flights with weight and the minimum of latest delay time). Each flight is with different preparation time,take-off time and departure time.In order to put the Perato optimization solution into practice,the multi-objective genetic algorithm is used to calculate the effective solutions set,and the calculation results of experimental case show that the method can gain a better objective value in comparison with the traditional heuristic method and also canprovide a relatively intuitive decision support for the controller,who can select the one that mostly meets the actual situation from the effective solutions set,thus effectively reducing the delay issue of flight caused by unreasonable departure flight's sequence and improving the level of aviation service.

    Table 1 Performance comparison of the proposed algorithms

    Fig.6 Result of effective solutions

    Acknowledgements

    This work was supported by the National Natural Science Foundation of China(No.61079013)and the Natural Science Fund Project in Jiangsu Province(No. BK2011737).

    [1] Brinton C,Provan C,Lent S,et al.Collaborativedeparture queue management[C]∥Proceedings of 9th USA/Europe Air Traffic Management Research and Development Seminar.Berlin,Germany:[s. n.],2011.

    [2] Li Guanbin,Zhan Zhihui,Zhang Jun.Ant colony algorithm for arrival sequencing and scheduling optimization[J].Computer Engineering and Design,2009,30(17):4047-4052.

    [3] Chen Weiwei,Geng Rui,Cui Deguang.Optimization of sequencing and scheduling for arrival aircrafts in approach area[J].Journal of Tsinghua University:Science and Technology,2006,46(1):157-160.

    [4] Shi Saifeng.The research on terminal aircraft sorting system in Guangzhou[D].Nanjing University of Aeronautics and Astronautics,2011.

    [5] Iskandar B P,Murthy D N P,Jack N.A new repairreplace strategy for items sold with a two-dimensional warranty[J].Comput Oper Res,2005,32(3):669-682.

    [6] Smith W E.Various optimizers for single stage production[J].Naval Research Logistics Quarterly,1956,3(1):7-17.

    [7] Du J,Leung T.Minimizing total tardiness on one machine is NP-hard[J].Mathematics of Operations Research,1990,15(3):483-491.

    [8] Bae S W,Park J W,Clarke J P.Modified mixed integer linear program for airport departure scheduling[C]∥AIAA Guidance,Navigation,and Control Conference 2013.Boston,USA:AIAA,2013.

    [9] Ferreira D M,Rosa L P,Ribeiro V F,et al.Genetic algorithms and game theory for airport departure decision making:GeDMAN and CoDMAN[M]. Knowledge Management in Organizations:Springer International Publishing,2014:3-14.

    [10]Weng M,Sedani M.Schedule one machine to minimize early/tardy penalty by tabu search[C]∥Proceedings of the Annual IIE Research Conference.Orlando,F(xiàn)L:[s.n.],2002.

    [11]Loukil T,Teghem J,Tuyttens D.Solving multi-objective production scheduling problems using metaheuristics[J].European Journal of Operational Research,2005,161(1):42-61.

    [12]Deb K,Prata P A,Agarwal S,et al.A fast and elitist multi-objective genetic algorithm:NSGA-II[J]. IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.

    [13]Jin Feng,Song Shiji,Wu Cheng.Genetic algorithm based on NDP with application to job shop scheduling[J].Journal of Tsinghua University:Science and Technology,2006,46(4):488-491.

    [14]Yin J N,Hu M H,Zhang H H,et al.Optimization approach for collaborative operating modes of multirunway systems[J].Acta Aeronautica et Astronautica Sinica,2014,35(3):795-806.

    [15]Lu H,Yen G G.Rank-density-based multi-objective genetic algorithm and benchmark test function study[J].IEEE Transactions on Evolutionary Computation,2003,7(4):325-343.

    [16]Yen G G,Lu H.Dynamic multi-objective evolutionary algorithm:adaptive cell-based rank and density estimation[J].IEEE Transactions on Evolutionary Computation,2003,7(3):253-274.

    (Executive editor:Zhang Tong)

    O221.6,U8 Document code:A Article ID:1005-1120(2015)04-0477-08

    *Corresponding author:Zhang Haifeng,Senior Engineer,E-mail:zhanghf0606@163.com.

    How to cite this article:Zhang Haifeng,Hu Minghua.Optimization method for departure flight scheduling problem based on genetic algorithm[J].Trans.Nanjing U.Aero.Astro.,2015,32(4):477-484.

    http://dx.doi.org/10.16356/j.1005-1120.2015.04.477

    (Received 6 June 2014;revised 5 September 2014;accepted 30 September 2014)

    国产免费一级a男人的天堂| 国产免费一区二区三区四区乱码| 1000部很黄的大片| 黄色日韩在线| 在线播放无遮挡| 视频区图区小说| 亚洲精品日韩在线中文字幕| 寂寞人妻少妇视频99o| 国产成人freesex在线| 国产免费又黄又爽又色| 国产日韩欧美亚洲二区| 亚洲不卡免费看| 高清毛片免费看| 啦啦啦啦在线视频资源| 狂野欧美激情性bbbbbb| 在现免费观看毛片| av国产久精品久网站免费入址| 精品午夜福利在线看| 亚洲av男天堂| 国产精品国产三级国产av玫瑰| 一级毛片 在线播放| 街头女战士在线观看网站| 亚洲电影在线观看av| 国产精品.久久久| 亚洲在久久综合| 在线播放无遮挡| 国产色婷婷99| 亚洲不卡免费看| 亚洲久久久久久中文字幕| 女的被弄到高潮叫床怎么办| 成人鲁丝片一二三区免费| 黄色视频在线播放观看不卡| 久久国内精品自在自线图片| 亚洲精品影视一区二区三区av| a级毛片免费高清观看在线播放| 日本wwww免费看| 男女下面进入的视频免费午夜| 美女主播在线视频| 亚洲精品自拍成人| 肉色欧美久久久久久久蜜桃 | www.色视频.com| 2021天堂中文幕一二区在线观| 精品人妻偷拍中文字幕| 肉色欧美久久久久久久蜜桃 | 国产成人免费无遮挡视频| 久久精品综合一区二区三区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | av免费在线看不卡| 在线观看三级黄色| 国内揄拍国产精品人妻在线| 22中文网久久字幕| 国产精品久久久久久久电影| 亚洲性久久影院| 久久久久国产网址| 久久久a久久爽久久v久久| 久久久久精品久久久久真实原创| 午夜亚洲福利在线播放| 亚洲人与动物交配视频| 亚洲欧美中文字幕日韩二区| 精品人妻视频免费看| av.在线天堂| 精品国产一区二区三区久久久樱花 | av福利片在线观看| 欧美日本视频| 人妻一区二区av| 免费看不卡的av| 成人午夜精彩视频在线观看| 18禁动态无遮挡网站| 青青草视频在线视频观看| 午夜免费鲁丝| 99热国产这里只有精品6| 少妇丰满av| 深夜a级毛片| 国产一区二区三区av在线| 亚洲av成人精品一区久久| 欧美成人午夜免费资源| 亚洲精品456在线播放app| 美女视频免费永久观看网站| 好男人视频免费观看在线| 香蕉丝袜av| 大陆偷拍与自拍| 大香蕉久久网| 看免费成人av毛片| 免费在线观看完整版高清| 蜜桃在线观看..| 亚洲精华国产精华液的使用体验| 18禁国产床啪视频网站| 久久精品国产亚洲av涩爱| 99re6热这里在线精品视频| 成人三级做爰电影| 中文精品一卡2卡3卡4更新| av片东京热男人的天堂| 各种免费的搞黄视频| 一级片'在线观看视频| 国产激情久久老熟女| 天美传媒精品一区二区| 看免费av毛片| 丰满少妇做爰视频| 欧美日韩av久久| 超碰成人久久| 国产片特级美女逼逼视频| 97人妻天天添夜夜摸| 韩国av在线不卡| 另类精品久久| www.自偷自拍.com| 美女中出高潮动态图| 人妻一区二区av| 性高湖久久久久久久久免费观看| 狠狠婷婷综合久久久久久88av| 欧美在线一区亚洲| 汤姆久久久久久久影院中文字幕| 国产欧美日韩综合在线一区二区| 中文精品一卡2卡3卡4更新| 多毛熟女@视频| 精品第一国产精品| 一区二区三区四区激情视频| 一二三四中文在线观看免费高清| 亚洲综合精品二区| 九色亚洲精品在线播放| 超碰97精品在线观看| 高清在线视频一区二区三区| 巨乳人妻的诱惑在线观看| 免费在线观看完整版高清| 老司机影院毛片| 伊人亚洲综合成人网| 国产精品一国产av| 一级毛片 在线播放| 欧美日韩亚洲国产一区二区在线观看 | 亚洲一卡2卡3卡4卡5卡精品中文| 99精品久久久久人妻精品| 中文精品一卡2卡3卡4更新| 黑人欧美特级aaaaaa片| 美女福利国产在线| 丰满少妇做爰视频| 在线免费观看不下载黄p国产| 久久精品久久久久久久性| 国产亚洲精品第一综合不卡| 免费在线观看完整版高清| 国产成人精品在线电影| 一级片免费观看大全| 日韩人妻精品一区2区三区| 一级,二级,三级黄色视频| 哪个播放器可以免费观看大片| 国产精品亚洲av一区麻豆 | 日本欧美视频一区| 国产不卡av网站在线观看| 19禁男女啪啪无遮挡网站| 国产成人精品无人区| 哪个播放器可以免费观看大片| 国产97色在线日韩免费| 亚洲情色 制服丝袜| 久久 成人 亚洲| 久热爱精品视频在线9| 99久久人妻综合| 高清视频免费观看一区二区| 99国产综合亚洲精品| 日本午夜av视频| 国产亚洲欧美精品永久| 精品少妇久久久久久888优播| 一级毛片我不卡| 日韩一区二区三区影片| 日本91视频免费播放| 欧美黑人欧美精品刺激| 国产高清不卡午夜福利| 国产黄频视频在线观看| 成人国语在线视频| 亚洲情色 制服丝袜| 中文字幕精品免费在线观看视频| 国产乱来视频区| 男女午夜视频在线观看| 一本一本久久a久久精品综合妖精| 一级毛片黄色毛片免费观看视频| 久久精品亚洲av国产电影网| 色综合欧美亚洲国产小说| 在线观看免费高清a一片| 久久久久网色| 婷婷色av中文字幕| 国产xxxxx性猛交| 大香蕉久久网| 日韩人妻精品一区2区三区| 日韩伦理黄色片| 久久热在线av| 午夜91福利影院| 国产精品一区二区精品视频观看| 国产精品蜜桃在线观看| 国产日韩欧美在线精品| 国产在线免费精品| 久久久亚洲精品成人影院| 久久这里只有精品19| 青春草亚洲视频在线观看| 夜夜骑夜夜射夜夜干| 免费看av在线观看网站| 成年动漫av网址| 色94色欧美一区二区| 亚洲精品日韩在线中文字幕| 久久久久人妻精品一区果冻| 中文字幕最新亚洲高清| 国产高清国产精品国产三级| 亚洲四区av| 美女视频免费永久观看网站| 久久国产精品男人的天堂亚洲| 亚洲精品美女久久av网站| 午夜日本视频在线| 极品人妻少妇av视频| 黄片播放在线免费| 精品国产超薄肉色丝袜足j| 赤兔流量卡办理| 亚洲一码二码三码区别大吗| av福利片在线| 欧美另类一区| 欧美乱码精品一区二区三区| 国产精品国产三级国产专区5o| 欧美97在线视频| 90打野战视频偷拍视频| 在线观看免费日韩欧美大片| 又粗又硬又长又爽又黄的视频| 欧美中文综合在线视频| 一二三四中文在线观看免费高清| 亚洲熟女毛片儿| 国产精品香港三级国产av潘金莲 | 亚洲,欧美精品.| 国产免费福利视频在线观看| 国产成人免费观看mmmm| 亚洲成人手机| 国产精品一二三区在线看| 久久久欧美国产精品| 国产伦人伦偷精品视频| 日韩不卡一区二区三区视频在线| 久久久久久久精品精品| 亚洲欧美激情在线| 精品视频人人做人人爽| av.在线天堂| 视频区图区小说| 看免费av毛片| 国产亚洲一区二区精品| 久久毛片免费看一区二区三区| 中文天堂在线官网| 精品一区二区免费观看| 黄片播放在线免费| 国精品久久久久久国模美| 欧美精品亚洲一区二区| 性色av一级| 在线观看人妻少妇| 99精国产麻豆久久婷婷| av福利片在线| 日本av手机在线免费观看| 国产乱来视频区| 午夜福利一区二区在线看| 狠狠婷婷综合久久久久久88av| 国产精品秋霞免费鲁丝片| 国产成人a∨麻豆精品| 性色av一级| 黄片小视频在线播放| 日韩av在线免费看完整版不卡| 国产片内射在线| 中文字幕精品免费在线观看视频| 亚洲国产成人一精品久久久| 亚洲av日韩精品久久久久久密 | 欧美老熟妇乱子伦牲交| 高清黄色对白视频在线免费看| 一本—道久久a久久精品蜜桃钙片| 午夜日韩欧美国产| 高清在线视频一区二区三区| 亚洲av电影在线进入| 日韩制服骚丝袜av| 男男h啪啪无遮挡| 女人被躁到高潮嗷嗷叫费观| 19禁男女啪啪无遮挡网站| 男人操女人黄网站| 高清不卡的av网站| 纯流量卡能插随身wifi吗| 岛国毛片在线播放| 中文字幕人妻熟女乱码| 久久影院123| 国产无遮挡羞羞视频在线观看| 欧美变态另类bdsm刘玥| 中文天堂在线官网| 国产精品欧美亚洲77777| 超碰成人久久| 久久久精品免费免费高清| 亚洲一区二区三区欧美精品| svipshipincom国产片| 日韩 亚洲 欧美在线| 精品视频人人做人人爽| 午夜福利网站1000一区二区三区| 免费不卡黄色视频| 国产免费一区二区三区四区乱码| 男人舔女人的私密视频| 午夜福利在线免费观看网站| 免费不卡黄色视频| 日韩免费高清中文字幕av| 午夜福利视频在线观看免费| 免费观看av网站的网址| 各种免费的搞黄视频| 亚洲自偷自拍图片 自拍| 一级爰片在线观看| 黑丝袜美女国产一区| 成人国产麻豆网| 精品卡一卡二卡四卡免费| 亚洲成人免费av在线播放| 大话2 男鬼变身卡| 国产精品人妻久久久影院| 在现免费观看毛片| 国产精品香港三级国产av潘金莲 | 在线天堂中文资源库| 欧美日韩视频精品一区| 日日摸夜夜添夜夜爱| 日日啪夜夜爽| 人人妻人人爽人人添夜夜欢视频| 免费观看av网站的网址| 成人三级做爰电影| 亚洲欧美清纯卡通| 亚洲精品中文字幕在线视频| 波多野结衣av一区二区av| 久久鲁丝午夜福利片| 欧美日韩综合久久久久久| 性少妇av在线| 一级毛片我不卡| 黑人欧美特级aaaaaa片| 国产亚洲一区二区精品| 尾随美女入室| 成人黄色视频免费在线看| 日日摸夜夜添夜夜爱| 亚洲av成人不卡在线观看播放网 | 搡老乐熟女国产| 最近的中文字幕免费完整| 国产成人午夜福利电影在线观看| 国产精品成人在线| 午夜免费鲁丝| 久久精品国产a三级三级三级| 在线天堂最新版资源| 国产成人欧美在线观看 | 亚洲激情五月婷婷啪啪| 青青草视频在线视频观看| 日韩制服骚丝袜av| 丰满饥渴人妻一区二区三| 一区福利在线观看| 肉色欧美久久久久久久蜜桃| 亚洲av福利一区| a 毛片基地| 亚洲男人天堂网一区| 最黄视频免费看| 亚洲成人手机| 国产日韩欧美在线精品| 亚洲一码二码三码区别大吗| 国产亚洲午夜精品一区二区久久| 国产成人免费观看mmmm| 99九九在线精品视频| 精品一区二区三卡| 亚洲精品视频女| 少妇被粗大猛烈的视频| 国产成人a∨麻豆精品| 在线观看人妻少妇| 天天躁夜夜躁狠狠久久av| 亚洲欧洲精品一区二区精品久久久 | 少妇被粗大猛烈的视频| 精品第一国产精品| 久久久久久人妻| 国产高清不卡午夜福利| 国产亚洲欧美精品永久| 亚洲五月色婷婷综合| 看免费成人av毛片| 免费不卡黄色视频| 成年人午夜在线观看视频| 亚洲国产毛片av蜜桃av| 日韩大码丰满熟妇| 啦啦啦视频在线资源免费观看| 丝瓜视频免费看黄片| 人成视频在线观看免费观看| 欧美久久黑人一区二区| 天天躁夜夜躁狠狠躁躁| 精品国产一区二区三区久久久樱花| 国产精品人妻久久久影院| 韩国av在线不卡| 90打野战视频偷拍视频| 狂野欧美激情性xxxx| 午夜激情av网站| 国产在线视频一区二区| 少妇人妻久久综合中文| 亚洲精品日本国产第一区| 欧美老熟妇乱子伦牲交| 亚洲欧美成人综合另类久久久| 高清不卡的av网站| 免费黄频网站在线观看国产| 亚洲国产欧美一区二区综合| 国精品久久久久久国模美| 午夜福利视频在线观看免费| 国产极品天堂在线| 91精品伊人久久大香线蕉| 精品一区二区三卡| 美女主播在线视频| 在现免费观看毛片| 亚洲男人天堂网一区| 99久久精品国产亚洲精品| 国产精品免费视频内射| 午夜福利免费观看在线| av片东京热男人的天堂| 国产老妇伦熟女老妇高清| 亚洲成人国产一区在线观看 | 少妇人妻 视频| 男人爽女人下面视频在线观看| 99re6热这里在线精品视频| 桃花免费在线播放| 黄网站色视频无遮挡免费观看| 欧美日韩亚洲综合一区二区三区_| 亚洲综合色网址| 在线免费观看不下载黄p国产| 啦啦啦 在线观看视频| 国产精品三级大全| 亚洲av成人不卡在线观看播放网 | 午夜精品国产一区二区电影| 叶爱在线成人免费视频播放| 国产日韩一区二区三区精品不卡| 18禁观看日本| 最新的欧美精品一区二区| 王馨瑶露胸无遮挡在线观看| 久久婷婷青草| 成人黄色视频免费在线看| 亚洲精品国产av成人精品| 久久毛片免费看一区二区三区| 日韩伦理黄色片| 在线 av 中文字幕| 捣出白浆h1v1| 熟女少妇亚洲综合色aaa.| 人人妻,人人澡人人爽秒播 | 精品视频人人做人人爽| 只有这里有精品99| 我要看黄色一级片免费的| 久久av网站| 777米奇影视久久| 天天躁夜夜躁狠狠躁躁| 日韩一本色道免费dvd| 女人爽到高潮嗷嗷叫在线视频| 另类亚洲欧美激情| 国产97色在线日韩免费| 建设人人有责人人尽责人人享有的| 国产精品av久久久久免费| 两个人看的免费小视频| 日韩精品免费视频一区二区三区| 国产欧美日韩综合在线一区二区| 亚洲欧美一区二区三区国产| 国产av精品麻豆| 亚洲情色 制服丝袜| 国产xxxxx性猛交| 亚洲av成人精品一二三区| 国产日韩欧美视频二区| 肉色欧美久久久久久久蜜桃| 人人澡人人妻人| 精品人妻在线不人妻| 十分钟在线观看高清视频www| 另类精品久久| 交换朋友夫妻互换小说| 亚洲欧美一区二区三区久久| 伊人久久国产一区二区| 国产精品二区激情视频| 美女高潮到喷水免费观看| 青春草视频在线免费观看| 天天躁狠狠躁夜夜躁狠狠躁| 男女下面插进去视频免费观看| 大片电影免费在线观看免费| 久久久久久人人人人人| 国产伦人伦偷精品视频| 国精品久久久久久国模美| 成人午夜精彩视频在线观看| 亚洲av男天堂| 啦啦啦啦在线视频资源| 最近最新中文字幕大全免费视频 | 亚洲精品av麻豆狂野| avwww免费| 成人国产av品久久久| 亚洲欧美清纯卡通| 欧美日本中文国产一区发布| 欧美中文综合在线视频| 多毛熟女@视频| 国产精品久久久久久久久免| av网站免费在线观看视频| 日韩欧美精品免费久久| 男女床上黄色一级片免费看| av又黄又爽大尺度在线免费看| 伊人久久大香线蕉亚洲五| 亚洲av国产av综合av卡| 最近手机中文字幕大全| 久久鲁丝午夜福利片| 精品一区在线观看国产| 老熟女久久久| 18在线观看网站| 日本欧美国产在线视频| 国产在线免费精品| av一本久久久久| avwww免费| 精品久久蜜臀av无| 亚洲少妇的诱惑av| 在线观看免费午夜福利视频| 黄网站色视频无遮挡免费观看| 欧美xxⅹ黑人| 91精品国产国语对白视频| 宅男免费午夜| 2018国产大陆天天弄谢| 亚洲国产精品国产精品| 欧美日韩一级在线毛片| 激情视频va一区二区三区| 母亲3免费完整高清在线观看| 日韩欧美精品免费久久| 日韩,欧美,国产一区二区三区| 搡老乐熟女国产| h视频一区二区三区| 成人国产av品久久久| 午夜精品国产一区二区电影| 国产精品一国产av| 精品少妇一区二区三区视频日本电影 | 啦啦啦 在线观看视频| 国产日韩一区二区三区精品不卡| 亚洲国产看品久久| 精品久久久久久电影网| 国产成人欧美| 1024视频免费在线观看| 五月天丁香电影| 国产av码专区亚洲av| 亚洲成人手机| 啦啦啦 在线观看视频| 黄色怎么调成土黄色| 一本一本久久a久久精品综合妖精| 大片电影免费在线观看免费| 久久国产精品男人的天堂亚洲| 777米奇影视久久| 亚洲少妇的诱惑av| av片东京热男人的天堂| 人人妻,人人澡人人爽秒播 | 欧美日韩综合久久久久久| 日本av手机在线免费观看| 久久毛片免费看一区二区三区| 2018国产大陆天天弄谢| 国产又爽黄色视频| 最新在线观看一区二区三区 | 99久久99久久久精品蜜桃| 国产一区二区激情短视频 | 夫妻性生交免费视频一级片| 久久青草综合色| 国产毛片在线视频| 丰满乱子伦码专区| 久久精品熟女亚洲av麻豆精品| 日韩av免费高清视频| 久久国产精品男人的天堂亚洲| 18禁裸乳无遮挡动漫免费视频| 国产亚洲精品第一综合不卡| 最近最新中文字幕免费大全7| 国产野战对白在线观看| 久久久久视频综合| 精品亚洲成a人片在线观看| 国产成人91sexporn| 男女午夜视频在线观看| 亚洲av成人精品一二三区| 久久久精品区二区三区| 国产极品天堂在线| 亚洲精品第二区| 久久久亚洲精品成人影院| 黄色视频在线播放观看不卡| 午夜福利网站1000一区二区三区| 色婷婷久久久亚洲欧美| 久久精品国产亚洲av高清一级| 午夜福利影视在线免费观看| 欧美激情高清一区二区三区 | 国产一区二区三区综合在线观看| xxxhd国产人妻xxx| 啦啦啦 在线观看视频| 国产成人免费无遮挡视频| 女性生殖器流出的白浆| 黄色毛片三级朝国网站| 欧美激情极品国产一区二区三区| 亚洲精品av麻豆狂野| 欧美人与善性xxx| 久久久久久久久免费视频了| 99国产精品免费福利视频| 最近中文字幕高清免费大全6| 国产在线视频一区二区| 日本av手机在线免费观看| 啦啦啦 在线观看视频| 91精品伊人久久大香线蕉| 久久国产精品大桥未久av| 精品久久久精品久久久| 最近最新中文字幕大全免费视频 | 国产精品99久久99久久久不卡 | 少妇人妻精品综合一区二区| 18在线观看网站| 韩国高清视频一区二区三区| av免费观看日本| 亚洲美女搞黄在线观看| 精品久久久久久电影网| 搡老岳熟女国产| 美女扒开内裤让男人捅视频| 午夜福利一区二区在线看| 亚洲欧洲日产国产| 美女中出高潮动态图| 男女边吃奶边做爰视频| 亚洲成人国产一区在线观看 | 成人漫画全彩无遮挡| 不卡视频在线观看欧美| 男男h啪啪无遮挡| 精品国产乱码久久久久久男人| 国产精品嫩草影院av在线观看| 日韩av在线免费看完整版不卡| 亚洲成人一二三区av| 欧美日韩福利视频一区二区| 极品少妇高潮喷水抽搐| 亚洲国产欧美在线一区| 两个人免费观看高清视频| 黄片播放在线免费| 国产精品.久久久| 亚洲精品国产av成人精品| 交换朋友夫妻互换小说| 免费黄色在线免费观看| 香蕉国产在线看| 国产精品久久久久久久久免| 久久精品亚洲av国产电影网| 韩国高清视频一区二区三区|