• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Control of Vehicle Active Front Steering Based on Active Disturbance Rejection Feedback Controller

    2015-11-24 06:57:45SangNan桑楠WeiMinxiang魏民祥BaiYu白玉
    關(guān)鍵詞:白玉

    Sang Nan(桑楠),Wei Minxiang(魏民祥),Bai Yu(白玉)

    1.College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China;

    2.College of Mechanical and Electrical Engineering,Changzhou Institute of Technology,Changzhou 213002,P.R.China

    Control of Vehicle Active Front Steering Based on Active Disturbance Rejection Feedback Controller

    Sang Nan(桑楠)1,2*,Wei Minxiang(魏民祥)1,Bai Yu(白玉)2

    1.College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China;

    2.College of Mechanical and Electrical Engineering,Changzhou Institute of Technology,Changzhou 213002,P.R.China

    A control method of active front steering(AFS)based on active disturbance rejection technique was proposed for solving the model nonlinearity and parameter decoupling control in the traditional control methods.The AFS controller consists of the proportional and derivative(PD)feed-forward controller and the active disturbance rejection feedback controller.To improve the steering response characteristics of a vehicle,a PD controller is designed to realize variable steering gear ratio,and to enhance the safety of vehicle when steering.An active disturbance rejection controller(ADRC)is designed to follow the expected yaw rate of the vehicle.According to the input and output of system,extended state observer(ESO)of ADRC can dynamically estimate internal and external disturbance of the system,thus easily realizing the model nonlinear and parameter decoupling control.The AFS controller is simulated and validated in Matlab and CarSim.The simulating results of double lane change(DLC)test and pylon course slalom(PCS)test show that the ADRC can well control the vehicle model to complete the road simulation test of DLC and PCS with small path tracking error.The simulating results of angle step test of steering wheel show that the vehicle under the control of ADRC demonstrates good lateral response characteristic.The controller regulates a wide range of parameters.The model has less precision requirements with good robustness.

    active disturbance rejection technique;active steering;variable ratio;extended state observer

    Nomenclature

    m/kg Mass of vehicle

    1z/(kg·m2)Moment of inertia about Z-axis

    k1/(N·rad-1)Front axle cornering stiffness

    k2/(N·rad-1)Rear axle cornering stiffness

    lf/m Distance between CG and front axle

    lr/m Distance between CG and rear axle

    δsw/rad Steering wheel angle

    δFF/rad Steering wheel angle of feedforward

    δFB/rad Steering wheel angle of feedback

    δp/rad Out angle of planetary gear trains

    θac/rad Angle of active front steering motor(actuator)

    θp/rad Angle of 6-gear

    δf/rad Steer angle of front wheels

    niTeeth of i-gear

    ψ/(rad·s-1)Yaw rate

    ψd/(rad·s-1)Yaw rate of reference model

    β/rad Sideslip angle of vehicle centre of mass

    βd/rad Sideslip angle of reference model

    G Mechanical steering gear ratio

    ux/(m·s-1)Longitudinal velocity

    g/(m·s-2)Acceleration due to gravity

    0 Introduction

    The traditional steering system completes the steering through the intervention of the driver. Therefore,it has the disadvantages of slow response speed,the incapability of correcting the driver's wrong operations,the helplessness in satisfying small gear ratio requirements at low speedand large gear ratio requirements at high speed,namely the so-called light and flexible contradiction.Owing to the small variation of gear ratio of traditional steering system,the steering characteristics of vehicle have nonlinear relations with vehicle speed.Therefore,the driver needs to constantly revise the vehicle direction to adapt to the steering characteristics of the vehicle so as to control the vehicle along the driver's desired track,which increases the driving burden and decreases the operability of the vehicle.Hydraulic power steering(HPS)or electric power steering(EPS)can change the transfer characteristics of steering force,but cannot change those of steering angle. Therefore,the problem that the vehicle steering characteristics change with the vehicle speed still exists.Active steering system was developed on the basis of power steering system,which includes active front steering(AFS),4 wheels steering(4WS)and steering by wire(SBW),etc. A variable gear ratio(normalized steering gear ratio)can be realized by controlling the input of the active steering motor to get better steering performance,thus improving the handling and stability of vehicle and enhaning driving safety[1,2].

    The light and flexible contradiction can be solved by variable ratio of active steering.Based on the state of the vehicle,an additional angle is applied to the front wheels for changing the lateral force to ensure that the lateral dynamics meet the requirements.According to yaw rate and sideslip angle,the feed-forward controller implements abasic variable ratio rule based on vehicle speed,and the feedback controller adjusts wheel angle[3]. Steer gain(yaw rate gain or lateral acceleration gain)is invariable with velocity[4,5];The variable ratio rule is amended based on invariable steer gain,and it is controlled by speed[6].In fact,nonlinear characteristics of the tire,the vertical load and the suspension compliance will influence the actual angle of front wheels and change the relation between gear ratio and speed,so as to affect the vehicle steering characteristics.In this paper,basic variable gear ratio is realized by using proportional and derivative(PD)feed-forward control,and the desired yaw rate is followed by using the active disturbance rejection control[7]. Known to the steering input and the output of vehicle(e.g.,steering angle,yaw rate,lateral acceleration,speed),active disturbance rejection controller(ADRC)can dynamically track targets. In order to verify the effectiveness of the proposed control methods,the drivers'commands are given by a single-point preview driver model and the driver-vehicle-road closed-loop control model is established in Matlab software.The Car Sim vehicle model is controlled by this driver model to complete the road simulating test of high-speed double lane change(DLC)and pylon course slalom(PCS).

    1 Variable Ratio Steering System Configuration and Model

    1.1 Variable ratio steering system configuration

    After adding the planetary gear mechanism in HPS or EPS,the variability of steering gear ratio was implemented by superposition of the movement of steering wheel and active front steering motor.Such system[8]was first applied in the BMW 5 series.The configuration of the variable ratio steering system is shown in Fig.1.

    Fig.1 Variable ratio steering system configuration

    As shown in Fig.1,while the steering system is working,the rotating direction ofδpand δsware the same,where Gpis the reduction ratio of motor and part 6,Gp=θac/θp.Compound gear train has double row planetary gear train,including sun gears(part 1,2,5,6),planet gears(part 3,4)and planet carrier(part H),among which 5-sun gear is fixed.1-3-H-5 is an elementa-ry epicyclical gear train,2-4-H-6 is a differential gear train,the system degree of freedom(DOF)is 2,and the outputδpis determined byδswandθp. The relation amongδp,δswandθpsatisfies

    From Eq.(1),δpcan be expressed as

    In this system,the mechanical steering gear ratio G was set to 17.The front wheel angleδfequals toδp/G andαequals to n5/n1,then the vehicle steering gear ratio is defined as

    Whenθp=0,thenδp=δsw,the steering gear ratio i is constant.Active steering system becomes a constant ratio steering system.Whenθp≠0,i is determined by the values ofθp/δswas expressed in Eq.(3).Using the steering system as Fig.1,steering variable gear ratio can be realized by controlling the inputθpor the actual control inputθac.

    Variable gear ratio can be realized by the active front steering shown in Fig.1,and its control algorithm is shown in Fig.2.According to the driver's input and vehicle speed,feed-forward controller calculates feed-forward steering wheel angleδFF.According toψd,βd,ψandβ,feedback controller calculates feedback steering wheel angle δFB.Feed-forward control algorithm is actually a proportional&derivative(PD)algorithm,and feedback control algorithm is an active disturbance rejection algorithm.In addition,one of the effects of the active steering control is that the response characteristic of the vehicle is changeable.This function is realized by feed-forward controller of the steering control,and the detailed algorithm will be described in Section 1.2.Another effect of the active steering control is that the vehicle response is less than the safety threshold.This function is realized by the feedback controller of the steering control,and the detailed algorithm will be described in Section 2.4.

    1.2 Basic variable gear ratio control

    Fig.2 Vehicle active steering control algorithm

    The active front steering control system is designed to realize the functions mentioned above. The steering angle of the front wheel is determined by the driver and the actuator(motor). This angle can be controlled optionally by actively controlling the operating angle of the actuator. That is why the system is called the active front steering(AFS).

    The relation among the front wheel angle,the actuator operating angle and the steering wheel angle is shown as follows[3]

    δFFis calculated as follows

    where kvis the proportional gain,and ksthe derivative gain.kvand ksare related to the speed of vehicle.SubstitutingδFFof Eq.(5)into Eq.(4),its Laplace transform can be obtained.

    where s is the Laplace operator.By setting up the relationships of kvand kswith the speed to realize the rules of basic variable gear ratio,the vehicle response characteristics can be actively controlled. In reference to BMW and Refs.[3,9]about the range of the steering variable ratio and the relation between the variable ratio and the speed of vehicle,the kinematical function of the steering ratio is designed in this paper,as shown in Fig.3.

    Fig.3 Steering variable ratio rule

    In active front steering as shown in Fig.1,using control methods above,actual input of me-chanical steering gear isδp=δsw+δFF+δFB.Compared with Eq.(2),the value ofθpcan be determined,which equals to-(δFF+δFB)n1/n5.Then,the expected variable gear ratio and steering characteristic can be realized by controlling the angle of active steering motor.θaccan be expressed as

    2 Driver-Vehicle-Road Closed-Loop Model

    2.1 Driver model

    Driver,vehicle and road are various aspects in the manipulation of vehicle.During driving,the driver has to constantly modify the vehicle direction according to the vehicle state and road conditions.The three aspects constitute a drivervehicle-road closed-loop system.The"preview optimal curvature model"[10-12]proposed by Guo determines steering wheel angle based on single preview hypothesis and optimal curvature control. This model can simultaneously take the dynamic response characteristics of the vehicle and hysteresis of driver's response into account.It is called the single point preview driver model[10],as shown in Fig.4.

    Fig.4 Single point preview driver model

    In Fig.4,T is the preview time,c(s)=c0(1+ Tcs),c0=u2x/Gay,and Gayis the steady-state gain of lateral acceleration.For a skilled driver,T can be set to 0.8 s,Tc0.406 8 s,td0.3 s,and th0.1s[9-11].In actual application of the proposed model,the lateral speed and lateral displacement are given by the actual vehicle or the simulation model of the vehicle.In this paper,the drivers'input of the simulating vehicle is given by the single-point preview driver model.

    2.2 Linear 2-DOF vehicle model

    The 2-DOF linear vehicle model is commonly used in the study of steering movement(Fig.5). The dynamic equation is described as[13]

    Substitutingδf=(δsw+δFF+δFB)/G into Eq.(8),the following equations can be derived.

    Fig.5 2-DOF vehicle model

    where K is the understeering coefficient of vehicle andμthe adhesion coefficient of road.

    2.4 Active disturbances rejection feedback controller

    In this section,the design of ADRC[7]will be discussed in detail.ADRC is the feedback controller,and active angleδFBoperated by target yaw rate follow-up control.The actual vehicle model is much more complicated than the linear 2-DOF vehicle model with a lot of nonlinear problems. Obviously,compared with the actual vehicle mod-

    2.3 Reference model

    The expected yaw rateψdis determined by the desired linear 2-DOF model.Considering the road adhesion conditions of vehicle driving,the expected yaw rate responseψdon steering wheel under the angle input is expressed asel,the linear model of 2-DOF is over-simplified. Therefore,the proposed model contains a lot of unmodeled dynamics and its accuracy is poor. Control method depended on the precision of model is bad at the result control.The nonlinear coupling problem related to 2-DOF model requires a large amount of calculations to be decoupled.ADRC can adopt nonlinear feedback to implement dynamic compensation only based on the input and output of the system.Therefore,the first advantage of the ADRC model is that the control system can be treated by using a unified way,no matter the system is linear or nonlinear,certain or uncertain.The second advantage of the model is that in the rejection of disturbance,a specific and observable model for external disturbance is not necessary.Other advantages include:(1)The control algorithm does not need to identify the control object.(2)The control algorithm has good portability.(3)For the coupled problem of dynamic equation,only the static coupling need to be considered instead of the dynamic coupling.

    In Eq.(5),.δswcan be obtained from.δswby a differential process,which can be obtained from δswby a differential process.The method for obtaining.δswis

    Similarly,the differential process mentioned above is adoped in the desired referenceψd,expressed in Eq.(13).This is called the transition process in ADRC technique.The first function is to increase the adjustable range of parameters; the second function is to provide error signal for ADRC.

    In Eq.(9a),f11(ψ,β)is the sum of disturbance,which includes unmodeled error,parameter error and internal-external disturbance.Extended state observer(ESO)listed in Eq.(14)estimates the system states and the sum of disturbance.

    where z1,z2,and z3estimate states x1,x2,and x3,respectively and x3equals to f11(ψ,β).In Eq.(14),function Fal(·)is expressed as

    whereξandΔare the positive numbers,and sign(·)is the signum function.

    The state errors of system e1and e2are defined as v1·(-z1)and v2·(-z2),respectively,and they are used in the design of ADRC.In this paper,the feedback control law of error u0is expressed as

    In the ADRC algorithm,δFBis dynamically calculated by ESO using u0and z3,expressed in Eq.(17).

    where f12is a known disturbance.Substituting δFBof Eq.(17)into Eq.(14),the two-order ESO can be expressed as

    Eq.(18)shows that ESO becomes a pure integrator tandem observer.δswis given by the driver model.ψdis obtained by the reference model and ESO is designed based on the linear 2-DOF model.Thanks to the fact that the nonlinear characteristics of model treated as disturbances are all included in f11,ESO can guarantee enough preci-sion.

    So far,the ADRC and the PD controller have been discussed in this section and Section 1.2,respectively.According to the above discussion,the control model of AFS is shown in Fig.6.Here,the ADRC controller is illustrated inside the dashed box in Fig.6.

    Fig.6 Control model of active front steering

    It can be seen from Eq.(8)that yaw rateψ and sideslip angleβare coupled.Using the ADRC controller,as long as y*is measurable,f11(ψ,β)can be estimated by z3and the decoupling control ofψandβis realized by ADRC without complex decoupling of matrix computation.Therefore,the algorithm of ADRC can ensure good real-time performance.

    3 Simulation Analysis

    In order to validate control effects of steering variable gear ratio and tracking performance of path of the proposed ADRC,a driver-vehicle-road closed-loop control model is established in Matlab/Simulink,which controls vehicle model of CarSim software(CS B-CLASS)to complete the tests of DLC and PCS.These two tests were carried out at speeds of 100 km/h and 120 km/h,respectively.The test path and placing of cones are adaptively set in accordance with the standard test[13,14]and the changes of speed(Technical Report of State Key Laboratory of Automobile Dynamic Simulation,Jilin University).Placing of cones for marking the pylon course slalom track is shown in Fig.7,and that for marking the double lane-change track is shown in Fig.8.

    Fig.7 Placing of cones for marking pylon course slalom track

    Fig.8 Placing of cones for marking double lanechange track

    In Figs.7,8,the center line of the trajectory surrounded by cones is a broken one,which is impossible for the vehicle to follow such a trajectory.Therefore,the non-smooth trajectory must be preview correction[11]in the simulation tests.The lines AB and GH in PCS test and the lines AB and CD in DLC test are replaced by cubic spline curves that satisfy the boundary conditions(The whole curve is smooth and continuous).The line B-G targeted trajectory in PCS test is a cosine curve,with the amplitude of d,as shown in Fig.7.The parameters of simulation vehicle are listed in Table 1.

    Table 1 Basic parameters of the vehicle

    The steering system of the existing vehicle has a feature of understeering to some degree. The actual vehicle model with a significant nonlinear characteristic is controlled by the steering wheel angle derived from the simple driver model,which can track the ideal path at the beginning of the test.However,a large error appears at the later stage of the test,which is illustrated in thesimulating results in Figs.9,10.In the test,road adhesion coefficient is 0.85.Since the vehicle exists understeering,if a vehicle bears no AFS,it is necessary for the driver to turn larger steering wheel angle to complete the test,as shown in Fig.11.In such a test,the driver needs to constantly amend the steering angle,thus increasing driving difficulty.The results in Figs.9,10 indicate that the vehicle with AFS can perform the high-speed DLC and PCS tests well,and the path tracking performance is significantly better than that with the fixed gear ratio system.Moreover,it is not necessary for the driver to change his driving habit. The active front steering system can automatically compensate understeering and correct oversteering.Therefore,the driving difficulty is reduced,the handling and stability of vehicle are enhanced,and the driving safety is greatly improved.

    Fig.9 High speed double lane change test

    Fig.10 High speed pylon course slalom test

    For checking the performance of the ADRC model,the test of angle step input of steering wheel was conducted.The test results are shown in Fig.12,where the solid line is the yaw rate step response curve without AFS,and the dashed line the yaw rate step response curve with AFS. The results in Fig.12 show that the overshoot and the response time of yaw rate of the vehicle with AFS are obviously smaller than that without AFS.Hence,the response performance of vehicle with AFSis improved,which alsoindicates that AFS can improve the handling and stability of vehicle.

    It is interesting that the same control parameters of ADRC are used to implement the DLC test,the PCS test and the step response test.The controlling effects of all tests are satisfying,which indicates that the ADRC controller has good robustness.

    Fig.11 Driver's input

    Fig.12 Yaw rate step response

    4 Conclusions

    An AFS model of feed-forward control and feedback control is proposed.Feed-forward controller using the known PD algorithm has realized the changeable response characteristic of the vehicle.The feedback controller using active disturbance rejection technology has enhanced the controllability and stability of vehicle when steering. In the active disturbance rejection control,since the nonlinear characteristic of vehicle regarded as a disturbance can be estimated in real time and be dynamically compensated by ESO,the precise nonlinear dynamic equation is not necessary.The simulation results show that ADRC using 2-DOF model has good control effects.Here the nonlinear control problem and the decoupling problem of parameters are solved.Vehicle with AFS performs well in path tracking,characteristic of lateral response,and robustness.

    Since the unmodeled dynamics,known or unknown disturbance and non-linear characteristic can be treated by using a unified way,the control method of ADRC is simple.Simultaneously,the design of ADRC controller does not need precise model and has no specific object,thus the controller has good the portability and adaptability.

    The AFS without considering the influence of longitudinal force is investigated.In the ADRC controller designed for AFS the influence of longitudinal force,and the influences of suspension and other control system should be addressed in the further research,as well as the integrated control of AFS with other systems.

    Acknowledgement

    This work was supported by the National Natural Science Foundation of China(No.51205191).

    [1] Reinelt W,Klier W,Reimann G,et al.Active front steering(part 2):Safety and functionality[C]∥SAE Technical Paper Series.USA:SAE Publication Group,Paper Number:2004-01-1101.

    [2] Wang Chunyan,Zhao Wanzhong,et al.Parameter optimization of electric power steering integrated with active front steering function[J].Transaction of Nanjing University of Aeronautics and Astronautics, 2012,29(1):96-102.

    [3] Kojo T,Suzumura M,Tsuchiya Y,et al.Development of active front steering control system[C]∥SAE Technical Paper Series.USA:SAE Publication Group,Paper Number:2005-01-0404.

    [4] Shang Gaogao,Hong Ze,Zhang hongdang,et al. Modeling of variable steering ratio with steady-state gain for active steering system[J].Journal of Jiangsu University:Natural Science Edition,2010,31(3):278-282.(in Chinese)

    [5] Liao Linqing,Wang Wei,Qu Xiang.Variable steer ratio of dynamic steering system based on yaw velocity gain[J].Journal of Chongqing University of Technology:Natural Science Edition,2011,25(4):1-5.(in Chinese)

    [6] Wei Jianwei,Wei Minxiang,Zhao Wanzhong.Control law of varied steering ratio based on driver-vehicleroad closed-loop system[J].Journal of Jiangsu University:Natural Science Edition,2011,32(6):652-657.(in Chinese)

    [7] Han Jingqing.Active disturbance rejection control technique the technique for estimating and compensating the uncertainties[M].Beijing:National Defense Industry Press,2008.(in Chinese)

    [8] Willy Klier,Wolfgang Reinelt.Active front steering(Part 1):Mathematical modeling and parameter estimation[C]∥SAE Technical Paper Series.USA:SAE Publication Group,Paper Number:2004-01-1102.

    [9] Jeonghoon Song.Design and evaluation of active front wheel steering system model and controller[C]∥SAE Technical Paper Series.USA:SAE Publication Group,Paper Number:2014-01-2000.

    [10]Guo K H.Drivers-vehiele closed-loop simulation of handling by“preselect optimal curvature method”[J]. Automotive Engineering,1984,3:1-16.(in Chinese)

    [11]Guo K H,Guan H.Modeling of driver/vehicle direction control system[J].Vehicle System Dynamics,1993,22(3-4):141-184.

    [12]Guo K H.The principle of vehicle handling dynamics[M].Nanjing:Science and Technology of Jiangsu Press,2011.(in Chinese)

    [13]National Bureau of Technical Supervision.GB/ T6323.1-94,Controllability and stability test procedure for automobiles Pylon course slalom test[S]. Beijing,1994.(in Chinese)

    [14]International Standardization Organization.ISO/FDIS 3888-1,Passenger cars Test track for a severe lane change manoeuvre part 1:Double lane change[S]. Beijing,1999.

    (Executive editor:Zhang Tong)

    U461.4 Document code:A Article ID:1005-1120(2015)04-0461-08

    *Corresponding author:Sang Nan,Associate Professor,E-mail:sangn@czu.cn.

    How to cite this article:Sang Nan,Wei Minxiang,Bai Yu.Control of vehicle active front steering based on active disturbance rejection feedback controller[J].Trans.Nanjing U.Aero.Astro.,2015,32(4):461-468.

    http://dx.doi.org/10.16356/j.1005-1120.2015.04.461

    (Received 21 November 2014;revised 26 January 2015;accepted 28 February 2015)

    猜你喜歡
    白玉
    古朗月行(節(jié)選)
    一蒂千花白玉團(tuán) 彭楹文 中國畫 181cm x 97cm 2023年
    春 筍
    春筍
    白玉羊首瓜棱形壺
    紫禁城(2020年1期)2020-08-13 09:37:02
    白玉花盆
    華夏太白玉 絲綢之路情——陜西省首屆絲綢之路“太白玉文化節(jié)”暨第二屆“太白玉研討會(huì)”盛大舉行
    寶藏(2018年1期)2018-04-18 07:40:05
    A White Heron
    青春歲月(2016年21期)2016-12-20 21:05:24
    Mass transport in a thin layer of power-law fluid in an Eulerian coordinate system*
    Oliver Twist
    www日本在线高清视频| 免费av中文字幕在线| 久久久久久久精品精品| 国产视频一区二区在线看| 啦啦啦免费观看视频1| 五月开心婷婷网| 如日韩欧美国产精品一区二区三区| 多毛熟女@视频| 色婷婷久久久亚洲欧美| 国产淫语在线视频| 久久人妻熟女aⅴ| 免费不卡黄色视频| 夜夜骑夜夜射夜夜干| 悠悠久久av| 国产主播在线观看一区二区| 亚洲精华国产精华精| 人妻久久中文字幕网| 一本久久精品| 午夜影院在线不卡| 亚洲欧美一区二区三区黑人| 久久久久国产一级毛片高清牌| 精品国产国语对白av| 三上悠亚av全集在线观看| 亚洲男人天堂网一区| 又大又爽又粗| www.熟女人妻精品国产| 国产精品1区2区在线观看. | 伦理电影免费视频| 亚洲成人免费电影在线观看| 人人妻人人爽人人添夜夜欢视频| 麻豆国产av国片精品| 热re99久久精品国产66热6| 国产主播在线观看一区二区| 亚洲一区二区三区欧美精品| 国产一区二区 视频在线| 一级黄色大片毛片| h视频一区二区三区| 亚洲国产精品一区二区三区在线| 多毛熟女@视频| 黄色视频在线播放观看不卡| 搡老岳熟女国产| 日韩欧美免费精品| 高清av免费在线| 亚洲欧美清纯卡通| 日韩视频在线欧美| 最近最新免费中文字幕在线| 两个人看的免费小视频| 欧美日韩黄片免| 午夜福利,免费看| 桃红色精品国产亚洲av| 黄色怎么调成土黄色| 欧美日韩黄片免| 国产精品二区激情视频| 免费在线观看黄色视频的| 一区二区三区四区激情视频| 亚洲伊人色综图| 午夜福利在线免费观看网站| 少妇的丰满在线观看| 超碰成人久久| 欧美黑人精品巨大| 免费人妻精品一区二区三区视频| 精品国内亚洲2022精品成人 | 久久综合国产亚洲精品| 黄色 视频免费看| 精品少妇黑人巨大在线播放| 女警被强在线播放| 热re99久久国产66热| 9热在线视频观看99| 久久久久久久国产电影| 日韩电影二区| 欧美精品一区二区大全| 黑人猛操日本美女一级片| 国产精品免费视频内射| 国产欧美日韩精品亚洲av| 国产欧美日韩一区二区精品| 黑人操中国人逼视频| 亚洲伊人色综图| 精品国产一区二区三区久久久樱花| 99久久精品国产亚洲精品| 天天躁日日躁夜夜躁夜夜| videos熟女内射| 久久中文字幕一级| 法律面前人人平等表现在哪些方面 | 在线观看www视频免费| 日本精品一区二区三区蜜桃| 亚洲欧美成人综合另类久久久| 在线观看免费高清a一片| www.自偷自拍.com| 久久99一区二区三区| 人妻久久中文字幕网| 国产精品一区二区精品视频观看| 一本一本久久a久久精品综合妖精| 久久九九热精品免费| 正在播放国产对白刺激| 久久久久国产精品人妻一区二区| 黄色视频不卡| 亚洲伊人久久精品综合| 曰老女人黄片| 国产精品久久久人人做人人爽| 一级,二级,三级黄色视频| 搡老乐熟女国产| 国产亚洲一区二区精品| 国产成人精品在线电影| 国产精品免费大片| 12—13女人毛片做爰片一| 岛国毛片在线播放| 亚洲成国产人片在线观看| 色婷婷久久久亚洲欧美| 国产伦理片在线播放av一区| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲精品国产av成人精品| 啦啦啦免费观看视频1| 亚洲国产欧美一区二区综合| 国产高清国产精品国产三级| 12—13女人毛片做爰片一| 国产精品一区二区在线观看99| 国产成人欧美在线观看 | 9191精品国产免费久久| av欧美777| 亚洲人成电影观看| 99久久99久久久精品蜜桃| tube8黄色片| 电影成人av| 亚洲情色 制服丝袜| 悠悠久久av| 老司机影院毛片| 91麻豆av在线| 老司机靠b影院| 久久精品人人爽人人爽视色| www.精华液| 在线观看www视频免费| 五月开心婷婷网| 久久久久视频综合| 亚洲精品成人av观看孕妇| 亚洲成av片中文字幕在线观看| av福利片在线| 777久久人妻少妇嫩草av网站| 亚洲第一青青草原| 最新在线观看一区二区三区| 国产精品1区2区在线观看. | 十八禁高潮呻吟视频| 日本a在线网址| www.熟女人妻精品国产| 亚洲精品一区蜜桃| 美女大奶头黄色视频| 9色porny在线观看| 午夜福利视频在线观看免费| 免费人妻精品一区二区三区视频| 夜夜骑夜夜射夜夜干| 国产av一区二区精品久久| 成人手机av| 国产免费视频播放在线视频| 午夜福利乱码中文字幕| 久久精品久久久久久噜噜老黄| 中文字幕精品免费在线观看视频| 在线观看免费视频网站a站| 最新的欧美精品一区二区| 日日摸夜夜添夜夜添小说| 涩涩av久久男人的天堂| 最近最新免费中文字幕在线| 99九九在线精品视频| avwww免费| 亚洲熟女精品中文字幕| 成年人午夜在线观看视频| 久久中文看片网| 国产精品秋霞免费鲁丝片| 不卡av一区二区三区| 他把我摸到了高潮在线观看 | 在线精品无人区一区二区三| 久久天躁狠狠躁夜夜2o2o| 黑人猛操日本美女一级片| 欧美人与性动交α欧美软件| 久久久久久人人人人人| 18禁国产床啪视频网站| 老鸭窝网址在线观看| 日韩中文字幕视频在线看片| 妹子高潮喷水视频| 国产成人精品无人区| 国产一区二区 视频在线| 日本五十路高清| 一级片免费观看大全| 高潮久久久久久久久久久不卡| 人人妻,人人澡人人爽秒播| 永久免费av网站大全| 久久人人爽av亚洲精品天堂| 国产亚洲av片在线观看秒播厂| 国产精品 国内视频| 看免费av毛片| 久久精品熟女亚洲av麻豆精品| 亚洲色图 男人天堂 中文字幕| 精品少妇内射三级| 久久亚洲国产成人精品v| 国产一区二区在线观看av| 欧美日韩av久久| 99re6热这里在线精品视频| 18禁裸乳无遮挡动漫免费视频| 国产日韩欧美视频二区| 精品国产乱码久久久久久男人| 国产高清国产精品国产三级| 欧美精品高潮呻吟av久久| 久久性视频一级片| 国产1区2区3区精品| 丝袜在线中文字幕| 黄色视频不卡| 一区在线观看完整版| 国产成人欧美在线观看 | 这个男人来自地球电影免费观看| 成人三级做爰电影| 国产精品熟女久久久久浪| 男人添女人高潮全过程视频| 一区二区av电影网| 亚洲精品在线美女| 母亲3免费完整高清在线观看| 日日爽夜夜爽网站| 国产精品久久久人人做人人爽| 精品国产一区二区久久| 国产精品1区2区在线观看. | 日韩视频在线欧美| 麻豆国产av国片精品| 欧美 亚洲 国产 日韩一| 18禁国产床啪视频网站| 欧美另类亚洲清纯唯美| 久久精品国产a三级三级三级| 麻豆av在线久日| 99九九在线精品视频| 一区在线观看完整版| 亚洲国产中文字幕在线视频| 亚洲伊人色综图| 亚洲人成电影观看| 亚洲自偷自拍图片 自拍| 国产伦理片在线播放av一区| 午夜成年电影在线免费观看| 精品人妻一区二区三区麻豆| 成人手机av| 欧美精品啪啪一区二区三区 | 久久久精品94久久精品| 国产在线观看jvid| 少妇人妻久久综合中文| 老司机深夜福利视频在线观看 | 久久久久国产一级毛片高清牌| 国产精品久久久久成人av| 久久人人爽人人片av| 日本91视频免费播放| 大陆偷拍与自拍| 久久久久久亚洲精品国产蜜桃av| 一本久久精品| 国产真人三级小视频在线观看| 老鸭窝网址在线观看| av天堂久久9| 亚洲熟女毛片儿| 久久天堂一区二区三区四区| 国产成人影院久久av| 丰满迷人的少妇在线观看| 老司机靠b影院| 精品国产一区二区三区久久久樱花| 精品久久蜜臀av无| 老熟妇乱子伦视频在线观看 | 黑人欧美特级aaaaaa片| 久久亚洲精品不卡| 久久久久视频综合| 国产亚洲精品第一综合不卡| 操出白浆在线播放| 国产亚洲一区二区精品| 国产黄色免费在线视频| 久久精品亚洲熟妇少妇任你| 人人妻人人澡人人爽人人夜夜| 中国国产av一级| 在线观看一区二区三区激情| 99热网站在线观看| 欧美+亚洲+日韩+国产| 亚洲精品久久久久久婷婷小说| 免费在线观看视频国产中文字幕亚洲 | 少妇的丰满在线观看| 久久久久久久国产电影| 免费观看a级毛片全部| 一二三四在线观看免费中文在| 亚洲av电影在线进入| 亚洲情色 制服丝袜| h视频一区二区三区| 亚洲免费av在线视频| 亚洲国产欧美日韩在线播放| 国产黄频视频在线观看| 手机成人av网站| 国产av精品麻豆| 啦啦啦中文免费视频观看日本| kizo精华| 国产精品免费大片| 国产精品香港三级国产av潘金莲| 精品久久蜜臀av无| 欧美精品高潮呻吟av久久| 一区二区av电影网| 亚洲 国产 在线| 欧美精品一区二区免费开放| 动漫黄色视频在线观看| 一区二区三区精品91| 黄色视频在线播放观看不卡| 国产精品久久久久久人妻精品电影 | av天堂久久9| 好男人电影高清在线观看| av网站免费在线观看视频| 日本av手机在线免费观看| 考比视频在线观看| 亚洲综合色网址| 国产精品影院久久| 日本一区二区免费在线视频| 国产无遮挡羞羞视频在线观看| 亚洲国产欧美一区二区综合| 777久久人妻少妇嫩草av网站| 51午夜福利影视在线观看| 黄色毛片三级朝国网站| 99re6热这里在线精品视频| 成人影院久久| 午夜免费观看性视频| 亚洲伊人久久精品综合| 国产高清视频在线播放一区 | 欧美+亚洲+日韩+国产| 两性夫妻黄色片| 黑人巨大精品欧美一区二区mp4| 99国产精品一区二区蜜桃av | 真人做人爱边吃奶动态| 成年人免费黄色播放视频| 91老司机精品| 国产精品二区激情视频| 淫妇啪啪啪对白视频 | av网站在线播放免费| 男女午夜视频在线观看| 少妇人妻久久综合中文| 男女午夜视频在线观看| 国产精品亚洲av一区麻豆| 自线自在国产av| 一区在线观看完整版| 激情视频va一区二区三区| 亚洲精品自拍成人| 亚洲精品第二区| a级毛片在线看网站| 亚洲午夜精品一区,二区,三区| 国产伦人伦偷精品视频| 欧美性长视频在线观看| 最近最新中文字幕大全免费视频| 男人爽女人下面视频在线观看| 中文字幕人妻丝袜制服| 国产成人av激情在线播放| 人人妻,人人澡人人爽秒播| 女警被强在线播放| 妹子高潮喷水视频| 99国产精品一区二区蜜桃av | 啦啦啦中文免费视频观看日本| 高清视频免费观看一区二区| 一级毛片女人18水好多| 欧美黑人欧美精品刺激| 天堂8中文在线网| 国产伦理片在线播放av一区| 亚洲av电影在线观看一区二区三区| 国产又色又爽无遮挡免| 欧美久久黑人一区二区| 深夜精品福利| 精品国产乱子伦一区二区三区 | 亚洲欧美清纯卡通| 国产免费福利视频在线观看| a级毛片黄视频| 狠狠狠狠99中文字幕| 欧美人与性动交α欧美软件| 最近最新中文字幕大全免费视频| 9热在线视频观看99| 人成视频在线观看免费观看| 黄色视频在线播放观看不卡| 亚洲精品久久久久久婷婷小说| 一边摸一边做爽爽视频免费| 国产精品偷伦视频观看了| 99热全是精品| 制服诱惑二区| 中文字幕制服av| 久久精品久久久久久噜噜老黄| 天天躁夜夜躁狠狠躁躁| 国产精品秋霞免费鲁丝片| av线在线观看网站| 爱豆传媒免费全集在线观看| 男人添女人高潮全过程视频| 国产片内射在线| 国产又色又爽无遮挡免| 我的亚洲天堂| 国产一区二区激情短视频 | 高清黄色对白视频在线免费看| 不卡av一区二区三区| 满18在线观看网站| 欧美精品亚洲一区二区| 亚洲人成电影观看| 免费在线观看影片大全网站| 一区二区av电影网| tube8黄色片| 成人三级做爰电影| 另类亚洲欧美激情| 人人妻人人添人人爽欧美一区卜| 国产三级黄色录像| 美国免费a级毛片| 免费女性裸体啪啪无遮挡网站| 老司机亚洲免费影院| 久久99一区二区三区| 亚洲国产精品成人久久小说| 日韩大码丰满熟妇| 美女视频免费永久观看网站| 亚洲国产av影院在线观看| 精品人妻1区二区| 首页视频小说图片口味搜索| 成年动漫av网址| svipshipincom国产片| 他把我摸到了高潮在线观看 | 999精品在线视频| 久久香蕉激情| 久久人人97超碰香蕉20202| 性少妇av在线| 午夜福利视频在线观看免费| 欧美中文综合在线视频| 国产伦理片在线播放av一区| 国产免费视频播放在线视频| 肉色欧美久久久久久久蜜桃| 水蜜桃什么品种好| 中国美女看黄片| 精品国产超薄肉色丝袜足j| 麻豆国产av国片精品| 好男人电影高清在线观看| e午夜精品久久久久久久| av在线老鸭窝| 男女高潮啪啪啪动态图| 国产91精品成人一区二区三区 | 老熟妇仑乱视频hdxx| 热99re8久久精品国产| 精品亚洲乱码少妇综合久久| 大片电影免费在线观看免费| 欧美午夜高清在线| 一级毛片精品| 欧美日韩亚洲综合一区二区三区_| 我要看黄色一级片免费的| 亚洲av欧美aⅴ国产| 麻豆乱淫一区二区| 别揉我奶头~嗯~啊~动态视频 | √禁漫天堂资源中文www| kizo精华| 少妇猛男粗大的猛烈进出视频| 黑丝袜美女国产一区| 亚洲自偷自拍图片 自拍| 老鸭窝网址在线观看| 一区二区三区激情视频| 国产成人一区二区三区免费视频网站| 极品少妇高潮喷水抽搐| 午夜成年电影在线免费观看| www.999成人在线观看| 日日爽夜夜爽网站| 黄频高清免费视频| 日韩一区二区三区影片| 人人妻人人澡人人看| 亚洲第一青青草原| av在线播放精品| 日韩熟女老妇一区二区性免费视频| 91九色精品人成在线观看| 最近最新中文字幕大全免费视频| 天堂俺去俺来也www色官网| 精品国产乱码久久久久久小说| 丁香六月天网| 欧美国产精品一级二级三级| 老汉色av国产亚洲站长工具| 亚洲精品国产av成人精品| 一级片免费观看大全| 欧美日韩黄片免| 亚洲伊人久久精品综合| 久热这里只有精品99| 精品一区二区三区av网在线观看 | 伊人亚洲综合成人网| 亚洲精品成人av观看孕妇| 精品熟女少妇八av免费久了| 亚洲国产毛片av蜜桃av| 亚洲av电影在线观看一区二区三区| 大香蕉久久网| 久久久久网色| 麻豆国产av国片精品| 精品亚洲成a人片在线观看| 国产亚洲午夜精品一区二区久久| 亚洲国产日韩一区二区| 两性午夜刺激爽爽歪歪视频在线观看 | 午夜91福利影院| 19禁男女啪啪无遮挡网站| 欧美日韩国产mv在线观看视频| 欧美在线一区亚洲| 999久久久精品免费观看国产| 精品久久久久久电影网| 久久亚洲精品不卡| 日日夜夜操网爽| 肉色欧美久久久久久久蜜桃| 午夜两性在线视频| 亚洲伊人久久精品综合| 欧美变态另类bdsm刘玥| 男男h啪啪无遮挡| 久久精品国产亚洲av高清一级| 亚洲欧美激情在线| 色婷婷av一区二区三区视频| 少妇被粗大的猛进出69影院| 午夜福利视频精品| 久久久久久久久久久久大奶| 国产欧美日韩一区二区三区在线| 成人三级做爰电影| 国产欧美日韩精品亚洲av| 亚洲欧美清纯卡通| 免费人妻精品一区二区三区视频| 十八禁高潮呻吟视频| 男女高潮啪啪啪动态图| 国产免费现黄频在线看| 美女国产高潮福利片在线看| 国产黄频视频在线观看| 在线观看人妻少妇| 两个人看的免费小视频| 日韩欧美免费精品| 性色av一级| 最新在线观看一区二区三区| a级片在线免费高清观看视频| 丝袜美足系列| 久久天躁狠狠躁夜夜2o2o| 成年av动漫网址| 日本猛色少妇xxxxx猛交久久| 十八禁网站免费在线| 老司机深夜福利视频在线观看 | av在线app专区| 亚洲精品国产色婷婷电影| 日韩熟女老妇一区二区性免费视频| 国产精品久久久久久精品电影小说| 一区在线观看完整版| 国产又爽黄色视频| 久久99热这里只频精品6学生| 成年美女黄网站色视频大全免费| 超碰97精品在线观看| 狂野欧美激情性xxxx| 亚洲av美国av| 两性午夜刺激爽爽歪歪视频在线观看 | 在线 av 中文字幕| 99精品久久久久人妻精品| 青春草视频在线免费观看| 亚洲 欧美一区二区三区| 大型av网站在线播放| 每晚都被弄得嗷嗷叫到高潮| 2018国产大陆天天弄谢| 美女高潮到喷水免费观看| 精品福利观看| 日本wwww免费看| 久热这里只有精品99| 大片免费播放器 马上看| 中亚洲国语对白在线视频| 嫩草影视91久久| av一本久久久久| 精品久久久久久久毛片微露脸 | 99国产精品一区二区蜜桃av | 妹子高潮喷水视频| 亚洲国产欧美在线一区| 日韩三级视频一区二区三区| 色老头精品视频在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 成年动漫av网址| 精品高清国产在线一区| 最新的欧美精品一区二区| 国产日韩欧美亚洲二区| 91老司机精品| 高清黄色对白视频在线免费看| 国产高清视频在线播放一区 | 黄色视频不卡| 日韩 亚洲 欧美在线| 亚洲伊人久久精品综合| 亚洲国产精品999| 热99国产精品久久久久久7| 一区在线观看完整版| 日韩精品免费视频一区二区三区| 美女福利国产在线| 这个男人来自地球电影免费观看| 精品亚洲成国产av| 淫妇啪啪啪对白视频 | 午夜福利影视在线免费观看| 亚洲美女黄色视频免费看| 巨乳人妻的诱惑在线观看| 啦啦啦视频在线资源免费观看| 久久天躁狠狠躁夜夜2o2o| av在线app专区| 高潮久久久久久久久久久不卡| 纵有疾风起免费观看全集完整版| 日韩制服丝袜自拍偷拍| 精品第一国产精品| 亚洲一码二码三码区别大吗| 嫩草影视91久久| 精品第一国产精品| 大型av网站在线播放| 日韩欧美国产一区二区入口| 9色porny在线观看| 国产成人精品无人区| 乱人伦中国视频| 青青草视频在线视频观看| 男女下面插进去视频免费观看| 成人国产一区最新在线观看| 国产精品一区二区在线不卡| 亚洲精品中文字幕一二三四区 | 黑丝袜美女国产一区| 亚洲精品中文字幕在线视频| 国产亚洲午夜精品一区二区久久| 美女脱内裤让男人舔精品视频| 丝袜在线中文字幕| 男女高潮啪啪啪动态图| 国产亚洲精品久久久久5区| 三上悠亚av全集在线观看| 搡老乐熟女国产| 高清黄色对白视频在线免费看| 黑人巨大精品欧美一区二区蜜桃| 亚洲av电影在线观看一区二区三区| 在线看a的网站| 丝瓜视频免费看黄片| 91老司机精品| 一级片免费观看大全| 波多野结衣av一区二区av| 啦啦啦在线免费观看视频4| 亚洲精品久久久久久婷婷小说| 日本欧美视频一区|