• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Control of Vehicle Active Front Steering Based on Active Disturbance Rejection Feedback Controller

    2015-11-24 06:57:45SangNan桑楠WeiMinxiang魏民祥BaiYu白玉
    關(guān)鍵詞:白玉

    Sang Nan(桑楠),Wei Minxiang(魏民祥),Bai Yu(白玉)

    1.College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China;

    2.College of Mechanical and Electrical Engineering,Changzhou Institute of Technology,Changzhou 213002,P.R.China

    Control of Vehicle Active Front Steering Based on Active Disturbance Rejection Feedback Controller

    Sang Nan(桑楠)1,2*,Wei Minxiang(魏民祥)1,Bai Yu(白玉)2

    1.College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China;

    2.College of Mechanical and Electrical Engineering,Changzhou Institute of Technology,Changzhou 213002,P.R.China

    A control method of active front steering(AFS)based on active disturbance rejection technique was proposed for solving the model nonlinearity and parameter decoupling control in the traditional control methods.The AFS controller consists of the proportional and derivative(PD)feed-forward controller and the active disturbance rejection feedback controller.To improve the steering response characteristics of a vehicle,a PD controller is designed to realize variable steering gear ratio,and to enhance the safety of vehicle when steering.An active disturbance rejection controller(ADRC)is designed to follow the expected yaw rate of the vehicle.According to the input and output of system,extended state observer(ESO)of ADRC can dynamically estimate internal and external disturbance of the system,thus easily realizing the model nonlinear and parameter decoupling control.The AFS controller is simulated and validated in Matlab and CarSim.The simulating results of double lane change(DLC)test and pylon course slalom(PCS)test show that the ADRC can well control the vehicle model to complete the road simulation test of DLC and PCS with small path tracking error.The simulating results of angle step test of steering wheel show that the vehicle under the control of ADRC demonstrates good lateral response characteristic.The controller regulates a wide range of parameters.The model has less precision requirements with good robustness.

    active disturbance rejection technique;active steering;variable ratio;extended state observer

    Nomenclature

    m/kg Mass of vehicle

    1z/(kg·m2)Moment of inertia about Z-axis

    k1/(N·rad-1)Front axle cornering stiffness

    k2/(N·rad-1)Rear axle cornering stiffness

    lf/m Distance between CG and front axle

    lr/m Distance between CG and rear axle

    δsw/rad Steering wheel angle

    δFF/rad Steering wheel angle of feedforward

    δFB/rad Steering wheel angle of feedback

    δp/rad Out angle of planetary gear trains

    θac/rad Angle of active front steering motor(actuator)

    θp/rad Angle of 6-gear

    δf/rad Steer angle of front wheels

    niTeeth of i-gear

    ψ/(rad·s-1)Yaw rate

    ψd/(rad·s-1)Yaw rate of reference model

    β/rad Sideslip angle of vehicle centre of mass

    βd/rad Sideslip angle of reference model

    G Mechanical steering gear ratio

    ux/(m·s-1)Longitudinal velocity

    g/(m·s-2)Acceleration due to gravity

    0 Introduction

    The traditional steering system completes the steering through the intervention of the driver. Therefore,it has the disadvantages of slow response speed,the incapability of correcting the driver's wrong operations,the helplessness in satisfying small gear ratio requirements at low speedand large gear ratio requirements at high speed,namely the so-called light and flexible contradiction.Owing to the small variation of gear ratio of traditional steering system,the steering characteristics of vehicle have nonlinear relations with vehicle speed.Therefore,the driver needs to constantly revise the vehicle direction to adapt to the steering characteristics of the vehicle so as to control the vehicle along the driver's desired track,which increases the driving burden and decreases the operability of the vehicle.Hydraulic power steering(HPS)or electric power steering(EPS)can change the transfer characteristics of steering force,but cannot change those of steering angle. Therefore,the problem that the vehicle steering characteristics change with the vehicle speed still exists.Active steering system was developed on the basis of power steering system,which includes active front steering(AFS),4 wheels steering(4WS)and steering by wire(SBW),etc. A variable gear ratio(normalized steering gear ratio)can be realized by controlling the input of the active steering motor to get better steering performance,thus improving the handling and stability of vehicle and enhaning driving safety[1,2].

    The light and flexible contradiction can be solved by variable ratio of active steering.Based on the state of the vehicle,an additional angle is applied to the front wheels for changing the lateral force to ensure that the lateral dynamics meet the requirements.According to yaw rate and sideslip angle,the feed-forward controller implements abasic variable ratio rule based on vehicle speed,and the feedback controller adjusts wheel angle[3]. Steer gain(yaw rate gain or lateral acceleration gain)is invariable with velocity[4,5];The variable ratio rule is amended based on invariable steer gain,and it is controlled by speed[6].In fact,nonlinear characteristics of the tire,the vertical load and the suspension compliance will influence the actual angle of front wheels and change the relation between gear ratio and speed,so as to affect the vehicle steering characteristics.In this paper,basic variable gear ratio is realized by using proportional and derivative(PD)feed-forward control,and the desired yaw rate is followed by using the active disturbance rejection control[7]. Known to the steering input and the output of vehicle(e.g.,steering angle,yaw rate,lateral acceleration,speed),active disturbance rejection controller(ADRC)can dynamically track targets. In order to verify the effectiveness of the proposed control methods,the drivers'commands are given by a single-point preview driver model and the driver-vehicle-road closed-loop control model is established in Matlab software.The Car Sim vehicle model is controlled by this driver model to complete the road simulating test of high-speed double lane change(DLC)and pylon course slalom(PCS).

    1 Variable Ratio Steering System Configuration and Model

    1.1 Variable ratio steering system configuration

    After adding the planetary gear mechanism in HPS or EPS,the variability of steering gear ratio was implemented by superposition of the movement of steering wheel and active front steering motor.Such system[8]was first applied in the BMW 5 series.The configuration of the variable ratio steering system is shown in Fig.1.

    Fig.1 Variable ratio steering system configuration

    As shown in Fig.1,while the steering system is working,the rotating direction ofδpand δsware the same,where Gpis the reduction ratio of motor and part 6,Gp=θac/θp.Compound gear train has double row planetary gear train,including sun gears(part 1,2,5,6),planet gears(part 3,4)and planet carrier(part H),among which 5-sun gear is fixed.1-3-H-5 is an elementa-ry epicyclical gear train,2-4-H-6 is a differential gear train,the system degree of freedom(DOF)is 2,and the outputδpis determined byδswandθp. The relation amongδp,δswandθpsatisfies

    From Eq.(1),δpcan be expressed as

    In this system,the mechanical steering gear ratio G was set to 17.The front wheel angleδfequals toδp/G andαequals to n5/n1,then the vehicle steering gear ratio is defined as

    Whenθp=0,thenδp=δsw,the steering gear ratio i is constant.Active steering system becomes a constant ratio steering system.Whenθp≠0,i is determined by the values ofθp/δswas expressed in Eq.(3).Using the steering system as Fig.1,steering variable gear ratio can be realized by controlling the inputθpor the actual control inputθac.

    Variable gear ratio can be realized by the active front steering shown in Fig.1,and its control algorithm is shown in Fig.2.According to the driver's input and vehicle speed,feed-forward controller calculates feed-forward steering wheel angleδFF.According toψd,βd,ψandβ,feedback controller calculates feedback steering wheel angle δFB.Feed-forward control algorithm is actually a proportional&derivative(PD)algorithm,and feedback control algorithm is an active disturbance rejection algorithm.In addition,one of the effects of the active steering control is that the response characteristic of the vehicle is changeable.This function is realized by feed-forward controller of the steering control,and the detailed algorithm will be described in Section 1.2.Another effect of the active steering control is that the vehicle response is less than the safety threshold.This function is realized by the feedback controller of the steering control,and the detailed algorithm will be described in Section 2.4.

    1.2 Basic variable gear ratio control

    Fig.2 Vehicle active steering control algorithm

    The active front steering control system is designed to realize the functions mentioned above. The steering angle of the front wheel is determined by the driver and the actuator(motor). This angle can be controlled optionally by actively controlling the operating angle of the actuator. That is why the system is called the active front steering(AFS).

    The relation among the front wheel angle,the actuator operating angle and the steering wheel angle is shown as follows[3]

    δFFis calculated as follows

    where kvis the proportional gain,and ksthe derivative gain.kvand ksare related to the speed of vehicle.SubstitutingδFFof Eq.(5)into Eq.(4),its Laplace transform can be obtained.

    where s is the Laplace operator.By setting up the relationships of kvand kswith the speed to realize the rules of basic variable gear ratio,the vehicle response characteristics can be actively controlled. In reference to BMW and Refs.[3,9]about the range of the steering variable ratio and the relation between the variable ratio and the speed of vehicle,the kinematical function of the steering ratio is designed in this paper,as shown in Fig.3.

    Fig.3 Steering variable ratio rule

    In active front steering as shown in Fig.1,using control methods above,actual input of me-chanical steering gear isδp=δsw+δFF+δFB.Compared with Eq.(2),the value ofθpcan be determined,which equals to-(δFF+δFB)n1/n5.Then,the expected variable gear ratio and steering characteristic can be realized by controlling the angle of active steering motor.θaccan be expressed as

    2 Driver-Vehicle-Road Closed-Loop Model

    2.1 Driver model

    Driver,vehicle and road are various aspects in the manipulation of vehicle.During driving,the driver has to constantly modify the vehicle direction according to the vehicle state and road conditions.The three aspects constitute a drivervehicle-road closed-loop system.The"preview optimal curvature model"[10-12]proposed by Guo determines steering wheel angle based on single preview hypothesis and optimal curvature control. This model can simultaneously take the dynamic response characteristics of the vehicle and hysteresis of driver's response into account.It is called the single point preview driver model[10],as shown in Fig.4.

    Fig.4 Single point preview driver model

    In Fig.4,T is the preview time,c(s)=c0(1+ Tcs),c0=u2x/Gay,and Gayis the steady-state gain of lateral acceleration.For a skilled driver,T can be set to 0.8 s,Tc0.406 8 s,td0.3 s,and th0.1s[9-11].In actual application of the proposed model,the lateral speed and lateral displacement are given by the actual vehicle or the simulation model of the vehicle.In this paper,the drivers'input of the simulating vehicle is given by the single-point preview driver model.

    2.2 Linear 2-DOF vehicle model

    The 2-DOF linear vehicle model is commonly used in the study of steering movement(Fig.5). The dynamic equation is described as[13]

    Substitutingδf=(δsw+δFF+δFB)/G into Eq.(8),the following equations can be derived.

    Fig.5 2-DOF vehicle model

    where K is the understeering coefficient of vehicle andμthe adhesion coefficient of road.

    2.4 Active disturbances rejection feedback controller

    In this section,the design of ADRC[7]will be discussed in detail.ADRC is the feedback controller,and active angleδFBoperated by target yaw rate follow-up control.The actual vehicle model is much more complicated than the linear 2-DOF vehicle model with a lot of nonlinear problems. Obviously,compared with the actual vehicle mod-

    2.3 Reference model

    The expected yaw rateψdis determined by the desired linear 2-DOF model.Considering the road adhesion conditions of vehicle driving,the expected yaw rate responseψdon steering wheel under the angle input is expressed asel,the linear model of 2-DOF is over-simplified. Therefore,the proposed model contains a lot of unmodeled dynamics and its accuracy is poor. Control method depended on the precision of model is bad at the result control.The nonlinear coupling problem related to 2-DOF model requires a large amount of calculations to be decoupled.ADRC can adopt nonlinear feedback to implement dynamic compensation only based on the input and output of the system.Therefore,the first advantage of the ADRC model is that the control system can be treated by using a unified way,no matter the system is linear or nonlinear,certain or uncertain.The second advantage of the model is that in the rejection of disturbance,a specific and observable model for external disturbance is not necessary.Other advantages include:(1)The control algorithm does not need to identify the control object.(2)The control algorithm has good portability.(3)For the coupled problem of dynamic equation,only the static coupling need to be considered instead of the dynamic coupling.

    In Eq.(5),.δswcan be obtained from.δswby a differential process,which can be obtained from δswby a differential process.The method for obtaining.δswis

    Similarly,the differential process mentioned above is adoped in the desired referenceψd,expressed in Eq.(13).This is called the transition process in ADRC technique.The first function is to increase the adjustable range of parameters; the second function is to provide error signal for ADRC.

    In Eq.(9a),f11(ψ,β)is the sum of disturbance,which includes unmodeled error,parameter error and internal-external disturbance.Extended state observer(ESO)listed in Eq.(14)estimates the system states and the sum of disturbance.

    where z1,z2,and z3estimate states x1,x2,and x3,respectively and x3equals to f11(ψ,β).In Eq.(14),function Fal(·)is expressed as

    whereξandΔare the positive numbers,and sign(·)is the signum function.

    The state errors of system e1and e2are defined as v1·(-z1)and v2·(-z2),respectively,and they are used in the design of ADRC.In this paper,the feedback control law of error u0is expressed as

    In the ADRC algorithm,δFBis dynamically calculated by ESO using u0and z3,expressed in Eq.(17).

    where f12is a known disturbance.Substituting δFBof Eq.(17)into Eq.(14),the two-order ESO can be expressed as

    Eq.(18)shows that ESO becomes a pure integrator tandem observer.δswis given by the driver model.ψdis obtained by the reference model and ESO is designed based on the linear 2-DOF model.Thanks to the fact that the nonlinear characteristics of model treated as disturbances are all included in f11,ESO can guarantee enough preci-sion.

    So far,the ADRC and the PD controller have been discussed in this section and Section 1.2,respectively.According to the above discussion,the control model of AFS is shown in Fig.6.Here,the ADRC controller is illustrated inside the dashed box in Fig.6.

    Fig.6 Control model of active front steering

    It can be seen from Eq.(8)that yaw rateψ and sideslip angleβare coupled.Using the ADRC controller,as long as y*is measurable,f11(ψ,β)can be estimated by z3and the decoupling control ofψandβis realized by ADRC without complex decoupling of matrix computation.Therefore,the algorithm of ADRC can ensure good real-time performance.

    3 Simulation Analysis

    In order to validate control effects of steering variable gear ratio and tracking performance of path of the proposed ADRC,a driver-vehicle-road closed-loop control model is established in Matlab/Simulink,which controls vehicle model of CarSim software(CS B-CLASS)to complete the tests of DLC and PCS.These two tests were carried out at speeds of 100 km/h and 120 km/h,respectively.The test path and placing of cones are adaptively set in accordance with the standard test[13,14]and the changes of speed(Technical Report of State Key Laboratory of Automobile Dynamic Simulation,Jilin University).Placing of cones for marking the pylon course slalom track is shown in Fig.7,and that for marking the double lane-change track is shown in Fig.8.

    Fig.7 Placing of cones for marking pylon course slalom track

    Fig.8 Placing of cones for marking double lanechange track

    In Figs.7,8,the center line of the trajectory surrounded by cones is a broken one,which is impossible for the vehicle to follow such a trajectory.Therefore,the non-smooth trajectory must be preview correction[11]in the simulation tests.The lines AB and GH in PCS test and the lines AB and CD in DLC test are replaced by cubic spline curves that satisfy the boundary conditions(The whole curve is smooth and continuous).The line B-G targeted trajectory in PCS test is a cosine curve,with the amplitude of d,as shown in Fig.7.The parameters of simulation vehicle are listed in Table 1.

    Table 1 Basic parameters of the vehicle

    The steering system of the existing vehicle has a feature of understeering to some degree. The actual vehicle model with a significant nonlinear characteristic is controlled by the steering wheel angle derived from the simple driver model,which can track the ideal path at the beginning of the test.However,a large error appears at the later stage of the test,which is illustrated in thesimulating results in Figs.9,10.In the test,road adhesion coefficient is 0.85.Since the vehicle exists understeering,if a vehicle bears no AFS,it is necessary for the driver to turn larger steering wheel angle to complete the test,as shown in Fig.11.In such a test,the driver needs to constantly amend the steering angle,thus increasing driving difficulty.The results in Figs.9,10 indicate that the vehicle with AFS can perform the high-speed DLC and PCS tests well,and the path tracking performance is significantly better than that with the fixed gear ratio system.Moreover,it is not necessary for the driver to change his driving habit. The active front steering system can automatically compensate understeering and correct oversteering.Therefore,the driving difficulty is reduced,the handling and stability of vehicle are enhanced,and the driving safety is greatly improved.

    Fig.9 High speed double lane change test

    Fig.10 High speed pylon course slalom test

    For checking the performance of the ADRC model,the test of angle step input of steering wheel was conducted.The test results are shown in Fig.12,where the solid line is the yaw rate step response curve without AFS,and the dashed line the yaw rate step response curve with AFS. The results in Fig.12 show that the overshoot and the response time of yaw rate of the vehicle with AFS are obviously smaller than that without AFS.Hence,the response performance of vehicle with AFSis improved,which alsoindicates that AFS can improve the handling and stability of vehicle.

    It is interesting that the same control parameters of ADRC are used to implement the DLC test,the PCS test and the step response test.The controlling effects of all tests are satisfying,which indicates that the ADRC controller has good robustness.

    Fig.11 Driver's input

    Fig.12 Yaw rate step response

    4 Conclusions

    An AFS model of feed-forward control and feedback control is proposed.Feed-forward controller using the known PD algorithm has realized the changeable response characteristic of the vehicle.The feedback controller using active disturbance rejection technology has enhanced the controllability and stability of vehicle when steering. In the active disturbance rejection control,since the nonlinear characteristic of vehicle regarded as a disturbance can be estimated in real time and be dynamically compensated by ESO,the precise nonlinear dynamic equation is not necessary.The simulation results show that ADRC using 2-DOF model has good control effects.Here the nonlinear control problem and the decoupling problem of parameters are solved.Vehicle with AFS performs well in path tracking,characteristic of lateral response,and robustness.

    Since the unmodeled dynamics,known or unknown disturbance and non-linear characteristic can be treated by using a unified way,the control method of ADRC is simple.Simultaneously,the design of ADRC controller does not need precise model and has no specific object,thus the controller has good the portability and adaptability.

    The AFS without considering the influence of longitudinal force is investigated.In the ADRC controller designed for AFS the influence of longitudinal force,and the influences of suspension and other control system should be addressed in the further research,as well as the integrated control of AFS with other systems.

    Acknowledgement

    This work was supported by the National Natural Science Foundation of China(No.51205191).

    [1] Reinelt W,Klier W,Reimann G,et al.Active front steering(part 2):Safety and functionality[C]∥SAE Technical Paper Series.USA:SAE Publication Group,Paper Number:2004-01-1101.

    [2] Wang Chunyan,Zhao Wanzhong,et al.Parameter optimization of electric power steering integrated with active front steering function[J].Transaction of Nanjing University of Aeronautics and Astronautics, 2012,29(1):96-102.

    [3] Kojo T,Suzumura M,Tsuchiya Y,et al.Development of active front steering control system[C]∥SAE Technical Paper Series.USA:SAE Publication Group,Paper Number:2005-01-0404.

    [4] Shang Gaogao,Hong Ze,Zhang hongdang,et al. Modeling of variable steering ratio with steady-state gain for active steering system[J].Journal of Jiangsu University:Natural Science Edition,2010,31(3):278-282.(in Chinese)

    [5] Liao Linqing,Wang Wei,Qu Xiang.Variable steer ratio of dynamic steering system based on yaw velocity gain[J].Journal of Chongqing University of Technology:Natural Science Edition,2011,25(4):1-5.(in Chinese)

    [6] Wei Jianwei,Wei Minxiang,Zhao Wanzhong.Control law of varied steering ratio based on driver-vehicleroad closed-loop system[J].Journal of Jiangsu University:Natural Science Edition,2011,32(6):652-657.(in Chinese)

    [7] Han Jingqing.Active disturbance rejection control technique the technique for estimating and compensating the uncertainties[M].Beijing:National Defense Industry Press,2008.(in Chinese)

    [8] Willy Klier,Wolfgang Reinelt.Active front steering(Part 1):Mathematical modeling and parameter estimation[C]∥SAE Technical Paper Series.USA:SAE Publication Group,Paper Number:2004-01-1102.

    [9] Jeonghoon Song.Design and evaluation of active front wheel steering system model and controller[C]∥SAE Technical Paper Series.USA:SAE Publication Group,Paper Number:2014-01-2000.

    [10]Guo K H.Drivers-vehiele closed-loop simulation of handling by“preselect optimal curvature method”[J]. Automotive Engineering,1984,3:1-16.(in Chinese)

    [11]Guo K H,Guan H.Modeling of driver/vehicle direction control system[J].Vehicle System Dynamics,1993,22(3-4):141-184.

    [12]Guo K H.The principle of vehicle handling dynamics[M].Nanjing:Science and Technology of Jiangsu Press,2011.(in Chinese)

    [13]National Bureau of Technical Supervision.GB/ T6323.1-94,Controllability and stability test procedure for automobiles Pylon course slalom test[S]. Beijing,1994.(in Chinese)

    [14]International Standardization Organization.ISO/FDIS 3888-1,Passenger cars Test track for a severe lane change manoeuvre part 1:Double lane change[S]. Beijing,1999.

    (Executive editor:Zhang Tong)

    U461.4 Document code:A Article ID:1005-1120(2015)04-0461-08

    *Corresponding author:Sang Nan,Associate Professor,E-mail:sangn@czu.cn.

    How to cite this article:Sang Nan,Wei Minxiang,Bai Yu.Control of vehicle active front steering based on active disturbance rejection feedback controller[J].Trans.Nanjing U.Aero.Astro.,2015,32(4):461-468.

    http://dx.doi.org/10.16356/j.1005-1120.2015.04.461

    (Received 21 November 2014;revised 26 January 2015;accepted 28 February 2015)

    猜你喜歡
    白玉
    古朗月行(節(jié)選)
    一蒂千花白玉團(tuán) 彭楹文 中國畫 181cm x 97cm 2023年
    春 筍
    春筍
    白玉羊首瓜棱形壺
    紫禁城(2020年1期)2020-08-13 09:37:02
    白玉花盆
    華夏太白玉 絲綢之路情——陜西省首屆絲綢之路“太白玉文化節(jié)”暨第二屆“太白玉研討會(huì)”盛大舉行
    寶藏(2018年1期)2018-04-18 07:40:05
    A White Heron
    青春歲月(2016年21期)2016-12-20 21:05:24
    Mass transport in a thin layer of power-law fluid in an Eulerian coordinate system*
    Oliver Twist
    亚洲成人久久性| 网址你懂的国产日韩在线| 国产在线精品亚洲第一网站| av片东京热男人的天堂| 日本一二三区视频观看| 嫁个100分男人电影在线观看| 久久久水蜜桃国产精品网| 丁香欧美五月| 亚洲国产精品sss在线观看| 国产一级毛片七仙女欲春2| ponron亚洲| 亚洲自偷自拍图片 自拍| 一级毛片高清免费大全| 亚洲在线观看片| 色av中文字幕| tocl精华| 禁无遮挡网站| 国产亚洲av嫩草精品影院| 国产高清有码在线观看视频| 久久精品综合一区二区三区| 亚洲熟妇中文字幕五十中出| 88av欧美| 男女床上黄色一级片免费看| 国产一区二区在线av高清观看| 国产黄a三级三级三级人| 国产精品免费一区二区三区在线| 国产蜜桃级精品一区二区三区| 亚洲欧美日韩无卡精品| 丰满的人妻完整版| 久久这里只有精品中国| 女人高潮潮喷娇喘18禁视频| 午夜影院日韩av| 亚洲自拍偷在线| 神马国产精品三级电影在线观看| 亚洲欧美日韩无卡精品| 国产真人三级小视频在线观看| 老汉色∧v一级毛片| 又紧又爽又黄一区二区| 久久国产精品影院| 三级国产精品欧美在线观看 | 久久精品国产清高在天天线| 九九久久精品国产亚洲av麻豆 | 制服丝袜大香蕉在线| 免费观看人在逋| 日日干狠狠操夜夜爽| 亚洲精品中文字幕一二三四区| а√天堂www在线а√下载| 香蕉丝袜av| 欧美zozozo另类| 91久久精品国产一区二区成人 | 少妇人妻一区二区三区视频| 少妇人妻一区二区三区视频| 欧美在线黄色| 精华霜和精华液先用哪个| 国产野战对白在线观看| 麻豆久久精品国产亚洲av| 99久久久亚洲精品蜜臀av| 一区二区三区高清视频在线| 亚洲成人久久性| 欧美又色又爽又黄视频| 在线视频色国产色| 久久久成人免费电影| 久久天堂一区二区三区四区| 亚洲熟妇中文字幕五十中出| 国产一区二区在线av高清观看| av在线天堂中文字幕| 老鸭窝网址在线观看| 嫁个100分男人电影在线观看| 色哟哟哟哟哟哟| 黑人巨大精品欧美一区二区mp4| 不卡一级毛片| av天堂在线播放| 丰满的人妻完整版| 国产精品九九99| 中文字幕熟女人妻在线| 最近最新中文字幕大全免费视频| 欧美zozozo另类| a在线观看视频网站| 国产成人aa在线观看| 99精品久久久久人妻精品| 琪琪午夜伦伦电影理论片6080| 丰满的人妻完整版| 97人妻精品一区二区三区麻豆| 国产三级在线视频| 国产精品综合久久久久久久免费| 亚洲 欧美 日韩 在线 免费| 又黄又爽又免费观看的视频| 白带黄色成豆腐渣| 日韩精品中文字幕看吧| 欧美乱色亚洲激情| 国产aⅴ精品一区二区三区波| 99精品久久久久人妻精品| 久久精品91无色码中文字幕| 国产精品爽爽va在线观看网站| 十八禁网站免费在线| 一进一出好大好爽视频| netflix在线观看网站| 国产久久久一区二区三区| 免费看日本二区| 在线看三级毛片| 老司机午夜十八禁免费视频| 欧美日韩一级在线毛片| tocl精华| 国产亚洲av嫩草精品影院| 久久性视频一级片| 国产亚洲av嫩草精品影院| 天天躁日日操中文字幕| 亚洲精品色激情综合| 久久天堂一区二区三区四区| 国产主播在线观看一区二区| 成人三级黄色视频| 91字幕亚洲| 午夜福利高清视频| 精品电影一区二区在线| 三级男女做爰猛烈吃奶摸视频| 变态另类成人亚洲欧美熟女| 亚洲国产精品合色在线| 欧美乱色亚洲激情| 在线国产一区二区在线| 麻豆一二三区av精品| 国产激情欧美一区二区| 精品国内亚洲2022精品成人| 国产精品久久电影中文字幕| 性欧美人与动物交配| 18禁黄网站禁片午夜丰满| 国产精品美女特级片免费视频播放器 | 亚洲成a人片在线一区二区| 后天国语完整版免费观看| 免费搜索国产男女视频| 欧美xxxx黑人xx丫x性爽| 岛国在线免费视频观看| 欧美日韩乱码在线| АⅤ资源中文在线天堂| 久久99热这里只有精品18| 久久精品aⅴ一区二区三区四区| 久久久久久人人人人人| 亚洲精品一卡2卡三卡4卡5卡| 一级黄色大片毛片| 国产成+人综合+亚洲专区| 亚洲第一电影网av| 国产激情久久老熟女| 国产亚洲欧美98| 日韩有码中文字幕| 久久精品影院6| 国产91精品成人一区二区三区| 国产精品综合久久久久久久免费| 精品国产超薄肉色丝袜足j| 午夜日韩欧美国产| 成人一区二区视频在线观看| 99热这里只有是精品50| 最新美女视频免费是黄的| 欧美3d第一页| aaaaa片日本免费| 精品日产1卡2卡| av黄色大香蕉| 久久热在线av| 国产人伦9x9x在线观看| 一卡2卡三卡四卡精品乱码亚洲| 99热6这里只有精品| 最近在线观看免费完整版| 黄片大片在线免费观看| 日本 欧美在线| 脱女人内裤的视频| 亚洲在线观看片| 超碰成人久久| 激情在线观看视频在线高清| 一个人看的www免费观看视频| 免费av不卡在线播放| 亚洲欧美精品综合一区二区三区| 国内精品一区二区在线观看| 一区二区三区高清视频在线| 成人国产一区最新在线观看| 日韩成人在线观看一区二区三区| 亚洲片人在线观看| 精品国产三级普通话版| 亚洲成人中文字幕在线播放| av欧美777| 亚洲美女视频黄频| 国产不卡一卡二| 99re在线观看精品视频| 国产高清激情床上av| 97人妻精品一区二区三区麻豆| 亚洲欧美日韩无卡精品| 久久人人精品亚洲av| 欧美av亚洲av综合av国产av| 97碰自拍视频| 国产精品,欧美在线| 日韩欧美三级三区| 亚洲国产欧洲综合997久久,| 亚洲精品美女久久av网站| 国产精品九九99| 麻豆国产97在线/欧美| 十八禁网站免费在线| 国产欧美日韩精品亚洲av| 亚洲美女视频黄频| 最近视频中文字幕2019在线8| 婷婷六月久久综合丁香| 深夜精品福利| 国产精品九九99| 天天添夜夜摸| 男女之事视频高清在线观看| 亚洲精品中文字幕一二三四区| 夜夜爽天天搞| 99久久国产精品久久久| 一边摸一边抽搐一进一小说| 俺也久久电影网| 成人av在线播放网站| 国产成人av教育| 国产成人aa在线观看| 欧美日韩一级在线毛片| 成人性生交大片免费视频hd| 久99久视频精品免费| 亚洲色图 男人天堂 中文字幕| 麻豆国产av国片精品| 免费在线观看亚洲国产| av片东京热男人的天堂| 国产亚洲欧美98| 成人三级做爰电影| 欧美中文综合在线视频| 国产成人av激情在线播放| 国产探花在线观看一区二区| 一本综合久久免费| 亚洲国产精品合色在线| 一级黄色大片毛片| 成人av一区二区三区在线看| 国产又色又爽无遮挡免费看| 无遮挡黄片免费观看| 久久这里只有精品中国| 欧美日韩中文字幕国产精品一区二区三区| 偷拍熟女少妇极品色| 亚洲成av人片免费观看| 精品久久蜜臀av无| 真实男女啪啪啪动态图| 成人精品一区二区免费| 欧美不卡视频在线免费观看| 三级男女做爰猛烈吃奶摸视频| ponron亚洲| 精华霜和精华液先用哪个| 热99在线观看视频| 中文字幕人妻丝袜一区二区| 综合色av麻豆| 狠狠狠狠99中文字幕| 美女cb高潮喷水在线观看 | 中文资源天堂在线| 一本综合久久免费| 在线观看66精品国产| 99视频精品全部免费 在线 | 国产精品九九99| 淫秽高清视频在线观看| 最近最新中文字幕大全免费视频| a级毛片在线看网站| 99在线视频只有这里精品首页| 亚洲第一电影网av| 成人欧美大片| 久久精品亚洲精品国产色婷小说| 麻豆成人av在线观看| 午夜视频精品福利| 色在线成人网| avwww免费| 亚洲精品粉嫩美女一区| 啪啪无遮挡十八禁网站| 国产精品美女特级片免费视频播放器 | 国模一区二区三区四区视频 | 日日夜夜操网爽| 黑人操中国人逼视频| 久久久久久人人人人人| 在线观看66精品国产| 黄色 视频免费看| 亚洲精品一区av在线观看| 一级a爱片免费观看的视频| 国产精品一及| 国产一区二区在线av高清观看| 久久久久久国产a免费观看| 男女下面进入的视频免费午夜| 老司机午夜福利在线观看视频| av福利片在线观看| 美女大奶头视频| 女警被强在线播放| 99riav亚洲国产免费| 黄片大片在线免费观看| 性欧美人与动物交配| 窝窝影院91人妻| 国产精品亚洲一级av第二区| 免费看a级黄色片| 深夜精品福利| 久久久久久久精品吃奶| 亚洲男人的天堂狠狠| 亚洲国产中文字幕在线视频| 久久久久久久久中文| 一级黄色大片毛片| 午夜福利在线在线| 99热只有精品国产| 日日干狠狠操夜夜爽| 亚洲人成电影免费在线| 精品99又大又爽又粗少妇毛片 | 婷婷精品国产亚洲av在线| 久久久久久久久久黄片| 国产精品爽爽va在线观看网站| 午夜福利在线观看吧| 国产成人欧美在线观看| 精品久久久久久久久久免费视频| 国产精品99久久久久久久久| 久久国产精品影院| 黄色成人免费大全| 欧美日韩国产亚洲二区| 国产精品99久久久久久久久| 91九色精品人成在线观看| 精品不卡国产一区二区三区| 女人高潮潮喷娇喘18禁视频| 精品乱码久久久久久99久播| 岛国在线免费视频观看| 久久久久性生活片| 国产探花在线观看一区二区| 最好的美女福利视频网| 亚洲精品国产精品久久久不卡| 中亚洲国语对白在线视频| 成年女人毛片免费观看观看9| 免费看光身美女| 麻豆久久精品国产亚洲av| 久久精品国产亚洲av香蕉五月| 亚洲性夜色夜夜综合| 男插女下体视频免费在线播放| xxxwww97欧美| 夜夜躁狠狠躁天天躁| 老司机在亚洲福利影院| 午夜视频精品福利| 久久久成人免费电影| 两个人视频免费观看高清| 午夜亚洲福利在线播放| 欧美日韩一级在线毛片| 在线播放国产精品三级| 搞女人的毛片| 国产极品精品免费视频能看的| 国产一区在线观看成人免费| 中文字幕熟女人妻在线| 男人的好看免费观看在线视频| 欧美色欧美亚洲另类二区| 国产精品一区二区免费欧美| 成人国产综合亚洲| 久久久久久人人人人人| 日韩欧美一区二区三区在线观看| 国产精品九九99| 夜夜夜夜夜久久久久| 一级毛片精品| 亚洲国产高清在线一区二区三| 91av网一区二区| 精品乱码久久久久久99久播| 叶爱在线成人免费视频播放| 好男人在线观看高清免费视频| 亚洲第一电影网av| 日本熟妇午夜| 日韩人妻高清精品专区| 国产91精品成人一区二区三区| 69av精品久久久久久| 夜夜夜夜夜久久久久| 校园春色视频在线观看| 欧美最黄视频在线播放免费| 男人舔女人的私密视频| 欧美黑人欧美精品刺激| 国产精品 国内视频| 色av中文字幕| 9191精品国产免费久久| 精品不卡国产一区二区三区| 精品国产三级普通话版| 日本免费a在线| 国内精品久久久久久久电影| 窝窝影院91人妻| 一区二区三区激情视频| 老汉色av国产亚洲站长工具| tocl精华| 国产人伦9x9x在线观看| 国产成+人综合+亚洲专区| 国内少妇人妻偷人精品xxx网站 | 高清毛片免费观看视频网站| 99久久无色码亚洲精品果冻| 国内精品久久久久久久电影| 啦啦啦韩国在线观看视频| 亚洲成人免费电影在线观看| 精华霜和精华液先用哪个| 嫩草影院精品99| 日韩有码中文字幕| 高清在线国产一区| 精品福利观看| av欧美777| 男女之事视频高清在线观看| 日本撒尿小便嘘嘘汇集6| av黄色大香蕉| 成人高潮视频无遮挡免费网站| 男女做爰动态图高潮gif福利片| 欧美色视频一区免费| 日韩欧美国产在线观看| 成人高潮视频无遮挡免费网站| 午夜免费观看网址| 两个人视频免费观看高清| 啪啪无遮挡十八禁网站| 99久久综合精品五月天人人| 中文字幕av在线有码专区| 亚洲 国产 在线| 久久婷婷人人爽人人干人人爱| 精品免费久久久久久久清纯| 国产麻豆成人av免费视频| 九色国产91popny在线| 麻豆成人av在线观看| 无遮挡黄片免费观看| 叶爱在线成人免费视频播放| 非洲黑人性xxxx精品又粗又长| 观看免费一级毛片| 国产精品一区二区精品视频观看| 18禁黄网站禁片免费观看直播| 视频区欧美日本亚洲| 午夜激情福利司机影院| 亚洲国产欧美网| 免费在线观看影片大全网站| 香蕉丝袜av| 免费在线观看成人毛片| 国产激情偷乱视频一区二区| 午夜视频精品福利| 国产欧美日韩精品亚洲av| 久久久久九九精品影院| 高清在线国产一区| 黄色日韩在线| 日韩 欧美 亚洲 中文字幕| 精品免费久久久久久久清纯| 成熟少妇高潮喷水视频| 99国产精品一区二区三区| 亚洲专区中文字幕在线| 在线永久观看黄色视频| 午夜亚洲福利在线播放| 99久久国产精品久久久| 级片在线观看| 精品一区二区三区视频在线观看免费| 亚洲美女视频黄频| 日日干狠狠操夜夜爽| 国产欧美日韩一区二区精品| 国产成人av激情在线播放| 亚洲电影在线观看av| 1024香蕉在线观看| 成人特级av手机在线观看| 国产精品美女特级片免费视频播放器 | 日本免费一区二区三区高清不卡| 亚洲国产欧洲综合997久久,| 国产精华一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 亚洲人成网站高清观看| 色老头精品视频在线观看| 2021天堂中文幕一二区在线观| 国产一区二区在线av高清观看| 国产伦精品一区二区三区视频9 | 桃红色精品国产亚洲av| 蜜桃久久精品国产亚洲av| 又黄又粗又硬又大视频| 国产野战对白在线观看| 精品国产乱码久久久久久男人| 中文在线观看免费www的网站| 亚洲电影在线观看av| 1024香蕉在线观看| 久久天躁狠狠躁夜夜2o2o| 欧美另类亚洲清纯唯美| 亚洲自偷自拍图片 自拍| 亚洲精品一区av在线观看| 我要搜黄色片| 欧美丝袜亚洲另类 | 免费看a级黄色片| 久久久水蜜桃国产精品网| 欧美xxxx黑人xx丫x性爽| 午夜久久久久精精品| 精品福利观看| 国产成年人精品一区二区| 中出人妻视频一区二区| 国产视频一区二区在线看| 男女床上黄色一级片免费看| 成人性生交大片免费视频hd| 成人一区二区视频在线观看| 国产精品亚洲一级av第二区| 国产伦精品一区二区三区视频9 | 午夜激情福利司机影院| 国产亚洲精品久久久久久毛片| 丁香欧美五月| 在线视频色国产色| 亚洲成人中文字幕在线播放| 国产欧美日韩一区二区三| 欧美乱妇无乱码| 校园春色视频在线观看| 三级国产精品欧美在线观看 | 美女高潮的动态| 国产伦在线观看视频一区| av国产免费在线观看| 男人和女人高潮做爰伦理| 一区二区三区国产精品乱码| 男女午夜视频在线观看| 国产高清有码在线观看视频| 91老司机精品| 亚洲成人中文字幕在线播放| av女优亚洲男人天堂 | 琪琪午夜伦伦电影理论片6080| 国产97色在线日韩免费| 国产精品1区2区在线观看.| 婷婷精品国产亚洲av在线| 美女高潮喷水抽搐中文字幕| 最近最新免费中文字幕在线| 久久久国产成人免费| 99久国产av精品| 国产欧美日韩精品一区二区| 精品国产亚洲在线| 久久99热这里只有精品18| 亚洲av电影在线进入| 三级毛片av免费| 国产激情偷乱视频一区二区| 嫩草影视91久久| 国产午夜精品久久久久久| 搡老妇女老女人老熟妇| 一进一出抽搐动态| 欧美大码av| 欧美日韩综合久久久久久 | 黄色片一级片一级黄色片| 欧美最黄视频在线播放免费| 国产一区二区三区视频了| 亚洲精品色激情综合| 欧美成人一区二区免费高清观看 | 窝窝影院91人妻| 成年女人看的毛片在线观看| 最新中文字幕久久久久 | 色哟哟哟哟哟哟| 国产伦精品一区二区三区视频9 | 天堂动漫精品| 哪里可以看免费的av片| 精品一区二区三区视频在线 | 麻豆成人午夜福利视频| 免费观看精品视频网站| 18禁裸乳无遮挡免费网站照片| 99久久无色码亚洲精品果冻| 偷拍熟女少妇极品色| 国产精品爽爽va在线观看网站| 1024香蕉在线观看| 1024香蕉在线观看| 波多野结衣高清作品| 色综合亚洲欧美另类图片| 人妻夜夜爽99麻豆av| 国产精品乱码一区二三区的特点| 成人一区二区视频在线观看| 美女扒开内裤让男人捅视频| x7x7x7水蜜桃| 午夜福利视频1000在线观看| 夜夜爽天天搞| 最近视频中文字幕2019在线8| 精品国产亚洲在线| 又紧又爽又黄一区二区| 一级毛片高清免费大全| 成人18禁在线播放| www国产在线视频色| 国产成人av教育| 最近在线观看免费完整版| 久久久久九九精品影院| 亚洲欧美日韩卡通动漫| 亚洲性夜色夜夜综合| 国产亚洲欧美在线一区二区| 美女高潮喷水抽搐中文字幕| 伊人久久大香线蕉亚洲五| 精品国产亚洲在线| 亚洲av成人一区二区三| 亚洲在线观看片| 欧洲精品卡2卡3卡4卡5卡区| 91麻豆av在线| 国产69精品久久久久777片 | 欧美午夜高清在线| 日韩欧美国产一区二区入口| 国产午夜福利久久久久久| 不卡av一区二区三区| 好看av亚洲va欧美ⅴa在| 亚洲av成人一区二区三| 久久精品国产综合久久久| 中文字幕高清在线视频| 成人欧美大片| 一级毛片高清免费大全| 中文资源天堂在线| 在线观看66精品国产| 欧美成人免费av一区二区三区| 国产高清激情床上av| 久久这里只有精品中国| 一区福利在线观看| 又粗又爽又猛毛片免费看| 淫秽高清视频在线观看| 免费看十八禁软件| 国产精品亚洲av一区麻豆| 老司机深夜福利视频在线观看| 好男人电影高清在线观看| 国产精品久久久久久精品电影| 国产一区二区三区在线臀色熟女| 欧美成人一区二区免费高清观看 | 99久久无色码亚洲精品果冻| xxxwww97欧美| 国产精品国产高清国产av| 欧美+亚洲+日韩+国产| 亚洲五月天丁香| 日本在线视频免费播放| 欧美日本视频| 人妻夜夜爽99麻豆av| 男女做爰动态图高潮gif福利片| 精品熟女少妇八av免费久了| 国产黄片美女视频| 亚洲无线在线观看| 久久久精品大字幕| 久久这里只有精品中国| 欧美中文日本在线观看视频| 国产爱豆传媒在线观看| 18禁裸乳无遮挡免费网站照片| 久久久久国产精品人妻aⅴ院| 国产一区二区在线av高清观看| 黄色丝袜av网址大全| 亚洲国产精品999在线| 亚洲人与动物交配视频| 网址你懂的国产日韩在线| 国产精品女同一区二区软件 | 欧美在线一区亚洲| 亚洲中文字幕日韩|