• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Control of Vehicle Active Front Steering Based on Active Disturbance Rejection Feedback Controller

    2015-11-24 06:57:45SangNan桑楠WeiMinxiang魏民祥BaiYu白玉
    關(guān)鍵詞:白玉

    Sang Nan(桑楠),Wei Minxiang(魏民祥),Bai Yu(白玉)

    1.College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China;

    2.College of Mechanical and Electrical Engineering,Changzhou Institute of Technology,Changzhou 213002,P.R.China

    Control of Vehicle Active Front Steering Based on Active Disturbance Rejection Feedback Controller

    Sang Nan(桑楠)1,2*,Wei Minxiang(魏民祥)1,Bai Yu(白玉)2

    1.College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China;

    2.College of Mechanical and Electrical Engineering,Changzhou Institute of Technology,Changzhou 213002,P.R.China

    A control method of active front steering(AFS)based on active disturbance rejection technique was proposed for solving the model nonlinearity and parameter decoupling control in the traditional control methods.The AFS controller consists of the proportional and derivative(PD)feed-forward controller and the active disturbance rejection feedback controller.To improve the steering response characteristics of a vehicle,a PD controller is designed to realize variable steering gear ratio,and to enhance the safety of vehicle when steering.An active disturbance rejection controller(ADRC)is designed to follow the expected yaw rate of the vehicle.According to the input and output of system,extended state observer(ESO)of ADRC can dynamically estimate internal and external disturbance of the system,thus easily realizing the model nonlinear and parameter decoupling control.The AFS controller is simulated and validated in Matlab and CarSim.The simulating results of double lane change(DLC)test and pylon course slalom(PCS)test show that the ADRC can well control the vehicle model to complete the road simulation test of DLC and PCS with small path tracking error.The simulating results of angle step test of steering wheel show that the vehicle under the control of ADRC demonstrates good lateral response characteristic.The controller regulates a wide range of parameters.The model has less precision requirements with good robustness.

    active disturbance rejection technique;active steering;variable ratio;extended state observer

    Nomenclature

    m/kg Mass of vehicle

    1z/(kg·m2)Moment of inertia about Z-axis

    k1/(N·rad-1)Front axle cornering stiffness

    k2/(N·rad-1)Rear axle cornering stiffness

    lf/m Distance between CG and front axle

    lr/m Distance between CG and rear axle

    δsw/rad Steering wheel angle

    δFF/rad Steering wheel angle of feedforward

    δFB/rad Steering wheel angle of feedback

    δp/rad Out angle of planetary gear trains

    θac/rad Angle of active front steering motor(actuator)

    θp/rad Angle of 6-gear

    δf/rad Steer angle of front wheels

    niTeeth of i-gear

    ψ/(rad·s-1)Yaw rate

    ψd/(rad·s-1)Yaw rate of reference model

    β/rad Sideslip angle of vehicle centre of mass

    βd/rad Sideslip angle of reference model

    G Mechanical steering gear ratio

    ux/(m·s-1)Longitudinal velocity

    g/(m·s-2)Acceleration due to gravity

    0 Introduction

    The traditional steering system completes the steering through the intervention of the driver. Therefore,it has the disadvantages of slow response speed,the incapability of correcting the driver's wrong operations,the helplessness in satisfying small gear ratio requirements at low speedand large gear ratio requirements at high speed,namely the so-called light and flexible contradiction.Owing to the small variation of gear ratio of traditional steering system,the steering characteristics of vehicle have nonlinear relations with vehicle speed.Therefore,the driver needs to constantly revise the vehicle direction to adapt to the steering characteristics of the vehicle so as to control the vehicle along the driver's desired track,which increases the driving burden and decreases the operability of the vehicle.Hydraulic power steering(HPS)or electric power steering(EPS)can change the transfer characteristics of steering force,but cannot change those of steering angle. Therefore,the problem that the vehicle steering characteristics change with the vehicle speed still exists.Active steering system was developed on the basis of power steering system,which includes active front steering(AFS),4 wheels steering(4WS)and steering by wire(SBW),etc. A variable gear ratio(normalized steering gear ratio)can be realized by controlling the input of the active steering motor to get better steering performance,thus improving the handling and stability of vehicle and enhaning driving safety[1,2].

    The light and flexible contradiction can be solved by variable ratio of active steering.Based on the state of the vehicle,an additional angle is applied to the front wheels for changing the lateral force to ensure that the lateral dynamics meet the requirements.According to yaw rate and sideslip angle,the feed-forward controller implements abasic variable ratio rule based on vehicle speed,and the feedback controller adjusts wheel angle[3]. Steer gain(yaw rate gain or lateral acceleration gain)is invariable with velocity[4,5];The variable ratio rule is amended based on invariable steer gain,and it is controlled by speed[6].In fact,nonlinear characteristics of the tire,the vertical load and the suspension compliance will influence the actual angle of front wheels and change the relation between gear ratio and speed,so as to affect the vehicle steering characteristics.In this paper,basic variable gear ratio is realized by using proportional and derivative(PD)feed-forward control,and the desired yaw rate is followed by using the active disturbance rejection control[7]. Known to the steering input and the output of vehicle(e.g.,steering angle,yaw rate,lateral acceleration,speed),active disturbance rejection controller(ADRC)can dynamically track targets. In order to verify the effectiveness of the proposed control methods,the drivers'commands are given by a single-point preview driver model and the driver-vehicle-road closed-loop control model is established in Matlab software.The Car Sim vehicle model is controlled by this driver model to complete the road simulating test of high-speed double lane change(DLC)and pylon course slalom(PCS).

    1 Variable Ratio Steering System Configuration and Model

    1.1 Variable ratio steering system configuration

    After adding the planetary gear mechanism in HPS or EPS,the variability of steering gear ratio was implemented by superposition of the movement of steering wheel and active front steering motor.Such system[8]was first applied in the BMW 5 series.The configuration of the variable ratio steering system is shown in Fig.1.

    Fig.1 Variable ratio steering system configuration

    As shown in Fig.1,while the steering system is working,the rotating direction ofδpand δsware the same,where Gpis the reduction ratio of motor and part 6,Gp=θac/θp.Compound gear train has double row planetary gear train,including sun gears(part 1,2,5,6),planet gears(part 3,4)and planet carrier(part H),among which 5-sun gear is fixed.1-3-H-5 is an elementa-ry epicyclical gear train,2-4-H-6 is a differential gear train,the system degree of freedom(DOF)is 2,and the outputδpis determined byδswandθp. The relation amongδp,δswandθpsatisfies

    From Eq.(1),δpcan be expressed as

    In this system,the mechanical steering gear ratio G was set to 17.The front wheel angleδfequals toδp/G andαequals to n5/n1,then the vehicle steering gear ratio is defined as

    Whenθp=0,thenδp=δsw,the steering gear ratio i is constant.Active steering system becomes a constant ratio steering system.Whenθp≠0,i is determined by the values ofθp/δswas expressed in Eq.(3).Using the steering system as Fig.1,steering variable gear ratio can be realized by controlling the inputθpor the actual control inputθac.

    Variable gear ratio can be realized by the active front steering shown in Fig.1,and its control algorithm is shown in Fig.2.According to the driver's input and vehicle speed,feed-forward controller calculates feed-forward steering wheel angleδFF.According toψd,βd,ψandβ,feedback controller calculates feedback steering wheel angle δFB.Feed-forward control algorithm is actually a proportional&derivative(PD)algorithm,and feedback control algorithm is an active disturbance rejection algorithm.In addition,one of the effects of the active steering control is that the response characteristic of the vehicle is changeable.This function is realized by feed-forward controller of the steering control,and the detailed algorithm will be described in Section 1.2.Another effect of the active steering control is that the vehicle response is less than the safety threshold.This function is realized by the feedback controller of the steering control,and the detailed algorithm will be described in Section 2.4.

    1.2 Basic variable gear ratio control

    Fig.2 Vehicle active steering control algorithm

    The active front steering control system is designed to realize the functions mentioned above. The steering angle of the front wheel is determined by the driver and the actuator(motor). This angle can be controlled optionally by actively controlling the operating angle of the actuator. That is why the system is called the active front steering(AFS).

    The relation among the front wheel angle,the actuator operating angle and the steering wheel angle is shown as follows[3]

    δFFis calculated as follows

    where kvis the proportional gain,and ksthe derivative gain.kvand ksare related to the speed of vehicle.SubstitutingδFFof Eq.(5)into Eq.(4),its Laplace transform can be obtained.

    where s is the Laplace operator.By setting up the relationships of kvand kswith the speed to realize the rules of basic variable gear ratio,the vehicle response characteristics can be actively controlled. In reference to BMW and Refs.[3,9]about the range of the steering variable ratio and the relation between the variable ratio and the speed of vehicle,the kinematical function of the steering ratio is designed in this paper,as shown in Fig.3.

    Fig.3 Steering variable ratio rule

    In active front steering as shown in Fig.1,using control methods above,actual input of me-chanical steering gear isδp=δsw+δFF+δFB.Compared with Eq.(2),the value ofθpcan be determined,which equals to-(δFF+δFB)n1/n5.Then,the expected variable gear ratio and steering characteristic can be realized by controlling the angle of active steering motor.θaccan be expressed as

    2 Driver-Vehicle-Road Closed-Loop Model

    2.1 Driver model

    Driver,vehicle and road are various aspects in the manipulation of vehicle.During driving,the driver has to constantly modify the vehicle direction according to the vehicle state and road conditions.The three aspects constitute a drivervehicle-road closed-loop system.The"preview optimal curvature model"[10-12]proposed by Guo determines steering wheel angle based on single preview hypothesis and optimal curvature control. This model can simultaneously take the dynamic response characteristics of the vehicle and hysteresis of driver's response into account.It is called the single point preview driver model[10],as shown in Fig.4.

    Fig.4 Single point preview driver model

    In Fig.4,T is the preview time,c(s)=c0(1+ Tcs),c0=u2x/Gay,and Gayis the steady-state gain of lateral acceleration.For a skilled driver,T can be set to 0.8 s,Tc0.406 8 s,td0.3 s,and th0.1s[9-11].In actual application of the proposed model,the lateral speed and lateral displacement are given by the actual vehicle or the simulation model of the vehicle.In this paper,the drivers'input of the simulating vehicle is given by the single-point preview driver model.

    2.2 Linear 2-DOF vehicle model

    The 2-DOF linear vehicle model is commonly used in the study of steering movement(Fig.5). The dynamic equation is described as[13]

    Substitutingδf=(δsw+δFF+δFB)/G into Eq.(8),the following equations can be derived.

    Fig.5 2-DOF vehicle model

    where K is the understeering coefficient of vehicle andμthe adhesion coefficient of road.

    2.4 Active disturbances rejection feedback controller

    In this section,the design of ADRC[7]will be discussed in detail.ADRC is the feedback controller,and active angleδFBoperated by target yaw rate follow-up control.The actual vehicle model is much more complicated than the linear 2-DOF vehicle model with a lot of nonlinear problems. Obviously,compared with the actual vehicle mod-

    2.3 Reference model

    The expected yaw rateψdis determined by the desired linear 2-DOF model.Considering the road adhesion conditions of vehicle driving,the expected yaw rate responseψdon steering wheel under the angle input is expressed asel,the linear model of 2-DOF is over-simplified. Therefore,the proposed model contains a lot of unmodeled dynamics and its accuracy is poor. Control method depended on the precision of model is bad at the result control.The nonlinear coupling problem related to 2-DOF model requires a large amount of calculations to be decoupled.ADRC can adopt nonlinear feedback to implement dynamic compensation only based on the input and output of the system.Therefore,the first advantage of the ADRC model is that the control system can be treated by using a unified way,no matter the system is linear or nonlinear,certain or uncertain.The second advantage of the model is that in the rejection of disturbance,a specific and observable model for external disturbance is not necessary.Other advantages include:(1)The control algorithm does not need to identify the control object.(2)The control algorithm has good portability.(3)For the coupled problem of dynamic equation,only the static coupling need to be considered instead of the dynamic coupling.

    In Eq.(5),.δswcan be obtained from.δswby a differential process,which can be obtained from δswby a differential process.The method for obtaining.δswis

    Similarly,the differential process mentioned above is adoped in the desired referenceψd,expressed in Eq.(13).This is called the transition process in ADRC technique.The first function is to increase the adjustable range of parameters; the second function is to provide error signal for ADRC.

    In Eq.(9a),f11(ψ,β)is the sum of disturbance,which includes unmodeled error,parameter error and internal-external disturbance.Extended state observer(ESO)listed in Eq.(14)estimates the system states and the sum of disturbance.

    where z1,z2,and z3estimate states x1,x2,and x3,respectively and x3equals to f11(ψ,β).In Eq.(14),function Fal(·)is expressed as

    whereξandΔare the positive numbers,and sign(·)is the signum function.

    The state errors of system e1and e2are defined as v1·(-z1)and v2·(-z2),respectively,and they are used in the design of ADRC.In this paper,the feedback control law of error u0is expressed as

    In the ADRC algorithm,δFBis dynamically calculated by ESO using u0and z3,expressed in Eq.(17).

    where f12is a known disturbance.Substituting δFBof Eq.(17)into Eq.(14),the two-order ESO can be expressed as

    Eq.(18)shows that ESO becomes a pure integrator tandem observer.δswis given by the driver model.ψdis obtained by the reference model and ESO is designed based on the linear 2-DOF model.Thanks to the fact that the nonlinear characteristics of model treated as disturbances are all included in f11,ESO can guarantee enough preci-sion.

    So far,the ADRC and the PD controller have been discussed in this section and Section 1.2,respectively.According to the above discussion,the control model of AFS is shown in Fig.6.Here,the ADRC controller is illustrated inside the dashed box in Fig.6.

    Fig.6 Control model of active front steering

    It can be seen from Eq.(8)that yaw rateψ and sideslip angleβare coupled.Using the ADRC controller,as long as y*is measurable,f11(ψ,β)can be estimated by z3and the decoupling control ofψandβis realized by ADRC without complex decoupling of matrix computation.Therefore,the algorithm of ADRC can ensure good real-time performance.

    3 Simulation Analysis

    In order to validate control effects of steering variable gear ratio and tracking performance of path of the proposed ADRC,a driver-vehicle-road closed-loop control model is established in Matlab/Simulink,which controls vehicle model of CarSim software(CS B-CLASS)to complete the tests of DLC and PCS.These two tests were carried out at speeds of 100 km/h and 120 km/h,respectively.The test path and placing of cones are adaptively set in accordance with the standard test[13,14]and the changes of speed(Technical Report of State Key Laboratory of Automobile Dynamic Simulation,Jilin University).Placing of cones for marking the pylon course slalom track is shown in Fig.7,and that for marking the double lane-change track is shown in Fig.8.

    Fig.7 Placing of cones for marking pylon course slalom track

    Fig.8 Placing of cones for marking double lanechange track

    In Figs.7,8,the center line of the trajectory surrounded by cones is a broken one,which is impossible for the vehicle to follow such a trajectory.Therefore,the non-smooth trajectory must be preview correction[11]in the simulation tests.The lines AB and GH in PCS test and the lines AB and CD in DLC test are replaced by cubic spline curves that satisfy the boundary conditions(The whole curve is smooth and continuous).The line B-G targeted trajectory in PCS test is a cosine curve,with the amplitude of d,as shown in Fig.7.The parameters of simulation vehicle are listed in Table 1.

    Table 1 Basic parameters of the vehicle

    The steering system of the existing vehicle has a feature of understeering to some degree. The actual vehicle model with a significant nonlinear characteristic is controlled by the steering wheel angle derived from the simple driver model,which can track the ideal path at the beginning of the test.However,a large error appears at the later stage of the test,which is illustrated in thesimulating results in Figs.9,10.In the test,road adhesion coefficient is 0.85.Since the vehicle exists understeering,if a vehicle bears no AFS,it is necessary for the driver to turn larger steering wheel angle to complete the test,as shown in Fig.11.In such a test,the driver needs to constantly amend the steering angle,thus increasing driving difficulty.The results in Figs.9,10 indicate that the vehicle with AFS can perform the high-speed DLC and PCS tests well,and the path tracking performance is significantly better than that with the fixed gear ratio system.Moreover,it is not necessary for the driver to change his driving habit. The active front steering system can automatically compensate understeering and correct oversteering.Therefore,the driving difficulty is reduced,the handling and stability of vehicle are enhanced,and the driving safety is greatly improved.

    Fig.9 High speed double lane change test

    Fig.10 High speed pylon course slalom test

    For checking the performance of the ADRC model,the test of angle step input of steering wheel was conducted.The test results are shown in Fig.12,where the solid line is the yaw rate step response curve without AFS,and the dashed line the yaw rate step response curve with AFS. The results in Fig.12 show that the overshoot and the response time of yaw rate of the vehicle with AFS are obviously smaller than that without AFS.Hence,the response performance of vehicle with AFSis improved,which alsoindicates that AFS can improve the handling and stability of vehicle.

    It is interesting that the same control parameters of ADRC are used to implement the DLC test,the PCS test and the step response test.The controlling effects of all tests are satisfying,which indicates that the ADRC controller has good robustness.

    Fig.11 Driver's input

    Fig.12 Yaw rate step response

    4 Conclusions

    An AFS model of feed-forward control and feedback control is proposed.Feed-forward controller using the known PD algorithm has realized the changeable response characteristic of the vehicle.The feedback controller using active disturbance rejection technology has enhanced the controllability and stability of vehicle when steering. In the active disturbance rejection control,since the nonlinear characteristic of vehicle regarded as a disturbance can be estimated in real time and be dynamically compensated by ESO,the precise nonlinear dynamic equation is not necessary.The simulation results show that ADRC using 2-DOF model has good control effects.Here the nonlinear control problem and the decoupling problem of parameters are solved.Vehicle with AFS performs well in path tracking,characteristic of lateral response,and robustness.

    Since the unmodeled dynamics,known or unknown disturbance and non-linear characteristic can be treated by using a unified way,the control method of ADRC is simple.Simultaneously,the design of ADRC controller does not need precise model and has no specific object,thus the controller has good the portability and adaptability.

    The AFS without considering the influence of longitudinal force is investigated.In the ADRC controller designed for AFS the influence of longitudinal force,and the influences of suspension and other control system should be addressed in the further research,as well as the integrated control of AFS with other systems.

    Acknowledgement

    This work was supported by the National Natural Science Foundation of China(No.51205191).

    [1] Reinelt W,Klier W,Reimann G,et al.Active front steering(part 2):Safety and functionality[C]∥SAE Technical Paper Series.USA:SAE Publication Group,Paper Number:2004-01-1101.

    [2] Wang Chunyan,Zhao Wanzhong,et al.Parameter optimization of electric power steering integrated with active front steering function[J].Transaction of Nanjing University of Aeronautics and Astronautics, 2012,29(1):96-102.

    [3] Kojo T,Suzumura M,Tsuchiya Y,et al.Development of active front steering control system[C]∥SAE Technical Paper Series.USA:SAE Publication Group,Paper Number:2005-01-0404.

    [4] Shang Gaogao,Hong Ze,Zhang hongdang,et al. Modeling of variable steering ratio with steady-state gain for active steering system[J].Journal of Jiangsu University:Natural Science Edition,2010,31(3):278-282.(in Chinese)

    [5] Liao Linqing,Wang Wei,Qu Xiang.Variable steer ratio of dynamic steering system based on yaw velocity gain[J].Journal of Chongqing University of Technology:Natural Science Edition,2011,25(4):1-5.(in Chinese)

    [6] Wei Jianwei,Wei Minxiang,Zhao Wanzhong.Control law of varied steering ratio based on driver-vehicleroad closed-loop system[J].Journal of Jiangsu University:Natural Science Edition,2011,32(6):652-657.(in Chinese)

    [7] Han Jingqing.Active disturbance rejection control technique the technique for estimating and compensating the uncertainties[M].Beijing:National Defense Industry Press,2008.(in Chinese)

    [8] Willy Klier,Wolfgang Reinelt.Active front steering(Part 1):Mathematical modeling and parameter estimation[C]∥SAE Technical Paper Series.USA:SAE Publication Group,Paper Number:2004-01-1102.

    [9] Jeonghoon Song.Design and evaluation of active front wheel steering system model and controller[C]∥SAE Technical Paper Series.USA:SAE Publication Group,Paper Number:2014-01-2000.

    [10]Guo K H.Drivers-vehiele closed-loop simulation of handling by“preselect optimal curvature method”[J]. Automotive Engineering,1984,3:1-16.(in Chinese)

    [11]Guo K H,Guan H.Modeling of driver/vehicle direction control system[J].Vehicle System Dynamics,1993,22(3-4):141-184.

    [12]Guo K H.The principle of vehicle handling dynamics[M].Nanjing:Science and Technology of Jiangsu Press,2011.(in Chinese)

    [13]National Bureau of Technical Supervision.GB/ T6323.1-94,Controllability and stability test procedure for automobiles Pylon course slalom test[S]. Beijing,1994.(in Chinese)

    [14]International Standardization Organization.ISO/FDIS 3888-1,Passenger cars Test track for a severe lane change manoeuvre part 1:Double lane change[S]. Beijing,1999.

    (Executive editor:Zhang Tong)

    U461.4 Document code:A Article ID:1005-1120(2015)04-0461-08

    *Corresponding author:Sang Nan,Associate Professor,E-mail:sangn@czu.cn.

    How to cite this article:Sang Nan,Wei Minxiang,Bai Yu.Control of vehicle active front steering based on active disturbance rejection feedback controller[J].Trans.Nanjing U.Aero.Astro.,2015,32(4):461-468.

    http://dx.doi.org/10.16356/j.1005-1120.2015.04.461

    (Received 21 November 2014;revised 26 January 2015;accepted 28 February 2015)

    猜你喜歡
    白玉
    古朗月行(節(jié)選)
    一蒂千花白玉團(tuán) 彭楹文 中國畫 181cm x 97cm 2023年
    春 筍
    春筍
    白玉羊首瓜棱形壺
    紫禁城(2020年1期)2020-08-13 09:37:02
    白玉花盆
    華夏太白玉 絲綢之路情——陜西省首屆絲綢之路“太白玉文化節(jié)”暨第二屆“太白玉研討會(huì)”盛大舉行
    寶藏(2018年1期)2018-04-18 07:40:05
    A White Heron
    青春歲月(2016年21期)2016-12-20 21:05:24
    Mass transport in a thin layer of power-law fluid in an Eulerian coordinate system*
    Oliver Twist
    老熟妇乱子伦视频在线观看| 欧美丝袜亚洲另类| 97碰自拍视频| 日韩欧美 国产精品| 日韩欧美国产在线观看| 国产精品三级大全| 永久网站在线| 久久精品国产亚洲av涩爱 | 日产精品乱码卡一卡2卡三| 国产精品电影一区二区三区| 日本撒尿小便嘘嘘汇集6| 国产精品精品国产色婷婷| 91av网一区二区| 在线观看免费视频日本深夜| 直男gayav资源| 免费观看的影片在线观看| 国产成年人精品一区二区| 国产三级中文精品| 欧美不卡视频在线免费观看| 欧美极品一区二区三区四区| 亚洲av第一区精品v没综合| www日本黄色视频网| 熟女电影av网| 日韩精品中文字幕看吧| 丝袜喷水一区| 久久99热6这里只有精品| 99久久无色码亚洲精品果冻| 天堂√8在线中文| 亚洲美女黄片视频| 变态另类成人亚洲欧美熟女| 成人美女网站在线观看视频| 欧美色欧美亚洲另类二区| 精品久久久久久久末码| 亚洲精品一区av在线观看| 成人高潮视频无遮挡免费网站| 级片在线观看| 色视频www国产| 六月丁香七月| 99久久中文字幕三级久久日本| 男女啪啪激烈高潮av片| 日韩,欧美,国产一区二区三区 | 黄色日韩在线| 少妇熟女aⅴ在线视频| 亚洲国产精品国产精品| 1024手机看黄色片| 俄罗斯特黄特色一大片| 一级a爱片免费观看的视频| av中文乱码字幕在线| 亚洲色图av天堂| 欧美一级a爱片免费观看看| 最近的中文字幕免费完整| 男女视频在线观看网站免费| 精品一区二区免费观看| 亚洲人成网站高清观看| 尤物成人国产欧美一区二区三区| 久久久精品欧美日韩精品| 天天躁夜夜躁狠狠久久av| 精品久久久久久成人av| 国产人妻一区二区三区在| 日韩欧美免费精品| 日日撸夜夜添| 蜜臀久久99精品久久宅男| 97碰自拍视频| 女同久久另类99精品国产91| 午夜日韩欧美国产| 淫妇啪啪啪对白视频| 成人鲁丝片一二三区免费| 国产亚洲av嫩草精品影院| 偷拍熟女少妇极品色| 草草在线视频免费看| 91午夜精品亚洲一区二区三区| 婷婷亚洲欧美| 久久久久久久久中文| 国产久久久一区二区三区| 日韩亚洲欧美综合| 免费观看人在逋| 亚洲最大成人中文| 一个人看视频在线观看www免费| 小说图片视频综合网站| 99视频精品全部免费 在线| 大型黄色视频在线免费观看| 波多野结衣高清无吗| 老熟妇仑乱视频hdxx| 蜜臀久久99精品久久宅男| 久久久午夜欧美精品| 蜜臀久久99精品久久宅男| 五月伊人婷婷丁香| 3wmmmm亚洲av在线观看| 五月玫瑰六月丁香| 99久久中文字幕三级久久日本| 日本精品一区二区三区蜜桃| 久久国产乱子免费精品| 丰满人妻一区二区三区视频av| 亚洲av免费在线观看| 精品午夜福利在线看| 波多野结衣高清作品| 日日干狠狠操夜夜爽| 18禁在线无遮挡免费观看视频 | 免费黄网站久久成人精品| 人人妻人人看人人澡| 国产亚洲精品av在线| 国产探花极品一区二区| 人妻制服诱惑在线中文字幕| 大香蕉久久网| 大型黄色视频在线免费观看| 国产男靠女视频免费网站| 日本色播在线视频| 最新中文字幕久久久久| 一级毛片电影观看 | 日日干狠狠操夜夜爽| 日韩 亚洲 欧美在线| 韩国av在线不卡| 国产精品伦人一区二区| 国产精品伦人一区二区| 欧美成人免费av一区二区三区| 大又大粗又爽又黄少妇毛片口| 午夜视频国产福利| 欧美日韩国产亚洲二区| 亚洲av中文字字幕乱码综合| 久久久精品大字幕| 欧美绝顶高潮抽搐喷水| 国产一区二区在线av高清观看| 中文字幕久久专区| 国产精品精品国产色婷婷| 国产极品精品免费视频能看的| 九九爱精品视频在线观看| 日本免费一区二区三区高清不卡| 精品99又大又爽又粗少妇毛片| 亚洲最大成人av| 免费av不卡在线播放| 亚洲在线自拍视频| 麻豆乱淫一区二区| 国产成人福利小说| 永久网站在线| 中文字幕av在线有码专区| 六月丁香七月| 2021天堂中文幕一二区在线观| 免费无遮挡裸体视频| 国产精品不卡视频一区二区| 亚洲最大成人手机在线| 色吧在线观看| 精品人妻偷拍中文字幕| a级一级毛片免费在线观看| 美女 人体艺术 gogo| 香蕉av资源在线| 国产精品一区二区性色av| 亚洲成av人片在线播放无| 欧美极品一区二区三区四区| 久久天躁狠狠躁夜夜2o2o| a级毛片免费高清观看在线播放| 在线天堂最新版资源| 天美传媒精品一区二区| 人人妻人人澡人人爽人人夜夜 | 久久久久久久久久久丰满| 欧美日本亚洲视频在线播放| 欧洲精品卡2卡3卡4卡5卡区| 99在线人妻在线中文字幕| 伊人久久精品亚洲午夜| 最近在线观看免费完整版| 伦精品一区二区三区| 可以在线观看的亚洲视频| 久久婷婷人人爽人人干人人爱| 级片在线观看| 日韩av在线大香蕉| 变态另类成人亚洲欧美熟女| 久99久视频精品免费| 欧美日韩乱码在线| 亚洲欧美成人精品一区二区| 99riav亚洲国产免费| 午夜福利18| 如何舔出高潮| 18禁在线播放成人免费| 久久精品人妻少妇| 亚洲性久久影院| 日韩 亚洲 欧美在线| 精品人妻视频免费看| 亚洲精华国产精华液的使用体验 | 日本黄色片子视频| 亚洲av中文av极速乱| 亚洲人成网站高清观看| 淫秽高清视频在线观看| 人妻夜夜爽99麻豆av| 麻豆av噜噜一区二区三区| 亚洲最大成人av| 国产精品一区二区性色av| 晚上一个人看的免费电影| 女人十人毛片免费观看3o分钟| 搡女人真爽免费视频火全软件 | 乱码一卡2卡4卡精品| 亚洲成人久久爱视频| 99在线视频只有这里精品首页| 99在线视频只有这里精品首页| 插阴视频在线观看视频| 亚洲五月天丁香| 国内精品宾馆在线| 最近在线观看免费完整版| 99在线视频只有这里精品首页| 免费人成视频x8x8入口观看| 日日摸夜夜添夜夜爱| 男女视频在线观看网站免费| 欧美高清成人免费视频www| 在线观看一区二区三区| 久久久午夜欧美精品| 全区人妻精品视频| 三级国产精品欧美在线观看| 欧美日本亚洲视频在线播放| 麻豆国产97在线/欧美| 夜夜爽天天搞| 欧美zozozo另类| 插阴视频在线观看视频| 美女内射精品一级片tv| 一区二区三区免费毛片| 国产精品综合久久久久久久免费| 少妇被粗大猛烈的视频| 午夜福利18| 嫩草影视91久久| 国产精品1区2区在线观看.| 波野结衣二区三区在线| 亚洲第一区二区三区不卡| 精品国内亚洲2022精品成人| 成人一区二区视频在线观看| 看免费成人av毛片| 国产白丝娇喘喷水9色精品| 欧美日韩综合久久久久久| 亚洲电影在线观看av| 麻豆久久精品国产亚洲av| 蜜臀久久99精品久久宅男| 婷婷色综合大香蕉| 国产私拍福利视频在线观看| 有码 亚洲区| 日韩中字成人| 久久久成人免费电影| 日韩三级伦理在线观看| 91久久精品国产一区二区三区| 久久久久久大精品| 欧美日韩精品成人综合77777| www.色视频.com| a级毛片免费高清观看在线播放| 欧美一区二区亚洲| 日本黄色片子视频| 亚洲图色成人| 波多野结衣巨乳人妻| 伦精品一区二区三区| 天堂av国产一区二区熟女人妻| 99久久成人亚洲精品观看| 国产免费男女视频| h日本视频在线播放| 成年女人看的毛片在线观看| 亚洲精品在线观看二区| 九九久久精品国产亚洲av麻豆| 久久欧美精品欧美久久欧美| 国产精品乱码一区二三区的特点| 黄色配什么色好看| 国产色爽女视频免费观看| 国产精品电影一区二区三区| av福利片在线观看| 自拍偷自拍亚洲精品老妇| 国产av在哪里看| 亚洲自偷自拍三级| 精品少妇黑人巨大在线播放 | 看片在线看免费视频| 国内精品久久久久精免费| 精品国内亚洲2022精品成人| 国产伦精品一区二区三区四那| 国产亚洲精品综合一区在线观看| 久久久久国产精品人妻aⅴ院| 久久亚洲国产成人精品v| 啦啦啦观看免费观看视频高清| 99久久成人亚洲精品观看| 成年免费大片在线观看| 男人狂女人下面高潮的视频| 国产v大片淫在线免费观看| 草草在线视频免费看| 久久久精品欧美日韩精品| 国内揄拍国产精品人妻在线| 欧美成人免费av一区二区三区| 国产精品一二三区在线看| 日韩一区二区视频免费看| 国产成人精品久久久久久| 色综合亚洲欧美另类图片| 色播亚洲综合网| 99热这里只有是精品在线观看| 亚洲人成网站在线播| 国产精品亚洲美女久久久| 亚洲最大成人中文| ponron亚洲| 97人妻精品一区二区三区麻豆| 观看美女的网站| 能在线免费观看的黄片| 亚洲丝袜综合中文字幕| 亚洲精品色激情综合| 日本爱情动作片www.在线观看 | 91在线观看av| 国产精品久久久久久亚洲av鲁大| 欧美性猛交黑人性爽| 51国产日韩欧美| 亚洲丝袜综合中文字幕| 午夜福利高清视频| 欧美精品国产亚洲| 国产精品嫩草影院av在线观看| 免费观看精品视频网站| 国产精品综合久久久久久久免费| 天堂√8在线中文| 能在线免费观看的黄片| 免费观看精品视频网站| av在线蜜桃| 色哟哟·www| 最近的中文字幕免费完整| 赤兔流量卡办理| 自拍偷自拍亚洲精品老妇| 激情 狠狠 欧美| 麻豆av噜噜一区二区三区| 搡老熟女国产l中国老女人| 村上凉子中文字幕在线| 黄色视频,在线免费观看| 精品人妻熟女av久视频| 联通29元200g的流量卡| 老熟妇仑乱视频hdxx| 日韩强制内射视频| 久久精品国产亚洲网站| 亚洲成av人片在线播放无| av中文乱码字幕在线| 日韩成人av中文字幕在线观看 | 午夜福利18| 狠狠狠狠99中文字幕| 久久久久久久久久久丰满| 精品一区二区三区视频在线观看免费| 国产精品av视频在线免费观看| 免费搜索国产男女视频| 国产av一区在线观看免费| 国产伦精品一区二区三区四那| 久久热精品热| 18禁在线播放成人免费| 狂野欧美白嫩少妇大欣赏| 亚洲欧美精品综合久久99| 天天一区二区日本电影三级| 亚洲国产精品sss在线观看| 亚洲熟妇熟女久久| 亚洲成a人片在线一区二区| 国产精品乱码一区二三区的特点| av国产免费在线观看| 99九九线精品视频在线观看视频| 国产亚洲av嫩草精品影院| 一本精品99久久精品77| 网址你懂的国产日韩在线| 久久精品国产亚洲av香蕉五月| 国产精品久久视频播放| 国内精品久久久久精免费| 国产极品精品免费视频能看的| 亚洲av成人av| 可以在线观看的亚洲视频| 日韩欧美在线乱码| 免费看a级黄色片| 最近中文字幕高清免费大全6| 亚洲av电影不卡..在线观看| 99久久九九国产精品国产免费| 99国产极品粉嫩在线观看| 女生性感内裤真人,穿戴方法视频| 欧美3d第一页| 真人做人爱边吃奶动态| 日日啪夜夜撸| 久久人人爽人人爽人人片va| 成人性生交大片免费视频hd| 91在线观看av| 亚洲国产精品sss在线观看| 丝袜美腿在线中文| 天堂影院成人在线观看| 国产精品久久久久久久电影| 日本精品一区二区三区蜜桃| 久久久国产成人免费| 免费一级毛片在线播放高清视频| 特级一级黄色大片| 你懂的网址亚洲精品在线观看 | 男人和女人高潮做爰伦理| 99热精品在线国产| 国产精品,欧美在线| 一级黄片播放器| 在线免费观看的www视频| 久久精品综合一区二区三区| 国产亚洲av嫩草精品影院| 色5月婷婷丁香| 国产精品久久久久久精品电影| 久久精品国产亚洲网站| 欧美不卡视频在线免费观看| 天堂动漫精品| 欧美中文日本在线观看视频| 在线天堂最新版资源| 国产黄a三级三级三级人| 国产精品伦人一区二区| 国产亚洲精品久久久久久毛片| a级毛片a级免费在线| 别揉我奶头 嗯啊视频| 天天躁日日操中文字幕| 高清毛片免费看| 变态另类成人亚洲欧美熟女| av国产免费在线观看| www日本黄色视频网| 日韩高清综合在线| 97超碰精品成人国产| 亚洲av免费在线观看| 性欧美人与动物交配| 身体一侧抽搐| 亚洲七黄色美女视频| 一级毛片aaaaaa免费看小| 变态另类成人亚洲欧美熟女| 一进一出好大好爽视频| av女优亚洲男人天堂| 一个人看的www免费观看视频| 99久久成人亚洲精品观看| 国产黄片美女视频| 亚洲成a人片在线一区二区| 天美传媒精品一区二区| 欧洲精品卡2卡3卡4卡5卡区| 自拍偷自拍亚洲精品老妇| 亚洲va在线va天堂va国产| 免费一级毛片在线播放高清视频| 日韩制服骚丝袜av| 桃色一区二区三区在线观看| 亚洲欧美精品自产自拍| 日本a在线网址| 少妇的逼水好多| 香蕉av资源在线| 一级av片app| 成人特级黄色片久久久久久久| 一个人免费在线观看电影| 免费人成在线观看视频色| 日韩欧美一区二区三区在线观看| 51国产日韩欧美| 国产女主播在线喷水免费视频网站 | 久久国内精品自在自线图片| 一个人看视频在线观看www免费| 国产精品日韩av在线免费观看| 欧美3d第一页| 欧美不卡视频在线免费观看| 久久99热这里只有精品18| 国产欧美日韩精品亚洲av| 有码 亚洲区| 99热只有精品国产| 麻豆精品久久久久久蜜桃| 99在线视频只有这里精品首页| 精品福利观看| 三级经典国产精品| 九九在线视频观看精品| 午夜福利高清视频| 丰满乱子伦码专区| 欧美成人精品欧美一级黄| 欧美激情久久久久久爽电影| 国产亚洲午夜精品一区二区久久| 国产免费又黄又爽又色| av福利片在线观看| 在线播放无遮挡| 九草在线视频观看| 国产 一区精品| 人妻少妇偷人精品九色| 波野结衣二区三区在线| 国产精品蜜桃在线观看| 欧美丝袜亚洲另类| 内射极品少妇av片p| 国产精品麻豆人妻色哟哟久久| 寂寞人妻少妇视频99o| 亚洲欧洲精品一区二区精品久久久 | 蜜桃在线观看..| 纵有疾风起免费观看全集完整版| 国产精品国产三级国产av玫瑰| 91精品国产九色| 精品人妻熟女毛片av久久网站| 人妻夜夜爽99麻豆av| 亚洲美女视频黄频| 一级毛片aaaaaa免费看小| 全区人妻精品视频| 亚洲无线观看免费| 熟女电影av网| 一级毛片 在线播放| 色视频在线一区二区三区| 欧美 日韩 精品 国产| 欧美+日韩+精品| 一个人看视频在线观看www免费| 女人精品久久久久毛片| 免费看日本二区| 蜜臀久久99精品久久宅男| 啦啦啦中文免费视频观看日本| 亚洲精品成人av观看孕妇| 三级经典国产精品| 国产成人精品婷婷| 视频中文字幕在线观看| 嫩草影院入口| 国产一区有黄有色的免费视频| 99热这里只有是精品50| 欧美成人精品欧美一级黄| 亚洲精品视频女| 草草在线视频免费看| 51国产日韩欧美| 国产在线男女| 亚洲成人手机| 亚洲在久久综合| 一级a做视频免费观看| 国产极品粉嫩免费观看在线 | 麻豆成人午夜福利视频| 天堂中文最新版在线下载| 十分钟在线观看高清视频www | 各种免费的搞黄视频| 99热6这里只有精品| 大香蕉久久网| 国产av码专区亚洲av| 男男h啪啪无遮挡| 蜜桃在线观看..| 美女主播在线视频| 婷婷色综合大香蕉| 欧美性感艳星| 一级爰片在线观看| 成年美女黄网站色视频大全免费 | 一级二级三级毛片免费看| 国产毛片在线视频| 大码成人一级视频| 韩国高清视频一区二区三区| 精品国产露脸久久av麻豆| 黄片无遮挡物在线观看| 国产一区亚洲一区在线观看| 啦啦啦啦在线视频资源| 亚洲性久久影院| 18禁在线播放成人免费| videos熟女内射| 岛国毛片在线播放| a级毛片在线看网站| 久久人人爽人人爽人人片va| 最近手机中文字幕大全| 观看免费一级毛片| 大话2 男鬼变身卡| 亚洲一级一片aⅴ在线观看| 高清欧美精品videossex| 老熟女久久久| 国产有黄有色有爽视频| www.色视频.com| 婷婷色综合www| 精品人妻一区二区三区麻豆| 午夜视频国产福利| 亚洲电影在线观看av| av又黄又爽大尺度在线免费看| 美女xxoo啪啪120秒动态图| 久久久久久伊人网av| 久久青草综合色| 久久久久久久国产电影| 国产毛片在线视频| 免费看不卡的av| 如日韩欧美国产精品一区二区三区 | 欧美人与善性xxx| 日韩三级伦理在线观看| 中文字幕制服av| 黄片无遮挡物在线观看| 国产美女午夜福利| 国产有黄有色有爽视频| 毛片一级片免费看久久久久| 99re6热这里在线精品视频| 多毛熟女@视频| 青春草视频在线免费观看| 亚洲av.av天堂| 亚洲av不卡在线观看| 亚洲第一区二区三区不卡| 美女内射精品一级片tv| 日韩成人伦理影院| 多毛熟女@视频| 国产淫语在线视频| 久久99蜜桃精品久久| 国产精品99久久99久久久不卡 | 精品少妇久久久久久888优播| 日韩欧美一区视频在线观看 | 特大巨黑吊av在线直播| 免费人妻精品一区二区三区视频| 欧美精品亚洲一区二区| 亚洲av日韩在线播放| 亚洲va在线va天堂va国产| 国产老妇伦熟女老妇高清| 免费人妻精品一区二区三区视频| 久久精品国产自在天天线| 国产成人免费观看mmmm| 国产黄色视频一区二区在线观看| 高清毛片免费看| 在线看a的网站| 最新中文字幕久久久久| av不卡在线播放| 99热这里只有精品一区| 蜜桃在线观看..| 少妇丰满av| 日本黄大片高清| 我要看黄色一级片免费的| 亚洲人成网站在线观看播放| 国产精品成人在线| 久久精品久久精品一区二区三区| 亚洲av在线观看美女高潮| 国产在线视频一区二区| 各种免费的搞黄视频| 老司机影院成人| 亚洲久久久国产精品| 女人精品久久久久毛片| 亚洲国产精品成人久久小说| 黄色配什么色好看| 国产一区亚洲一区在线观看| 男人和女人高潮做爰伦理| 亚洲精品456在线播放app| 亚洲成色77777| 97在线视频观看| 日韩欧美一区视频在线观看 | 精品视频人人做人人爽| 午夜av观看不卡| 高清欧美精品videossex| 日日摸夜夜添夜夜添av毛片| 一区在线观看完整版| 精品国产国语对白av| 熟女电影av网| 久久热精品热| 国产精品成人在线| 国产男人的电影天堂91| 欧美成人精品欧美一级黄| 岛国毛片在线播放| 日韩三级伦理在线观看|