• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Real-Time Rendering of Dynamic Clouds Using Multi-Resolution Adaptive Grids

    2015-11-24 06:57:41FanXiaolei范曉磊ZhangLimin張立民ZhongZhaogen鐘兆根

    Fan Xiaolei(范曉磊),Zhang Limin(張立民),Zhong Zhaogen(鐘兆根)

    1.Department of Electronics and Information Engineering,Naval Aeronautical and Astronautical University,Yantai 264001,P.R.China;

    2.Noncommissioned Officers Vocational and Technical Education College,the Second Artillery Engineering University,Qingzhou 262500,P.R.China;

    3.Department of Scientific Research,Naval Aeronautical and Astronautical University,Yantai 264001,P.R.China

    Real-Time Rendering of Dynamic Clouds Using Multi-Resolution Adaptive Grids

    Fan Xiaolei(范曉磊)1,2*,Zhang Limin(張立民)3,Zhong Zhaogen(鐘兆根)1

    1.Department of Electronics and Information Engineering,Naval Aeronautical and Astronautical University,Yantai 264001,P.R.China;

    2.Noncommissioned Officers Vocational and Technical Education College,the Second Artillery Engineering University,Qingzhou 262500,P.R.China;

    3.Department of Scientific Research,Naval Aeronautical and Astronautical University,Yantai 264001,P.R.China

    The multi-resolution adaptive grids method is proposed to solve the problems of inefficiency in the previous grid-based methods,and it can be used in clouds simulation as well as the interactive simulation between objects and clouds.Oriented bounding box(OBB)hierarchical trees of objects are established,and the resolutions of global and local grids can be selected automatically.The motion equations of fluid dynamics are simplified.Upwind difference is applied to ensure the stability of the simulation process during the discrete process of partial differential equations.To solve the speed problem of existed phase functions,the improved phase function is applied to the illumination calculation of clouds.Experimental results show that the proposed methods can promote the simulation efficiency and meet the need for the simulation of large-scale clouds scene.Real-time rendering of clouds and the interaction between clouds and objects have been realized without preprocessing stage.

    real-time rendering;multi-resolution adaptive grids;clouds simulation;phase function

    0 Introduction

    Clouds simulation is a research hotspot in the computer graphics field.For a common fluid,simulation methods of clouds can be classified into two categories:heuristic methods and physicsbased methods[1-2].With the rapid development in hardware and software,physics-based methods have become the mainstream in recent years.The key problem of the physics-based methods is to solve the partial differential equations.Clouds were generated based on fluid dynamics in Refs.[3-5].The methods are suitable for certain type of clouds simulation.Harris simulated dynamic clouds using physics-based method,and realized the interactive simulation between one aircraft and clouds[6].Large-scale clouds scene was simulated based on fluid dynamics without dynamic interaction in Ref.[7].

    Grid-based methods are widely used in fluid simulation to solve the partial differential equations.A grid space is generated to calculate the motion of fluids.Navier-Strokes(N-S)equations are discretized by using grids,and finite difference method is used to solve the equations.Many fluid simulations utilize the single grid[6,8-11]. While representing the shape of interactive objects with fluid,the number of grid cells is increased greatly,and GPU acceleration is hard to implement.The interaction between smoke and rigid object was simulated in Ref.[12],and different resolution grids were established for them. However,the technique failed to achieve the adaptive selection of resolutions and affected its practicality.And simulation is also performed on the occupied grid cells by interactive object,re-sulting in frequent data transfer.Refs.[13-14]applied adaptive multi-grid method to implement the interaction between smoke and the rigid object.However,they need to calculate all grid cells including interactive object,thus lowering the efficiency.

    To solve the above problems,the multi-resolution adaptive grids method is proposed in this paper to simulate clouds scenes and the interaction between clouds and objects in real time.Furthermore,the improved phase function is applied to the model of multiple forward scattering in clouds illumination.

    1 Multi-resolution Adaptive Grids Method

    1.1 Multi-resolution grids

    Multi-resolution grids method regards the whole simulation space as evenly-divided global grid space.Fig.1 is a two-dimensional(2D)uniform grid space,and the shaded areas represent the interactive objects.The object at the bottom right represents the effect after the movement. Green grids surrounding the interactive objects are called the local grids and they have different resolutions.Blue boxes surrounding the interactive objects are oriented bounding boxes(OBBs)at the top of Fig.1.Local grids are created at the edge of interactive object.Interactive objects can move freely without the limitation of speed,and their corresponding bounding boxes make the same movement.Fig.2 is a three-dimensional(3D)case,where the red shadow represents the interactive object,and a separate grid cell is at the right.

    Here one also uses the alterable global grid resolution.Since updating global grid resolution is time-consuming,the global grid resolution is not frequently changed according to the judgment rule.

    1.2 Splitting and combination of grid cells

    1.2.1 Principles of splitting and combination

    Fig.1 2D multi-resolution uniform grid

    Fig.2 3D uniform grid

    Both for global grid or local grid,the splitting and combination of grid cells will appear while changing the grid resolution.For the different dimension of the grid,the number of grid cells in the axial direction is 2n,where n is a positive integer(n can be different).

    For global grid,the starting position of the combination and splitting will move on from the origin along each axis.The combination and splitting of local grid cells are implemented along the edge cells occupied by interactive objects. Fig.3 shows the processes of combination and splitting in 2D,where the reverse process is splitting.

    Fig.3 Combination of 2D grid cells

    1.2.2 Data processing after splitting and combination of grid cells

    Fig.4 Data transfer after splitting or combination of grid cells

    1.3 Processing occupation of grid cells

    1.3.1 Determination of whether the object occupies grid cells

    Hierarchical OBB bounding boxes are created for interactive objects in order to accelerate the intersection test between the objects and the fluid cells.Their data are stored in the hierarchical octree data structure.The bounding box of the outermost layer is at the top level of data structure,and the basic information of the object is stored at the bottom level of data structure.One only creates a hierarchical data structure for the surface of the object because the object is rigid and it does not deform during the interaction,which can promote the speed of the creation of the bounding box.A status flag for each grid cell(including global and local grids)is set to mark the occupation state of the grid cell.To determine whether the object occupies the grid cell,one performs intersection test between the hierarchical OBBs of the object and the grid cell in a top-down order. According to the intersection cases between the leaf nodes and grid cells,if they are the cases shown as Figs.5(a,b),the object does not occupy the grid cell(Disjoint situation certainly does not occupy the grid cell.).Only in the case of Fig.5(c),grid cell is occupied by the object,and the status variable of the grid cell is marked as occupied.

    Fig.5 Relationship between object and grid cell

    1.3.2 Data processing of grid cells after object movement

    After the motion of the interactive object,new global grid cells will be occupied or some others are unoccupied again.One treats the data on these cells as follows.

    (1)From occupied to unoccupied

    One handles the data from the edge of occupied area in terms of the order from outside to inside.If status variable of a grid cell is changed from occupied to unoccupied,new data are determined by data interpolation of surrounding unoccupied cells.Then flag variable of the cell is set to unoccupied.

    (2)From unoccupied to occupied

    It is not necessary to process the data stored in the cell,and the flag variable of the cell is only set to occupied.

    After the motion of the object,the resolution of local grid can change and is not consistent with the one of global grid.Just like the red triangle object in Fig.6,and the higher resolution of the local grid is required.One treats the case as follows:

    Step 1 Determine new resolutions of global and local grids;

    Fig.6 Change of occupied cells after object movement

    Step 2 Split or combine global grid,and deal with its data;

    Step 3 Determine the newly occupied and unoccupied cells between the object and the global grid,and the corresponding data processing is needed;

    Step 4 For the newly occupied cells of the global grid,split or combine them according to the new resolution of the local grid,i.e.,deal with the splitting or combination of the local grid.

    Step 5 Determine whether local grid cells are occupied again.When multiple objects are involved in the interaction,the overlap must be avoided.

    While transferring data between the grid cells,one just considers the data transfer between global grid cells in different resolutions.For local grid cells,just deals with their status flags to display interactive objects.

    1.4 Choosing grid resolutions

    The choice of global and local grids resolution is determined by the distance from the viewpoint to the center of simulation space or to the center of the interactive object.It is easy to know the center position of simulation space,and one regards the center of top OBB of the interactive object as the center of the object.Previous data can be reused to decrease the amount of calculation,as shown in Fig.7.

    Fig.7 Distance from the viewpoint to simulation space or to center of object

    where

    When the distance d between the viewpoint and the center of simulation space changes,the global grid resolution needs to be adjusted.When projecting the grid on the computer screen,the grid cell of width h corresponds to(h·e)/d pixels,where e is a constant determined by camera parameters.When(h·e)/d=1,i.e.corresponding to 1 pixel,it can meet display requirement.

    Changes of local grid resolution are adopted similarly as the way of global grid.Assuming that lmaxis the current distance from the viewpoint to the center of the interactive object,then lmax= hmax·e.Assuming that lxis the alterable distance between the viewpoint and the center of the interactive object,one can get

    where L is the change exponent of the local grid resolution.New resolution of local grid changes into 2(N-L).

    From the adjustment of grid resolution,one can see that the automatic adjustment can be realized when the viewpoint changes or the interactive objects move.Manual adjustment or experimen-tal determination is not required.While performing the fluid simulation,it can be done to move forward until the last cell along the x,y,z axis directions.If the cells are occupied,they are skipped directly without any processing to promote simulation efficiency,and instability in the simulation does not appear.

    2 Solving Controlling Equations by Discretization

    2.1 Fluid dynamics equations and their simplification

    The clouds movement can be described by the N-S equations for an incompressible flow.

    whereρis the fluid density,Re the Reynolds Number,and F=(fx,fy,fz)the external force.▽the gradient operator,▽·the divergence operator,and▽2the Laplacian operator.The first three terms on the right hand of Eq.(1)are the advection term,the pressure term,and the viscous term,respectively.

    The advection term is an inertial effect,and the relationship between the effects of advection and viscous terms can be measured by Re.In the clouds simulation,Re is expressed as Re=(u· L)/υ,where u is the characteristic velocity,L the characteristic length,andυthe viscosity coefficient.The values ofυrange from 1.3×10-5m2/s to 1.9×10-5m2/s when the temperature is 0—60℃[15].If the characteristic length L is 100 m or more,Re will be greater than 107.This means that the inertial force is much greater than the viscous force,so the viscous term is negligible. N-S equation will be simplified as Euler equation of incompressible fluid.

    2.2 Discretization of equations and improvement

    One uses the finite difference method for solving differential equations here,and the upwind difference method is introduced to solve the stability problem.Upwind difference is combined with central difference at different stages.

    While solving the Euler equations,simulation area is discretized by using multi-resolution grids proposed in this paper,and different unknown variables are set at different cells.Pressure p and temperature T are at the center of cells,and the components of speed u,v,w are at the center of surfaces as shown in Fig.2.While discretizing the motion equation,upwind difference is adopted for stability.

    3 Illumination of Clouds

    Realistic simulation of clouds is closely related to the illumination calculations,and the scattering of clouds particles meets the Mie scattering law.While rendering the clouds,multiple scattering illumination model is relatively close to physical characteristics of clouds.However,it is time-consuming,so one uses multiple forward scattering introduced in Ref.[6].At the same time,the improved phase function is proposed.

    3.1 Common phase functions

    Rayleigh phase function in Eq.(5)is applicable to the case of Rayleigh scattering.Ref.[6]used the Rayleigh phase function and yielded good results,but there were some bright spots in some clouds,as shown in Fig.8.

    whereλis the wavelength of incident light andθ the phase angle.

    Henyey-Greenstein phase function proposed by Henyey and Greenstein is useful in scattering calculation of biological organs,water,clouds and many other natural materials,and it is an approximation of Mie scattering,expressed as Eq.(6).

    where g is the asymmetric factor,controlling theredistribution shapes of the scattered lights.

    Fig.8 Phenomenon of bright spots using Rayleigh phase function

    Cornette and Shanks modified Henyey-Greenstein phase function and gave a more physically reasonable representation,Cornette-Shanks phase function,for clouds illumination expressed as Eq.(7).It was used in Ref.[16]while rendering cloud scenes.

    3.2 Improved phase function

    It can be seen that exponential computation is required in Henyey-Greenstein and Cornette-Shanks phase functions,thus increasing the computation time greatly.Though rayleigh phase function is simple,it is prone to the phenomenon of bright spots.To solve these problems,the improved phase function is proposed based on the Cornette-Shanks phase function.

    As the scattering of clouds particles focuses on the forward scattering,the exponential item in Eq.(7)is simplified,and another adjustment item is added.One can obtain the following simplified phase function.

    It is equivalent to Rayleigh phase function while g=0.Table 1 lists the calculation time of different phase functions.The programming environment is VC 6.0,C language and the current hardware configuration.The calculation time of 100 000 times is a statistical period.One obtains the cosine values via the dot product of the incident light vector and the direction vector in the viewpoint direction.

    Table 1 Calculation time of different phase functions ms

    Compared the calculation time of different phase functions in Table 1,there is no great difference between the calculation time of Henyey-Greenstein and Cornette-Shanks phase functions.The calculation time of the improved phase function decreases greatly.Fig.9 shows the values of different phase functions when the asymmetric factor g is different.

    In Fig.9,the proposed phase function approximates the fitting of Henyey-Greenstein and Cornette-Shanks phase functions.Especially when the value of g is small,it is closer to the average of these two functions.Experiments show that the rendering effects of clouds are perfect when the value of g is 0.3.Thus,one can obtain pretty rendering scenes just like Henyey-Greenstein and Cornette-Shanks phase functions by using the improved phase function.Luckily,it is faster and more suitable for real-time rendering.

    4 Experimental Results and Discussion

    Clouds scenes are simulated by using the proposed methods.The computer is a desktop PC with Intel i5-2380P dual cores 3.10 GHz(CPU),4 GB RAM and NVIDIA GeForce GTX 550 Ti(GPU).

    4.1 Simulating effects

    Fig.10 depicts a single cloud rendered by the improved phase function,F(xiàn)ig.11 the clouds scene in dawn,F(xiàn)ig.12 the clouds scene of the daytime at beach,and Fig.13 the large-scale clouds. There are no interactive objects in the above clouds scenes.

    Fig.9 Values of different phase functions

    Fig.10 Single cloud rendered by the improved phase function

    Fig.11 Clouds scene in dawn

    Fig.12 Clouds scene of daytime at beach

    Fig.13 Large-scale clouds

    From the above rendered clouds one can see that our clouds scenes have strong realism and eliminate the phenomenon of bright spots.While rendering large-scale clouds,the proposed methods have a great advantage of ensuring the realtime simulation because they can adjust globalgrid resolution adaptively.

    Fig.14 shows the clouds scene with one interactive airplane,and Fig.15 the clouds scene in which several aircrafts are involved in the interaction.

    Fig.14 Clouds scene with one airplane

    Fig.15 Clouds scene with several airplanes

    4.2 Comparison and analysis of simulation time

    During the clouds simulation,one verifies the methods of updating the resolutions of global and local grids proposed in the previous literatures,and compares them with the proposed methods.

    The time of displaying the simulation results once is treated as one statistical period,which includes the time of simulation calculations and the interaction between fluid and objects.The running time under different grid resolutions is given in Table 2.In Table 2,grid resolution represents the highest grid resolution,where[GLOBAL]is the method of updating global grid resolution,applied in many references such as Refs.[8-10],[LOCAL]the method of updating local grid resolution[12-14],and[OUR]the method proposed in this paper.No statistics obtained suggests that the computation time is too long to achieve realtime rendering.

    One can draw the following conclusions according to the data in Table 2.If the highest grid resolution is fixed,the time of[GLOBAL]oscillates greatly at different time steps because updating the grid resolution or not is not fixed,and the time of other methods changes slightly.As far as the consuming time is concerned,the method for updating local grid resolution is faster than that for updating global grid resolution,and the proposed method is faster than that for updating local grid resolution.

    Table 2 Time comparison of different methods in different grid resolutions s

    The reasons why the speed of the proposed method is faster mainly in the next aspects.One updates the resolutions of global and local grids according to the requirement,but the efficiency of[LOCAL]method is influenced by the initial resolution of the global grid.Although[OUR]method needs to update the global grid resolution,its updating frequency is much slower than[GLOBAL].It is a compromise between these two methods.The combination and splitting of grid cells and data transfer are simple.Grid cells occupied by interactive objects are not involved in the simulation calculation.Since OBB hierarchical bounding boxes of interactive objects are established,high speed can be obtained while determining the occupation of grid cells.The improved phase function also promotes the efficiency of illumination calculations.

    Frame rate statistics of rendering the above scenes are presented in Table 3.While countingthese data,the grid resolution does not exceed 512×512×512.One presets the maximum frame rate to 120 f/s,and 120 f/s will be displayed if true frame rate is more than 120.As illustrated by the statistical data,the proposed method can achieve the real-time rendering when the scale of the grid resolution is no more than 512×512× 512.When the higher grid resolution of simulation space is adopted,real-time rendering is hard to get,and artifact thus occurs.

    Table 3 Rendering frame rates of clouds scenes in different grids resolutions

    5 Conclusions

    The proposed multi-resolution adaptive grid method is simple and easy to implement.OBBs of interactive objects can promote the speed of intersection test between the interactive objects and the grid cells.According to the occupied flags of grid cells,the occupied grid cells are not involved in simulation calculations.The proposed method is faster than the method updating global grid resolution or local grid resolution only,and can implement real-time rendering of dynamic clouds and its interaction with other rigid objects.While changing the viewpoint or moving the interactive objects,the requirement of real-time rendering can be met.The simplification of motion equations and their discretization in upwind difference can promote efficiency and ensure stability.The improved phase function can accelerate the illumination calculations of clouds,but it does not reduce the realism of clouds scenes.However,there is the limitation that the number of grid cells in the axial direction is 2nin the proposed multi-resolution grid method,and the problem will be addressed in the future research.

    Acknowledgement

    This work was supported by the National Natural Science Foundation of China(No.61102167).

    [1] Qiu Hang,Yang Ke,Chen Yu,et al.Survey on realistic simulation of cloud[J].Computer Science,2011,38(6):14-19.(in Chinese)

    [2] Pan Qiuyu,Bi Shuoben,Lu Lianghu,et al.Fast algorithm based on particle system for simulating 3D dynamic clouds[J].Journal of System Simulation,2014,26(1):85-89,106.(in Chinese)

    [3] Miyazaki R,Yoshida S,Dobashi Y,et al.A method for modeling clouds based on atmospheric fluid dynamics[C]∥Proceedings of Pacific Graphics 2001.[S.l.]:[s.n.],2001:363-372.

    [4] Miyazaki R,Dobashi Y,Nishita T.Simulation of cumuliform clouds based on computational fluid dynamics[C]∥Proceedings of Eurographics 2002 short presentation.[S.l.]:[s.n.],2002:405-410.

    [5] Tang Zhao,Wu Pingbo.Real-time modeling and rendering of 3D cloud and its application in industrial simulations[J].Journal of Computer-Aided Design &Computer Graphics,2007,19(8):1051-1055.(in Chinese)

    [6] Harris M J.Real-time cloud simulation and rendering[D].Chapel Hill:University of North Carolina,2003.

    [7] Ren Wei,Liang Xiaohui,Ma Shang,et al.A realtime simulation method for large-scale 3D clouds[J]. Journal of Computer-Aided Design&Computer Graphics,2010,22(4):662-669.(in Chinese)

    [8] Fedkiw R,Stam J,Jesen H W.Visual simulation of smoke[C]∥Proceedings of SIGGRPH'01.[S.l.]:[s.n.],2001:15-22.

    [9] Carlson M,Mucha P J,Turk G.Rigid fluid:Animating the interplay between rigid bodies and fluid[J].ACM Trans on Graphics,2004,23(3):377-384.

    [10]Guendelman E,Selle A,Losasso F,et al.Coupling water and smoke to thin deformable and rigid shells[J].ACM Trans on Graphics,2005,24(3):973-981.

    [11]Yang Yang,Yang Xubo.Staggered grid structure for smoke simulation[J].Journal of Image and Graphics,2014,19(5):781-788.(in Chinese)

    [12]Dobashi Y,Matsuda Y,Yamamoto T,et al.A fast simulation method using overlapping grids for interactions between smoke and rigid objects[J].Computer Graphics Forum,2008,27:477-486.

    [13]Lentine M,Zheng W,F(xiàn)edkiw R.A novel algorithm for incompressible flow using only a coarse grid projection[J].ACM Trans Graph,2010,29:114.1-114.9.

    [14]English R E,Qiu L,Yu Y,et al.An adaptive discretization of incompressible flow using a multitude of moving Cartesian grids[J].Journal of Computational Physics,2013,254(12):107-154.

    [15]Griebel M,Dornseifer T,Neunhoeffer T.Numerical simulation in fluid dynamics:A practical introduction[M].Philadelphia:SIAM Monographs on Mathematical Modeling and Computation.Society for Industrial and Applied Mathematics,1998.

    [16]Miyazaki R,Dobashi Y,Nishita T.A fast rendering method of clouds using shadow-view slices[C]∥Proceedings of International Conference on Computer Graphics and Imaging(CGIM'04).Anaheim:ACTA Press,2004:93-98.

    (Executive editor:Zhang Tong)

    TP391.9 Document code:A Article ID:1005-1120(2015)04-0428-10

    *Corresponding author:Fan Xiaolei,Lecturer,E-mail:gm-fxl@163.com.

    How to cite this article:Fan Xiaolei,Zhang Limin,Zhong Zhaogen.Real-time rendering of dynamic clouds using multi-resolution adaptive grids[J].Trans.Nanjing U.Aero.Astro.,2015,32(4):428-437.

    http://dx.doi.org/10.16356/j.1005-1120.2015.04.428

    (Received 12 March 2014;revised 17 June 2014;accepted 24 June 2014)

    成人特级黄色片久久久久久久| 成人欧美大片| 热99在线观看视频| 黑人欧美特级aaaaaa片| 中国美女看黄片| 午夜影院日韩av| 国产精品99久久久久久久久| 99精品久久久久人妻精品| 九九久久精品国产亚洲av麻豆 | 国产91精品成人一区二区三区| 亚洲欧美精品综合久久99| www日本在线高清视频| 18禁美女被吸乳视频| av在线蜜桃| 热99re8久久精品国产| 九色成人免费人妻av| 国产精品国产高清国产av| 欧美黄色淫秽网站| 长腿黑丝高跟| 黄色日韩在线| 欧美三级亚洲精品| 欧美色欧美亚洲另类二区| 国产成年人精品一区二区| 久久香蕉精品热| 亚洲男人的天堂狠狠| 国产高清有码在线观看视频| 男女午夜视频在线观看| 脱女人内裤的视频| 久久九九热精品免费| 美女午夜性视频免费| 岛国在线观看网站| 国产美女午夜福利| 老鸭窝网址在线观看| 男女床上黄色一级片免费看| 国产精品1区2区在线观看.| 国产高清videossex| 毛片女人毛片| 国产精品一区二区三区四区久久| 日本黄色视频三级网站网址| 99热精品在线国产| xxxwww97欧美| 国产伦人伦偷精品视频| 国产精品免费一区二区三区在线| 午夜福利在线观看免费完整高清在 | 久久久色成人| 99在线人妻在线中文字幕| 成人国产一区最新在线观看| 日本熟妇午夜| 后天国语完整版免费观看| 丁香欧美五月| 色老头精品视频在线观看| 午夜免费激情av| 一区福利在线观看| 搞女人的毛片| 亚洲成a人片在线一区二区| 搡老妇女老女人老熟妇| 日韩国内少妇激情av| 成人18禁在线播放| 可以在线观看的亚洲视频| 香蕉丝袜av| 亚洲国产欧洲综合997久久,| 热99在线观看视频| 日韩精品青青久久久久久| 亚洲国产日韩欧美精品在线观看 | 中文字幕熟女人妻在线| 国产av在哪里看| 久久国产精品影院| 国产精品99久久久久久久久| 老司机福利观看| 最近最新免费中文字幕在线| 免费高清视频大片| 国产真人三级小视频在线观看| 久久精品91蜜桃| 亚洲国产日韩欧美精品在线观看 | bbb黄色大片| 精品免费久久久久久久清纯| 欧美黑人欧美精品刺激| 91字幕亚洲| 老熟妇乱子伦视频在线观看| 一级毛片精品| 久久久久国产一级毛片高清牌| 欧美xxxx黑人xx丫x性爽| 少妇丰满av| 亚洲色图av天堂| 亚洲天堂国产精品一区在线| 国产亚洲欧美98| 欧美乱妇无乱码| 久久久久久久午夜电影| 国产又色又爽无遮挡免费看| 嫩草影视91久久| 欧美不卡视频在线免费观看| 亚洲人成网站高清观看| 黄色片一级片一级黄色片| 亚洲av第一区精品v没综合| 亚洲美女视频黄频| 九九热线精品视视频播放| 91字幕亚洲| 岛国在线观看网站| 国产精品野战在线观看| 国产激情久久老熟女| 国产视频内射| tocl精华| 亚洲七黄色美女视频| 天堂动漫精品| 此物有八面人人有两片| 日韩精品中文字幕看吧| 色尼玛亚洲综合影院| 国产精品美女特级片免费视频播放器 | 国产亚洲精品久久久久久毛片| 欧美极品一区二区三区四区| 久久亚洲真实| 久久久久久大精品| 最新中文字幕久久久久 | 久久人人精品亚洲av| 老司机深夜福利视频在线观看| 亚洲人成网站高清观看| 美女高潮的动态| 中亚洲国语对白在线视频| 男女床上黄色一级片免费看| 男女下面进入的视频免费午夜| 国内少妇人妻偷人精品xxx网站 | 免费观看人在逋| 免费av毛片视频| 午夜福利在线观看免费完整高清在 | 成人午夜高清在线视频| 十八禁网站免费在线| 国产三级中文精品| av福利片在线观看| 国产又黄又爽又无遮挡在线| 久久久久久久午夜电影| 亚洲午夜精品一区,二区,三区| 精品欧美国产一区二区三| 国产男靠女视频免费网站| av黄色大香蕉| 亚洲av电影在线进入| 曰老女人黄片| 成人性生交大片免费视频hd| 亚洲自拍偷在线| 九色国产91popny在线| а√天堂www在线а√下载| 日韩人妻高清精品专区| 欧美3d第一页| 制服丝袜大香蕉在线| 一个人免费在线观看的高清视频| 欧美丝袜亚洲另类 | 日本一二三区视频观看| 国产麻豆成人av免费视频| 欧美3d第一页| 亚洲欧美精品综合久久99| 久久伊人香网站| 最新美女视频免费是黄的| 两个人看的免费小视频| 可以在线观看毛片的网站| 国产亚洲精品一区二区www| 色老头精品视频在线观看| 欧美日韩黄片免| 日本与韩国留学比较| 国产免费av片在线观看野外av| 一二三四社区在线视频社区8| 床上黄色一级片| 小蜜桃在线观看免费完整版高清| 久久久久久国产a免费观看| 国产欧美日韩一区二区三| 视频区欧美日本亚洲| 亚洲国产精品成人综合色| av女优亚洲男人天堂 | 久久精品91蜜桃| 999久久久国产精品视频| 亚洲成人中文字幕在线播放| 岛国视频午夜一区免费看| 亚洲性夜色夜夜综合| 欧美zozozo另类| 亚洲国产色片| 精品99又大又爽又粗少妇毛片 | 国产高清videossex| 看片在线看免费视频| 亚洲午夜理论影院| 校园春色视频在线观看| 真实男女啪啪啪动态图| 天堂av国产一区二区熟女人妻| 后天国语完整版免费观看| 观看美女的网站| 久久久久久大精品| 99久久无色码亚洲精品果冻| 青草久久国产| 美女高潮的动态| 久久午夜综合久久蜜桃| 国产激情欧美一区二区| 国产精品国产高清国产av| www.自偷自拍.com| 久久99热这里只有精品18| 亚洲熟妇熟女久久| 欧美成人性av电影在线观看| 麻豆成人午夜福利视频| 亚洲欧美精品综合久久99| 啦啦啦观看免费观看视频高清| 中文资源天堂在线| 国产精品亚洲一级av第二区| 欧美+亚洲+日韩+国产| 色噜噜av男人的天堂激情| 亚洲熟妇中文字幕五十中出| av视频在线观看入口| 一本一本综合久久| 国产69精品久久久久777片 | 村上凉子中文字幕在线| 午夜福利欧美成人| 哪里可以看免费的av片| 日本免费a在线| 久久午夜亚洲精品久久| 国产97色在线日韩免费| 国产精品一区二区免费欧美| 欧美绝顶高潮抽搐喷水| 麻豆一二三区av精品| 女同久久另类99精品国产91| 成人三级黄色视频| 亚洲国产欧洲综合997久久,| 久久久水蜜桃国产精品网| 国产精品精品国产色婷婷| 亚洲欧美日韩高清专用| 亚洲狠狠婷婷综合久久图片| 91字幕亚洲| 最好的美女福利视频网| 免费看a级黄色片| 日韩 欧美 亚洲 中文字幕| 天堂√8在线中文| 欧美日韩精品网址| 国产亚洲av高清不卡| 神马国产精品三级电影在线观看| 国产主播在线观看一区二区| 久久久水蜜桃国产精品网| 亚洲黑人精品在线| 男女床上黄色一级片免费看| 免费大片18禁| 最近最新免费中文字幕在线| 美女 人体艺术 gogo| 国产成人啪精品午夜网站| 一级毛片精品| av福利片在线观看| 国产精品影院久久| 国内揄拍国产精品人妻在线| 国产精品爽爽va在线观看网站| 欧美成人一区二区免费高清观看 | 又黄又粗又硬又大视频| 日本成人三级电影网站| ponron亚洲| 高清在线国产一区| 久久久久免费精品人妻一区二区| 精品国产超薄肉色丝袜足j| 亚洲片人在线观看| 舔av片在线| 久99久视频精品免费| 亚洲第一电影网av| xxx96com| 99国产精品一区二区三区| 免费看a级黄色片| 欧美午夜高清在线| 极品教师在线免费播放| 久久午夜亚洲精品久久| 狂野欧美激情性xxxx| 精品国产亚洲在线| 色在线成人网| 女生性感内裤真人,穿戴方法视频| 啪啪无遮挡十八禁网站| 男人和女人高潮做爰伦理| 老司机午夜福利在线观看视频| 日本 欧美在线| 久久久久久久精品吃奶| 亚洲欧美日韩高清专用| 久久午夜综合久久蜜桃| 亚洲最大成人中文| 午夜免费成人在线视频| 中文字幕人妻丝袜一区二区| 亚洲欧美日韩卡通动漫| 欧美3d第一页| 国产成人精品久久二区二区免费| 999久久久精品免费观看国产| 丰满的人妻完整版| 精品久久久久久久毛片微露脸| 亚洲aⅴ乱码一区二区在线播放| aaaaa片日本免费| 亚洲国产中文字幕在线视频| 亚洲在线自拍视频| 欧美激情久久久久久爽电影| 村上凉子中文字幕在线| 麻豆国产97在线/欧美| 嫁个100分男人电影在线观看| 精品99又大又爽又粗少妇毛片 | 人妻丰满熟妇av一区二区三区| av福利片在线观看| 在线永久观看黄色视频| 91在线精品国自产拍蜜月 | 1024手机看黄色片| 欧洲精品卡2卡3卡4卡5卡区| 久久精品国产综合久久久| 中文亚洲av片在线观看爽| 国产精品香港三级国产av潘金莲| 久久中文字幕一级| 女警被强在线播放| 久久久精品大字幕| 亚洲熟女毛片儿| 精品国产三级普通话版| 我要搜黄色片| 在线免费观看不下载黄p国产 | 亚洲 欧美一区二区三区| 在线a可以看的网站| 久久精品夜夜夜夜夜久久蜜豆| 天天添夜夜摸| 亚洲七黄色美女视频| 久久久久久久精品吃奶| 最近最新中文字幕大全免费视频| 狠狠狠狠99中文字幕| 99国产综合亚洲精品| 淫秽高清视频在线观看| 女生性感内裤真人,穿戴方法视频| 午夜福利免费观看在线| 亚洲无线在线观看| 露出奶头的视频| 成年女人永久免费观看视频| 麻豆国产97在线/欧美| 九九热线精品视视频播放| 男女之事视频高清在线观看| 亚洲av熟女| 色播亚洲综合网| 91在线精品国自产拍蜜月 | 国产蜜桃级精品一区二区三区| 男女下面进入的视频免费午夜| 搡老妇女老女人老熟妇| 麻豆国产97在线/欧美| 真人一进一出gif抽搐免费| av黄色大香蕉| 黑人巨大精品欧美一区二区mp4| 久久婷婷人人爽人人干人人爱| 日本 欧美在线| 日韩欧美在线二视频| 婷婷亚洲欧美| 在线观看一区二区三区| 老鸭窝网址在线观看| 国产精品美女特级片免费视频播放器 | 又黄又粗又硬又大视频| 少妇人妻一区二区三区视频| 欧美性猛交黑人性爽| 中文字幕精品亚洲无线码一区| 国内精品久久久久精免费| 1000部很黄的大片| 久久精品影院6| 1024手机看黄色片| 窝窝影院91人妻| 久久精品人妻少妇| 国产一区二区激情短视频| 国产成人精品久久二区二区91| 波多野结衣高清作品| 国产在线精品亚洲第一网站| 色综合亚洲欧美另类图片| 国产亚洲av嫩草精品影院| 超碰成人久久| 小蜜桃在线观看免费完整版高清| 亚洲中文字幕一区二区三区有码在线看 | a级毛片a级免费在线| 国产伦人伦偷精品视频| 日本撒尿小便嘘嘘汇集6| 可以在线观看毛片的网站| 999久久久国产精品视频| АⅤ资源中文在线天堂| 亚洲成av人片免费观看| 国产综合懂色| 女同久久另类99精品国产91| 国产蜜桃级精品一区二区三区| 中国美女看黄片| 久久久久久久久免费视频了| 久久久久久九九精品二区国产| 天堂√8在线中文| 别揉我奶头~嗯~啊~动态视频| 国产欧美日韩精品一区二区| 欧美一区二区精品小视频在线| 国产一区二区激情短视频| 在线免费观看不下载黄p国产 | 国产伦精品一区二区三区四那| 人妻夜夜爽99麻豆av| 久久精品影院6| 熟女人妻精品中文字幕| 中文字幕久久专区| 人人妻,人人澡人人爽秒播| 成在线人永久免费视频| 无人区码免费观看不卡| 亚洲av成人一区二区三| 人人妻,人人澡人人爽秒播| 久久久国产精品麻豆| 美女 人体艺术 gogo| 欧美日本视频| 少妇裸体淫交视频免费看高清| 久久久久国内视频| 男女那种视频在线观看| 亚洲国产高清在线一区二区三| 老汉色av国产亚洲站长工具| 亚洲人成电影免费在线| 真人做人爱边吃奶动态| 日本免费一区二区三区高清不卡| or卡值多少钱| 国产日本99.免费观看| 国产伦在线观看视频一区| 男人舔女人下体高潮全视频| 日本 欧美在线| 中文字幕最新亚洲高清| 国产伦一二天堂av在线观看| 亚洲精品一区av在线观看| 亚洲av第一区精品v没综合| 校园春色视频在线观看| 欧美不卡视频在线免费观看| 1024香蕉在线观看| 欧美乱妇无乱码| 91九色精品人成在线观看| 色在线成人网| 久久精品91无色码中文字幕| 18禁裸乳无遮挡免费网站照片| 欧美色视频一区免费| 国产精品电影一区二区三区| 欧美日本亚洲视频在线播放| 18禁美女被吸乳视频| 亚洲男人的天堂狠狠| 99视频精品全部免费 在线 | 亚洲在线自拍视频| 一级作爱视频免费观看| 女同久久另类99精品国产91| 午夜激情福利司机影院| 成人精品一区二区免费| 国产男靠女视频免费网站| 夜夜爽天天搞| 日韩欧美在线二视频| 又紧又爽又黄一区二区| 1024香蕉在线观看| 熟女人妻精品中文字幕| 韩国av一区二区三区四区| 在线视频色国产色| av福利片在线观看| 国产伦一二天堂av在线观看| 亚洲中文字幕一区二区三区有码在线看 | 亚洲成人精品中文字幕电影| 亚洲中文av在线| 成人性生交大片免费视频hd| 国产亚洲精品av在线| 日韩欧美精品v在线| 免费大片18禁| 亚洲精品乱码久久久v下载方式 | 久久香蕉精品热| 老汉色av国产亚洲站长工具| 国产亚洲精品久久久com| 又爽又黄无遮挡网站| 一本精品99久久精品77| 欧美绝顶高潮抽搐喷水| 国产精品亚洲一级av第二区| 成人三级黄色视频| 欧美一区二区国产精品久久精品| 免费看十八禁软件| 婷婷丁香在线五月| 一区二区三区国产精品乱码| 亚洲电影在线观看av| 一级a爱片免费观看的视频| 亚洲无线在线观看| 国产精品一及| 亚洲国产欧洲综合997久久,| 非洲黑人性xxxx精品又粗又长| 国产黄片美女视频| 一二三四社区在线视频社区8| 中出人妻视频一区二区| 一个人看的www免费观看视频| 五月玫瑰六月丁香| 最新在线观看一区二区三区| 亚洲人成网站在线播放欧美日韩| 国产精品av久久久久免费| 午夜久久久久精精品| 男人舔奶头视频| 欧美在线一区亚洲| 看片在线看免费视频| 五月伊人婷婷丁香| 黄片大片在线免费观看| 色综合婷婷激情| 国产欧美日韩一区二区三| xxxwww97欧美| 岛国在线观看网站| 国产蜜桃级精品一区二区三区| 精品一区二区三区视频在线 | 亚洲av片天天在线观看| 黄色女人牲交| 非洲黑人性xxxx精品又粗又长| 婷婷精品国产亚洲av| 99热只有精品国产| e午夜精品久久久久久久| 国产黄片美女视频| 国产黄a三级三级三级人| 人妻久久中文字幕网| 1000部很黄的大片| 少妇裸体淫交视频免费看高清| 高潮久久久久久久久久久不卡| 国产精品久久久av美女十八| 国产高清视频在线观看网站| 在线看三级毛片| 国产精品1区2区在线观看.| 日韩欧美一区二区三区在线观看| 男女之事视频高清在线观看| 国产69精品久久久久777片 | 超碰成人久久| 久久久久久九九精品二区国产| 亚洲精品色激情综合| 日韩av在线大香蕉| 色视频www国产| 一区二区三区国产精品乱码| 大型黄色视频在线免费观看| 在线永久观看黄色视频| 在线观看美女被高潮喷水网站 | 床上黄色一级片| 国产精品 国内视频| 最新在线观看一区二区三区| 人妻丰满熟妇av一区二区三区| 一二三四在线观看免费中文在| 久久天堂一区二区三区四区| 在线观看免费视频日本深夜| 国产午夜精品久久久久久| 黄色片一级片一级黄色片| 超碰成人久久| 五月伊人婷婷丁香| 日韩高清综合在线| 国产成人av教育| 日本黄色视频三级网站网址| 亚洲国产日韩欧美精品在线观看 | 欧美绝顶高潮抽搐喷水| 国产主播在线观看一区二区| 1024手机看黄色片| 一本综合久久免费| 亚洲精品色激情综合| 欧美另类亚洲清纯唯美| 伊人久久大香线蕉亚洲五| 久久精品91无色码中文字幕| 成人一区二区视频在线观看| 国产蜜桃级精品一区二区三区| 亚洲欧美精品综合久久99| 午夜福利在线在线| 国模一区二区三区四区视频 | 国产黄a三级三级三级人| 级片在线观看| 亚洲片人在线观看| 非洲黑人性xxxx精品又粗又长| 一二三四在线观看免费中文在| 欧美中文综合在线视频| 日韩精品青青久久久久久| 禁无遮挡网站| 亚洲av五月六月丁香网| 国产精品av久久久久免费| 一区二区三区国产精品乱码| 99精品欧美一区二区三区四区| 久久久国产成人免费| 日日摸夜夜添夜夜添小说| 国产91精品成人一区二区三区| 99热这里只有精品一区 | 视频区欧美日本亚洲| 黄色丝袜av网址大全| 亚洲美女黄片视频| 黄色片一级片一级黄色片| 日本黄大片高清| 欧美黑人巨大hd| 国产在线精品亚洲第一网站| 99久久久亚洲精品蜜臀av| 黄色视频,在线免费观看| 久久精品国产99精品国产亚洲性色| 欧美精品啪啪一区二区三区| 国产真人三级小视频在线观看| 亚洲国产精品成人综合色| 亚洲精品乱码久久久v下载方式 | 级片在线观看| 欧美一区二区精品小视频在线| 免费看美女性在线毛片视频| 一卡2卡三卡四卡精品乱码亚洲| 免费av不卡在线播放| 在线免费观看的www视频| 国产淫片久久久久久久久 | 精品久久蜜臀av无| 国产精品一区二区三区四区免费观看 | 亚洲最大成人中文| 九九热线精品视视频播放| 日韩大尺度精品在线看网址| 欧美午夜高清在线| 亚洲欧美精品综合久久99| 欧美av亚洲av综合av国产av| 国产成人aa在线观看| 亚洲国产高清在线一区二区三| 中亚洲国语对白在线视频| 国产精品一区二区三区四区免费观看 | 一卡2卡三卡四卡精品乱码亚洲| 亚洲乱码一区二区免费版| 午夜激情欧美在线| 亚洲一区二区三区色噜噜| 禁无遮挡网站| 日本成人三级电影网站| 18禁美女被吸乳视频| 国产午夜精品论理片| 噜噜噜噜噜久久久久久91| 天堂av国产一区二区熟女人妻| 国产欧美日韩精品亚洲av| 99热精品在线国产| 美女高潮喷水抽搐中文字幕| av黄色大香蕉| 少妇人妻一区二区三区视频| 国产成人欧美在线观看| 无遮挡黄片免费观看| 成年人黄色毛片网站| 曰老女人黄片| 亚洲国产精品成人综合色| 国产成人精品久久二区二区免费| 久久久久久久久久黄片| 蜜桃久久精品国产亚洲av| 久久精品夜夜夜夜夜久久蜜豆| 亚洲精品456在线播放app | 黄色女人牲交| 午夜成年电影在线免费观看| 男人舔女人下体高潮全视频| www国产在线视频色|