• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Hydrodynamic Model for Dimpled Mechanical Gas Seal Considering Interaction Effect

    2015-11-24 06:57:42ShiLiping時禮平HuangWei黃巍WangXiaolei王曉雷

    Shi Liping(時禮平),Huang Wei(黃?。?,Wang Xiaolei(王曉雷)*

    A Hydrodynamic Model for Dimpled Mechanical Gas Seal Considering Interaction Effect

    Shi Liping(時禮平)1,2,Huang Wei(黃巍)1,Wang Xiaolei(王曉雷)1*

    1.College of Mechanical and Electrical Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China;

    2.College of Mechanical Engineering,Anhui University of Technology,Ma’anshan 243002,P.R.China

    The mechanical gas seal of aero engine has to face the problems of high wear rate and short lifetime.Surface texture has shown beneficial effects over the tribological characteristics.Here,a hydrodynamic model for dimpled annular area of mechanical gas seal considering the"interaction effect"between adjacent dimples is developed based on the Reynolds equation.Different multi-row columns are chosen and the dimensionless pressure in radial and circumferential directions is calculated.The results indicate that the"interaction effect"is more obvious in the circumferential direction than in the radial direction,even when the area and depth of the dimples are same.Moreover,for the 5×5 column,the dimensionless average pressure considering the"interaction effect"increases by 45.41%compared with the 1×5 column.Further analysis demonstrates that the model with the 5×5 column can be more reasonable with the consideration of reducing the calculation error caused by boundary conditions to investigate the hydrodynamic effect for dimpled mechanical gas seal.

    surface texture;mechanical gas seal;hydrodynamic effect;interaction effect;aero engine

    0 Introduction

    The mechanical gas seal used for aero engine would be damaged easily because of high rotation speed,high temperature,great centrifugal forces and vibrations.Surface texturing has received a great deal of attention as a viable means to promote hydrodynamic effect,load carrying capacity and friction reduction[1-5].It has been used in mechanical seals[6-7],piston rings[8],sliding bearings[9-10],to name but a few.This improvement could be attributed mainly to the fact that the dimple serves as a micro-hydrodynamic bearing to generate additional hydrodynamic pressure to separate the mating surfaces and achieve non-contacting seal.In addition,every dimple also provides a pocket for wear particle embedment to prevent severe wear on the surfaces.

    Over the past decades,a large number of theoretical and experimental works have been published on various aspects of liquid and gas seals.Etsion et al.[5]developed an analytical model to predict the relationship between the opening force and operating conditions of sealed rings.Experimental investigations were compared with the theoretical results.Etsion and Halperin[11]employed partial laser surface texture(LST)to enhance hydrostatic effects in high pressure seals.Mc Nikel and Etsion[12-14]developed a theoretical model to study the effect of partial LST on a hydrostatic gas seal,and optimized the LST gas seal performance in terms of the maximum film stiffness and the minimum gas leakage.In recent years,several theoretical models for mechanical seals based on solving the Reynolds equation,e.g,Ref.[15-17],and threetypes of numerical methods have been employed:finite element(FE),finite volume(FV)and finite difference(FD)[18-22].The FE and FV methods had disadvantages in the code development. FD method could develop computer code easily and both the convergence speed and stability of the FD solver could be enhanced by the aid of the successive-over-relaxation(SOR)iteration method.

    From these studies above,one can conclude that they investigated single dimple locating within an imaginary rectangular cell of sides 2ri×2ri(riis the imaginary rectangular cell dimension)instead of annular area.Also they developed the model for calculations based on this unit neglecting the"interaction effect"between two neighboring dimples.However,as mentioned in Ref.[23],if the area ratio of dimples is more than 20%,the"interaction effect"of adjacent dimples should not be neglect.

    The main goal of the analysis in the present work is to develop a hydrodynamic model located within annular area considering the"interaction effect"between two neighboring dimples for mechanical gas seal.Different multi-row columns containing circle shape structure dimples are chosen for evaluating the hydrodynamic pressure in radial and circumferential directions by numerical calculation.At the same time,the average dimensionless pressure of the whole seal surface is taken into account.The developed model is more accurate to study the hydrodynamic effect for dimpled mechanical gas seal.

    1 Analytical Model

    The mechanical gas seal model considered in this paper is represented by two non-contacting rings rotating relatively to each other(Fig.1). The regular network of dimples is distributed on the rotor surface(Fig.2).The gas fills in the dimples at a depth of hpand the gap between the rotor face and the stator surface with a depth of h0.The radius of the dimple is rpand the angle velocity of rotor ring isω.

    Fig.1 Schematic diagram of partial mechanical gas seal

    Fig.2 Geometrical model

    The geometrical model is displayed in Fig.2. The method neglects curvature effect and consequently,a circular sector containing single-row column in the radial direction is assumed to be rectangular[6].Each dimple was located within an imaginary rectangular cell.What is more,the"individual effect"is considered only during the analysis of pressure distribution.Here,a developed model containing more accurate region is considered and different multi-row columns(3×5 column and 5×5 column,see Figs.2(b,c))are chosen to analyze the pressure distribution compared with single-row column(1×5 column,see Fig.2(a)).Moreover,the"interaction effect"between neighboring two dimples in radial and circumferential directions is analyzed in detail.

    For theoretical analysis,the following assumptions are expressed as[16]

    (1)The gas in the film obeys the isothermal and ideal gas model.

    (2)The sealed gas is viscous(Newtonian)with a constant viscosityμ.

    (3)The ring face is rigid and smooth.

    (4)The flow in the gas film is laminar.

    (5)There is no misalignment of the rotator.

    The two-dimensional steady-state Reynolds equation,which relates the pressure distribution to the spacing between two ring interfaces of mechanical gas seal in cylindrical coordinates,is given by

    where r andθare the cylindrical coordinates in the radial and circumferential directions,respectively,p the gas film pressure,and h the local film thickness at a specific point.Periodicity of the surface texturing in theθdirection,permits solving the pressure distribution with the following boundary conditions

    where riis the inner radius,rothe outer radius,pathe outer radius of the ambient pressure,and N the number of dimple rows on whole ring surface.

    The local film thickness,h,between the nominally parallel seal surfaces can be expressed in the following form

    whereΩis the studied area.

    Eq.(1)is rendered dimensionless by using one dimple radius rpto scale lengths,a nominal clearance h0to scale the local film thickness and pato scale the pressure field,namely

    The dimensionless global film thickness,H(R,θ),is given by

    Substitution of the dimensionless parameters

    into Eq.(1)yields the Reynolds equation in its dimensionless form

    The boundary conditions in a dimensionless form are given as

    2 Numerical Solution

    In order to get film pressure distribution between the two rings,the FD method is adopted to discretize Eq.(6).Fig.3 shows control cells in the present calculation grid system,whereΔR,Δθare the grid sizes in the radial and circumferential directions,respectively.The process can be directed by the method listed as follows

    Fig.3 Control cells in calculation grid system

    A set of non-linear algebraic equations for the nodal values of the dimensionless pressure,which should be solved with the boundary conditions Eq.(7),are obtained by applying the above method

    where A,B,C,D,E,F(xiàn),G are the discrete coefficients expressed as

    The SOR iterative procedure is used to solve Eq.(9).To increase the convergence or to enhance the numerical iterative stability,the method can be expressed as

    whereβis the SOR factor,β=1.3.Pki,jis the pressure values at iterative step k at the point(i,j),and Pki,j+1the pressure values at iterative step k+1 at the point(i,j).The convergence condition is taken as

    where Errpis the convergence accuracy,chosen as 1.0×10-5here.

    3 Results and Discussion

    The calculation is performed for one dimple with diameter 2rp=200μm,hp=6μm,and h0= 5μm.The area density of the dimples is Sp= 31.6%and the angle velocity of the rotorω= 5 000 r/min.The sealed gas viscosity isμ= 1.79×10-5Pa·s and pa=1.01×105Pa.The dimensionless pressure distribution of single-row column and different multi-row columns is plotted in Fig.4.

    Fig.4 Dimensionless pressure distribution of single-row column and multi-row columns

    In Fig.4,the pressure profile is not symmetric in the circumferential direction,resulting in positive net pressure build-up.It becomes evident that a hydrodynamic pressure formed on the mechanical gas seal surfaces.The pressure is convergent along the direction of angle velocity of the rotor ring,and in the radial direction,the dimensionless pressure increases nonlinearly with the increase of radius.For different multi-row columns,pressure distribution has the same regularity but the"interaction effect"between two neighboring dimples is clearly different.

    For the further investigation of different columns,dimensionless pressure values and the"interaction effect"in different directions are shown in Figs.5—7.

    Fig.5 Dimensionless pressure distribution in radial direction of different columns

    Fig.6 Dimensionless pressure distribution in circumferential direction of different columns

    Fig.7 Dimensionless pressure distribution along circumferential direction of single dimple

    Fig.5 presents the dimensionless pressure distribution along the center line of different columns in the radial direction.The pressure value increases as radius expands.For instance,for the 1×5 column,the value from inside to outside of seal surface is 1.951,1.982 and 2.050.For convenience,reference lines 1,2,3 are presented via the second dimple dimensionless pressure peak. The result shows that the maximum dimensionless pressure difference between the 1×5 and the 3×5 columns is.The difference between the 1×5 and the 5×5 columns is.The maximum dimensionless pressures of the 3×5 and the 5×5 columns are close enough.Compared with the 1×5 column,the maximum dimensionless pressure generated by the 3×5 and the 5×5 columns increase by 34.45%and 37.68%,respectively.Similarly,the pressure of the 5×5 column increases by 2.40%compared with that of the 3×5 column. Most significantly,all curves in Fig.5 can be segmented into four regions:the affected region(designated as regionⅠ),the divergence region(regionⅡ)in the descending segment of the curves,the convergence region(regionⅢ)in the increasing segment,and the interaction region(regionⅣ)formed by the"interaction effect",which is produced by the second and the third regions.The"interaction effect"can increase the minimum dimensionless pressurebut the minimum dimensionless pressure of the 3×5 column is very close to that of the 5×5 columnMoreover,compared with the 1×5 column,the minimum dimensionless pressure generated by the 3×5 and 5×5 columns increase by 20.40% and 24.10%,respectively.Similarly,the pressure of the 5×5 column increased by 3.07%,compared with that of the 3×5 column.

    In the circumferential direction(Fig.6),the maximum dimensionless pressures generated by the 3×5 and 5×5 columns are 33.55%and 38.86%higher,respectively,than that by the 1×5 column.The minimum dimensionless pressure generated by the 3×5 and 5×5 columns increased by 70.54%and 85.76%,respectively when compared with the 1×5 column.

    In Figs.5,6,the dimensionless pressure distributions have the same trends.However,the difference is that the"interaction effect"is more obvious in the circumferential direction becausethe distance of two neighboring dimples is smaller than that in the radial direction.

    From the above analysis,these results demonstrate that the dimensionless pressure increases,as calculated by the 3×5 and 5×5 columns. It is necessary to investigate the"interaction effect",especially when the area density of the dimples Spis larger than 20%(see Ref.[23]). Furthermore,the"interaction effect"is more obvious in the circumferential direction than the radial direction even when the area and depth of the dimple are the same.So the"interaction effect"is not inspected(see Ref.[9]and 1×5 column),which is not consistent with the actual working conditions.

    Besides the results mentioned above,the simulation also inspects the dimensionless pressure distribution along the single dimple(Fig.2)centerline in different directions(Figs.7,8). Fig.7 shows the dimensionless pressure distribution in the circumferential direction.As depicted in Fig.7,all curves can be divided into three segments,i.e.,the first descending segment,the increasing segment,and the second descending segment.Compared with the 1×5 column,the maximum pressures generated by the 3×5 column and the 5×5 column increase by 33.57% and 38.9 1%,respectively.The minimum pressures generated by the 3×5 and 5×5 columns increase by 78.36%and 85.63%,respectively.As is clearly seen from Fig.7,the offset of different column pressure peaks in the circumferential direction is apparent,ΔD1>ΔD2>ΔD3.ΔD3is very close to the reference line.It becomes evident that the dimensionless pressure investigation calculated by the 5×5 column is more accuracy than that of the 1×5 and 3×5 columns.

    Fig.8 presents the maximum dimensionless pressure distribution along the single dimple centerline of different columns in the radial direction.The difference between the 1×5 and 3×5 columns isThe difference between the 1×5 and 5×5 columns isΔP2max= 1.033,and

    Fig.8 The maximum dimensionless pressures in radial direction of single dimple

    It is clearly seen from the discussion above that each dimple strongly affects its neighboring dimples.This"interaction effect"results in the increase of dimensionless pressure.The increase extents of multi-row columns in different directions are not the same although they have the same area ratio,as well as other parameters. However,the difference between the 3×5 and 5×5 columns is very small.

    As an indicator to evaluate the mechanical gas seal surface property,the dimensionless average pressure Pavis chosen as an index to evaluate the load carrying capacity of the whole mechanical gas seal surface.

    Fig.9 shows the dimensionless average pressure Pavand the pressure differenceΔPavof different columns.For different columns,the dimensionless average pressures Pavare 1.220,1.647,and 1.774,respectively.The pressure differences areandCompared with the 1×5 column, the dimensionless average pressures Pavgenerated by the 3×5 and 5×5 columns increase by 35.00%and 45.41%,respectively.Similarly,compared with the 3×5 column,Pavof the 5×5 column increases by 7.71%.These results show that the dimensionless average pressure considering the"interaction effect"is larger than that without considering it.Although the increase extents of different multi-row columns are not same,the pressure difference between the 3×5 and 5×5 columns is very small.

    Fig.9 Dimensionless average pressure of different columns

    4 Conclusions

    A hydrodynamic model is developed to investigate the performance for dimpled mechanical gas seal.Circular shape dimples are analyzed.Different multi-row columns with annular area are chosen and the dimensionless pressure considering the"interaction effect"between two neighboring dimples in the radial and circumferential directions is calculated.The following conclusions summarize the results of the present study:

    (1)In the radial direction,the dimensionless pressure of different multi-row columns increases because of the consideration of the"interaction effect"between two neighboring dimples. Although the increase is different,the difference of the 3×5 and 5×5 columns is very small.

    (2)In the circumferential direction,the dimensionless pressure distribution exhibits the same behavior.However,the"interaction effect"is more obvious than that in the radial direction,even when the area and depth of the dimples are same.It is because the distance of two neighboring dimples in the circumferential direction is smaller than that in the radial direction.

    (3)Due to the analysis of the dimensionless pressure of single dimple and the dimensionless average pressure of whole mechanical gas seal surface,it is evident that the 5×5 column with annular area considering the"interaction effect"between two neighboring dimples can be more accurate in predicting the hydrodynamic effect for dimpled mechanical gas seal based on the numerical calculation.

    Acknowledgements

    This work was supported by the National Natural Science Foundation of China(No.51175246),the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),and the NUAA Research Funding(No.NP2013306).

    [1] Wang X L,Kato K,Adachi K,et al.Loads carrying capacity map for the surface texture design of SiC thrust bearing sliding in water[J].Tribology International,2003,36(3):189-197.

    [2] Wang X L,Kato K.Improving the anti-seizure ability of SiC seal in water with RIE texturing[J].Tribology Letters,2003,14(4):275-280.

    [3] Li J L,Xiong D S,Dai J H,et al.Texture on friction properties of nickel-based composite[J].Tribology International,2010,43(5/6):1193-1199.

    [4] Odyckvan D E A,Venner C H.Compressible stokes flow in thin films[J].ASME Journal of Tribology,2003,125(3):543-551.

    [5] Zhou F,Kato K.Friction and wear properties of amorphous carbon nitride coatings in water lubrication[J].Transactions of Nanjing University of Aeronautics and Astronautics,2014,31(5):463-477.

    [6] Etsion I,Kligerman Y,Halperin G.Analytical and experimental investigation of laser-textured mechanical seal faces[J].Tribology Transactions,1999,42(3):511-516.

    [7] Kligerman Y,Etsion I.Analysis of the hydrodynamic effects in a surface textured circumferential gas seals[J].Tribology Transactions,2001,44(3):472-478.

    [8] Kligerman Y,Etsion I,Shinkarenko A.Improving tribological performance of piston rings by partial surface texturing[J].ASME Journal of Tribology,2005,127(3):632-638.

    [9] Brizmer V,Kligerman Y,Etsion I.A laser surface textured parallel thrust bearing[J].Tribology Transactions,2003,46(3):397-403.

    [10]Etsion I,Halperin G,Brizmer V,et al.Experimental investigation of laser surface textured parallel thrust bearings[J].Tribology Letters,2004,17(2):295-300.

    [11]Etsion I,Halperin G.A laser surface textured hydrostatic mechanical seal[J].Tribology Transac-tions,2002,45(3):430-434.

    [12]Mc Nikel A D,Etsion I.Near-contact laser surface textured dry gas seal[J].ASME Journal of Tribology,2004,126(4):788-794.

    [13]Etsion I.State of the art in laser surface texturing[J].ASME Journal of Tribology,2005,127(1):248-253.

    [14]Feldman Y,Etsion I.Stiffness and efficiency optimization of a hydrostatic laser surface textured gas seal[J].ASME Journal of Tribology,2007,129(2):407-410.

    [15]Nanbu T,Ren N,Yasuda Y,et al.Microtextures in concentrated conformal-contact lubrication:Effects of texture bottom shape and surface relative motion[J]. Tribology Letters,2008,29(3):241-252.

    [16]Wang B,Zhang H Q.Numerical analysis of a spiralgroove dry gas seal considering micro-scale effects[J].Chinese Journal of Mechanical Engineering,2011,24(1):146-153.

    [17]Lebeck A O.Contacting mechanical seal design using a simplified hydrostatic model[J].Tribology International,1998,21(1):2-14.

    [18]Brad A M,Itzhak G.Numerical techniques for computing rotor dynamic properties of mechanical gas face seal[J].Tribology Letters,2002,124(4):755-761.

    [19]Marco T C F.An efficient finite element procedure for analysis of high-speed spiral groove gas face seals[J].Tribology Letters,2001,123(1):205-210.

    [20]Bonneau D,Huiltric J,Tournerie B.Finite element analysis of grooved gas trust bearing and grooved face seal[J].Tribology Letters,1993,115(3):348-354.

    [21]Yu H W,Wang X L,Zhou F.Geometric shape effects of surface texture on the generation of hydrodynamic pressure between conformal contacting surfaces[J].Tribology Letters,2010,37(2):123-130.

    [22]Yu H W,Wang X L,Sun Z,et al..Theoretical analysis on hydrodynamic lubrication of cylinder micro-dimple surface texture[J].Journal of Nanjing University of Aeronautics and Astronautics,2010,42(2):209-213.(in Chinese)

    [23]Etsion I,Burstein L.A model for mechanical seals with regular microsurface structure[J].Tribology Letters,1996,39(3):677-683.

    (Executive editor:Zhang Tong)

    TH117.1 Document code:A Article ID:1005-1120(2015)04-0438-08

    *Corresponding author:Wang Xiaolei,Professor,E-mail:wxl@nuaa.edu.cn.

    How to cite this article:Shi Liping,Huang Wei,Wang Xiaolei.A hydrodynamic model for dimpled mechanical gas seal considering interaction effect[J].Trans.Nanjing U.Aero.Astro.,2015,32(4):438-445.

    http://dx.doi.org/10.16356/j.1005-1120.2015.04.438

    (Received 3 June 2014;revised 18 October 2014;accepted 24 November 2014)

    午夜两性在线视频| 制服人妻中文乱码| 黄色片一级片一级黄色片| 精品一区在线观看国产| 亚洲一区中文字幕在线| 青春草视频在线免费观看| 捣出白浆h1v1| 别揉我奶头~嗯~啊~动态视频 | 99久久综合免费| 欧美精品亚洲一区二区| 精品国产一区二区三区四区第35| 亚洲av日韩精品久久久久久密 | 午夜激情av网站| 午夜免费成人在线视频| 90打野战视频偷拍视频| 欧美日韩视频精品一区| 亚洲情色 制服丝袜| 五月天丁香电影| 91成人精品电影| 日本黄色日本黄色录像| 91国产中文字幕| 国产成人免费观看mmmm| 午夜91福利影院| 老司机靠b影院| 18禁国产床啪视频网站| 最新的欧美精品一区二区| 成年女人毛片免费观看观看9 | 久久久久精品人妻al黑| 亚洲人成电影免费在线| 日日夜夜操网爽| 首页视频小说图片口味搜索 | 日本a在线网址| 女人精品久久久久毛片| 午夜福利影视在线免费观看| 日本五十路高清| 大香蕉久久网| 两人在一起打扑克的视频| 久久国产亚洲av麻豆专区| 国产视频一区二区在线看| 两个人免费观看高清视频| 少妇裸体淫交视频免费看高清 | 亚洲国产欧美在线一区| 色婷婷久久久亚洲欧美| av欧美777| 国产伦人伦偷精品视频| www.精华液| 欧美日韩av久久| 久久久国产欧美日韩av| 欧美激情高清一区二区三区| 在线av久久热| 下体分泌物呈黄色| 久热这里只有精品99| 久久人妻福利社区极品人妻图片 | 午夜福利一区二区在线看| 天天操日日干夜夜撸| 七月丁香在线播放| 亚洲午夜精品一区,二区,三区| 巨乳人妻的诱惑在线观看| 国产成人精品久久久久久| 狂野欧美激情性xxxx| 最近手机中文字幕大全| av在线app专区| av有码第一页| 日韩制服骚丝袜av| 老司机影院成人| 国产xxxxx性猛交| 最近最新中文字幕大全免费视频 | 深夜精品福利| 国产极品粉嫩免费观看在线| 老司机深夜福利视频在线观看 | 极品少妇高潮喷水抽搐| 色婷婷av一区二区三区视频| 男女下面插进去视频免费观看| 亚洲av日韩在线播放| 国产成人精品无人区| 51午夜福利影视在线观看| 天天操日日干夜夜撸| 国产精品偷伦视频观看了| 黄色片一级片一级黄色片| 亚洲精品国产色婷婷电影| 日日爽夜夜爽网站| 777久久人妻少妇嫩草av网站| 亚洲av综合色区一区| 亚洲精品一区蜜桃| 亚洲,欧美精品.| 欧美激情高清一区二区三区| 成人手机av| 久久久精品国产亚洲av高清涩受| 久久国产精品人妻蜜桃| 丰满少妇做爰视频| 久久久久久免费高清国产稀缺| 在线观看一区二区三区激情| www.999成人在线观看| 一区在线观看完整版| 人人澡人人妻人| 亚洲成人免费电影在线观看 | 成人影院久久| 黄色 视频免费看| 日本黄色日本黄色录像| av福利片在线| 好男人视频免费观看在线| 国产日韩欧美亚洲二区| 欧美精品人与动牲交sv欧美| 制服人妻中文乱码| 另类精品久久| 成在线人永久免费视频| 黄色片一级片一级黄色片| 黄片播放在线免费| 久久精品久久精品一区二区三区| 亚洲欧洲国产日韩| 啦啦啦中文免费视频观看日本| 超碰97精品在线观看| 国产精品二区激情视频| 一级,二级,三级黄色视频| 亚洲美女黄色视频免费看| 一级毛片电影观看| 欧美精品啪啪一区二区三区 | a级片在线免费高清观看视频| 一区二区日韩欧美中文字幕| 久久久国产精品麻豆| 永久免费av网站大全| 中文字幕人妻熟女乱码| 国产97色在线日韩免费| 精品国产国语对白av| 亚洲欧美日韩另类电影网站| 日韩免费高清中文字幕av| 久久久久国产精品人妻一区二区| 亚洲精品中文字幕在线视频| 一级黄片播放器| 国产在线观看jvid| 亚洲成av片中文字幕在线观看| 天天添夜夜摸| 欧美成狂野欧美在线观看| 日韩伦理黄色片| 国产人伦9x9x在线观看| 下体分泌物呈黄色| 麻豆乱淫一区二区| 精品一品国产午夜福利视频| 亚洲成色77777| 日韩av在线免费看完整版不卡| 国产熟女午夜一区二区三区| 欧美少妇被猛烈插入视频| 国产成人a∨麻豆精品| 国产精品免费视频内射| 欧美久久黑人一区二区| 国产精品久久久久久精品电影小说| 纯流量卡能插随身wifi吗| 国产午夜精品一二区理论片| 精品国产乱码久久久久久男人| 国产欧美日韩综合在线一区二区| 免费av中文字幕在线| 丰满迷人的少妇在线观看| 中文字幕高清在线视频| 建设人人有责人人尽责人人享有的| 欧美日韩黄片免| 午夜福利一区二区在线看| 亚洲欧美一区二区三区黑人| 精品一区二区三区四区五区乱码 | 国产精品免费视频内射| 久久国产精品男人的天堂亚洲| 大陆偷拍与自拍| 日韩伦理黄色片| 黄色a级毛片大全视频| 久久国产精品影院| 人妻 亚洲 视频| 性高湖久久久久久久久免费观看| 视频区图区小说| 亚洲欧美一区二区三区久久| 欧美黄色片欧美黄色片| 成年女人毛片免费观看观看9 | 欧美精品一区二区大全| 国产1区2区3区精品| 午夜福利视频在线观看免费| 在线看a的网站| 国产精品秋霞免费鲁丝片| 黄色a级毛片大全视频| 婷婷成人精品国产| 一区二区日韩欧美中文字幕| 99国产综合亚洲精品| 国产成人精品久久二区二区91| 各种免费的搞黄视频| 久久国产精品人妻蜜桃| 777久久人妻少妇嫩草av网站| 久久亚洲精品不卡| 天天操日日干夜夜撸| 国产成人欧美在线观看 | 国产爽快片一区二区三区| 日韩 欧美 亚洲 中文字幕| 黄频高清免费视频| e午夜精品久久久久久久| 亚洲欧美一区二区三区久久| 91成人精品电影| 欧美激情极品国产一区二区三区| 久久九九热精品免费| 国产日韩一区二区三区精品不卡| 水蜜桃什么品种好| 日韩 欧美 亚洲 中文字幕| 亚洲一码二码三码区别大吗| 婷婷丁香在线五月| 老司机深夜福利视频在线观看 | av在线app专区| 国产一区二区三区综合在线观看| 亚洲欧美精品自产自拍| av片东京热男人的天堂| 色播在线永久视频| 三上悠亚av全集在线观看| 考比视频在线观看| 亚洲精品一二三| a级毛片在线看网站| 国产一区二区在线观看av| 校园人妻丝袜中文字幕| 亚洲成人免费电影在线观看 | 国产成人啪精品午夜网站| 色婷婷久久久亚洲欧美| 老熟女久久久| 五月开心婷婷网| av福利片在线| 日日夜夜操网爽| 欧美+亚洲+日韩+国产| 视频区欧美日本亚洲| 一区二区av电影网| 亚洲中文日韩欧美视频| 韩国精品一区二区三区| 欧美人与善性xxx| 国产色视频综合| 免费在线观看日本一区| 亚洲国产欧美日韩在线播放| 中文字幕人妻丝袜一区二区| 欧美成狂野欧美在线观看| 校园人妻丝袜中文字幕| 飞空精品影院首页| 欧美日本中文国产一区发布| 久久精品亚洲av国产电影网| 黄色a级毛片大全视频| 三上悠亚av全集在线观看| 啦啦啦 在线观看视频| 日本一区二区免费在线视频| 亚洲中文日韩欧美视频| 搡老岳熟女国产| 亚洲天堂av无毛| 超碰成人久久| 国产在线视频一区二区| 日韩av免费高清视频| 亚洲专区中文字幕在线| 肉色欧美久久久久久久蜜桃| 中文精品一卡2卡3卡4更新| 国产精品久久久久久精品电影小说| 午夜视频精品福利| 久久久久精品人妻al黑| 99香蕉大伊视频| 亚洲av片天天在线观看| 精品亚洲成a人片在线观看| 亚洲一码二码三码区别大吗| av天堂久久9| 一级黄片播放器| 亚洲av美国av| a级毛片在线看网站| 亚洲天堂av无毛| 久久久久久久精品精品| 国产精品一二三区在线看| 黄片小视频在线播放| 波野结衣二区三区在线| 亚洲av男天堂| 欧美日韩国产mv在线观看视频| 久久久久久久大尺度免费视频| 国产欧美日韩精品亚洲av| 少妇的丰满在线观看| 蜜桃国产av成人99| 男的添女的下面高潮视频| 99久久综合免费| 久久精品aⅴ一区二区三区四区| 久久久精品国产亚洲av高清涩受| 精品少妇一区二区三区视频日本电影| 中文字幕人妻丝袜一区二区| 久久性视频一级片| 丰满人妻熟妇乱又伦精品不卡| 久热爱精品视频在线9| 久久av网站| 日韩大码丰满熟妇| 久久久久久久精品精品| www.自偷自拍.com| 久久人妻熟女aⅴ| 午夜激情久久久久久久| 日韩免费高清中文字幕av| 99热网站在线观看| 成人三级做爰电影| 又黄又粗又硬又大视频| 搡老岳熟女国产| 十八禁人妻一区二区| 丰满少妇做爰视频| 精品视频人人做人人爽| 母亲3免费完整高清在线观看| 欧美久久黑人一区二区| 99久久人妻综合| 成在线人永久免费视频| 国产成人91sexporn| 菩萨蛮人人尽说江南好唐韦庄| 两个人看的免费小视频| 在线观看人妻少妇| 中国美女看黄片| 国产成人av激情在线播放| 国产亚洲一区二区精品| 国产精品九九99| 亚洲成国产人片在线观看| 久久国产精品影院| 女人久久www免费人成看片| 婷婷色综合大香蕉| 9191精品国产免费久久| 巨乳人妻的诱惑在线观看| 人人妻人人爽人人添夜夜欢视频| 国产av精品麻豆| 可以免费在线观看a视频的电影网站| 国产黄色视频一区二区在线观看| 亚洲国产精品999| 亚洲人成电影免费在线| 免费日韩欧美在线观看| 国产av一区二区精品久久| 国产精品秋霞免费鲁丝片| 一区二区三区激情视频| 一区二区三区精品91| www日本在线高清视频| 在线精品无人区一区二区三| 女警被强在线播放| 老司机在亚洲福利影院| 19禁男女啪啪无遮挡网站| 亚洲精品国产av蜜桃| 亚洲av成人不卡在线观看播放网 | 两个人免费观看高清视频| kizo精华| 久久天躁狠狠躁夜夜2o2o | 国产午夜精品一二区理论片| 在线观看免费日韩欧美大片| 久久人人爽av亚洲精品天堂| 999精品在线视频| videosex国产| 欧美黄色淫秽网站| 日韩一区二区三区影片| 久久久国产精品麻豆| 一本色道久久久久久精品综合| 蜜桃国产av成人99| 免费看十八禁软件| 午夜两性在线视频| 久久九九热精品免费| 亚洲精品一卡2卡三卡4卡5卡 | 欧美亚洲 丝袜 人妻 在线| 老司机亚洲免费影院| 亚洲精品美女久久久久99蜜臀 | 国产高清不卡午夜福利| 丰满少妇做爰视频| 免费观看人在逋| 精品久久久精品久久久| 免费高清在线观看日韩| 亚洲av片天天在线观看| 色网站视频免费| 好男人视频免费观看在线| videosex国产| 精品高清国产在线一区| 黑丝袜美女国产一区| 精品少妇久久久久久888优播| 久久久欧美国产精品| 黑人猛操日本美女一级片| 国产真人三级小视频在线观看| 国产成人欧美在线观看 | 国产精品久久久久久人妻精品电影 | 欧美人与性动交α欧美软件| 国产成人一区二区在线| 一级毛片 在线播放| 秋霞在线观看毛片| 黄色视频不卡| 中文字幕色久视频| 一级黄色大片毛片| 亚洲人成77777在线视频| 精品一区二区三区四区五区乱码 | 蜜桃在线观看..| 69精品国产乱码久久久| 国产老妇伦熟女老妇高清| 波野结衣二区三区在线| 无限看片的www在线观看| 一级毛片黄色毛片免费观看视频| 女性被躁到高潮视频| 亚洲中文av在线| 久久ye,这里只有精品| 国产主播在线观看一区二区 | 国产欧美日韩一区二区三 | 97精品久久久久久久久久精品| 一区福利在线观看| 一区在线观看完整版| 啦啦啦中文免费视频观看日本| 嫩草影视91久久| 大话2 男鬼变身卡| 国精品久久久久久国模美| 深夜精品福利| 国产精品欧美亚洲77777| 亚洲av成人不卡在线观看播放网 | bbb黄色大片| 黄色视频在线播放观看不卡| 九草在线视频观看| 伦理电影免费视频| 日本五十路高清| 国产精品一国产av| 最近手机中文字幕大全| 捣出白浆h1v1| www.熟女人妻精品国产| 性色av乱码一区二区三区2| 久久久久久久久免费视频了| avwww免费| 免费在线观看黄色视频的| 韩国高清视频一区二区三区| 中文字幕人妻丝袜一区二区| 一边亲一边摸免费视频| 日韩制服丝袜自拍偷拍| 国产精品偷伦视频观看了| 一级毛片我不卡| 久久久久精品人妻al黑| 成人影院久久| 亚洲精品国产av蜜桃| 最新的欧美精品一区二区| 一区二区三区乱码不卡18| 精品人妻熟女毛片av久久网站| 大码成人一级视频| 嫩草影视91久久| 国产精品一国产av| 一本大道久久a久久精品| 黄片小视频在线播放| 少妇人妻 视频| 2021少妇久久久久久久久久久| 久久人人爽人人片av| 色网站视频免费| 久久影院123| 新久久久久国产一级毛片| 久久中文字幕一级| 免费一级毛片在线播放高清视频 | 精品久久久久久久毛片微露脸 | 熟女少妇亚洲综合色aaa.| 超碰97精品在线观看| 亚洲专区中文字幕在线| 中文字幕人妻丝袜制服| 成人国语在线视频| 国产日韩欧美视频二区| 国产三级黄色录像| 高清不卡的av网站| 18禁国产床啪视频网站| 制服人妻中文乱码| 国产精品国产av在线观看| 国产激情久久老熟女| 亚洲成人免费av在线播放| 在线av久久热| 国产亚洲精品第一综合不卡| 性少妇av在线| 成人国产一区最新在线观看 | 国产精品久久久久久精品电影小说| 国产又色又爽无遮挡免| 国产精品 欧美亚洲| 国产精品国产av在线观看| 免费av中文字幕在线| avwww免费| 久久久精品94久久精品| 国产午夜精品一二区理论片| 久久ye,这里只有精品| 国产精品久久久人人做人人爽| 多毛熟女@视频| 久久亚洲精品不卡| www.熟女人妻精品国产| 国产91精品成人一区二区三区 | 国产黄频视频在线观看| 亚洲专区国产一区二区| 亚洲国产精品一区二区三区在线| 国产av国产精品国产| 国产欧美日韩一区二区三 | av电影中文网址| 亚洲欧美中文字幕日韩二区| 亚洲精品日本国产第一区| 热re99久久国产66热| 纯流量卡能插随身wifi吗| www.999成人在线观看| 少妇人妻久久综合中文| 国产视频一区二区在线看| 天天躁夜夜躁狠狠久久av| 午夜91福利影院| 久久鲁丝午夜福利片| 真人做人爱边吃奶动态| 成年人免费黄色播放视频| av网站在线播放免费| 黑人巨大精品欧美一区二区蜜桃| 国产色视频综合| 亚洲精品国产av成人精品| 19禁男女啪啪无遮挡网站| 久久久久久久精品精品| 另类亚洲欧美激情| 国产亚洲欧美精品永久| 乱人伦中国视频| 美女主播在线视频| 欧美日韩亚洲高清精品| 亚洲熟女精品中文字幕| 婷婷成人精品国产| 日韩一卡2卡3卡4卡2021年| 成年动漫av网址| 久久久久久久久免费视频了| 国产精品av久久久久免费| 国产精品免费视频内射| 亚洲欧洲国产日韩| 一区二区日韩欧美中文字幕| 丁香六月欧美| 精品福利永久在线观看| 午夜视频精品福利| 欧美日韩亚洲国产一区二区在线观看 | 飞空精品影院首页| 久久久久久亚洲精品国产蜜桃av| 午夜免费男女啪啪视频观看| 热re99久久国产66热| 日本a在线网址| 性色av一级| 午夜老司机福利片| 一区二区日韩欧美中文字幕| 国产成人免费无遮挡视频| 99国产综合亚洲精品| 一边摸一边抽搐一进一出视频| 后天国语完整版免费观看| 欧美av亚洲av综合av国产av| 天堂8中文在线网| 免费高清在线观看日韩| 一边摸一边抽搐一进一出视频| 亚洲熟女精品中文字幕| 巨乳人妻的诱惑在线观看| 50天的宝宝边吃奶边哭怎么回事| 欧美激情高清一区二区三区| 亚洲熟女毛片儿| 国产成人免费观看mmmm| 尾随美女入室| 一本久久精品| 两性夫妻黄色片| 少妇精品久久久久久久| 久久影院123| 成人亚洲精品一区在线观看| 日本欧美国产在线视频| 一区在线观看完整版| 精品亚洲成国产av| 国产精品欧美亚洲77777| 久久久久精品人妻al黑| 老司机亚洲免费影院| 大香蕉久久成人网| 欧美亚洲日本最大视频资源| 欧美日本中文国产一区发布| www.精华液| 国产精品国产av在线观看| 美女扒开内裤让男人捅视频| 国产不卡av网站在线观看| 大片电影免费在线观看免费| 丰满饥渴人妻一区二区三| 一级毛片黄色毛片免费观看视频| 一本大道久久a久久精品| 久久ye,这里只有精品| 亚洲精品在线美女| 亚洲色图 男人天堂 中文字幕| 美女视频免费永久观看网站| 一区二区三区精品91| 一级黄片播放器| 只有这里有精品99| 丝袜在线中文字幕| 成人黄色视频免费在线看| 免费看av在线观看网站| 亚洲人成电影免费在线| 乱人伦中国视频| 日韩制服骚丝袜av| 国产亚洲av片在线观看秒播厂| 七月丁香在线播放| 国产一区有黄有色的免费视频| 首页视频小说图片口味搜索 | 免费人妻精品一区二区三区视频| 日韩大片免费观看网站| 国产精品一二三区在线看| 日本一区二区免费在线视频| 亚洲少妇的诱惑av| av片东京热男人的天堂| 欧美黑人精品巨大| 多毛熟女@视频| 精品亚洲成国产av| 亚洲精品国产一区二区精华液| 免费在线观看完整版高清| 真人做人爱边吃奶动态| 美女脱内裤让男人舔精品视频| 亚洲欧美清纯卡通| 久久精品国产亚洲av高清一级| 一边摸一边抽搐一进一出视频| 亚洲五月婷婷丁香| 日本五十路高清| 日韩中文字幕视频在线看片| 午夜影院在线不卡| 一级毛片 在线播放| 日韩视频在线欧美| 一级片'在线观看视频| 国产又色又爽无遮挡免| 校园人妻丝袜中文字幕| 看十八女毛片水多多多| 精品久久久精品久久久| 亚洲国产精品一区二区三区在线| 久久 成人 亚洲| 亚洲成av片中文字幕在线观看| 午夜福利视频精品| 国产亚洲精品久久久久5区| 午夜激情av网站| 1024视频免费在线观看| 精品人妻1区二区| 欧美久久黑人一区二区| 国产成人精品久久久久久| 国产亚洲av高清不卡| 欧美日韩一级在线毛片| av在线app专区| 精品久久蜜臀av无| 国产在线观看jvid| 亚洲欧洲日产国产| 一本一本久久a久久精品综合妖精| 啦啦啦在线免费观看视频4| 最近中文字幕2019免费版| 国产精品熟女久久久久浪|