• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Hydrodynamic Model for Dimpled Mechanical Gas Seal Considering Interaction Effect

    2015-11-24 06:57:42ShiLiping時禮平HuangWei黃巍WangXiaolei王曉雷

    Shi Liping(時禮平),Huang Wei(黃?。?,Wang Xiaolei(王曉雷)*

    A Hydrodynamic Model for Dimpled Mechanical Gas Seal Considering Interaction Effect

    Shi Liping(時禮平)1,2,Huang Wei(黃巍)1,Wang Xiaolei(王曉雷)1*

    1.College of Mechanical and Electrical Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China;

    2.College of Mechanical Engineering,Anhui University of Technology,Ma’anshan 243002,P.R.China

    The mechanical gas seal of aero engine has to face the problems of high wear rate and short lifetime.Surface texture has shown beneficial effects over the tribological characteristics.Here,a hydrodynamic model for dimpled annular area of mechanical gas seal considering the"interaction effect"between adjacent dimples is developed based on the Reynolds equation.Different multi-row columns are chosen and the dimensionless pressure in radial and circumferential directions is calculated.The results indicate that the"interaction effect"is more obvious in the circumferential direction than in the radial direction,even when the area and depth of the dimples are same.Moreover,for the 5×5 column,the dimensionless average pressure considering the"interaction effect"increases by 45.41%compared with the 1×5 column.Further analysis demonstrates that the model with the 5×5 column can be more reasonable with the consideration of reducing the calculation error caused by boundary conditions to investigate the hydrodynamic effect for dimpled mechanical gas seal.

    surface texture;mechanical gas seal;hydrodynamic effect;interaction effect;aero engine

    0 Introduction

    The mechanical gas seal used for aero engine would be damaged easily because of high rotation speed,high temperature,great centrifugal forces and vibrations.Surface texturing has received a great deal of attention as a viable means to promote hydrodynamic effect,load carrying capacity and friction reduction[1-5].It has been used in mechanical seals[6-7],piston rings[8],sliding bearings[9-10],to name but a few.This improvement could be attributed mainly to the fact that the dimple serves as a micro-hydrodynamic bearing to generate additional hydrodynamic pressure to separate the mating surfaces and achieve non-contacting seal.In addition,every dimple also provides a pocket for wear particle embedment to prevent severe wear on the surfaces.

    Over the past decades,a large number of theoretical and experimental works have been published on various aspects of liquid and gas seals.Etsion et al.[5]developed an analytical model to predict the relationship between the opening force and operating conditions of sealed rings.Experimental investigations were compared with the theoretical results.Etsion and Halperin[11]employed partial laser surface texture(LST)to enhance hydrostatic effects in high pressure seals.Mc Nikel and Etsion[12-14]developed a theoretical model to study the effect of partial LST on a hydrostatic gas seal,and optimized the LST gas seal performance in terms of the maximum film stiffness and the minimum gas leakage.In recent years,several theoretical models for mechanical seals based on solving the Reynolds equation,e.g,Ref.[15-17],and threetypes of numerical methods have been employed:finite element(FE),finite volume(FV)and finite difference(FD)[18-22].The FE and FV methods had disadvantages in the code development. FD method could develop computer code easily and both the convergence speed and stability of the FD solver could be enhanced by the aid of the successive-over-relaxation(SOR)iteration method.

    From these studies above,one can conclude that they investigated single dimple locating within an imaginary rectangular cell of sides 2ri×2ri(riis the imaginary rectangular cell dimension)instead of annular area.Also they developed the model for calculations based on this unit neglecting the"interaction effect"between two neighboring dimples.However,as mentioned in Ref.[23],if the area ratio of dimples is more than 20%,the"interaction effect"of adjacent dimples should not be neglect.

    The main goal of the analysis in the present work is to develop a hydrodynamic model located within annular area considering the"interaction effect"between two neighboring dimples for mechanical gas seal.Different multi-row columns containing circle shape structure dimples are chosen for evaluating the hydrodynamic pressure in radial and circumferential directions by numerical calculation.At the same time,the average dimensionless pressure of the whole seal surface is taken into account.The developed model is more accurate to study the hydrodynamic effect for dimpled mechanical gas seal.

    1 Analytical Model

    The mechanical gas seal model considered in this paper is represented by two non-contacting rings rotating relatively to each other(Fig.1). The regular network of dimples is distributed on the rotor surface(Fig.2).The gas fills in the dimples at a depth of hpand the gap between the rotor face and the stator surface with a depth of h0.The radius of the dimple is rpand the angle velocity of rotor ring isω.

    Fig.1 Schematic diagram of partial mechanical gas seal

    Fig.2 Geometrical model

    The geometrical model is displayed in Fig.2. The method neglects curvature effect and consequently,a circular sector containing single-row column in the radial direction is assumed to be rectangular[6].Each dimple was located within an imaginary rectangular cell.What is more,the"individual effect"is considered only during the analysis of pressure distribution.Here,a developed model containing more accurate region is considered and different multi-row columns(3×5 column and 5×5 column,see Figs.2(b,c))are chosen to analyze the pressure distribution compared with single-row column(1×5 column,see Fig.2(a)).Moreover,the"interaction effect"between neighboring two dimples in radial and circumferential directions is analyzed in detail.

    For theoretical analysis,the following assumptions are expressed as[16]

    (1)The gas in the film obeys the isothermal and ideal gas model.

    (2)The sealed gas is viscous(Newtonian)with a constant viscosityμ.

    (3)The ring face is rigid and smooth.

    (4)The flow in the gas film is laminar.

    (5)There is no misalignment of the rotator.

    The two-dimensional steady-state Reynolds equation,which relates the pressure distribution to the spacing between two ring interfaces of mechanical gas seal in cylindrical coordinates,is given by

    where r andθare the cylindrical coordinates in the radial and circumferential directions,respectively,p the gas film pressure,and h the local film thickness at a specific point.Periodicity of the surface texturing in theθdirection,permits solving the pressure distribution with the following boundary conditions

    where riis the inner radius,rothe outer radius,pathe outer radius of the ambient pressure,and N the number of dimple rows on whole ring surface.

    The local film thickness,h,between the nominally parallel seal surfaces can be expressed in the following form

    whereΩis the studied area.

    Eq.(1)is rendered dimensionless by using one dimple radius rpto scale lengths,a nominal clearance h0to scale the local film thickness and pato scale the pressure field,namely

    The dimensionless global film thickness,H(R,θ),is given by

    Substitution of the dimensionless parameters

    into Eq.(1)yields the Reynolds equation in its dimensionless form

    The boundary conditions in a dimensionless form are given as

    2 Numerical Solution

    In order to get film pressure distribution between the two rings,the FD method is adopted to discretize Eq.(6).Fig.3 shows control cells in the present calculation grid system,whereΔR,Δθare the grid sizes in the radial and circumferential directions,respectively.The process can be directed by the method listed as follows

    Fig.3 Control cells in calculation grid system

    A set of non-linear algebraic equations for the nodal values of the dimensionless pressure,which should be solved with the boundary conditions Eq.(7),are obtained by applying the above method

    where A,B,C,D,E,F(xiàn),G are the discrete coefficients expressed as

    The SOR iterative procedure is used to solve Eq.(9).To increase the convergence or to enhance the numerical iterative stability,the method can be expressed as

    whereβis the SOR factor,β=1.3.Pki,jis the pressure values at iterative step k at the point(i,j),and Pki,j+1the pressure values at iterative step k+1 at the point(i,j).The convergence condition is taken as

    where Errpis the convergence accuracy,chosen as 1.0×10-5here.

    3 Results and Discussion

    The calculation is performed for one dimple with diameter 2rp=200μm,hp=6μm,and h0= 5μm.The area density of the dimples is Sp= 31.6%and the angle velocity of the rotorω= 5 000 r/min.The sealed gas viscosity isμ= 1.79×10-5Pa·s and pa=1.01×105Pa.The dimensionless pressure distribution of single-row column and different multi-row columns is plotted in Fig.4.

    Fig.4 Dimensionless pressure distribution of single-row column and multi-row columns

    In Fig.4,the pressure profile is not symmetric in the circumferential direction,resulting in positive net pressure build-up.It becomes evident that a hydrodynamic pressure formed on the mechanical gas seal surfaces.The pressure is convergent along the direction of angle velocity of the rotor ring,and in the radial direction,the dimensionless pressure increases nonlinearly with the increase of radius.For different multi-row columns,pressure distribution has the same regularity but the"interaction effect"between two neighboring dimples is clearly different.

    For the further investigation of different columns,dimensionless pressure values and the"interaction effect"in different directions are shown in Figs.5—7.

    Fig.5 Dimensionless pressure distribution in radial direction of different columns

    Fig.6 Dimensionless pressure distribution in circumferential direction of different columns

    Fig.7 Dimensionless pressure distribution along circumferential direction of single dimple

    Fig.5 presents the dimensionless pressure distribution along the center line of different columns in the radial direction.The pressure value increases as radius expands.For instance,for the 1×5 column,the value from inside to outside of seal surface is 1.951,1.982 and 2.050.For convenience,reference lines 1,2,3 are presented via the second dimple dimensionless pressure peak. The result shows that the maximum dimensionless pressure difference between the 1×5 and the 3×5 columns is.The difference between the 1×5 and the 5×5 columns is.The maximum dimensionless pressures of the 3×5 and the 5×5 columns are close enough.Compared with the 1×5 column,the maximum dimensionless pressure generated by the 3×5 and the 5×5 columns increase by 34.45%and 37.68%,respectively.Similarly,the pressure of the 5×5 column increases by 2.40%compared with that of the 3×5 column. Most significantly,all curves in Fig.5 can be segmented into four regions:the affected region(designated as regionⅠ),the divergence region(regionⅡ)in the descending segment of the curves,the convergence region(regionⅢ)in the increasing segment,and the interaction region(regionⅣ)formed by the"interaction effect",which is produced by the second and the third regions.The"interaction effect"can increase the minimum dimensionless pressurebut the minimum dimensionless pressure of the 3×5 column is very close to that of the 5×5 columnMoreover,compared with the 1×5 column,the minimum dimensionless pressure generated by the 3×5 and 5×5 columns increase by 20.40% and 24.10%,respectively.Similarly,the pressure of the 5×5 column increased by 3.07%,compared with that of the 3×5 column.

    In the circumferential direction(Fig.6),the maximum dimensionless pressures generated by the 3×5 and 5×5 columns are 33.55%and 38.86%higher,respectively,than that by the 1×5 column.The minimum dimensionless pressure generated by the 3×5 and 5×5 columns increased by 70.54%and 85.76%,respectively when compared with the 1×5 column.

    In Figs.5,6,the dimensionless pressure distributions have the same trends.However,the difference is that the"interaction effect"is more obvious in the circumferential direction becausethe distance of two neighboring dimples is smaller than that in the radial direction.

    From the above analysis,these results demonstrate that the dimensionless pressure increases,as calculated by the 3×5 and 5×5 columns. It is necessary to investigate the"interaction effect",especially when the area density of the dimples Spis larger than 20%(see Ref.[23]). Furthermore,the"interaction effect"is more obvious in the circumferential direction than the radial direction even when the area and depth of the dimple are the same.So the"interaction effect"is not inspected(see Ref.[9]and 1×5 column),which is not consistent with the actual working conditions.

    Besides the results mentioned above,the simulation also inspects the dimensionless pressure distribution along the single dimple(Fig.2)centerline in different directions(Figs.7,8). Fig.7 shows the dimensionless pressure distribution in the circumferential direction.As depicted in Fig.7,all curves can be divided into three segments,i.e.,the first descending segment,the increasing segment,and the second descending segment.Compared with the 1×5 column,the maximum pressures generated by the 3×5 column and the 5×5 column increase by 33.57% and 38.9 1%,respectively.The minimum pressures generated by the 3×5 and 5×5 columns increase by 78.36%and 85.63%,respectively.As is clearly seen from Fig.7,the offset of different column pressure peaks in the circumferential direction is apparent,ΔD1>ΔD2>ΔD3.ΔD3is very close to the reference line.It becomes evident that the dimensionless pressure investigation calculated by the 5×5 column is more accuracy than that of the 1×5 and 3×5 columns.

    Fig.8 presents the maximum dimensionless pressure distribution along the single dimple centerline of different columns in the radial direction.The difference between the 1×5 and 3×5 columns isThe difference between the 1×5 and 5×5 columns isΔP2max= 1.033,and

    Fig.8 The maximum dimensionless pressures in radial direction of single dimple

    It is clearly seen from the discussion above that each dimple strongly affects its neighboring dimples.This"interaction effect"results in the increase of dimensionless pressure.The increase extents of multi-row columns in different directions are not the same although they have the same area ratio,as well as other parameters. However,the difference between the 3×5 and 5×5 columns is very small.

    As an indicator to evaluate the mechanical gas seal surface property,the dimensionless average pressure Pavis chosen as an index to evaluate the load carrying capacity of the whole mechanical gas seal surface.

    Fig.9 shows the dimensionless average pressure Pavand the pressure differenceΔPavof different columns.For different columns,the dimensionless average pressures Pavare 1.220,1.647,and 1.774,respectively.The pressure differences areandCompared with the 1×5 column, the dimensionless average pressures Pavgenerated by the 3×5 and 5×5 columns increase by 35.00%and 45.41%,respectively.Similarly,compared with the 3×5 column,Pavof the 5×5 column increases by 7.71%.These results show that the dimensionless average pressure considering the"interaction effect"is larger than that without considering it.Although the increase extents of different multi-row columns are not same,the pressure difference between the 3×5 and 5×5 columns is very small.

    Fig.9 Dimensionless average pressure of different columns

    4 Conclusions

    A hydrodynamic model is developed to investigate the performance for dimpled mechanical gas seal.Circular shape dimples are analyzed.Different multi-row columns with annular area are chosen and the dimensionless pressure considering the"interaction effect"between two neighboring dimples in the radial and circumferential directions is calculated.The following conclusions summarize the results of the present study:

    (1)In the radial direction,the dimensionless pressure of different multi-row columns increases because of the consideration of the"interaction effect"between two neighboring dimples. Although the increase is different,the difference of the 3×5 and 5×5 columns is very small.

    (2)In the circumferential direction,the dimensionless pressure distribution exhibits the same behavior.However,the"interaction effect"is more obvious than that in the radial direction,even when the area and depth of the dimples are same.It is because the distance of two neighboring dimples in the circumferential direction is smaller than that in the radial direction.

    (3)Due to the analysis of the dimensionless pressure of single dimple and the dimensionless average pressure of whole mechanical gas seal surface,it is evident that the 5×5 column with annular area considering the"interaction effect"between two neighboring dimples can be more accurate in predicting the hydrodynamic effect for dimpled mechanical gas seal based on the numerical calculation.

    Acknowledgements

    This work was supported by the National Natural Science Foundation of China(No.51175246),the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),and the NUAA Research Funding(No.NP2013306).

    [1] Wang X L,Kato K,Adachi K,et al.Loads carrying capacity map for the surface texture design of SiC thrust bearing sliding in water[J].Tribology International,2003,36(3):189-197.

    [2] Wang X L,Kato K.Improving the anti-seizure ability of SiC seal in water with RIE texturing[J].Tribology Letters,2003,14(4):275-280.

    [3] Li J L,Xiong D S,Dai J H,et al.Texture on friction properties of nickel-based composite[J].Tribology International,2010,43(5/6):1193-1199.

    [4] Odyckvan D E A,Venner C H.Compressible stokes flow in thin films[J].ASME Journal of Tribology,2003,125(3):543-551.

    [5] Zhou F,Kato K.Friction and wear properties of amorphous carbon nitride coatings in water lubrication[J].Transactions of Nanjing University of Aeronautics and Astronautics,2014,31(5):463-477.

    [6] Etsion I,Kligerman Y,Halperin G.Analytical and experimental investigation of laser-textured mechanical seal faces[J].Tribology Transactions,1999,42(3):511-516.

    [7] Kligerman Y,Etsion I.Analysis of the hydrodynamic effects in a surface textured circumferential gas seals[J].Tribology Transactions,2001,44(3):472-478.

    [8] Kligerman Y,Etsion I,Shinkarenko A.Improving tribological performance of piston rings by partial surface texturing[J].ASME Journal of Tribology,2005,127(3):632-638.

    [9] Brizmer V,Kligerman Y,Etsion I.A laser surface textured parallel thrust bearing[J].Tribology Transactions,2003,46(3):397-403.

    [10]Etsion I,Halperin G,Brizmer V,et al.Experimental investigation of laser surface textured parallel thrust bearings[J].Tribology Letters,2004,17(2):295-300.

    [11]Etsion I,Halperin G.A laser surface textured hydrostatic mechanical seal[J].Tribology Transac-tions,2002,45(3):430-434.

    [12]Mc Nikel A D,Etsion I.Near-contact laser surface textured dry gas seal[J].ASME Journal of Tribology,2004,126(4):788-794.

    [13]Etsion I.State of the art in laser surface texturing[J].ASME Journal of Tribology,2005,127(1):248-253.

    [14]Feldman Y,Etsion I.Stiffness and efficiency optimization of a hydrostatic laser surface textured gas seal[J].ASME Journal of Tribology,2007,129(2):407-410.

    [15]Nanbu T,Ren N,Yasuda Y,et al.Microtextures in concentrated conformal-contact lubrication:Effects of texture bottom shape and surface relative motion[J]. Tribology Letters,2008,29(3):241-252.

    [16]Wang B,Zhang H Q.Numerical analysis of a spiralgroove dry gas seal considering micro-scale effects[J].Chinese Journal of Mechanical Engineering,2011,24(1):146-153.

    [17]Lebeck A O.Contacting mechanical seal design using a simplified hydrostatic model[J].Tribology International,1998,21(1):2-14.

    [18]Brad A M,Itzhak G.Numerical techniques for computing rotor dynamic properties of mechanical gas face seal[J].Tribology Letters,2002,124(4):755-761.

    [19]Marco T C F.An efficient finite element procedure for analysis of high-speed spiral groove gas face seals[J].Tribology Letters,2001,123(1):205-210.

    [20]Bonneau D,Huiltric J,Tournerie B.Finite element analysis of grooved gas trust bearing and grooved face seal[J].Tribology Letters,1993,115(3):348-354.

    [21]Yu H W,Wang X L,Zhou F.Geometric shape effects of surface texture on the generation of hydrodynamic pressure between conformal contacting surfaces[J].Tribology Letters,2010,37(2):123-130.

    [22]Yu H W,Wang X L,Sun Z,et al..Theoretical analysis on hydrodynamic lubrication of cylinder micro-dimple surface texture[J].Journal of Nanjing University of Aeronautics and Astronautics,2010,42(2):209-213.(in Chinese)

    [23]Etsion I,Burstein L.A model for mechanical seals with regular microsurface structure[J].Tribology Letters,1996,39(3):677-683.

    (Executive editor:Zhang Tong)

    TH117.1 Document code:A Article ID:1005-1120(2015)04-0438-08

    *Corresponding author:Wang Xiaolei,Professor,E-mail:wxl@nuaa.edu.cn.

    How to cite this article:Shi Liping,Huang Wei,Wang Xiaolei.A hydrodynamic model for dimpled mechanical gas seal considering interaction effect[J].Trans.Nanjing U.Aero.Astro.,2015,32(4):438-445.

    http://dx.doi.org/10.16356/j.1005-1120.2015.04.438

    (Received 3 June 2014;revised 18 October 2014;accepted 24 November 2014)

    麻豆成人午夜福利视频| 99国产精品99久久久久| 亚洲av电影在线进入| 精品久久久久久久毛片微露脸| 韩国av一区二区三区四区| 少妇熟女aⅴ在线视频| av福利片在线观看| 亚洲人成网站在线播放欧美日韩| 日韩成人在线观看一区二区三区| 日本精品一区二区三区蜜桃| 亚洲精品中文字幕一二三四区| 久久九九热精品免费| 久久九九热精品免费| 欧美成人免费av一区二区三区| av黄色大香蕉| 国产精品99久久99久久久不卡| www日本在线高清视频| 1000部很黄的大片| 亚洲av免费在线观看| 搡老妇女老女人老熟妇| 日本黄色片子视频| 亚洲av片天天在线观看| 日韩人妻高清精品专区| 哪里可以看免费的av片| 日本一二三区视频观看| 精品午夜福利视频在线观看一区| 免费一级毛片在线播放高清视频| 三级国产精品欧美在线观看 | 日日夜夜操网爽| 激情在线观看视频在线高清| 18禁黄网站禁片免费观看直播| 五月玫瑰六月丁香| 美女cb高潮喷水在线观看 | 国产91精品成人一区二区三区| 一个人免费在线观看电影 | 村上凉子中文字幕在线| 在线视频色国产色| 偷拍熟女少妇极品色| 亚洲五月婷婷丁香| 中文在线观看免费www的网站| 欧美日本视频| 国产男靠女视频免费网站| 久久精品aⅴ一区二区三区四区| 俄罗斯特黄特色一大片| xxxwww97欧美| 搡老熟女国产l中国老女人| 色哟哟哟哟哟哟| 国产伦精品一区二区三区视频9 | 90打野战视频偷拍视频| 国产精品美女特级片免费视频播放器 | 色播亚洲综合网| 国产成人aa在线观看| 18美女黄网站色大片免费观看| www国产在线视频色| 小蜜桃在线观看免费完整版高清| 国产精品综合久久久久久久免费| 久久精品影院6| 免费看十八禁软件| 久久久久精品国产欧美久久久| 中文字幕高清在线视频| 悠悠久久av| 久久中文看片网| 一个人观看的视频www高清免费观看 | 99久久99久久久精品蜜桃| 免费av毛片视频| 18禁美女被吸乳视频| 国内精品久久久久久久电影| av黄色大香蕉| 欧美乱码精品一区二区三区| 神马国产精品三级电影在线观看| 国产精品,欧美在线| 亚洲五月天丁香| 特大巨黑吊av在线直播| 中文资源天堂在线| 亚洲国产精品sss在线观看| 亚洲av日韩精品久久久久久密| 青草久久国产| 亚洲在线自拍视频| 久久久久久人人人人人| 国产av不卡久久| 男插女下体视频免费在线播放| 欧美国产日韩亚洲一区| 久久香蕉精品热| 精品国产美女av久久久久小说| 欧美在线一区亚洲| 高清在线国产一区| 亚洲熟女毛片儿| 国产精品久久久久久精品电影| 亚洲av第一区精品v没综合| 日本撒尿小便嘘嘘汇集6| 波多野结衣巨乳人妻| 国内少妇人妻偷人精品xxx网站 | 亚洲av五月六月丁香网| 久久久成人免费电影| cao死你这个sao货| 精品久久久久久久久久久久久| 亚洲国产精品合色在线| 久久99热这里只有精品18| 亚洲aⅴ乱码一区二区在线播放| 精品久久蜜臀av无| 精品福利观看| 1024香蕉在线观看| 精品一区二区三区视频在线 | 国内精品美女久久久久久| 一进一出好大好爽视频| 国产欧美日韩一区二区精品| 少妇的逼水好多| 午夜视频精品福利| 免费电影在线观看免费观看| 久久久国产成人免费| 成人一区二区视频在线观看| 国产三级中文精品| 少妇裸体淫交视频免费看高清| aaaaa片日本免费| 99热精品在线国产| 午夜福利在线在线| 51午夜福利影视在线观看| 又爽又黄无遮挡网站| 免费在线观看影片大全网站| 精品国产美女av久久久久小说| 欧美黑人巨大hd| 成人18禁在线播放| 日本黄大片高清| 五月玫瑰六月丁香| aaaaa片日本免费| 亚洲国产日韩欧美精品在线观看 | 成在线人永久免费视频| 亚洲一区高清亚洲精品| 手机成人av网站| 久久人人精品亚洲av| 国产高清视频在线观看网站| 狂野欧美白嫩少妇大欣赏| 国产激情欧美一区二区| 久久人人精品亚洲av| 男女之事视频高清在线观看| 亚洲第一电影网av| 国内精品美女久久久久久| 亚洲国产欧洲综合997久久,| 免费在线观看成人毛片| 久久久久国产精品人妻aⅴ院| 亚洲国产看品久久| 十八禁人妻一区二区| 最近最新中文字幕大全电影3| 又紧又爽又黄一区二区| 岛国视频午夜一区免费看| 给我免费播放毛片高清在线观看| 国产精品野战在线观看| 国产精品久久久av美女十八| 18禁裸乳无遮挡免费网站照片| 欧美大码av| 999精品在线视频| 久久久久久国产a免费观看| 夜夜夜夜夜久久久久| 757午夜福利合集在线观看| 在线永久观看黄色视频| x7x7x7水蜜桃| 日本成人三级电影网站| 色综合站精品国产| 日本三级黄在线观看| 999久久久精品免费观看国产| 国产一区二区激情短视频| 成年免费大片在线观看| 成人特级黄色片久久久久久久| 亚洲精品美女久久久久99蜜臀| 别揉我奶头~嗯~啊~动态视频| 久久精品国产综合久久久| 精华霜和精华液先用哪个| 免费看十八禁软件| 国产亚洲精品一区二区www| 午夜福利欧美成人| 欧美日韩一级在线毛片| 日韩精品中文字幕看吧| 国产精品九九99| 欧美3d第一页| 国产一级毛片七仙女欲春2| 亚洲av电影在线进入| 校园春色视频在线观看| 又粗又爽又猛毛片免费看| 搡老妇女老女人老熟妇| 成人一区二区视频在线观看| 亚洲美女视频黄频| 精品一区二区三区四区五区乱码| 在线a可以看的网站| 麻豆国产97在线/欧美| 国产单亲对白刺激| 三级国产精品欧美在线观看 | 国语自产精品视频在线第100页| 黄片小视频在线播放| 成人无遮挡网站| 一级a爱片免费观看的视频| 亚洲国产欧美一区二区综合| 久久久久久久久中文| 亚洲国产看品久久| 美女 人体艺术 gogo| 超碰成人久久| 国产主播在线观看一区二区| 精品无人区乱码1区二区| 熟妇人妻久久中文字幕3abv| 老汉色av国产亚洲站长工具| 亚洲男人的天堂狠狠| 亚洲中文字幕一区二区三区有码在线看 | 成人18禁在线播放| 亚洲乱码一区二区免费版| 亚洲精品中文字幕一二三四区| 国产在线精品亚洲第一网站| 18禁黄网站禁片免费观看直播| 给我免费播放毛片高清在线观看| 日韩国内少妇激情av| 国产精品av视频在线免费观看| 国模一区二区三区四区视频 | 午夜免费观看网址| 亚洲欧美激情综合另类| 熟妇人妻久久中文字幕3abv| 国产精品一及| aaaaa片日本免费| 日本成人三级电影网站| 日本a在线网址| 亚洲av成人精品一区久久| 村上凉子中文字幕在线| 精品熟女少妇八av免费久了| 又紧又爽又黄一区二区| 51午夜福利影视在线观看| 亚洲在线观看片| 日韩成人在线观看一区二区三区| 熟女人妻精品中文字幕| 国产精品亚洲一级av第二区| 最近最新中文字幕大全免费视频| 精品一区二区三区av网在线观看| av欧美777| 狂野欧美白嫩少妇大欣赏| 黄色成人免费大全| 黄频高清免费视频| 男女那种视频在线观看| 99re在线观看精品视频| 久9热在线精品视频| 757午夜福利合集在线观看| 久久久久久久久久黄片| 欧美一级毛片孕妇| 人人妻,人人澡人人爽秒播| 久久天躁狠狠躁夜夜2o2o| 日韩欧美在线乱码| 99在线人妻在线中文字幕| 亚洲男人的天堂狠狠| 伊人久久大香线蕉亚洲五| 麻豆av在线久日| 国产亚洲精品av在线| 免费电影在线观看免费观看| 久久精品国产99精品国产亚洲性色| 色哟哟哟哟哟哟| 91久久精品国产一区二区成人 | 亚洲欧美日韩高清在线视频| 18禁黄网站禁片免费观看直播| 国产淫片久久久久久久久 | 国产成人啪精品午夜网站| 亚洲 国产 在线| 亚洲av熟女| 天堂av国产一区二区熟女人妻| av国产免费在线观看| 可以在线观看的亚洲视频| h日本视频在线播放| 听说在线观看完整版免费高清| 男女那种视频在线观看| 丰满的人妻完整版| 婷婷丁香在线五月| 成人国产一区最新在线观看| 最近在线观看免费完整版| 手机成人av网站| 舔av片在线| 国产精品一区二区免费欧美| 亚洲欧美日韩无卡精品| 久久久国产成人免费| 亚洲专区国产一区二区| 国产一区二区三区在线臀色熟女| 亚洲av成人精品一区久久| 亚洲国产看品久久| 国产v大片淫在线免费观看| 国产爱豆传媒在线观看| 一本久久中文字幕| 少妇熟女aⅴ在线视频| 九九热线精品视视频播放| 两个人看的免费小视频| 中文字幕人成人乱码亚洲影| 首页视频小说图片口味搜索| 国产av在哪里看| 青草久久国产| 精品福利观看| 欧美性猛交╳xxx乱大交人| 午夜精品一区二区三区免费看| 热99在线观看视频| 欧美黄色淫秽网站| 亚洲精品一区av在线观看| 精品欧美国产一区二区三| 亚洲av五月六月丁香网| 国产成人精品无人区| 亚洲成av人片在线播放无| 亚洲精品色激情综合| 亚洲avbb在线观看| 一级a爱片免费观看的视频| 非洲黑人性xxxx精品又粗又长| 不卡一级毛片| 啪啪无遮挡十八禁网站| 国产精品99久久久久久久久| 精品国产乱码久久久久久男人| 国产精品电影一区二区三区| 99在线人妻在线中文字幕| 制服人妻中文乱码| 男女做爰动态图高潮gif福利片| 女人被狂操c到高潮| 伊人久久大香线蕉亚洲五| 男人和女人高潮做爰伦理| 国产黄片美女视频| 欧美zozozo另类| 搡老熟女国产l中国老女人| 国产一区二区在线av高清观看| 真实男女啪啪啪动态图| 宅男免费午夜| 国产成人啪精品午夜网站| 精品久久久久久,| 无人区码免费观看不卡| 好男人电影高清在线观看| 亚洲精华国产精华精| 不卡av一区二区三区| 国产精品爽爽va在线观看网站| 黑人欧美特级aaaaaa片| 岛国视频午夜一区免费看| 久久久久精品国产欧美久久久| 色噜噜av男人的天堂激情| 非洲黑人性xxxx精品又粗又长| av在线蜜桃| 俺也久久电影网| 手机成人av网站| 黄色片一级片一级黄色片| 黄色成人免费大全| 18美女黄网站色大片免费观看| 成人国产综合亚洲| 日韩av在线大香蕉| 特级一级黄色大片| 18禁美女被吸乳视频| 国产熟女xx| or卡值多少钱| 国产伦精品一区二区三区四那| 日本精品一区二区三区蜜桃| 日韩大尺度精品在线看网址| 一二三四社区在线视频社区8| 久久人妻av系列| 日韩欧美一区二区三区在线观看| 伦理电影免费视频| 国产欧美日韩一区二区三| 亚洲国产中文字幕在线视频| 热99在线观看视频| 伦理电影免费视频| 丰满人妻一区二区三区视频av | 久久性视频一级片| 国产极品精品免费视频能看的| 18禁裸乳无遮挡免费网站照片| 黄色日韩在线| 久久久久久久精品吃奶| 亚洲色图av天堂| 91久久精品国产一区二区成人 | 不卡一级毛片| 久久性视频一级片| 1000部很黄的大片| 黄色片一级片一级黄色片| 精品电影一区二区在线| 亚洲人与动物交配视频| 国产精品久久久久久亚洲av鲁大| 国产视频内射| 午夜免费成人在线视频| 国产亚洲欧美98| 免费看a级黄色片| 日本撒尿小便嘘嘘汇集6| 午夜福利在线在线| 性欧美人与动物交配| 无遮挡黄片免费观看| 美女高潮的动态| 久久久国产欧美日韩av| 成年免费大片在线观看| www日本黄色视频网| 精品久久蜜臀av无| 热99在线观看视频| 观看免费一级毛片| 亚洲精品美女久久久久99蜜臀| 久久久精品大字幕| 日韩三级视频一区二区三区| 一区二区三区国产精品乱码| 90打野战视频偷拍视频| 国产成+人综合+亚洲专区| 免费看美女性在线毛片视频| 亚洲最大成人中文| 精品久久久久久久末码| 中文亚洲av片在线观看爽| 美女cb高潮喷水在线观看 | 日本黄色片子视频| 人人妻人人澡欧美一区二区| 成年女人毛片免费观看观看9| 亚洲欧美日韩无卡精品| 老司机福利观看| 巨乳人妻的诱惑在线观看| 色综合欧美亚洲国产小说| 一级a爱片免费观看的视频| 老司机福利观看| 男女下面进入的视频免费午夜| 蜜桃久久精品国产亚洲av| 国产免费av片在线观看野外av| 国产人伦9x9x在线观看| 国产欧美日韩精品亚洲av| 美女被艹到高潮喷水动态| 欧美性猛交黑人性爽| 9191精品国产免费久久| 亚洲七黄色美女视频| 少妇熟女aⅴ在线视频| 91久久精品国产一区二区成人 | 日本免费一区二区三区高清不卡| 欧美色欧美亚洲另类二区| 精品久久久久久,| 精品午夜福利视频在线观看一区| 久久久成人免费电影| 观看免费一级毛片| 国产精品九九99| 亚洲午夜理论影院| 亚洲欧美一区二区三区黑人| 久久国产精品影院| 99在线视频只有这里精品首页| 男人舔女人的私密视频| 国产单亲对白刺激| 色综合亚洲欧美另类图片| 真实男女啪啪啪动态图| 国产精品日韩av在线免费观看| 日韩欧美在线乱码| 两个人视频免费观看高清| 国产精品98久久久久久宅男小说| 俺也久久电影网| 1000部很黄的大片| 99久久精品国产亚洲精品| 在线视频色国产色| 丰满人妻熟妇乱又伦精品不卡| 在线免费观看的www视频| 99热精品在线国产| 亚洲九九香蕉| 曰老女人黄片| 美女cb高潮喷水在线观看 | 婷婷丁香在线五月| 18禁国产床啪视频网站| 欧美中文综合在线视频| 欧美av亚洲av综合av国产av| 丰满人妻熟妇乱又伦精品不卡| 亚洲av免费在线观看| 99精品在免费线老司机午夜| 久久久精品欧美日韩精品| 99国产精品一区二区三区| 色精品久久人妻99蜜桃| 一区二区三区高清视频在线| 女警被强在线播放| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品 欧美亚洲| 久久久久久久久久黄片| 午夜日韩欧美国产| 欧美在线一区亚洲| 国产一区二区三区视频了| 在线免费观看不下载黄p国产 | 精品久久久久久久久久久久久| 国产高清视频在线观看网站| netflix在线观看网站| 岛国在线免费视频观看| 熟女电影av网| 久99久视频精品免费| 人人妻人人澡欧美一区二区| 久久伊人香网站| 亚洲熟妇中文字幕五十中出| 国产亚洲精品一区二区www| 免费人成视频x8x8入口观看| 不卡一级毛片| 亚洲一区高清亚洲精品| 欧美午夜高清在线| 中文字幕高清在线视频| 69av精品久久久久久| 国产精品久久久久久久电影 | 小蜜桃在线观看免费完整版高清| 两个人视频免费观看高清| 国产亚洲精品久久久久久毛片| 99在线视频只有这里精品首页| 人人妻人人澡欧美一区二区| 国内久久婷婷六月综合欲色啪| 国产欧美日韩精品亚洲av| 国产熟女xx| 久久天躁狠狠躁夜夜2o2o| 每晚都被弄得嗷嗷叫到高潮| 国产成人欧美在线观看| 1024香蕉在线观看| 亚洲av成人一区二区三| 亚洲精华国产精华精| 久久久久久人人人人人| 婷婷丁香在线五月| 中文字幕人妻丝袜一区二区| 亚洲一区二区三区不卡视频| 99riav亚洲国产免费| 日韩免费av在线播放| 欧美中文日本在线观看视频| 香蕉av资源在线| 日日摸夜夜添夜夜添小说| 免费观看人在逋| 精品不卡国产一区二区三区| 热99re8久久精品国产| 巨乳人妻的诱惑在线观看| 真实男女啪啪啪动态图| 久久中文字幕人妻熟女| 九九在线视频观看精品| 美女 人体艺术 gogo| 国产精品香港三级国产av潘金莲| 看免费av毛片| 亚洲七黄色美女视频| 午夜福利在线观看免费完整高清在 | 国产精品日韩av在线免费观看| 亚洲va日本ⅴa欧美va伊人久久| www.www免费av| 波多野结衣高清无吗| 熟女少妇亚洲综合色aaa.| 欧美黄色片欧美黄色片| 久久精品亚洲精品国产色婷小说| 99riav亚洲国产免费| 国产精品久久久久久亚洲av鲁大| svipshipincom国产片| 成年女人永久免费观看视频| 国产毛片a区久久久久| 一本一本综合久久| 一级a爱片免费观看的视频| 级片在线观看| 嫩草影院精品99| 在线观看66精品国产| 热99re8久久精品国产| 国产高清激情床上av| 免费一级毛片在线播放高清视频| 免费搜索国产男女视频| 大型黄色视频在线免费观看| 午夜成年电影在线免费观看| 琪琪午夜伦伦电影理论片6080| 亚洲av五月六月丁香网| 欧美成人一区二区免费高清观看 | 色综合欧美亚洲国产小说| 天堂动漫精品| www日本在线高清视频| 亚洲色图 男人天堂 中文字幕| 亚洲自拍偷在线| 黑人欧美特级aaaaaa片| 一夜夜www| 黄色 视频免费看| 人妻久久中文字幕网| 国产黄a三级三级三级人| 日韩精品中文字幕看吧| 熟女人妻精品中文字幕| 婷婷六月久久综合丁香| 精品国内亚洲2022精品成人| 欧美在线一区亚洲| 又粗又爽又猛毛片免费看| 国产精品永久免费网站| 九九热线精品视视频播放| 在线a可以看的网站| xxxwww97欧美| 深夜精品福利| 亚洲va日本ⅴa欧美va伊人久久| tocl精华| 在线观看一区二区三区| 久久久久久久久免费视频了| 一夜夜www| 一区二区三区高清视频在线| 欧洲精品卡2卡3卡4卡5卡区| 亚洲无线在线观看| 黄色日韩在线| 国产视频内射| 国产精品一区二区三区四区久久| 少妇熟女aⅴ在线视频| 欧美日韩福利视频一区二区| 99久久精品热视频| 久久久久免费精品人妻一区二区| 一本久久中文字幕| 18禁黄网站禁片免费观看直播| 国产精品电影一区二区三区| a级毛片在线看网站| 国产精品久久久久久亚洲av鲁大| 观看免费一级毛片| 亚洲七黄色美女视频| 18禁观看日本| 国产69精品久久久久777片 | 国产伦在线观看视频一区| tocl精华| 久久亚洲精品不卡| 91在线观看av| tocl精华| 久久亚洲精品不卡| 久久久久免费精品人妻一区二区| 精品欧美国产一区二区三| 亚洲片人在线观看| 韩国av一区二区三区四区| 欧美乱妇无乱码| 日本 av在线| 91在线观看av| 精品欧美国产一区二区三| av欧美777| 中文资源天堂在线| 好男人在线观看高清免费视频| 最新中文字幕久久久久 | 亚洲18禁久久av| 老熟妇乱子伦视频在线观看| 在线看三级毛片| 国产欧美日韩精品亚洲av| 国产精品98久久久久久宅男小说| 夜夜夜夜夜久久久久| 天堂√8在线中文| 婷婷精品国产亚洲av| 国产视频内射| 变态另类丝袜制服| 国产亚洲av高清不卡| 亚洲第一欧美日韩一区二区三区| 欧美日韩中文字幕国产精品一区二区三区| 国产精品1区2区在线观看.|