• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mass transport in a thin layer of power-law fluid in an Eulerian coordinate system*

    2016-09-29 03:20:37JieLIU劉潔YuchuanBAI白玉川
    關(guān)鍵詞:劉潔白玉

    Jie LIU (劉潔), Yu-chuan BAI (白玉川)

    ?

    Mass transport in a thin layer of power-law fluid in an Eulerian coordinate system*

    Jie LIU (劉潔), Yu-chuan BAI (白玉川)

    State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China, E-mail: from_mars@126.com (Received July 6, 2014, Revised June 18, 2015)

    The mass transport velocity in a thin layer of muddy fluid is studied theoretically. The mud motion is driven by a periodic pressure load on the free surface, and the mud is described by a power-law model. Based on the key assumptions of the shallowness and the small deformation, a perturbation analysis is conducted up to the second order to find the mean Eulerian velocity in an Eulerian coordinate system. The numerical iteration method is adopted to solve these non-linear equations of the leading order. From the numerical results, both the first-order flow fields and the second-order mass transport velocities are examined. The verifications are made by comparing the numerical results with experimental results in the literature, and a good agreement is confirmed.

    mass transport velocity, power-law model, periodic pressure load, Eulerian coordinates system

    Introduction

    The muddy estuarine coast is widely encountered around the world. The interaction between waves and soft mud is one of the key mechanisms controlling the transport of cohesive sediments in coastal and estuari- ne waters, and the mass transport generated by the wave motion is with a steady second-order drift velo- city. Although its velocity is small in magnitude, the mass transport is one of the notable phenomena for the soft mud, because it plays an important role in dete- rmining the migration of nutrients and pollutants[1,2]. Moreover, it could also be used to predict the bed evo- lution in the long term.

    Various models were proposed to describe the re- lationship between the stress and the shear rate for the soft mud. In most cases, the muddy bed is assumed as a linear medium, Liu and Chan[3], Hu et al.[4],Yang and Chen[5]and Ng[6]used a viscous fluid model to describe the deformable muddy bed, Lee et al.[7]used a poro-elastic model. Another linear model which combines the features of these two models was widely used, known as the visco-elastic solid model. The typical examples of this model include the Voigt model by Ng et al.[8]and the Jeffreys model by Niu and Yu[9]. Instead of the linear assumption, nonlinear models such as visco-plastic solid models were deve- loped: Becker and Bercovici[10]and Zhang and Ng[11]adopted the Bingham plastic model, whereas Xia and zhu[12,13]used the Maxwell model to study the wave- mud interaction. Moreover, a visco-elasto-plastic model was adopted by Niu and Yu[14].

    The studies mentioned above mainly focus on the wave damping up to the first-order. The mass transpo- rt velocity, which can be determined only when the second-order wave motion is considered, has received a great deal of attention in some theoretical and exper- mental studies. A general theory of the mass transport in water was developed by Longuet-Higgins[15]. Sakakiyama and Bijker[16]measured the mass transpo- rt velocity in the soft mud layer, with a progressive wave over a Bingham mud layer. The experimental re- sults were compared with their theoretical results app- licable only to a Newtonian fluid. Ng[17]developed an asymptotic theory in a thin bi-viscous mud layer, with the assumption that the mud layer thickness is compa- rable to the Stokes boundary layer thickness. Zhang and Ng[11]also deduced an analytical expression of the mass transport velocity in the mud layer, described by the viscoelastic Voigt model.

    On the other hand, the Bingham model, with the mud being assumed as a rigid body at a low stress level and a fluid with a constant viscosity coefficient when the stress exceeds the yield stress, is widely used to describe the non-linear rheological properties of the soft mud. With this model, it is often difficult to determine the position of the yield surface in the tran- sient theory, where the shear stress is equal to the yield stress, and the yield surface cannot be predefined and has to be resolved as a part of the problem. There- fore, a more convenient model which is known as the power-law model is preferred, it could describe the shear thinning phenomenon, especially at a low shear ratio. The power-law model could also well represent the non-linear rheological properties of the estuarine mud. This is verified by the experimental results of Ng et al.[8]and Tian[18]who studied the mud in the Haihe Estuary in China, similar results were obtained by Pang[19]who studied the mud in the Lianyun Harbor in China. Thus, the power-law model is used in this paper.

    Under the action of a progressive wave, the pre- ssure is transmitted from the water body to the mud layer, to produce the shear stress on the mud surface. Under the shear stress, the mud bed moves to form a muddy fluid with a high concentration. In this paper, a theory is developed to calculate the mass transport ve- locity in the layer of the non-Newtonian mud which behaves like a power-law fluid. To simplify the ma- thematical problem, unlike the traditional double-layer or multi-layer model, it is assumed that only a thin mud layer exists, a pressure load described as a perio- dic function of time and space is applied directly on the mud free surface, and it can reflect the wave action on the water-mud interface to a certain extent, and the similar assumption was adopted in the two-layer model by Bercovici and Becker[20]. In fact, the water viscosity is much smaller than the mud viscosity, the shearing action that the water imposes on the mud sur- face is not remarkable, so the shear stress on the free surface will be assumed to be equal to zero in this paper.

    In a Lagrangian coordinate system, Ng[2]studied the mass transport in a thin layer of muddy fluid, and a straightforward expression of the mass transport ve- locity was induced. However, the derived equations were very complex and non-intuitive. Thus, the theory in this paper will be based on an Eulerian coordinate system. Different from the approach of Sakakiyama and Bijker[16], the mass transport velocity investigated by Longuet-Higgins[15]is adopted in this paper so that the mechanism of the mud mass transport could be fully described.

    1. Analytical model and method

    1.1

    Consider a single uniform mud layer lying on the horizontal rigid bed with an undisturbed depth, the mud’s behavior is described by a power-law model with a high concentration. The mud layer is homoge- neous and incompressible with a constant density, and the size of the mud layer is assumed to be infinite in the longitudinal direction., an external periodic pre- ssure load is applied directly on the mud surface to drive the wave motion, and it is a periodic function of time and space with a form like the periodic progressi- ve wave:,is the amplitude,is the wave number, andis the angular freque- ncy. The mud wave propagates along thedirection, the bottom of the mud layer is fixed at, and the elevation of the free surfaceis denoted by. The sketch of the problem geometry is shown in Fig.1.

    Fig.1 Sketch of the problem geometry

    The motion equations, which include the conti- nuity equation for an incompressible fluid and the mo- mentum equations in horizontal and vertical planes, are as follows:

    As mentioned in the Introduction, the rheological characteristics of the estuarine mud can be well de- scribed by the power-law model, especially in the case of a low shearing rate (5 s?150 s?1). In the power-law model, the shear stressis related to the shear rateas

    so the stress components in the power-law model could be described as

    To solve the equations, it is necessary to consider the boundary conditions. First, the tangential stressand the normal stresson a material surface are:

    and the kinematics condition on the free surface is

    1.2

    The key assumption in this paper is that the mud layer thicknessis much smaller compared to the wavelength, namely, so there is a sharp contrast between the horizontal and the vertical len- gth-scales, the ratio of the mud thicknessto the wa- velengthis a very small parameter. Thus, the wave steepnesswill be used as an ordering pa- rameter in the present analysis. According to the work of Sakakiyama and Bijker[16]and Ng[17], the following normalized variables are introduced:

    Substituting Eq.(18) into Eqs.(1) through (17), the non-dimensional formulations are obtained.

    The dimensionless motion equations are

    The dimensionless viscous stress components are as follows:

    The boundary conditions along the free surfacebecome

    1.3

    On the basis of the work of Ng[2]and Bercovici and Beck[20], a perturbation is made and the variables,andare expanded into powers of

    2. First-order problem

    Only the shear stress componentappears in the first order terms, and it is

    The boundary conditions require that the shear st- ress vanishes on the surface

    and the normal stress is equal to the external pressure load

    No displacement occurs at the bottom

    The displacement of the mud surface of the leadi- ng order is

    In order to solve these non-linear equations, it is assumed that,,andare separable and periodic inand, which could be written as,, so the variables become

    Substituting Eqs.(37) and (43) into Eq.(35), the governing equation of motion with independent varia- blesandof the leading order are obtained as

    However, Eq.(45) is a non-linear differential equation, the analytical solutions could be found only when the flow index[2]. Therefore, the problem has to be solved numerically, the details of the nume- rical solution are explained in Section 4.

    3. Second order problem

    and the horizontal and vertical momentum equations are

    and the second shear stress componentis

    With Eq.(44), substituting Eqs.(50) and (52) into Eq.(48), the governing equation of motion of the seco- nd-order steady currents is obtained as

    where the overbar donates the mean value with respe- ct toover a complete period, the subscriptmeans the Lagrangian coordinates. The first term on the right-hand side of Eq.(56)is the mean Eulerian velocity which is related to the fluid viscosity, and the second termis the Stoke’s drift.

    The physical explanation of the Stoke’s drift is as follow: A fluid particle makes an orbital path during a wave period, and the orbital path is not closed over a wave period, for the velocity of fluid on the top is di- fferent from that at the bottom, although the difference is small. As a result, the fluid particle moves along the propagating direction.

    According to the mass transport velocity, the net discharge rate of mud per unit crest length of wave is given by

    4. Numerical solutions and discussions

    As mentioned above, Eq.(45) is a non-linear di- fferential equation, which has to be solved numerica- lly. A pseudo transient iterative method is used in this paper, and the pseudo-time stepis introduced to adjust the iteration progression and to improve the quality of the convergence and the calculation. So the following diffusion equation is obtained

    The analytical solutions for the caseprovi- de an initial guess to start the iteration of solutions, when the maximum relative change between the two iterations falls below 10-4, the calculation will be sto- pped. The accuracy of the codes has been examined by comparing the numerical results with the analytical solutions for the Newtonian case.

    The numerical results for the first order problem will be used to solve the second order problem, and because Eq.(55) is a linear differential equation, an improved chasing method for the five-diagonal sparse matrix is developed.

    Figure 2 shows the flow field of the leading order over a period for, where. It indicates that in the Newtonian case, the motion is a harmonic function of the phase variable. With a forced change of the pressure gradient, both the verti- cal and horizontal velocities are harmonic. Specifica- lly, the vertical velocity reaches the positive and nega- tive maximum values nearand, respe- ctively, and is equal to zero nearand.

    Fig.2 Two-dimensional plot of the flow field for with

    Figure 3 is obviously different from Fig.2, al- though, in Fig.3, a periodic nature can still be obse- rved. With the effect of non-Newtonian behavior, the fluid particles are no longer in a simple harmonic mo- tion, the maximum velocity value foris app- roximately half of that for the Newtonian fluid. The muddy fluid is motionless at the phases ofand, where the horizontal velocity is equal to zero in magnitude. This phenomenon could be explained by the fluid shear-thinning property, with a tremen- dously large viscosity at a low stress level.

    Fig.3 Two-dimensional plot of the flow field for with

    Both Figs.4 and 5 reflect the first-order free sur- face displacement over a wave period for different va- lues of the flow index, the pressure magnitudein Fig.4 butin Fig.5. It can be seen that the wave amplitude decreases with the decrease of of. The positive maximum value is reached at, and the negative maximum value occurs at, as shown in Fig.4. These results also confi- rm the phenomena in Figs.2 and 3.

    Fig.4 Wave height as a function of for

    Fig.5 Wave height as a function of for ,

    When the pressure loading is doubled to2.0, the wave amplitude foris raised linearly withby a factor of 2, the amplitude forincreases more dramatically to more than three times.

    Figure 6 presents the mass transport velocityfor the Newtonian fluid, it consists of the following two components: the mean Eulerian velocityand the Stoke’s drift. It is observed from the Fig.6 that the mass transport near the bed increases dramatically, however, it is backward in the upper part of the fluid.

    Fig.6 Profile of mass transport velocity in the muddy flow for , where

    The mass transport velocities for various values of the flow indexare compared in Fig.7, in which the pressure loadis equal to 1.0 and 2.0, respecti- vely. It is shown that at the same depth, the larger the flow index, the faster that the mass transport increa- ses. Additionally, at a given depth, the mass transport velocity produced by a pressure loadincrea- ses by at least 4 times larger than that produced by.

    Fig.7 Profile of mass transport velocity as a function of , where

    In order to verify the results of the present model, the calculated results are compared with the experime- ntal and numerical results of Sakakayama and Bijker[16], as shown in Fig.8. The laboratory experime- nts were performed in a wave flume of 24.5 m long, 0.5 m wide and 0.57 m deep. Water was used as the upper layer, and a mixture of water and mud was used as the lower layer. The initial thickness of the mud layer was 0.009 m and the water depth was 0.3 m. The wave period in the tests was 1 s and the duration of the wave action was approximately 1 min to 3 min.

    Fig.8 The mass transport velocity in the mud layer

    Figure 8 shows that, generally speaking, one sees a good agreement between the measured velocities and the calculated results by the present model. In par- ticular, the results of the present model are an impro- vement from the results of Sakakayama and Bijker[16]. It is apparent that the mass transport velocities near the bottom obtained from both of the models are sma- ller than the experimental results, because the viscosi- ty in both models is constant. However, the viscosity decreases in a real mud with a downward increase in depth, consequently, the mud at a deeper level moves more quickly than the calculated results by the mode- ls.

    Figures 9 and 10 illustrate how the net discharge rate varies withand, respectively. For the di- fferent flow index, the discharge rate increases whenincreases from 1.0 to 2.0 while it diminishes whenincreases from 0.6 to 1.2. Therefore, com- pared with, the pressure loadimposes an op- posite effect on the discharge rate. Specifically, by means of either increasingor decreasing, a similar value is obtained for the discharge rate, as is indicated by Eq.(45).

    Fig.9 Discharge rate as a function of and , where

    Fig.10 Discharge rate as a function of and , where

    5. Conclusions

    In this paper, the mass transport velocity in a thin layer of a muddy fluid is presented. Based on an Eulerian coordinate system, the power-law model is adopted to describe the relationship between the stress and the shear rate. According to the assumptions of shallowness and small deformation, a perturbation analysis is conducted up to the second order. The sen- sitivity of the fluid motion, which includes the first- order wave height and the second-order mass transport velocity and the net discharge rate, is discussed. The main results are as follows:

    However, the present study is only the first step to understand the interaction of wave-mud, and future work will consider the real rheological properties of the soft mud to study the wave damping and the mass transport in the mud.

    References

    [1] NGUYEN K. C., SHINTAN T. and UMEYAMA M. Effe- cts of diffusive interface on mass transport by internal waves propagating in a two-layer fluid system[J]. Journal of Applied Mechanics, 2013, 69(2): 1529-1536

    [2] NG C. O. Mass transport in a layer of power-law fluid for- ced by periodic surface pressure[J]. Wave Motion, 2004, 39(3): 241-259.

    [3] LIU P. F., CHAN I. C. On long propagation over a fluid- mud seabed[J]. Journal of Fluid Mechanics, 2007, 579: 467-480.

    [4] HU Y., GUO X. and LU X. et al. Idealized numerical si- mulation of breaking water wave propagating over a vis- cous mud layer[J]. Physics of Fluid, 2012, 24(11): 802- 805.

    [5] YANG Feng-chao, CHEN Xiao-peng. Numerical simula- tion of two-dimensional viscous flows using combined fi- nite element-immersed boundary method[J]. Journal of Hydrodynamics, 2015, 27(5): 658-667.

    [6] NG C. O. Mass transport in gravity waves revisited[J]. Journal of Geophysical Research, 2004, 109(12): 1-13.

    [7] LEE T. C., TSAI D. S. and JENG D. S. et al. Ocean waves propagating over a porous seabed of finite thickness[J]. Ocean Engineering,2002, 29(5): 1577-1601.

    [8] NG Chiu-on, FU Sau-chung and BAI Yu-chuan. Mass transport in a thin layer of bi-viscous mud under surface waves[J]. China Ocean Engineering, 2002, 16(4): 423- 436.

    [9] NIU Xiao-jing, YU Xi-ping. A numerical method for flows of fluids with complex viscoelasticity[J]. Chinese Journal of Hydrodynamics, 2008, 23(3): 331-337(in Chinese).

    [10] BECKER J. M., BERCOVICI D. Permanent bedforms in a theoretical model of wave–sea-bed interactions[J]. Nonli- near Processes in Geophysics,2000, 201(7): 31-35.

    [11] ZHANG Xue-yan, NG Chiu-on. Mud-wave interaction: A viscoelastic model[J]. China Ocean Engineering, 2006, 20(1): 15-26.

    [12] XIA Y. Z., ZHU K. Q. A study of wave attenuation over a Maxwell model of a muddy bottom[J]. Wave Motion, 2010, 47 (8): 601-615.

    [13] XIA Yue-zhang, ZHU Ke-qin. On a fractional-order Maxwell model of seabed mud and its effect to surface wave damping[J]. Applied Mathematics and Mechanics (English Edition), 2011, 32(11): 1357-1366.

    [14] NIU Xiao-jing, YU Xi-ping. Visco-elastic-plastic model for muddy seabed[J]. Journal of Tsinghua University (Science and Technology), 2008, 48(9): 1417-1421(in Chinese).

    [15] LONGET-HIGGINS M. S. Mass transport in water waves[J]. Philosophical Transactions of the Royal So- ciety, 1953, 245: 535-581.

    [16] SAKAKIYAMA T., BIJKER E. W. Mass transport veloci- ty in mud layer due to progressive waves[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 1989, 115(4): 614-633.

    [17] NG C. O. Water waves over a muddy bed: A two-layer Stokes’ boundary layer model[J]. Coastal Engineering, 2000, 40(3): 221-242.

    [18] TIAN Qi. The research on properties and motions of mud in estuary[D]. Doctoral Thesis, Tianjin, China: TianJin University, 2010(in Chinese).

    [19] PANG Qi-xiu. Formation and motion characteristics of fluid mud and counter measurements[D]. Doctoral The- sis, Tianjin, China: TianJin University, 2011(in Chinese).

    [20] BERCOVICI D., BECK J. M. Pattern formation on the in- terface of a two-layer fluid: Bi-viscous lower layer[J]. Wave Motion, 2001, 34(1): 431-452.

    [21] QI P., HOU Y. J. Mud mass transport due to waves based on an empirical model rheology model featured by hyste- resis loop[J]. Ocean Engineering, 2006, 33(16): 2195- 2208.


    * Project supported by the National Natural Science Foun- dation of China (Grant No. 40376028) the Application and Basic research of Tianjin (Grant No. 11JCYBJC03200).

    Biography: Jie LIU (1986- ), Female, Ph. D. Candidate

    Corresponding author: Yu-chuan BAI, E-mail: ychbai@tju.edu.cn

    10.1016/S1001-6058(16)60608-X 2016,28(1):66-74

    猜你喜歡
    劉潔白玉
    Periodic electron oscillation in coupled two-dimensional lattices
    Elastic electron scattering with formamide-(H2O)n complexes(n=1,2): Influence of microsolvation on the π?and σ?resonances?
    來自姥姥的愛
    白玉羊首瓜棱形壺
    紫禁城(2020年1期)2020-08-13 09:37:02
    華夏太白玉 絲綢之路情——陜西省首屆絲綢之路“太白玉文化節(jié)”暨第二屆“太白玉研討會(huì)”盛大舉行
    寶藏(2018年1期)2018-04-18 07:40:05
    A White Heron
    青春歲月(2016年21期)2016-12-20 21:05:24
    Communication error prevention model in industrial organization*
    Competences for a culture of prevention*
    Oliver Twist
    Control of Vehicle Active Front Steering Based on Active Disturbance Rejection Feedback Controller
    美女国产视频在线观看| 乱系列少妇在线播放| 交换朋友夫妻互换小说| 亚洲av中文字字幕乱码综合| 不卡视频在线观看欧美| 亚洲四区av| 免费黄色在线免费观看| 五月天丁香电影| 天天躁日日操中文字幕| 日本色播在线视频| 亚洲美女视频黄频| 日本与韩国留学比较| 少妇被粗大猛烈的视频| 久久久精品免费免费高清| 51国产日韩欧美| 汤姆久久久久久久影院中文字幕| 日产精品乱码卡一卡2卡三| 身体一侧抽搐| 国产精品成人在线| 中文精品一卡2卡3卡4更新| 国产精品人妻久久久影院| 国产亚洲午夜精品一区二区久久 | 亚洲av福利一区| 国产男女内射视频| 99九九线精品视频在线观看视频| 黄色配什么色好看| 欧美激情久久久久久爽电影| 老女人水多毛片| 18+在线观看网站| 久久亚洲国产成人精品v| 在线精品无人区一区二区三 | 少妇高潮的动态图| 人妻夜夜爽99麻豆av| 日韩欧美 国产精品| 一级毛片 在线播放| 亚洲国产欧美在线一区| 少妇裸体淫交视频免费看高清| 18禁裸乳无遮挡免费网站照片| 亚洲最大成人手机在线| 亚洲精品456在线播放app| 免费人成在线观看视频色| kizo精华| 日韩,欧美,国产一区二区三区| 白带黄色成豆腐渣| 国产爱豆传媒在线观看| 2022亚洲国产成人精品| 欧美日韩在线观看h| 亚洲精品乱久久久久久| 激情五月婷婷亚洲| 听说在线观看完整版免费高清| 一级毛片我不卡| 97热精品久久久久久| 丰满少妇做爰视频| 人妻系列 视频| 午夜精品国产一区二区电影 | 精品视频人人做人人爽| 欧美激情久久久久久爽电影| 国产熟女欧美一区二区| 亚洲精品乱码久久久久久按摩| 国产一区二区在线观看日韩| 免费av毛片视频| 亚洲av福利一区| 国产一区二区亚洲精品在线观看| 国内揄拍国产精品人妻在线| 少妇人妻 视频| 爱豆传媒免费全集在线观看| 国产精品精品国产色婷婷| 午夜免费鲁丝| 嫩草影院新地址| 日韩欧美精品免费久久| 成人漫画全彩无遮挡| 丰满人妻一区二区三区视频av| 最新中文字幕久久久久| 欧美三级亚洲精品| 色5月婷婷丁香| 国内精品宾馆在线| 精品一区二区三区视频在线| 国产精品三级大全| 久久久久久久久大av| 精品熟女少妇av免费看| 亚洲精品乱码久久久久久按摩| 国产精品一区二区在线观看99| 中文资源天堂在线| videos熟女内射| 国产精品熟女久久久久浪| 九色成人免费人妻av| 美女主播在线视频| 色网站视频免费| 内射极品少妇av片p| 国产毛片a区久久久久| av专区在线播放| 国产高清三级在线| 一级毛片aaaaaa免费看小| av在线老鸭窝| 久久这里有精品视频免费| 男人狂女人下面高潮的视频| 超碰97精品在线观看| 欧美成人午夜免费资源| 乱码一卡2卡4卡精品| 一级黄片播放器| 女人被狂操c到高潮| 好男人视频免费观看在线| 亚洲av免费在线观看| 免费av毛片视频| 精品一区二区免费观看| 2022亚洲国产成人精品| 日日摸夜夜添夜夜添av毛片| 亚洲av成人精品一区久久| 免费看日本二区| 青青草视频在线视频观看| 国产综合精华液| 国产国拍精品亚洲av在线观看| 国产精品三级大全| 亚洲精品国产成人久久av| 少妇丰满av| 深夜a级毛片| 国产男女内射视频| 亚洲欧洲日产国产| 国产精品久久久久久精品古装| 性插视频无遮挡在线免费观看| 色婷婷久久久亚洲欧美| 欧美日韩亚洲高清精品| 久久这里有精品视频免费| 国产欧美另类精品又又久久亚洲欧美| 大码成人一级视频| 国产av国产精品国产| 亚洲人与动物交配视频| 免费黄频网站在线观看国产| 亚洲最大成人中文| 国产高潮美女av| 婷婷色综合大香蕉| 青春草亚洲视频在线观看| 久热久热在线精品观看| 国产免费福利视频在线观看| 亚洲av一区综合| 亚洲国产成人一精品久久久| 国产免费一级a男人的天堂| av一本久久久久| 美女高潮的动态| 亚洲欧美成人精品一区二区| 22中文网久久字幕| 亚洲激情五月婷婷啪啪| 精品国产乱码久久久久久小说| 日本-黄色视频高清免费观看| 亚洲av中文av极速乱| 激情五月婷婷亚洲| 最近的中文字幕免费完整| 亚洲美女搞黄在线观看| 免费av观看视频| 麻豆久久精品国产亚洲av| 久久久久久久久大av| 午夜福利视频精品| 国产乱来视频区| 精品人妻一区二区三区麻豆| 精品久久久久久久人妻蜜臀av| 91狼人影院| 亚洲成人av在线免费| freevideosex欧美| 精品一区在线观看国产| 欧美成人一区二区免费高清观看| 久久久精品94久久精品| 日本av手机在线免费观看| 丰满少妇做爰视频| 亚洲精品久久午夜乱码| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 少妇人妻一区二区三区视频| 欧美一区二区亚洲| 国产精品国产三级国产专区5o| 赤兔流量卡办理| 亚洲第一区二区三区不卡| 国产精品一及| 嫩草影院精品99| 51国产日韩欧美| 真实男女啪啪啪动态图| 天堂俺去俺来也www色官网| 一个人观看的视频www高清免费观看| 久久精品夜色国产| 国产69精品久久久久777片| 联通29元200g的流量卡| 男女无遮挡免费网站观看| 尾随美女入室| 午夜福利网站1000一区二区三区| 久久精品国产自在天天线| 有码 亚洲区| 亚洲自偷自拍三级| 亚洲自拍偷在线| 成人亚洲欧美一区二区av| 一级毛片aaaaaa免费看小| 亚洲久久久久久中文字幕| 亚洲精品国产av蜜桃| 欧美高清成人免费视频www| 精品国产露脸久久av麻豆| 人妻夜夜爽99麻豆av| 亚洲天堂av无毛| 亚洲av福利一区| 18禁裸乳无遮挡免费网站照片| 亚洲美女搞黄在线观看| 看免费成人av毛片| 亚洲欧美精品专区久久| 国产精品爽爽va在线观看网站| 简卡轻食公司| 青春草视频在线免费观看| 熟女电影av网| av免费在线看不卡| 好男人视频免费观看在线| 国产爽快片一区二区三区| 久久鲁丝午夜福利片| 哪个播放器可以免费观看大片| 女人十人毛片免费观看3o分钟| 国产成人精品一,二区| 久久99精品国语久久久| 好男人在线观看高清免费视频| 国产伦理片在线播放av一区| 国产av不卡久久| 久久久久性生活片| 熟女电影av网| 69av精品久久久久久| 国产探花在线观看一区二区| 99热网站在线观看| 国产一级毛片在线| 91久久精品电影网| 最后的刺客免费高清国语| 国产精品不卡视频一区二区| 中文精品一卡2卡3卡4更新| 91精品国产九色| 亚洲av日韩在线播放| 久久久国产一区二区| 国产成人aa在线观看| 18禁裸乳无遮挡动漫免费视频 | 高清在线视频一区二区三区| 三级经典国产精品| 久久久久精品久久久久真实原创| 亚洲av电影在线观看一区二区三区 | 久久午夜福利片| 国产久久久一区二区三区| 国产精品一区二区三区四区免费观看| 日本午夜av视频| 黄色怎么调成土黄色| 极品教师在线视频| 国产毛片a区久久久久| 日韩欧美 国产精品| 精品熟女少妇av免费看| 精品国产三级普通话版| 一个人观看的视频www高清免费观看| 中文字幕制服av| 欧美激情国产日韩精品一区| 日韩欧美精品v在线| av在线播放精品| 精品99又大又爽又粗少妇毛片| 日本熟妇午夜| 九九久久精品国产亚洲av麻豆| 美女cb高潮喷水在线观看| 亚洲av在线观看美女高潮| 亚洲av中文字字幕乱码综合| 成年女人看的毛片在线观看| 精品一区二区免费观看| 国产av国产精品国产| 99热这里只有是精品在线观看| 午夜免费男女啪啪视频观看| 亚洲精品视频女| 国产精品精品国产色婷婷| 久久精品久久久久久久性| 日韩,欧美,国产一区二区三区| av国产免费在线观看| 啦啦啦中文免费视频观看日本| 亚洲精品456在线播放app| 亚洲最大成人中文| 日本色播在线视频| 精品少妇久久久久久888优播| 香蕉精品网在线| 女人久久www免费人成看片| 国产国拍精品亚洲av在线观看| 别揉我奶头 嗯啊视频| 国产精品偷伦视频观看了| 久久久色成人| 亚洲国产高清在线一区二区三| 一区二区三区四区激情视频| 欧美变态另类bdsm刘玥| 亚洲国产欧美在线一区| 国产 一区 欧美 日韩| 3wmmmm亚洲av在线观看| a级毛色黄片| 日本黄大片高清| 亚洲国产精品成人综合色| 日韩在线高清观看一区二区三区| 丰满乱子伦码专区| 成人综合一区亚洲| 日韩三级伦理在线观看| 涩涩av久久男人的天堂| 国产成人91sexporn| 免费看日本二区| 亚洲精品视频女| 在现免费观看毛片| 欧美日韩一区二区视频在线观看视频在线 | 欧美性感艳星| 中文资源天堂在线| 国产亚洲午夜精品一区二区久久 | 亚洲精品国产色婷婷电影| 在线观看一区二区三区激情| 一级毛片 在线播放| 亚洲人成网站在线播| 只有这里有精品99| 国产 精品1| 在线天堂最新版资源| 久久6这里有精品| 中文资源天堂在线| 欧美性猛交╳xxx乱大交人| 免费人成在线观看视频色| 亚洲av.av天堂| 欧美 日韩 精品 国产| 婷婷色麻豆天堂久久| 老司机影院成人| 三级男女做爰猛烈吃奶摸视频| 免费观看性生交大片5| 国产毛片在线视频| 亚洲av电影在线观看一区二区三区 | 日韩中字成人| 一级av片app| 国产黄色免费在线视频| 国产中年淑女户外野战色| 成人毛片60女人毛片免费| 插阴视频在线观看视频| 国产老妇女一区| 国产成人免费无遮挡视频| 欧美+日韩+精品| 中国国产av一级| 另类亚洲欧美激情| 国产亚洲最大av| 夜夜爽夜夜爽视频| 日韩三级伦理在线观看| av在线app专区| av国产免费在线观看| 久久久久精品性色| 肉色欧美久久久久久久蜜桃 | 在线精品无人区一区二区三 | 亚洲欧美日韩卡通动漫| av在线亚洲专区| 在线观看三级黄色| 国产久久久一区二区三区| 国内少妇人妻偷人精品xxx网站| 99九九线精品视频在线观看视频| 一本一本综合久久| 亚洲婷婷狠狠爱综合网| 老师上课跳d突然被开到最大视频| 99视频精品全部免费 在线| 久久99蜜桃精品久久| 波野结衣二区三区在线| 亚洲成人中文字幕在线播放| 99久国产av精品国产电影| 人妻 亚洲 视频| 国产精品国产三级专区第一集| 国精品久久久久久国模美| 久久久久久久亚洲中文字幕| 2021天堂中文幕一二区在线观| 亚洲av电影在线观看一区二区三区 | 亚洲成人久久爱视频| 欧美激情国产日韩精品一区| 国产成人免费观看mmmm| 99热6这里只有精品| 伦理电影大哥的女人| 九九久久精品国产亚洲av麻豆| 美女cb高潮喷水在线观看| 久热这里只有精品99| 3wmmmm亚洲av在线观看| 性色avwww在线观看| 波多野结衣巨乳人妻| 免费观看a级毛片全部| 男女国产视频网站| 九九爱精品视频在线观看| 午夜福利高清视频| 亚洲av一区综合| 久久久久久久亚洲中文字幕| 国产黄色免费在线视频| 午夜福利视频精品| 久久久欧美国产精品| 最近最新中文字幕免费大全7| 色视频www国产| 国产老妇女一区| 国产亚洲午夜精品一区二区久久 | 亚洲真实伦在线观看| 国产高清国产精品国产三级 | 国产美女午夜福利| 国产精品99久久久久久久久| 自拍偷自拍亚洲精品老妇| 国产免费一区二区三区四区乱码| 80岁老熟妇乱子伦牲交| 日韩一本色道免费dvd| 男男h啪啪无遮挡| 99久久精品一区二区三区| 最新中文字幕久久久久| 亚洲欧美清纯卡通| 在线精品无人区一区二区三 | 97在线视频观看| tube8黄色片| 亚洲国产欧美在线一区| 一级毛片aaaaaa免费看小| 欧美国产精品一级二级三级 | 精品久久久噜噜| 一级片'在线观看视频| 免费人成在线观看视频色| 国国产精品蜜臀av免费| 另类亚洲欧美激情| 日韩成人av中文字幕在线观看| 天天一区二区日本电影三级| 性插视频无遮挡在线免费观看| 老司机影院毛片| 亚洲欧美清纯卡通| 国产爱豆传媒在线观看| 啦啦啦啦在线视频资源| 少妇人妻 视频| av黄色大香蕉| 午夜激情久久久久久久| 免费人成在线观看视频色| 久久久精品94久久精品| 久久精品国产亚洲av涩爱| 日日摸夜夜添夜夜爱| 亚洲成色77777| 一本久久精品| 1000部很黄的大片| 日韩一区二区三区影片| 3wmmmm亚洲av在线观看| 99久久人妻综合| 99热网站在线观看| av在线老鸭窝| 成人特级av手机在线观看| 色5月婷婷丁香| 日本av手机在线免费观看| 五月开心婷婷网| 97热精品久久久久久| 成年女人看的毛片在线观看| 51国产日韩欧美| 国产精品成人在线| 亚洲久久久久久中文字幕| 高清日韩中文字幕在线| 欧美潮喷喷水| 欧美日韩视频高清一区二区三区二| 一个人看视频在线观看www免费| 欧美zozozo另类| 色网站视频免费| 99久国产av精品国产电影| av网站免费在线观看视频| 麻豆精品久久久久久蜜桃| 国产真实伦视频高清在线观看| 成年av动漫网址| 美女国产视频在线观看| 美女被艹到高潮喷水动态| 舔av片在线| 免费大片黄手机在线观看| 欧美成人a在线观看| av.在线天堂| 最近2019中文字幕mv第一页| 欧美日韩视频精品一区| 国产乱人偷精品视频| 国产成年人精品一区二区| 人妻 亚洲 视频| 视频中文字幕在线观看| 精品国产一区二区三区久久久樱花 | 偷拍熟女少妇极品色| 大香蕉久久网| 一本一本综合久久| 最近中文字幕高清免费大全6| 99久久九九国产精品国产免费| 亚洲va在线va天堂va国产| 人妻夜夜爽99麻豆av| 建设人人有责人人尽责人人享有的 | 欧美精品人与动牲交sv欧美| 亚洲成人一二三区av| 亚洲国产av新网站| 国产欧美日韩精品一区二区| 久久99热这里只频精品6学生| 成人亚洲欧美一区二区av| 麻豆成人午夜福利视频| 少妇人妻一区二区三区视频| 国产综合懂色| 久久久精品94久久精品| 99久久九九国产精品国产免费| 高清欧美精品videossex| 亚洲精品乱码久久久久久按摩| 韩国高清视频一区二区三区| 少妇人妻 视频| 成人综合一区亚洲| 观看美女的网站| 色网站视频免费| 国产成人aa在线观看| 日本午夜av视频| 国产 一区 欧美 日韩| a级毛片免费高清观看在线播放| 亚洲在久久综合| 国模一区二区三区四区视频| 男女啪啪激烈高潮av片| 免费观看无遮挡的男女| 99视频精品全部免费 在线| 亚洲人与动物交配视频| 男女下面进入的视频免费午夜| 成人美女网站在线观看视频| 我要看日韩黄色一级片| 波野结衣二区三区在线| 国产黄色视频一区二区在线观看| eeuss影院久久| 一级爰片在线观看| 国产精品精品国产色婷婷| 欧美最新免费一区二区三区| 国产成人aa在线观看| 看非洲黑人一级黄片| 国产综合懂色| av又黄又爽大尺度在线免费看| 夜夜爽夜夜爽视频| 高清av免费在线| 久久久国产一区二区| av女优亚洲男人天堂| 大话2 男鬼变身卡| 好男人视频免费观看在线| 国产精品一区二区三区四区免费观看| 一级二级三级毛片免费看| kizo精华| 嫩草影院精品99| 日韩在线高清观看一区二区三区| 夫妻午夜视频| 精品久久久噜噜| 各种免费的搞黄视频| 在线观看人妻少妇| 国产精品av视频在线免费观看| 国产爽快片一区二区三区| 97人妻精品一区二区三区麻豆| 国产精品久久久久久精品古装| 国产亚洲5aaaaa淫片| 日韩 亚洲 欧美在线| 国内少妇人妻偷人精品xxx网站| 色婷婷久久久亚洲欧美| 亚洲欧美一区二区三区黑人 | 蜜桃久久精品国产亚洲av| 久久久久精品久久久久真实原创| 晚上一个人看的免费电影| 欧美bdsm另类| 直男gayav资源| av免费在线看不卡| 在线观看人妻少妇| 国内揄拍国产精品人妻在线| 亚洲精品中文字幕在线视频 | 免费在线观看成人毛片| 久久99蜜桃精品久久| 欧美 日韩 精品 国产| 视频区图区小说| 亚洲人成网站在线播| 美女主播在线视频| 久久久久久久国产电影| 久久久久精品久久久久真实原创| 国产91av在线免费观看| 国产精品秋霞免费鲁丝片| av在线app专区| 大码成人一级视频| 亚洲三级黄色毛片| 日本猛色少妇xxxxx猛交久久| 可以在线观看毛片的网站| 噜噜噜噜噜久久久久久91| 欧美+日韩+精品| 丝袜美腿在线中文| 插逼视频在线观看| 国产淫片久久久久久久久| 国产男女内射视频| 久久久欧美国产精品| videossex国产| 欧美亚洲 丝袜 人妻 在线| 丝袜喷水一区| 青春草亚洲视频在线观看| 日本免费在线观看一区| 热re99久久精品国产66热6| xxx大片免费视频| 国产成人精品福利久久| 久久久久国产精品人妻一区二区| 亚洲综合色惰| 在线精品无人区一区二区三 | 一级毛片aaaaaa免费看小| 国产成人a∨麻豆精品| 午夜福利在线在线| 99热这里只有是精品50| 黄色怎么调成土黄色| 国产高潮美女av| 免费黄网站久久成人精品| 一级毛片电影观看| 插逼视频在线观看| 香蕉精品网在线| 国产一区二区亚洲精品在线观看| 亚洲成人av在线免费| 韩国高清视频一区二区三区| 777米奇影视久久| 国产精品.久久久| 久久精品夜色国产| 18禁裸乳无遮挡动漫免费视频 | 99久国产av精品国产电影| 日韩伦理黄色片| 国产精品人妻久久久久久| 一本久久精品| 精华霜和精华液先用哪个| 波多野结衣巨乳人妻| 日韩免费高清中文字幕av| 亚洲成人中文字幕在线播放| 80岁老熟妇乱子伦牲交| 日韩免费高清中文字幕av| 美女主播在线视频| 国产午夜精品一二区理论片| 亚洲va在线va天堂va国产| 婷婷色综合大香蕉| 小蜜桃在线观看免费完整版高清| 婷婷色综合www| 99热国产这里只有精品6| 亚洲精华国产精华液的使用体验| 日本欧美国产在线视频| 日韩不卡一区二区三区视频在线| 国产伦理片在线播放av一区| 男人爽女人下面视频在线观看| 亚洲伊人久久精品综合| 99re6热这里在线精品视频| 乱系列少妇在线播放| 日韩大片免费观看网站|