• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fractional Action-Like Variational Problem and Its Noether Symmetries for a Nonholonomic System

    2015-11-24 06:57:33ZhangYi張毅LongZixuan龍梓軒
    關(guān)鍵詞:張毅

    Zhang Yi(張毅),Long Zixuan(龍梓軒)

    1.College of Civil Engineering,Suzhou University of Science and Technology,Suzhou 215011,P.R.China

    2.College of Mathematics and Physics,Suzhou University of Science and Technology,Suzhou 215009,P.R.China

    Fractional Action-Like Variational Problem and Its Noether Symmetries for a Nonholonomic System

    Zhang Yi(張毅)1*,Long Zixuan(龍梓軒)2

    1.College of Civil Engineering,Suzhou University of Science and Technology,Suzhou 215011,P.R.China

    2.College of Mathematics and Physics,Suzhou University of Science and Technology,Suzhou 215009,P.R.China

    Eor an in-depth study on the symmetric properties for nonholonomic non-conservative mechanical systems,the fractional action-like Noether symmetries and conserved quantities for nonholonomic mechanical systems are studied,based on the fractional action-like approach for dynamics modeling proposed by El-Nabulsi.Eirstly,

    nonholonomic system;fractional action-like variational problem;symmetric transformation;Noether theorem;conserved quantity

    0 Introduction

    The fractional calculus has provided a powerful mathematical tool for a great number of problems in different fields of science and engineering,and has made many break-through results in mathematical physics,classical and quantum mechanics,control theory,nonlinear dynamics,signal and image processing,thermodynamics,bioengineering and other fields[1-2]. Although various fields of application of fractional calculus are already well established,some others have just started.The researches in fractional variational problems and their symmetry and conserved quantity are examples of the latter.

    The study of fractional variational problems began in the work of Riewe[3-4].In 1996,Riewe

    first applied fractional calculus to a non-conservative mechanics modeling,and the fractional Euler-Lagrange equations and the fractional Hamilton equations were formed initially.Since then,the fractional variational problems have become one of the most popular research areas in applied mathematics,physics,dynamics and control,and are increasingly attracting the attention of many scholars:Klimek[5-6], Agrawal[7-9], Atanackovic'[10-11],Jumarie[12],Baleanu[13-15], Torres[16-18],El-Nabulsi[19-24], Cresson[25], Rabei[26], Tarasov[27],and Zhang[28-29],et al.These scholars came up with a variety of fractional models and methods from different views,and established the corresponding fractional Euler-Lagrange equations and fractional Hamilton equations.Erom the point of view of both classical and quantumsystems,the existence of a number of different fractional variational problems and the need for a more precise description of the fractional model,in part,can be interpreted as the nonlocal nature of fractional order differential operators and the corresponding adjoint operators for describing the dynamics.Another reason is that there exist many different fractional integral operators,including Grünwald-Letnikov,Caputo,Riesz,Riemann-Liouville operators,and so on.The Riemann-Liouville operator is one of the most frequently used in the application of fractional calculus operators.

    In order to establish a non-conservative dynamical system model,El-Nabulsi presented a modeling method[19]in 2005,known as the fractional action-like variational approach(also called the El-Nabulsi's fractional model).In his method,the fractional integral about time only needs one parameter,and the resulting fractional Euler-Lagrange equations contain the dissipative forces depending on time.However,there are an arbitrary number of fractional parameters(the order of the derivative)in other fractional models.The novelty of El-Nabulsi dynamics model is that the derived Euler-Lagrange equations are similar to the classical ones,with no fractional derivatives,but the presence of the fractional generalized external force acts on the system.The fractional action-like approach was further extended to the situation of Lagrangian depending on Riemann-Liouville fractional derivatives[20],to the multi-dimensional fractional action-like variational problems[21],the fractional action-like variational problems with holonomic constraints or nonholonomic constraints or dissipative dynamic systems[22],the fractional action-like variational problems with exponential law[23],and the universal fractional action-like Euler-Lagrange equations from a generalized fractional derivative operator[24].Erederico and Torres studied the constant of motion for fractional action-like variational problems,gave Noether's theorem[30]for nonconservative system under El-Nabulsi's fractional model,and extended to the situation of Lagrangian containing higher-order derivatives[31].Recently,authors have obtained the Noether's theorem for Birkhoffian system[32]under El-Nabulsi's fractional model,the Noether's theorems for Lagrange systems[33]and Hamilton systems[34]based on the extended exponentially fractional integral.

    Here the Noether theory for holonomic systems and nonholonomic systems is further studied under the framework of fractional action-like variational approach.The definitions and criteria of fractional action-like Noether symmetric transformations and Noether quasi-symmetric transformations are provided.The fractional action-like Noether theorems of holonomic systems and nonholonomic systems are derived.And the conserved quantities led by the fractional action-like Noether symmetries are given.

    1 Fractional Action-Like Variational Problem

    Assume that the configuration of a mechanical system is determined by generalized coordinates qk(k = 1,…,n),the Lagrangian of the system is L=L(τ,q,.q).With the fractional action-like variational approach for modeling of nonconservative dynamical system presented by El-Nabulsi[19],the fractional variational problem under Riemann-Liouville fractional integrals can be defined as follows.

    Eind the stationary points of the integral function

    with the fixed boundary conditions

    The above variational problem is called the fractional action-like variational problem.Eq.(1)can also be called the fractional action-like Hamilton action.Whenα=1,the problem becomes a classical variational problem of a dynamicalsystem.

    According to the theory of calculus of variations,the necessary condition to achieve extreme for Eq.(1)at qk=qk(τ )is its variation equal to 0,that is,δS=0.Therefore,one can have the following equation

    Using the boundary conditions Eq.(2),one has

    Substituting Eq.(4)into Eq.(3),it becomes

    Since the variationsδqk( k=1,…,n )are independent of each other for a holonomic system,therefore,by the fundamental lemma[35]of the calculus of variations,one obtains

    Erom Eq.(6),one gets

    Eq.(7)are the fractional action-like Lagrange equations of the holonomic system[19].

    Assume that the motion of the system is subjected to g bilateral ideal nonholonomic constraints of Chetaev type

    The restriction of constraints Eq.(8)exerted on the virtual displacements is

    Erom Eq.(5)and the conditions Eq.(9),by using the Lagrange multiplier method,one can obtain

    whereλβare the constraint multipliers.Eq.(10)can be called the fractional action-like differential equations of motion with multipliers for the nonholonomic system.

    Before integrating the equations of motion,by using Eqs.(8,10),one can findλβas the function of t,q and q·.Therefore,Eqs.(10)can be written in the form

    where

    Eqs.(11)are called the equations of motion of the holonomic system corresponding to the nonholonomic system,or the equations of motion of the corresponding holonomic system for short.

    If the initial conditions satisfy the equations of nonholonomic constraints Eq.(8),the motion of the corresponding holonomic system Eq.(12)will give the solution of the nonholonomic system Eqs.(8,10).

    Example 1 Consider a system whose configuration is determined by two generalized coordinates q1,q2.The Lagrangian of the system is

    and its motion is subject to a nonholonomic constraint[36]

    Erom Eqs.(10),one has

    where the first term of the right side of each equation of Eqs.(15)can be viewed as a generalized external force acting on the system,and the second one is the force corresponding to the nonholonomic constraint Eq.(14).Erom Eqs.(14,15),one can find the multiplier

    Then Eqs.(15)can be written as

    Eqs.(17)are the fractional action-like differential equations of motion of the holonomic system corresponding to the nonholonomic system Eqs.(14,15).Ifα =1,Eqs.(17)give the equations of motion in classic situation[36].

    2 Variation of Fractional Action-Like Hamilton Action

    Introduce the infinitesimal transformations of r-parameters finite transformation group

    or their expansion formulae

    whereεσ(σ=1,…,r )are the infinitesimal parameters,andhe generators or generating functions for the infinitesimal transformations.

    The difference of the fractional action-like Hamilton action Eq.(1)before and after transformation is

    whereγis the given curve andγ-a neighbor curve. Denoting the main linear part of Eq.(20)forεσ,i.e.,the part accurate to the first-order infinitesimal,asΔS,one has

    Eor an arbitrary function E,the relation between the non-isochronous variationΔand the isochronous variationδis[36]

    Therefore one has

    Erom Eq.(23),Eq.(21)can be expressed as

    Erom Eqs.(19,23),Eq.(24)can be further expressed as

    Eqs.(21,25)are basic formulae for the variation of fractional action-like Hamilton action.

    3 Fractional Action-Like Symmetric Transformation

    In this section,one establishes the definitions and criteria of fractional action-like Noether symmetric transformations and quasi-symmetric transformations.

    Definition 1 If the fractional action-like Hamilton action Eq.(1)is an invariant of the infinitesimal transformations of the group in Eq.(18),that is,for each of the infinitesimal transformations,the formula

    ΔS=0 (26)holds,the infinitesimal transformations are called the fractional action-like Noether symmetric transformations.

    Erom Definition 1 and Eq.(21),one can obtain the following criterion.

    Criterion 1 Eor the infinitesimal transformations of the group in Eq.(18),if the condition

    is satisfied,the infinitesimal transformations are the fractional action-like Noether symmetric transformations.

    Condition Eq.(27)can also be expressed as

    When r=1,Eq.(28)may be called the fractional action-like Noether identity.

    Erom Definition 1 and Eq.(25),one can obtain the criterion as follows.

    Criterion 2 Eor the infinitesimal transformations of the group in Eq.(19),if the conditions

    are satisfied,the infinitesimal transformations are the fractional action-like Noether symmetric transformations.

    Subsequently,one establishes the definition and criteria of the fractional action-like Noether quasi-symmetry transformations.

    Suppose that L'is another Lagrangian,if the infinitesimal transformations(Eq.(18))accurate to the first-order infinitesimal satisfy the condition

    this invariance is called the quasi-invariance of the fractional action-like Hamilton action Eq.(1)under the infinitesimal transformations of the group in Eq.(18).The functions L'and L determined by Eq.(30)satisfy the same differential equations of motion.Hence the transformations are called the fractional action-like Noether quasi-symmetric transformations,and one has

    Substituting Eq.(31)into Eq.(30),one has

    The left-hand of Eq.(32)is a first-order infinitesimal under the transformations (Eq.(18)). Therefore,the right-hand should be an infinitesimal of the same-order.G can be replaced byΔG,and thus

    Hence,one has

    Definition 2 If the fractional action-like Hamilton action Eq.(1)is a quasi-invariant under the infinitesimal transformations of group (18),i.e.for each of the infinitesimal transformations,the formula

    holds,where G =G(τ,q,q·),the infinitesimal transformations are called the fractional actionlike Noether quasi-symmetric transformations.

    Erom Definition 2 and Eq.(25),one can get the following criterion.

    Criterion 3 Eor the infinitesimal transformations of group(18),if the condition

    is satisfied,the infinitesimal transformations are the fractional action-like Noether quasi-symmetric transformations.

    Condition Eq.(35)can also be expressed as

    Erom Definition 2 and Eq.(25),one can suggest the criterion as follows

    Criterion 4 Eor the infinitesimal transformations of the group in Eq.(19),if the conditions

    are satisfied,the infinitesimal transformations are the fractional action-like Noether quasi-symmetric transformations.

    By using Criterions 1,2,one can determine the fractional action-like Noether symmetry. Likewise,by using Criterions 3,4,one can define the fractional action-like Noether quasi-symmetry.

    4 Fractional Action-Like Noether Theorem of Holonomic System

    The conserved quantity of a holonomic system under the El-Nabulsi's fractional model is firstly defined.

    Definition 3 A function I(τ,q,q·)is said to be a conserved quantity of a holonomic system under El-Nabulsi's fractional model if

    is along all the solution curves of the fractional action-like Lagrange equations.(7).

    Eor a holonomic system,if one can find a fractional action-like Noether symmetric transformation or a Noether quasi-symmetric transformation,one can find a corresponding conserved quantity.Here is the obtained theorem.

    Theorem 1 Eor the holonomic system Eq.(7),if the infinitesimal transformations of group Eq.(19)are the fractional action-like Noether symmetric transformations under Definition 1,the system has r linear and independent conserved quantities,that is

    Proof Since the infinitesimal transformations of group are the fractional action-like Noether symmetric transformations of the system.By Definition 1,one hasΔS=0,namely

    Substituting Eq.(7)into Eq.(40),and considering the independence of parametersεσ,one has

    Integrating it,Eq.(39)is obtained,and then it ends.

    Theorem 2 Eor the holonomic system Eq.(7),if the infinitesimal transformations of the group in Eq.(19)are the fractional action-like Noether quasi-symmetric transformations under Definition 2,the system exists r linear independent conservation quantities,such as

    Theorems 1,2 can be called the fractional action-like Noether theorem for the holonomic system.According to the Noether theorem,for the holonomic system under El-Nabulsi's fractional model,if one can find a fractional actionlike Noether symmetric transformation or a quasisymmetric transformation,one can get a conserved quantity of the system.

    Example 2 The Lagrangian of the planar Kepler problem is

    Here one tries to study the fractional action-like Noether symmetries and conserved quantities of the system.

    Eirst,one finds the fractional action-like Noether quasi-symmetric transformations.Eractional action-like generalized Noether identity Eq.(36)gives

    Eq.(44)has the following solutions

    Eq.(47)is a conserved quantity led by the fractional action-like Noether symmetry Eq.(45)of the system.Whenα=1,Eq.(47)gives

    This is the conserved quantity of a classical Kepler problem[36].

    Erom the generator Eq.(46),according to Theorem 2,one obtains

    Therefore,the infinitesimal transformation corresponding to the generator Eq.(46)is trivial.

    The generator Eq.(45)is corresponding to a fractional action-like Noether symmetric transformation of the system,and the generator Eq.(46)is corresponding to a fractional action-like Noether quasi-symmetric transformation of the system.

    Erom the generator Eq.(45),according to Theorem 1,one has

    5 Fractional Action-Like Noether Theorem of Nonholonomic System

    The definition of fractional action-like Noether quasi-symmetric transformations of the nonholonomic system is firstly given.

    Notice that

    Substituting Eq.(50)into Eq.(9),and considering the independence ofεσ,one has

    This is the restriction of nonholonomic constraints exerted on the generating function of infinitesimal transformations,called the Appell-Chetaev conditions.Thus one has

    Definition 4 Eor the nonholonomic system Eqs.(8,10),if the infinitesimal transformations of the group in Eq.(19)are the fractional actionlike Noether quasi-symmetric transformations,satisfying the Appell-Chetaev conditions Eq.(51),the transformations are called the fractional action-like Noether quasi-symmetric transformations of the nonholonomic system.

    Secondly,one gives the definition of a conserved quantity of a nonholonomic system under El-Nabulsi's fractional model.

    Definition 5 A function I(τ,q,q·)is said to be a conserved quantity of a nonholonomic system under El-Nabulsi's fractional model if

    is along all the solution curves of the fractional action-like differential equations of motion of the nonholonomic system Eqs.(8,10).

    Einally,one establishes the fractional actionlike Noether theorem of the nonholonomic system.

    Theorem 3 Eor the nonholonomic system Eqs.(8,10),if the infinitesimal transformations of the group in Eq.(19)are the Noether quasisymmetric transformations under Definition 4,the system has r linear independent conserved quantities

    Proof Since the infinitesimal transformations of group are the fractional action-like Noether quasi-symmetric transformations of the system,by Definition 2,one has

    Eq.(34)can also be written as

    Since the infinitesimal transformations satisfy the Appell-Chetaev conditions Eq.(51),one has

    Adding Eq.(55)and Eq.(54)together,one gets

    Substituting Eq.(10)into Eq.(56),and considering the independence ofεσ,one obtains

    Integrating it,one obtains Eq.(53),and the theorem is thus proved.

    Theorem 3 can be called the fractional actionlike Noether theorem of the nonholonomic system.By the theorem,one can find a conserved quantity from a known Noether symmetry.

    If the nonholonomic constraints do not exist,then Theorem 3 degenerates to Theorem 2,and if at the same time Gσ=0 is satisfied,Theorem 3 degenerates to Theorem 1.

    Example 3 Let us study the fractional action-like Noether symmetries and the conserved quantities of the nonholonomic system discussed in Example 1.

    Eirst,one tries to find the fractional actionlike Noether quasi-symmetric transformations satisfying the Appell-Chetaev conditions.The fractional action-like generalized Noether identity Eq.(36)gives

    and the Appell-Chetaev conditions Eq.(51)give

    Eqs.(58,59)have the following solutions

    The generators Eqs.(60,61)are both corresponding to the fractional action-like Noether quasi-symmetric transformation of the nonholonomic system.By Theorem 3,the conserved quantity Eq.(53)gives

    Therefore,the infinitesimal transformation corresponding to the generator Eq.(60)is trivial.And whenα=1,the conserved quantity Eq.(63)gives

    This is a classical conserved quantity[36].

    6 Conclusions

    In recent decades,the fractional calculus has been successfully used in various fields of science and engineering.It has also been used in dynamics modeling for a non-conservative or dissipative system and so on,where some complex problems can be solved difficultly with integer order derivatives.Here the fractional action-like variational problem is further studied,based upon the fractional modeling presented by El-Nabulsi.The fractional action-like differential equations of motion for both holonomic and nonholonomic systems are established.The definitions and criteria of both fractional action-like Noether symmetric transformations and Noether quasi-symmetric transformations are given,and the fractional action-like Noether theorems of the systems are established.The presented methods and its results are of universal significance.They can be further applied to various types of constrained mechanical systems.It is noteworthy that classical Noether theory for the circumstance of integer order is a special case of this paper.

    Acknowledgement

    This work was supported by the National Natural Science Eoundation of China(No.11272227).

    [1] Podlubny I.Eractional differential equations [M]. San Diego:Academic Press,1999.

    [2] Herrmann R.Eractional calculus:An introduction for physicists[M].Singapore:World Scientific,2011.

    [3] Riewe E.Nonconservative Lagrangian and Hamiltonian mechanics [J].Physical Review E,1996,53(2):1890-1899.

    [4] Riewe E.Mechanics with fractional derivatives[J]. Physical Review E,1997,55(3):3581-3592.

    [5] Klimek M.Eractional sequential mechanics-modelswith symmetric fractional derivative[J].Czechoslovak Journal of Physics,2001,51(12):1348-1354.

    [6] Klimek M.Lagrangian and Hamiltonian fractional sequential mechanics [J].Czechoslovak Journal of Physics,2002,52(11):1247-1253.

    [7] Agrawal O P.Eormulation of Euler-Lagrange equations for fractional variational problems[J].Journal of Mathematical Analysis and Applications,2002,272(1):368-379.

    [8] Agrawal O P.Generalized Euler-Lagrange equations and transversality conditions for EVPs in terms of the Caputo derivative[J].Journal of Vibration and Control,2007,13(9/10):1217-1237.

    [9] Agrawal O P,Muslih S I,Baleanu D.Generalized variational calculus in terms of multi-parameters fractional derivatives[J].Communications in Nonlinear Science and Numerical Simulation,2011,16(12):4756-4767.

    [10]Atanackovic'T M,Konjik S,Pilipovic'S.Variational problems with fractional derivatives:Euler-Lagrange equations[J].Journal of Physics A:Mathematical and Theoretical,2008,41(9):095201.

    [11]Atanackovic'T M,Konjik S,Pilipovic'S,et al.Variational problems with fractional derivatives:Invariance conditions and Noether's theorem [J].Nonlinear Analysis:Theory, Methods & Applications,2009,71(5/6):1504-1517.

    [12]Jumarie G.Eractional Hamilton-Jacobi equation for the optimal control of nonrandom fractional dynamics with fractional cost functions[J].Journal of Applied Mathematics and Computing,2007,23(1/2):215-228.

    [13]Baleanu D,Avkar T.Lagrangians with linear velocities within Riemann-Liouville fractional derivatives[J].Nuovo Cimento B,2003,119(1):73-79.

    [14]Baleanu D,Trujillo J I.A new method of finding the fractional Euler-Lagrange and Hamilton equations within Caputo fractional derivatives[J].Communications in Nonlinear Science and Numerical Simulation,2010,15(5):1111-1115.

    [15]Baleanu D,Muslih S I,Rabei E M,et al.On fractional Hamiltonian systems possessing first-class constraints within Caputo derivatives[J].Romanian Reports in Physics,2011,63(1):3-8.

    [16]Almeida R,Torres D E M.Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives [J].Communications in Nonlinear Science and Numerical Simulation,2011,16(3):1490-1500.

    [17]Odzijewicz T,Malinowska A B,Torres D E M. Eractional variational calculus with classical and combined Caputo derivatives [J].Nonlinear Analysis:Theory,Methods & Applications,2012,75(3),1507-1515.

    [18]Malinowska A B,Torres D E M.Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative[J].Computers and Mathematics with Applications,2010,59(9):3110-3116.

    [19]El-Nabulsi A R.A fractional approach to nonconservative Lagrangian dynamical systems[J].Eizika A,2005,14(4):289-298.

    [20]El-Nabulsi A R.Necessary optimality conditions for fractional action-like integrals of variational calculus with Riemann-Liouville derivatives of order (α,β)[J].Mathematical Models & Methods in Applied Sciences,2007,30(15):1931-1939.

    [21]El-Nabulsi A R,Torres D E M.Eractional actionlike variational problems[J].Journal of Mathematical Physics,2008,49(5):053521.

    [22]El-Nabulsi A R.Eractional action-like variational problems in holonomic,non-holonomic and semi-holonomic constrained and dissipative dynamical systems[J].Chaos,Solitons and Eractals,2009,42(1):52-61.

    [23]El-Nabulsi A R.Eractional variational problems from extended exponentially fractional integral[J].Applied Mathematics and Computation,2011,217(22):9492-9496.

    [24]El-Nabulsi R A.Universal fractional Euler-Lagrange equation from a generalized fractional derivate operator[J].Central European Journal of Physics,2011,9(1):250-256.

    [25]Cresson J.Eractional embedding of differential operators and Lagrangian systems[J].Journal of Mathematical Physics,2007,48(3):033504.

    [26]Rabei E M,Rawashdeh I M,Muslih S,et al.Hamilton-Jacobi formulation for systems in terms of Riesz's fractional derivatives[J].International Journal of Theoretical Physics,2011,50(5):1569-1576.

    [27]Tarasov V E.Eractional dynamics[M].Beijing:Higher Education Press,2010.

    [28]Zhou Y,Zhang Y.Eractional Pfaff-Birkhoff principle and Birkhoff's equations in terms of Riesz fractional derivatives[J].Transactions of Nanjing University of Aeronautics and Astronautics,2014,31(1):63-69.

    [29]Zhou Y,Zhang Y.Noether's theorems of a fractional Birkhoffian system within Riemann-Liouville deriva-tives [J].Chinese Physics B,2014,23(12):124502.

    [30]Erederico G SE,Torres D E M.Constants of motion for fractional action-like variational problems[J].International Journal of Applied Mathematics,2006,19(1):97-104.

    [31]Erederico G S E,Torres D E M.Non-conservative Noether's theorem for fractional action-like problems with intrinsic and observer times[J].International Journal of Ecological Economics&Statistics,2007,9(E07):74-82.

    [32]Zhang Y,Zhou Y.Symmetries and conserved quantities for fractional action-like Pfaffian variational problems[J].Nonlinear Dynamics,2013,73(1-2):783-793.

    [33]Long Z X,Zhang Y.Eractional Noether theorem based on extended exponentially fractional integral[J].International Journal of Theoretical Physics,2014,53(3):841-855.

    [34]Long Z X,Zhang Y.Noether's theorem for fractional variational problem from El-Nabulsi extended exponentially fractional integral in phase space[J].Acta Mechanica,2014,225(1):77-90.

    [35]Goldstein H,Poole C,Safko J.Classical Mechanics[M].Third Edition.Beijing:Higher Education Press,2005.

    [36]Mei E X ,Wu H B.Dynamics of constrained mechanical systems[M].Beijing:Beijing Institute of Technology Press,2009.

    (Executive editor:Zhang Tong)

    O316 Document code:A Article ID:1005-1120(2015)04-0380-10

    *Corresponding author:Zhang Yi,Professor,E-mail:zhy@mail.usts.edu.cn.

    How to cite this article:Zhang Yi,Long Zixuan.Eractional action-like variational problem and its Noether symmetries for a nonholonomic system[J].Trans.Nanjing U.Aero.Astro.,2015,32(4):380-389.

    http://dx.doi.org/10.16356/j.1005-1120.2015.04.380

    (Received 14 August 2014;revised 5 December 2014;accepted 14 December 2014)

    the fractional action-like variational problem is established,and the fractional action-like Lagrange equations of holonomic system and the fractional action-like differential equations of motion with multiplier for nonholonomic system are given;secondly,according to the invariance of fractional action-like Hamilton action under infinitesimal transformations of group,the definitions and criteria of fractional action-like Noether symmetric transformations and quasi-symmetric transformations are put forward;finally,the fractional action-like Noether theorems for both holonomic system and nonholonomic system are established,and the relationship between the fractional action-like Noether symmetry and the conserved quantity is given.

    猜你喜歡
    張毅
    二月二—龍?zhí)ь^
    當代作家(2023年3期)2023-04-23 21:26:58
    張士卿基于敏濕熱瘀辨治過敏性紫癜經(jīng)驗
    《秋水共長天一色》
    青年生活(2019年6期)2019-09-10 17:55:38
    Isolation and callus formation of Gracilariopsis bailiniae(Gracilariales, Rhodophyta) protoplasts*
    Noether Symmetry and Conserved Quantities of Fractional Birkhoffian System in Terms of Herglotz Variational Problem?
    隨便走走(短篇小說)
    當代小說(2017年11期)2018-01-08 09:31:32
    “執(zhí)著”的代價
    檢察風云(2017年10期)2017-06-12 13:50:02
    宮“?!彪u丁
    性格變更
    Perturbation to Noether Symmetries and Adiabatic Invariants for Generalized Birkhoff Systems Based on El-Nabulsi Dynamical Model
    欧美在线一区亚洲| av欧美777| 在线观看一区二区三区| 淫秽高清视频在线观看| 久9热在线精品视频| 精品久久久久久成人av| 国产精品乱码一区二三区的特点 | 男女午夜视频在线观看| 99精国产麻豆久久婷婷| 亚洲成a人片在线一区二区| 国产激情欧美一区二区| www.自偷自拍.com| 一二三四社区在线视频社区8| 免费搜索国产男女视频| 日本三级黄在线观看| 国产精品久久久久成人av| 乱人伦中国视频| 久久中文看片网| 中文字幕另类日韩欧美亚洲嫩草| 在线观看日韩欧美| 久久 成人 亚洲| 亚洲三区欧美一区| 日本精品一区二区三区蜜桃| 一区二区三区精品91| 欧美中文综合在线视频| 麻豆成人av在线观看| 啦啦啦免费观看视频1| 一个人免费在线观看的高清视频| 免费不卡黄色视频| 色综合婷婷激情| 久久人人97超碰香蕉20202| 亚洲久久久国产精品| www.www免费av| 久久久国产成人精品二区 | 中文字幕人妻丝袜制服| 精品午夜福利视频在线观看一区| 亚洲av五月六月丁香网| 国产一卡二卡三卡精品| 午夜精品在线福利| 午夜免费鲁丝| 18禁观看日本| 深夜精品福利| 午夜精品久久久久久毛片777| 国产aⅴ精品一区二区三区波| 手机成人av网站| 村上凉子中文字幕在线| 久久久久久久精品吃奶| 日韩欧美在线二视频| 一边摸一边抽搐一进一出视频| 美女大奶头视频| 国产伦人伦偷精品视频| 午夜久久久在线观看| 岛国在线观看网站| 1024香蕉在线观看| 这个男人来自地球电影免费观看| 亚洲情色 制服丝袜| 日韩中文字幕欧美一区二区| 久久久水蜜桃国产精品网| 欧美色视频一区免费| 最近最新中文字幕大全免费视频| 精品日产1卡2卡| 久久精品亚洲熟妇少妇任你| 精品国产一区二区三区四区第35| а√天堂www在线а√下载| 国产单亲对白刺激| 欧美性长视频在线观看| 国产av一区二区精品久久| 免费人成视频x8x8入口观看| 久久午夜综合久久蜜桃| 12—13女人毛片做爰片一| 99精品欧美一区二区三区四区| a在线观看视频网站| 搡老乐熟女国产| 在线观看免费视频日本深夜| 亚洲激情在线av| 久久久久国内视频| 亚洲精品久久午夜乱码| 神马国产精品三级电影在线观看 | 日韩国内少妇激情av| 国产精品久久久av美女十八| 久久精品91无色码中文字幕| 免费在线观看日本一区| 国产男靠女视频免费网站| 大陆偷拍与自拍| 国产区一区二久久| 岛国在线观看网站| 男女做爰动态图高潮gif福利片 | 少妇的丰满在线观看| 高清欧美精品videossex| av中文乱码字幕在线| 极品教师在线免费播放| 国产激情久久老熟女| 精品福利观看| www.999成人在线观看| 欧美日韩一级在线毛片| 欧美乱色亚洲激情| 少妇被粗大的猛进出69影院| 99香蕉大伊视频| 久久国产亚洲av麻豆专区| 自线自在国产av| 91成年电影在线观看| 97超级碰碰碰精品色视频在线观看| 国产成+人综合+亚洲专区| 国产成人系列免费观看| 国产精品 国内视频| 久久午夜综合久久蜜桃| 神马国产精品三级电影在线观看 | 一二三四在线观看免费中文在| 少妇被粗大的猛进出69影院| 午夜精品在线福利| 国产免费男女视频| 另类亚洲欧美激情| 18禁黄网站禁片午夜丰满| 国产熟女xx| 国产在线观看jvid| 一级,二级,三级黄色视频| 欧美久久黑人一区二区| 欧美+亚洲+日韩+国产| 99精国产麻豆久久婷婷| 在线播放国产精品三级| 午夜精品国产一区二区电影| 日日干狠狠操夜夜爽| 法律面前人人平等表现在哪些方面| 一边摸一边做爽爽视频免费| 午夜福利免费观看在线| 久久久国产一区二区| 国产精品国产高清国产av| 亚洲第一av免费看| 99精品欧美一区二区三区四区| 99香蕉大伊视频| 校园春色视频在线观看| 变态另类成人亚洲欧美熟女 | 欧美成狂野欧美在线观看| 看免费av毛片| 搡老岳熟女国产| 日韩人妻精品一区2区三区| 久久热在线av| 免费看a级黄色片| 最近最新中文字幕大全免费视频| 我的亚洲天堂| 巨乳人妻的诱惑在线观看| 夜夜爽天天搞| 日日夜夜操网爽| 国产精品影院久久| 午夜福利在线观看吧| 精品久久久久久久久久免费视频 | 亚洲色图 男人天堂 中文字幕| 精品高清国产在线一区| 久久精品国产亚洲av香蕉五月| 国产精华一区二区三区| 亚洲一区二区三区不卡视频| 欧美老熟妇乱子伦牲交| 操美女的视频在线观看| 黄网站色视频无遮挡免费观看| 国产亚洲欧美在线一区二区| 欧美另类亚洲清纯唯美| 天天躁夜夜躁狠狠躁躁| 精品福利永久在线观看| 男男h啪啪无遮挡| 国产xxxxx性猛交| 这个男人来自地球电影免费观看| 看黄色毛片网站| 一级a爱片免费观看的视频| a级毛片在线看网站| 精品国内亚洲2022精品成人| 99re在线观看精品视频| 国产精品美女特级片免费视频播放器 | tocl精华| 老司机亚洲免费影院| 国产精品国产av在线观看| 欧美日韩视频精品一区| 国产伦一二天堂av在线观看| 80岁老熟妇乱子伦牲交| 日本wwww免费看| 亚洲一区中文字幕在线| 国产黄a三级三级三级人| 在线av久久热| 丝袜在线中文字幕| 久久久久久久午夜电影 | 在线永久观看黄色视频| 免费在线观看黄色视频的| 高清欧美精品videossex| 欧美午夜高清在线| 性欧美人与动物交配| 亚洲欧美精品综合一区二区三区| 久久久久久久午夜电影 | 亚洲精品一二三| 日本一区二区免费在线视频| 黄色成人免费大全| 淫秽高清视频在线观看| 多毛熟女@视频| 免费在线观看影片大全网站| 久久99一区二区三区| 午夜免费鲁丝| av欧美777| 国产av精品麻豆| www国产在线视频色| 亚洲五月色婷婷综合| 国产成人精品在线电影| 国产高清国产精品国产三级| 午夜影院日韩av| 国产黄色免费在线视频| 国产伦一二天堂av在线观看| 他把我摸到了高潮在线观看| 美女 人体艺术 gogo| 曰老女人黄片| 啦啦啦 在线观看视频| 精品久久蜜臀av无| 亚洲精品中文字幕在线视频| 日韩人妻精品一区2区三区| 99精品在免费线老司机午夜| 国产免费av片在线观看野外av| 老鸭窝网址在线观看| 国产1区2区3区精品| 啦啦啦免费观看视频1| 99在线视频只有这里精品首页| 中文字幕精品免费在线观看视频| 99在线人妻在线中文字幕| 国产单亲对白刺激| www.自偷自拍.com| 中文欧美无线码| 在线观看舔阴道视频| 婷婷六月久久综合丁香| 亚洲一区高清亚洲精品| 国产精品综合久久久久久久免费 | 国产色视频综合| 日韩免费高清中文字幕av| 日韩欧美三级三区| 自拍欧美九色日韩亚洲蝌蚪91| 国产成人欧美| 电影成人av| 色综合婷婷激情| 80岁老熟妇乱子伦牲交| 两人在一起打扑克的视频| 九色亚洲精品在线播放| 日韩视频一区二区在线观看| 色尼玛亚洲综合影院| 乱人伦中国视频| 在线观看午夜福利视频| 欧美人与性动交α欧美软件| 日本黄色日本黄色录像| 欧美成人免费av一区二区三区| 身体一侧抽搐| 久久久久国内视频| 欧美日韩精品网址| 香蕉丝袜av| 夜夜躁狠狠躁天天躁| 在线观看一区二区三区激情| 一级作爱视频免费观看| 变态另类成人亚洲欧美熟女 | 亚洲免费av在线视频| 国产亚洲av高清不卡| 午夜福利在线免费观看网站| 50天的宝宝边吃奶边哭怎么回事| 精品一品国产午夜福利视频| 国产精品亚洲av一区麻豆| 日本黄色视频三级网站网址| 一级,二级,三级黄色视频| 亚洲午夜理论影院| 琪琪午夜伦伦电影理论片6080| 国产精品 欧美亚洲| 免费看a级黄色片| 国产精品成人在线| 国产精品免费视频内射| 久久99一区二区三区| 精品高清国产在线一区| 久久精品影院6| 美女扒开内裤让男人捅视频| 好男人电影高清在线观看| 久久亚洲真实| 在线观看舔阴道视频| 深夜精品福利| 伦理电影免费视频| 男女下面进入的视频免费午夜 | 成在线人永久免费视频| 日日爽夜夜爽网站| 亚洲第一青青草原| 成人影院久久| 日韩精品免费视频一区二区三区| 久久久久国产一级毛片高清牌| 色哟哟哟哟哟哟| 国产精品久久久久久人妻精品电影| 丝袜美足系列| 亚洲成人国产一区在线观看| 免费av中文字幕在线| 国产三级在线视频| 欧美人与性动交α欧美精品济南到| 欧美日韩精品网址| 最近最新中文字幕大全免费视频| 免费在线观看视频国产中文字幕亚洲| 亚洲精品美女久久av网站| 久久久久国产一级毛片高清牌| 亚洲欧美日韩另类电影网站| 亚洲精品久久成人aⅴ小说| 国产欧美日韩综合在线一区二区| 91大片在线观看| 国产乱人伦免费视频| 欧美日本中文国产一区发布| 国产亚洲欧美精品永久| 久久婷婷成人综合色麻豆| 黑丝袜美女国产一区| 久久午夜综合久久蜜桃| 村上凉子中文字幕在线| 1024视频免费在线观看| 可以在线观看毛片的网站| 欧美av亚洲av综合av国产av| 高清毛片免费观看视频网站 | 热re99久久国产66热| 国产又色又爽无遮挡免费看| 国产极品粉嫩免费观看在线| 又黄又粗又硬又大视频| 在线观看一区二区三区| 久久久久九九精品影院| 色尼玛亚洲综合影院| 亚洲全国av大片| av网站免费在线观看视频| 亚洲在线自拍视频| 久久婷婷成人综合色麻豆| 亚洲中文av在线| 欧美黄色淫秽网站| 日本五十路高清| 99精品久久久久人妻精品| 精品少妇一区二区三区视频日本电影| 亚洲aⅴ乱码一区二区在线播放 | 如日韩欧美国产精品一区二区三区| 亚洲av五月六月丁香网| 亚洲aⅴ乱码一区二区在线播放 | 99在线视频只有这里精品首页| 又紧又爽又黄一区二区| 久久久久久久精品吃奶| 国产乱人伦免费视频| 18禁美女被吸乳视频| 国产熟女xx| 久久久国产精品麻豆| 日韩大尺度精品在线看网址 | 欧美乱妇无乱码| 欧美日韩av久久| 亚洲av第一区精品v没综合| 美国免费a级毛片| 亚洲精品国产精品久久久不卡| 黄色怎么调成土黄色| 他把我摸到了高潮在线观看| 国产aⅴ精品一区二区三区波| 亚洲精品久久成人aⅴ小说| 色综合欧美亚洲国产小说| 国产三级在线视频| 精品无人区乱码1区二区| 成人国产一区最新在线观看| 美女 人体艺术 gogo| 亚洲专区中文字幕在线| 日本一区二区免费在线视频| 色综合婷婷激情| 日本黄色日本黄色录像| 免费在线观看日本一区| 在线天堂中文资源库| 久久久久久久久免费视频了| 亚洲精品美女久久av网站| 91老司机精品| 亚洲熟妇熟女久久| 中文字幕av电影在线播放| 亚洲av成人av| 免费在线观看日本一区| 19禁男女啪啪无遮挡网站| 午夜免费鲁丝| 五月开心婷婷网| 久久热在线av| 亚洲精品美女久久av网站| 久久久久久久久免费视频了| 91精品三级在线观看| av天堂久久9| 亚洲成人国产一区在线观看| xxx96com| 丰满的人妻完整版| 色尼玛亚洲综合影院| 午夜福利一区二区在线看| 精品午夜福利视频在线观看一区| 国产又色又爽无遮挡免费看| 国产成人啪精品午夜网站| 精品人妻在线不人妻| 国产激情久久老熟女| 亚洲精品久久成人aⅴ小说| 欧美日韩亚洲国产一区二区在线观看| 午夜福利一区二区在线看| 国产成人啪精品午夜网站| 久热这里只有精品99| 国产激情久久老熟女| 国产av一区二区精品久久| 多毛熟女@视频| 另类亚洲欧美激情| 两个人看的免费小视频| 欧美激情极品国产一区二区三区| 男男h啪啪无遮挡| 日韩视频一区二区在线观看| 成人永久免费在线观看视频| 狠狠狠狠99中文字幕| 亚洲自偷自拍图片 自拍| 亚洲七黄色美女视频| 亚洲自偷自拍图片 自拍| 欧美成人性av电影在线观看| 水蜜桃什么品种好| 久久久久九九精品影院| 老汉色∧v一级毛片| 久9热在线精品视频| 少妇粗大呻吟视频| 亚洲人成伊人成综合网2020| 91成人精品电影| 老司机午夜十八禁免费视频| 久久国产乱子伦精品免费另类| 亚洲成国产人片在线观看| 亚洲成人精品中文字幕电影 | 午夜免费成人在线视频| 极品人妻少妇av视频| 亚洲少妇的诱惑av| 欧美一级毛片孕妇| 两个人免费观看高清视频| 国产精品一区二区在线不卡| 免费在线观看完整版高清| 久久人人爽av亚洲精品天堂| 啦啦啦 在线观看视频| 看黄色毛片网站| 日韩视频一区二区在线观看| 在线十欧美十亚洲十日本专区| 国产精品久久久久久人妻精品电影| 国产乱人伦免费视频| 18禁裸乳无遮挡免费网站照片 | 国产aⅴ精品一区二区三区波| 日韩欧美三级三区| 高潮久久久久久久久久久不卡| 久久中文看片网| 午夜免费鲁丝| 露出奶头的视频| 美国免费a级毛片| 亚洲av第一区精品v没综合| 午夜激情av网站| 一级,二级,三级黄色视频| 丰满饥渴人妻一区二区三| www.www免费av| 丝袜在线中文字幕| 免费在线观看亚洲国产| 国产又色又爽无遮挡免费看| 欧美久久黑人一区二区| 国产一区二区激情短视频| 国产熟女xx| 午夜亚洲福利在线播放| 国产精品99久久99久久久不卡| 日韩高清综合在线| 国产高清视频在线播放一区| aaaaa片日本免费| 巨乳人妻的诱惑在线观看| av网站在线播放免费| 精品人妻在线不人妻| 国产片内射在线| 中文字幕人妻丝袜一区二区| 久久 成人 亚洲| 免费观看人在逋| 亚洲欧美精品综合一区二区三区| 欧美成狂野欧美在线观看| 嫩草影视91久久| 欧美日韩视频精品一区| 久久久久亚洲av毛片大全| 很黄的视频免费| 国产又色又爽无遮挡免费看| 伦理电影免费视频| 亚洲欧美日韩另类电影网站| 超色免费av| 国产精品综合久久久久久久免费 | 国产片内射在线| 天堂动漫精品| 91九色精品人成在线观看| cao死你这个sao货| 999久久久精品免费观看国产| 亚洲人成伊人成综合网2020| 亚洲片人在线观看| 精品国产乱子伦一区二区三区| 日韩视频一区二区在线观看| 老熟妇乱子伦视频在线观看| 久久香蕉激情| 久久久国产欧美日韩av| 天堂影院成人在线观看| 女性生殖器流出的白浆| 日韩国内少妇激情av| 午夜免费激情av| 18禁观看日本| 精品久久久久久成人av| 成年人免费黄色播放视频| 9191精品国产免费久久| 一级,二级,三级黄色视频| 欧美成人午夜精品| 极品人妻少妇av视频| 国产高清激情床上av| 两个人看的免费小视频| 99国产综合亚洲精品| 亚洲色图av天堂| 国产欧美日韩一区二区精品| 欧美日本亚洲视频在线播放| av天堂久久9| 午夜福利免费观看在线| 亚洲国产精品合色在线| 真人一进一出gif抽搐免费| 人人妻,人人澡人人爽秒播| 高清av免费在线| 长腿黑丝高跟| 国产免费男女视频| 久久性视频一级片| 男女午夜视频在线观看| 久久午夜综合久久蜜桃| 极品教师在线免费播放| 变态另类成人亚洲欧美熟女 | 午夜91福利影院| 国产成人精品久久二区二区91| 国产一区二区三区视频了| 欧美黄色淫秽网站| 18禁国产床啪视频网站| 好看av亚洲va欧美ⅴa在| 一级,二级,三级黄色视频| 国产高清视频在线播放一区| 久久久国产一区二区| 欧美黑人欧美精品刺激| 99国产精品一区二区三区| 两性夫妻黄色片| 国产野战对白在线观看| av天堂久久9| 国产精品爽爽va在线观看网站 | 国产高清国产精品国产三级| 久久久久久大精品| 亚洲欧美日韩另类电影网站| aaaaa片日本免费| 少妇被粗大的猛进出69影院| 国产亚洲精品综合一区在线观看 | 悠悠久久av| 久久久久久亚洲精品国产蜜桃av| 国产91精品成人一区二区三区| 久久精品国产综合久久久| 久久天躁狠狠躁夜夜2o2o| 999久久久国产精品视频| 91麻豆av在线| 久久香蕉国产精品| 国产精品99久久99久久久不卡| 亚洲人成电影免费在线| 男女下面进入的视频免费午夜 | 在线观看日韩欧美| 国产精品香港三级国产av潘金莲| 免费一级毛片在线播放高清视频 | 国内久久婷婷六月综合欲色啪| 国产一区二区激情短视频| 午夜激情av网站| 国产精品美女特级片免费视频播放器 | 国产xxxxx性猛交| 国产成人av激情在线播放| 国产亚洲精品久久久久5区| 亚洲精品国产区一区二| 国产单亲对白刺激| 亚洲精品美女久久av网站| 一边摸一边抽搐一进一出视频| 操出白浆在线播放| 久久精品aⅴ一区二区三区四区| 一级毛片高清免费大全| 久久久久国内视频| 免费看a级黄色片| 黑人欧美特级aaaaaa片| 狠狠狠狠99中文字幕| 免费在线观看影片大全网站| 免费久久久久久久精品成人欧美视频| 国产精品九九99| 少妇 在线观看| aaaaa片日本免费| 91麻豆精品激情在线观看国产 | 久久久久久久精品吃奶| 女人被躁到高潮嗷嗷叫费观| 久久久国产一区二区| 久久久久久大精品| 日韩中文字幕欧美一区二区| 国产精品亚洲av一区麻豆| 长腿黑丝高跟| 国产精品一区二区精品视频观看| 美女 人体艺术 gogo| a级片在线免费高清观看视频| 9191精品国产免费久久| 两性夫妻黄色片| 亚洲国产看品久久| 日日夜夜操网爽| 午夜福利在线观看吧| 国产av在哪里看| 人人妻人人添人人爽欧美一区卜| 日韩av在线大香蕉| 大型黄色视频在线免费观看| 国产人伦9x9x在线观看| 日韩欧美免费精品| 每晚都被弄得嗷嗷叫到高潮| 亚洲精品国产一区二区精华液| 女性生殖器流出的白浆| 成人特级黄色片久久久久久久| 性欧美人与动物交配| 国产午夜精品久久久久久| 国产精品98久久久久久宅男小说| 很黄的视频免费| 国产精品一区二区三区四区久久 | 日本三级黄在线观看| 国产精品av久久久久免费| 国产99白浆流出| www.精华液| 亚洲狠狠婷婷综合久久图片| 一区二区三区激情视频| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久久大精品| 成人特级黄色片久久久久久久| 一级片'在线观看视频| 色综合站精品国产| 精品国产亚洲在线| 欧美中文综合在线视频| 黑丝袜美女国产一区| 亚洲成人久久性| 搡老乐熟女国产| 亚洲av第一区精品v没综合| 日韩精品青青久久久久久|