• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A primary model of decoherence in neuronal microtubules based on the interaction Hamiltonian between microtubules and plasmon in the neurons

    2019-04-13 01:14:48ZuoxianXiang向左鮮ChuanxiangTang唐傳祥andLixinYan顏立新
    Chinese Physics B 2019年4期

    Zuoxian Xiang(向左鮮),Chuanxiang Tang(唐傳祥),and Lixin Yan(顏立新)

    Department of Engineering Physics,Tsinghua University,Beijing 100084,China

    1.Introduction

    Quantum theory is one of the greatest discoveries of the twentieth century. In recent years,quantum effects in biological systems have been discovered in several areas,including olfaction,[1,2]avian magnetoreception,[3,4]photosynthesis,[5–9]quantum entanglement in living bacteria,[10]and so on.[11]Theoretical study of quantum effect in bio-systems and its possible relevance to explaining the functional properties of these systems are also drawing rapid attention,such as consciousness in the brain.

    How to explain consciousness? Classical or quantum? It is so mysterious and researchers have proposed many models.[12–24]Some studies suggested that the quantum effect might play an important role in the functioning of the brain.[16–24]Penrose and Hameroff proposed the orchestrated objective reduction(Orch OR)model,which suggests that microtubules(MTs)in neurons act as a quantum computer,[18–20,24]Fisher proposed that quantum entanglement may exist between two neurons.[23]

    Decoherence is an important phenomenon in quantum information.The“warm,wet,and noisy”environment might destroy the quantum state,[26–29]thus the decoherence time scale τ is an important parameter to the quantum model.

    To study the decoherence process in MTs,researchers determined this parameter according to different mechanisms of decoherence,including quantum gravity,[18]cavity quantum electrodynamics(QED)model,[25,26]and single ion-MT interactions;these results are listed in Table 1 and the value of decoherence time varies greatly.

    Table 1.Decoherence time scales and their mechanisms.

    Decoherence mainly derives from the interaction between quantum systems and the environment.There are 4 basic interactions that have been discovered in nature;in the range of molecule interactions,the main interaction between environment and tubulin dimers is electromagnetic interaction.In this paper,a model based on the electromagnetic interaction Hamiltonian between microtubules and plasmon in the neurons is proposed.Previous studies considered the effect of a single ion on the decoherence process in MTs;however,cells are known to contain different kinds of ions that have different charges and masses,i.e.,some ions have positive charge,whereas others have negative charge.Over a long time scale,cells can be considered to be electrically neutral;however,this is not true over very short time scales.Therefore,the decoherence rates cannot be calculated only considering the effect of a single ion since decoherence is a result of the interaction between tubulin dimers and cellular fluid environment.In this paper,the interaction Hamiltonian is constructed by using the second quantization method,and the decoherence time is estimated according to the interaction Hamiltonian.

    This article is organized as follows.Section 2 includes the introduction for decoherence mechanisms in our model,as well as the total Hamiltonian of tubulin dimers and cell fluid environment;the decoherence timescale τ are computed and howτ changes with environment parameters will be discussed.In Section 3,other mechanisms of decoherence will be discussed,and some important formulas and their derivations are given in the appendix.

    2.Decoherence rates

    In this section,the decohenrence mechanisms in MTs will be discussed.MT is a hollow cylinder with an outer diameter of 24 nm and an inner diameter of 15 nm.The basic unit of MT is tubulin dimer which has two subunits(denoted by α and β);all of the tubulin dimers form MT crystal lattice by helical encircle.The tubulin dimers have different kinds of conformational states which are regarded as quantum bit in Orch model,and MTs can store information owing to different combinations of these conformational states.Electron transition in each tubulin dimer could change the conformational states,and the MT is a polar molecule and has intrinsic electric dipole moment(Fig.1).[25]

    Fig.1.The structure diagram of MTs.

    2.1.Mechanisms of decoherence

    The cellular fluid is considered to have both positive and negative charges(similar to plasma),and thus two basic and very important parameters are used to describe the it,namely Debye length λDand plasma frequency ωp;these two parameters will be discussed compendiously and their range will be given.

    The Debye length λDrepresents the space scale when the plasma is kept as a neutral state and is determined by

    where nk,0is the average density of the k-th kind of ion,qkis the quantity of charge,ε=80ε0is the dielectric constant of water,kBis the Boltzmann constant,and T is the temperature of the cellular fluid.For physiological Ringer solution,λD~0.7 nm,[29]and in the following calculation,the value of λDis set to be around 0.7 nm.

    The surface of tubulin dimers have net charge,[30]so a counterion layer will be formed because of the Debye shielding.The thickness of the counterions is approximately λD,as shown in Fig.2.The counterions could shield the interaction between MTs and the environment,as shown in Appendix C,the coupling coefficient is decreased if the shielding effect is considered.

    Fig.2.Schematic diagram of counterion layer with a thickness of λD.

    The second parameter is called plasma frequency,which describes the collective oscillations of ions and is determined by

    For typical parameters in a cell,[29][K+]in=400 mmol/L,[Na+]in=50 mmol/L[Cl?]in=52 mmol/L,ωp≈ 0.6 THz.Therefore,in the following calculation,the value of ωpis set to be around 0.6 THz.

    When the plasmon is in an excited state,the electric neutrality is destroyed,and some net charges appear.The net charges can interact with the dipole in the tubulin dimmers,as shown in Fig.3.As shown in Appendix A,the local ion density fluctuation could excite ion density waves.There are different ion density waves,but the only one called plasma oscillation could be coupled with MTs,and the dispersion relation of plasma oscillation is

    where β is the average value of ion thermal velocity,which has the same order of magnitude as the thermal velocity.

    The total Hamiltonian of the MT-environmental systems can be derived as follows:whereis the Hamiltonian of the excited systems in the MTs,is the Hamiltonian of the plasmons in the cellular fluid environment,andrepresents the interaction between the MTs and cellular aqueous environment caused by the interactions between the dipole and net charges.is the reason for decoherence;if=0,the decoherence time is τ=∞.

    Fig.3.Schematic diagram of the coupling between tubulin dimers and the cellular fluid environment.

    As shown in Fig.3,the interaction Hamiltonian between a single tubulin dimer with the electric dipole moment pand the cellular fluid environment can be shown as follows:

    2.2.Computation method of decoherence timescale

    Now,the total Hamiltonian equation(4)will be derived;some basic assumption or approximation is listed below,and will be discussed in Section 3 and appendix.

    (i)Water is treated as an medium with a dielectric constant ε=80ε0,and detailed interaction of ion-water molecules and MT-water molecules is ignored.

    (ii)Due to the Debye shielding,plasma oscillations could only be excited above the Debye length,that is to say,the wave numberk has an upper limit of k=kD=2π/λD;in our calculation,we consider k will decay rapidly as a small quantity for the short wavelength modes.

    (iii)Random phase approximation(RPA)for many particles system,In equilibrium state or near equilibrium state,as the position of particles is random,∑iexp(ik ·ri)=0 unless k=0.

    (iv)The tubulin dimers are seen as a mass point with electric dipole moment p.

    As introduced in Subsection 2.1,the tubulin dimers have different conformational states,denoted by|ki,and let?c?k,?ckbe the creation operator and annihilation operator of the quantum state|ki,so the Hamiltonian of tubulin dimers can be expressed by

    The detailed calculation ofwill be given in Appendix A and Appendix B,and the total Hamiltonian of the MTs and cellular environment can be expressed as follows:

    where ω(k)=is the dispersion relation of plasma oscillation,(k)and(k)are the creation operator and annihilation operator of plasma oscillations,respectively,and the coupling coefficient μn,kis given by

    Equation(8)is given in Appendix C,and pnis the electric dipole moment in state|ni.

    Next,Tolkunov’s model is used,[31,32]which describes the interaction between the spin system and Boson thermal reservoir.In 2-level approximation,the Hamiltonian equation(7)of our model is the same with that of Tolkunov’s in form,so the non-diagonal elements of density matrix will also change with time in the same way

    Here,and the integral region is 0

    where

    Obviously,G(t)>0.In the quantum information theory,the decoherence process is reflected in the damping of the nondiagonal element of the density matrix,so we define decoherence timeτas the timescale when qn(t)decays into qn(0)/e,namely

    Equations(11)and(12)could be used to compute decoherence time.

    2.3.Typical order of magnitude of decoherence timescale

    In this section, the typical value of decoherence time scale will be estimated by Eqs.(11)and(12).The parameters in Eq.(10)are chosen as follows:

    pn=3×10?28C·m is the electric dipole moment of tubulin dimer.[25]

    ε=80ε0is the dielectric constant of water.[29]

    λD~0.7 nm,ωp=0.6 THz;these two basic plasma parameters have been discussed in Subsection 2.1.

    T=310 K is the environment temperature.

    β=300 m/s since it has the same order of magnitude with the thermal velocity.

    kB=1.38×10?23J/K is the Boltzmann’s constant.

    =1.0546×10?34J·s is the Planck’s constant.

    The function G(t)can be computed in a numerical method(Fig.4).Set G(τ)=1 and the decoherence time could be easily obtained

    The decoherence timescale is about 10 fs.

    Fig.4.Schematic diagram of how to compute the decoherence time by the exponential factor G(t).

    2.4.The dependence of decoherence time with other parameters

    Decoherence time may change with other parameters;how these parameters affect the decoherence time will be studied in this section.As discussed in Subsection 2.3,the typical time scale for decoherence is T0=10 fs.So set T0=10 fs as the time unit,six dimensionless physical quantities are shown below

    Then equations(11)and(12)become

    The typical values of these parameters are given in Subsection 2.3;in this section,their values are given in a wide range as follows:

    Here,some values may never be reached,such as T=900 K,ε=240ε0,and so on;but the purpose in this model is to analyze how the decoherence time changes with physical parameter,so the parameter distribution is in a very wide range.

    Case 1: Decoherence time changes with plasma frequency ωp

    As shown in Fig.5,decoherence remains almost unchanged when the plasma frequency changes.

    Fig.5.Decoherence time changes with plasma frequency ωpwhen other parameters are consistent with those in Subsection 2.3.

    Case 2:Decoherence time changes with average thermal velocity β

    As shown in Fig.6,decoherence remains almost unchanged when the average thermal velocity β changes,similar to Case 1.

    Fig.6.Decoherence time changes with average thermal velocity β when other parameters are consistent with those in Subsection 2.3.

    Case 3:Decoherence time changes with Debye length λD

    In Fig.7,the decoherence time increases with Debye length;since the plasma oscillation modes could only be excited when k<2π/λD,a larger Debye length means that fewer modes will be excited,so the number of the modes interacting with MTs will decrease,and the decoherence time will increase.

    Fig.7.Decoherence time changes with Debye length λDwhen other parameters are consistent with those in Subsection 2.3.

    Use τ=CλsDto fit the curve in Fig.7(or equivalently lnτ=slnλD+lnC),the power exponent s and linearly dependent coefficient for lnτ,lnλDare

    Doing the same work to other parameters and we find that τ=CλsDcould fit the relationship between τ,λD,so we can approximately consider that

    Case 4:Decoherence time changes with dielectric constant of water

    In Fig.8,the decoherence time increases with dielectric constant of water,and the reason is obvious.According to Eq.(5),a larger dielectric constant means the weaker interaction between MTs and environment.

    Fig.8.Decoherence time changes with dielectric constant of water when other parameters are consistent with those in Subsection 2.3.

    Doing the same work as Case 3 and we find that

    Case 5:Decoherence time changes with dipole moment of tubulin dimer pn

    In Fig.9,we show the decoherence time decreases as the dipole moment of tubulin dimer increases;according to Eq.(5),the increase of the dipole moment will enhance the interaction between MTs and environment,and then the decoherence time will decrease.

    Fig.9.Decoherence time changes with dipole moment of tubulin dimer pn when other parameters are consistent with those in Subsection 2.3.

    Doing the same work as Case 3 and we find that

    Case 6: Decoherence time changes with environment temperature T

    In Fig.10,the decoherence time decreases as the environment temperature increases,and it is also easy to understand.The higher temperature means that more oscillation modes will be excited,and this will have a greater impact on the MTs,so the decoherence time decreases.

    Fig.10.Decoherence time changes with environment temperature T when other parameters are consistent with those in Subsection 2.3.

    Doing the same work as Case 3 and we find that

    According to Eqs.(16)–(19),the decoherence time could be approximately expressed as Since the decoherence time relies less on ωp, β,then equation(20)will be changed into:

    In fact,equation(21)could be proved,since the plasma frequency

    THz,the decoherence time τ~10 fs–100 fs,and the temperature T ~ 100 K.Therefore,

    Under the condition of Eq.(22),equation(12)could be approximately expressed as

    Then the decoherence time satisfies

    Equation(24)could be used for calculating the decoherence time only under the condition of Eq.(22).However,equation(24)is useful for various actual parameters.

    3.Conclusion and outlook

    If the Orch OR model can be verified both in theory and experiment,the influence will be inestimable;however,the conformational state is affected by the “warm and wet”cellular environment,and the decoherence time is a very important parameter.

    In this paper,the decoherence time scale is even smaller than 0.1 ps.This timescale is so short that quantum state will be destroyed by the cell solution environment soon.This model only considers the coupling between the tubulin dimers and ions in the cellular fluid system,treating the water as a medium and overlooking the interactions of MTs-water molecules;water molecules may shield some interactions of ion-MTs,and the interaction of water-ions and water-MTs may have influence on the decoherence process.[32,33]According to Eq.(24),if the interaction strength a√ttenuates to ε(0<ε<1),the decoherence will increase to 1/ε than before;an enough decoherence requires ε?1 and the strength of shielding by water molecules needs to be measured by experiment.

    Other mechanism for decoherence that is not considered is the coherent pumping of the system via the environment.[21]According to Fro¨hlich’s theory,if a system is strongly coupled to its environment via some degrees of freedom,and a coherent pumping source exists in environment,it might inhibit other degrees of freedom known as coherent oscillations.[35,36]Such oscillations might increase the decoherence time.Guanosine triphosphate(GTP)hydrolyzation in the cells might act as a pumping source.This mechanism was not considered in this paper.

    Decoherence is an important phenomenon in quantum information.Decoherence mainly comes from the interaction of quantum systems with the environment.In the range of molecule interactions,the main interaction between environment and tubulin dimers is the electromagnetic interaction;the electromagnetic field comes from ions and thermal radiation of the environment.However,in this model,the thermal radiation is ignored,and in the range of room temperature,the thermal frequency spectrum mainly concentrates in the range of THz band.The water molecules in the cell environment could strongly absorb the THz photon and the model only takes into account the electromagnetic field from ions.Besides,if the thermal radiation is considered,the decoherence time would be smaller than the result given before,and it will not change the conclusion.

    This model needs to be verified both experimentally and theoretically. This model may offer a helpful theoretical framework to compute the decoherence time in quantum biosystems,even though the environment of biological system is different.However,the electromagnetic interaction is essential in the scale of molecules,so this modelcould be used for reference when dealing with the interaction between the ions in cell environment and dipoles of bio-molecules.The direct experiment to verify this model is hard to be carried out at this time,but with the development of ultrafast biophysics,quantum information,quantum optics,and imaging technology,[37–41]the experiment could be carried out in the future.

    Appendix A:Dispersion relation of ion density wave

    In Appendix A,the dispersion relation of ion density wave is derived by fluid theory.Note that ni,mi,vi,qirepresent the particle number density,ion mass,the macro velocity,and electric charge of the i-th ion. E is the space electric field,βiis used to represent the ion thermal velocity,and?mβ2i?niis the thermodynamic pressure of the i-th ion.Then according to fluid theory

    In order to deduce intrinsic oscillation mode and its dispersion relation,linearization is done for Eq.(A1).For arbitrary physical quantity A,it is divided into two parts

    Now,let us compute the eigenmode with intrinsic wavelength and frequency.Set?A=?A0exp[i(k·r?ωt)].Then the operator?/?t= ?iω,? =ik,and equation(A3)changes to

    According to Eq.(A4),the eigen-equation is

    Or equivalent in matrix form where ?l,k=(ω2?k2β2l)δkl?hnliqlqk/εml,and?=(?1,?2,...,?M)T.Set f(ω,k)=det?(ω,k),equation(A6)must have untrivial solution to ensure eigenmode exits,so the dispersion relation is determined by

    Set ql=(?1)υlZle,where Zlis the valence state of ions,e.g.,for Na+and Cl?,Zl=1,and for Ca2+,Zl=2,and υlrepresents the sign of ion charge,and

    In long-wavelength limit kβl/ω ?1,then

    whereis the plasma frequency,is the average thermal velocity of all ions,and cj(j=2,3,...,M)is the M?1 roots of the following equation

    So M kinds of waves are obtained,and their dispersion relation is

    The ion charged density is

    Use Eqs.(A11)and(A6),under the condition of longwavelength approximation,only when ω2=ω2p+β2k2,ρ 6=0;otherwise ρ =0.That is to say,ω2= ω2p+β2k2represents ion charged density wave,and can be coupled with MTs by dipole–charge interactions as shown in Fig.2.Other M ?1 kinds of waves could not couple with MTs under the condition of long-wavelength approximation.

    Finally,diagonalize matrix ?

    Set P(k)=P(0)+O(k2)and define another variable ρ=(ρ1,ρ2,...,ρM)T,which is determined by

    The transformation between n and ρ is

    Then

    Compare Eqs.(A16)and(A11),then

    So eρ1could also be used to represent net charge density of ions,and equations(A15)and(A17)will be used in Appendix B.

    Appendix B:Second quantization of environment Hamiltonian Heand interaction Hamiltonian Hin

    In the coordinate representation,the Hamiltonian Heof cellular environment can be shown as follows:

    where rk,irepresents the position of the k-th kind of ions that have been numbered i,φ,A are scalar potential and vector potential,respectively,and pk,j=?k,jis the canonical momentum.The first term represents the kinetic energy of the ions,and the second term represents the field energy.

    The potentials φ,A are not unique.For two different potentials(φ,A),(φ0,A0),if they satisfy

    the two potentials will have the same field E, B as follows:

    We use an approach similar to the David Bohm’s electron gas model and define the Hamiltonian Eq.(B1)in another manner;[33]the second term is derived from the interactions between ions and the energy stored in the field.Therefore,equation(B1)can be written in an equivalent way as follows:

    First,set ξ =Rφdt so that φ0=0,then E = ??A/?t, B =?×A.ExpandAin Fourier series exp(ik·r)

    whereek=k/k is an unit vector parallel to the direction of the wave propagation,ekμ(μ =1,2)is another two-unit vector which is perpendicular to ek,and ek1⊥ek2.SoAkandA⊥represent longitudinal wave and transverse wave,respectively.Their electric field and magnetic field are

    where p(?k)=˙q(k),Pμ(?k)=˙Qμ(k).Aand Eare real and can be ensured as follows:

    Use Eqs.(B5)and(B6)as well as the commutative relation[^p,A]=?i??·A,the Hamiltonian equation(B4)will become

    where

    Now,use Eq.(B5),then we have

    where nlis the number of l-th kind of ions in a unit volume.The random phase approximation(RPA)makes the second term inconsiderably smaller than the first termtherefore

    Similarly,

    Use Eqs.(B6a)and(B6b),then we obtain

    means the kinetic energy,and it can be divide it into two parts

    The first term is the macroscopical translational energy,and the second term means the thermodynamic energy.

    The second term in Eq.(B14)can be changed into

    Now,use Eq.(A15)and ignore the cross term ρiρj(i6=j),then

    As discussed in Appendix A,eρ1represents net charge density of ions,so use Gauss’s theorem in k-space

    Use Eqs.(B8)–(B17),then the total Hamiltonian is expressed by

    where the first term means ion sound wave,the second term means interaction between ions and fields and it is neglected for the reason that each ion has a random phase(random phase approximation or RPA),?21(k)= ω2p+c2k2is the dispersion relation of electromagnetic wave in plasma,and ?22(k)=ω2p+β2k2is the dispersion relation of charged density wave or plasma oscillation.

    At last,using second quantization method,define(k),(k)as the creation operator and annihilation operator of electromagnetic wave,respectively,and(k)and ?a(k)as the creation operator and annihilation operator of the plasma oscillations,respectively,and we can obtain

    Andsatisfy the commutation relation

    Use Eqs.(B19)and(B20)and the random phase approximation,the Hamiltonian equation(B18)will become

    where

    In long-wavelength limit,β2k2/ω2p?1,so

    This is the dispersion relation of ion charged density wave as shown in Appendix A.

    In Eq.(B21),only the 3rd term could be coupled with MTs by dipole–charge interactions(as seen in Eq.(B17),ρ(k)is only related to p(k)instead of Pμ(k)),so this model only considers the 3rd term which is named

    namely,the coupling between MTs and cellular environment via interactions between plasma oscillations and dipoles.The interaction Hamiltonian for a single dipole with the cellular environment is determined by Eq.(5).Thus,after Fourier transformation,equation(5)becomes

    According to Eqs.(B17)and(B19b),then

    the MT’s dipole p can be written as follows:

    Here, pn=hn|? p|ni is the observed value of pin state|ni.In Eq.(B27),the the cross term pm,n?c?m?cnwas neglected,use Eqs.(B25)–(B27),then the coupling Hamiltonian can be written as follows:

    where

    The Hn,kmeans the interaction between MTs and cellular fluid environment mentioned later,and it is then used to compute decoherence time,and λn,kis the coupling coefficient.The method for computing the coupling coefficient λn,kwill be introduced in Appendix C.

    Appendix C:Computation of coupling coefficient λn,k

    The coupling coefficient λn,kis expressed as follows:

    where pnis a constant vector;for a certaink,the z axis is set to be parallel tok.In the spherical coordinate frame,k·r =krcosθ,and the volume element dr =r2sinθdθd?;thus, pncan be expressed as follows:

    Thus,

    When the variable ? is integrated in the interval[0,2π],thenpzcosθ exp(ikrcosθ)sinθdrdθd?

    where

    Compute Eq.(C5),then A=0 and

    Here, pz= pn·k/k;generally,in the actual situation,plasma oscillations will be excited only when the wavelength is larger than the Debye length λD.Therefore,only k<2π/λDcould be used to refer to the excited state.The integral in Eq.(C1)in the space|r|> λDbecause a shielding layer charge appears on the surface of MTs with a thickness λD,as shown in Fig.2.The shielding layer charge is stable and cannot excite plasma oscillations;therefore,in Eq.(C6),rmin=λDand rmax=∞.Hence,

    Define b(k)= ?ia(k)as new creation operator and annihilation operator,then the total Hamiltonian is

    where

    and we have obtained Eqs.(7)and(8).

    [1]Turin L 1996 Chem.Senses 21 773

    [2]Franco M I and Siddiqi O 2011 Proc.Natl.Acad.Sci.USA 108 3797

    [3]Ritz T,Adem S and Schulten K 2000 Biophys.J.78 707

    [4]Hiscock H G,Worster S,Kattnig D R,Steers C,Jin Y,Manolopoulos D E,Mouritsen H and Hore P J 2016 Proc.Natl.Acad.Sci.USA 113 201600341

    [5]Gregory S E,Tessa R C,Elizabeth L R,Tae-Kyu A,Toma′s M,Yuan-Chung C,Robert E B and Graham R F 2007 Nature 446 782

    [6]Romero E,Augulis R,Novoderezhkin V I,Ferretti M,Thieme J,Zigmantas D and Van Grondelle R 2014 Nat.Phys.10 676

    [7]Levi F,Mostarda S,Rao F and Mintert F 2015 Rep.Prog.Phys.78 082001

    [8]Novelli F,Nazir A,Richards G H,Roozbeh A,Wilk K E,Curmi P M and Davis J A 2015 J.Phys.Chem.Lett.6 4573

    [9]Sarovar M,Ishizaki A,Fleming G and Whaley B 2010 Nat.Phys.3 462

    [10]Marletto C,Coles D,Farrow T and Vedral V 2018 J.Phys.Commun.2 101001

    [11]Mesquita M V,VasconcellosR,Luzzi R and Mascarenhas S 2005 Int.J.Quantum Chem.102 1116

    [12]Jackendoff R 1987 Consciousness and the Computational Mind(Cambridge:The MIT Press)pp.275–280

    [13]Tononi G,Boly M,Massimini M and Koch C 2016 Nat.Rev.Neurosci.17 450

    [14]Crick F and Koch C 2003 Nat.Neurosci.6 119

    [15]Edelman G M 2003 Proc.Natl.Acad.Sci.USA 100 5520

    [16]Jahn R G and Dunne B J 2007 Found.Phys.3 306

    [17]Mershin A,Sanabria H,Miller J H,Nawarathna D,Skoulakis E M,Mavromatos N E,Kolomenskii A A,Schuessler H A,Luduena R F and Nanopoulos D V 2006 The Emerging Physics of Consciousness(Berlin:Springer)pp.95–170

    [18]Hameroff S and Penrose R 2014 Phys.Life Rev.11 39

    [19]Hameroff S and Penrose R 2014 Phys.Life Rev.11 94

    [20]Hameroff S R and Penrose R 2017 Biophysics of Consciousness:A Foundational Approach(Singapore:World Scientific)pp.517–599

    [21]Craddock T J A and Tuszynski J A 2010 J.Biol.Phys.36 53

    [22]Craddock T J,Priel A and Tuszynski J A 2014 J.Integr.Neurosci.13 293

    [23]Fisher M 2015 Ann.Phys.61 593

    [24]Hameroff S R 2007 Cogn.Sci.31 1035

    [25]Mavromatos N E,Mershin A and Nanopoulos D V 2002 Int.J.Mod.Phys.B 16 3623

    [26]Mavromatos N 1999 Bioelectrochemistry Bioenergetics 48 273

    [27]Tegmark M 2000 Phys.Rev.E 61 4194

    [28]Hagan S,Hameroff S R and Tuszy′nski J A 2002 Phys.Rev.E 65 061901

    [29]Nelson P 2007 Biological Physics(New York:WH Freeman)p.416

    [30]Priel A,Tuszynski J A and Woolf N J 2005 Eur.Biophys.J.Biophys.Lett.35 40

    [31]Privman V and Tolkunov D 2005 Quantum Information and Computation III(Bellingham:The International Society for Optics and Photonics),pp.187–195

    [32]Tolkunov D,Privman V and Aravind P K 2005 Phy.Rev.A 71 060308

    [33]Craddock T J,Friesen D,Mane J,Hameroff S and Tuszynski J A 2014 J.R.Soc.Interface 11 20140677

    [34]Chen Y,Okur H I,Gomopoulos N,Macias-Romero C,Cremer P S,Petersen P B,Tocci G,Wilkins D M,Liang C and Ceriotti M 2016 Sci.Adv.2 e1501891

    [35]Fr?hlich H 1968 Int.J.Quantum Chem.2 641

    [36]Wu T M and Austin S J 1981 J.Biol.Phys.9 97

    [37]Bohm D and Pines D 1953 Phy.Rev.92 609

    [38]Yin C C and Biophysics D O 2018 Chin.Phys.B 27 058703

    [39]Zheng C J,Jia T Q,Zhao H,Xia Y J,Zhang S A and Sun Z R 2018 Chin.Phys.B 27 057802

    [40]Wade C G,ˇSibali′c N,de Melo N R,Kondo J M,Adams C S and Weatherill K J 2017 Nat.Photon.11 40

    [41]Trocha P,Karpov M,Ganin D,Pfeiffer M H,Kordts A,Wolf S,Krockenberger J,Marin-Palomo P,Weimann C and Randel S 2018 Science 359 887

    亚洲av成人不卡在线观看播放网| 怎么达到女性高潮| 亚洲一区高清亚洲精品| 亚洲一区高清亚洲精品| 日韩有码中文字幕| 在线观看日韩欧美| 久久这里只有精品19| 一本一本综合久久| 搡老妇女老女人老熟妇| 免费看美女性在线毛片视频| 亚洲av免费在线观看| 久久中文看片网| 美女高潮喷水抽搐中文字幕| 久久人人精品亚洲av| 夜夜夜夜夜久久久久| 黄色片一级片一级黄色片| 国内揄拍国产精品人妻在线| 精品不卡国产一区二区三区| 精品国内亚洲2022精品成人| 亚洲国产中文字幕在线视频| 99久国产av精品| 在线观看日韩欧美| 热99re8久久精品国产| bbb黄色大片| aaaaa片日本免费| xxxwww97欧美| 中出人妻视频一区二区| 午夜福利成人在线免费观看| 亚洲精品乱码久久久v下载方式 | 成人午夜高清在线视频| 免费大片18禁| 啪啪无遮挡十八禁网站| 欧美成人一区二区免费高清观看 | 欧美激情久久久久久爽电影| 国产伦在线观看视频一区| 在线十欧美十亚洲十日本专区| 99国产精品一区二区三区| www日本在线高清视频| 亚洲av五月六月丁香网| 网址你懂的国产日韩在线| 亚洲中文字幕一区二区三区有码在线看 | 小蜜桃在线观看免费完整版高清| 中文字幕高清在线视频| 欧美日本视频| 欧美绝顶高潮抽搐喷水| 岛国在线观看网站| 国产精品99久久99久久久不卡| 精品不卡国产一区二区三区| 不卡一级毛片| 伊人久久大香线蕉亚洲五| 色哟哟哟哟哟哟| 嫩草影视91久久| 欧美日本亚洲视频在线播放| 97人妻精品一区二区三区麻豆| 国产精品av视频在线免费观看| 色吧在线观看| 免费高清视频大片| 女生性感内裤真人,穿戴方法视频| 视频区欧美日本亚洲| а√天堂www在线а√下载| 亚洲精华国产精华精| 香蕉国产在线看| 熟女人妻精品中文字幕| e午夜精品久久久久久久| av片东京热男人的天堂| 91麻豆av在线| 丰满人妻熟妇乱又伦精品不卡| 亚洲午夜理论影院| 国产乱人伦免费视频| 国产高潮美女av| 无遮挡黄片免费观看| 一区福利在线观看| 日韩欧美三级三区| 91av网站免费观看| 高清毛片免费观看视频网站| 久久久久性生活片| 成人三级做爰电影| 日韩大尺度精品在线看网址| 搡老熟女国产l中国老女人| 久久久久国产精品人妻aⅴ院| 男女床上黄色一级片免费看| 国产精品香港三级国产av潘金莲| 国产私拍福利视频在线观看| 中文字幕熟女人妻在线| 夜夜爽天天搞| 99精品久久久久人妻精品| 国产单亲对白刺激| 欧美大码av| 亚洲av中文字字幕乱码综合| 国产精品乱码一区二三区的特点| 一级黄色大片毛片| 国产三级在线视频| 国产主播在线观看一区二区| 国产精品一区二区三区四区久久| 国产精品自产拍在线观看55亚洲| 色精品久久人妻99蜜桃| 青草久久国产| 国产69精品久久久久777片 | av国产免费在线观看| 亚洲av美国av| 免费看美女性在线毛片视频| 免费看十八禁软件| 中文字幕精品亚洲无线码一区| 中出人妻视频一区二区| 午夜精品一区二区三区免费看| 搡老熟女国产l中国老女人| av福利片在线观看| 好男人电影高清在线观看| 97人妻精品一区二区三区麻豆| 亚洲av美国av| 欧美日韩乱码在线| 丝袜人妻中文字幕| 最新在线观看一区二区三区| 男女那种视频在线观看| 久久久久免费精品人妻一区二区| 婷婷亚洲欧美| www.自偷自拍.com| 久久久成人免费电影| 亚洲无线在线观看| 中亚洲国语对白在线视频| 国产视频内射| 伦理电影免费视频| 日日夜夜操网爽| 搡老熟女国产l中国老女人| 在线观看免费视频日本深夜| 国产三级中文精品| 在线永久观看黄色视频| 亚洲无线在线观看| 亚洲五月婷婷丁香| 精品99又大又爽又粗少妇毛片 | 黄色成人免费大全| 99久久久亚洲精品蜜臀av| www日本黄色视频网| 亚洲精品美女久久av网站| 亚洲欧美日韩卡通动漫| 欧美色视频一区免费| 欧美中文日本在线观看视频| 真实男女啪啪啪动态图| 国产成+人综合+亚洲专区| 婷婷亚洲欧美| 日韩欧美国产一区二区入口| 精品国产美女av久久久久小说| 国产精品一区二区三区四区久久| 亚洲精品美女久久久久99蜜臀| 午夜亚洲福利在线播放| 欧美成人一区二区免费高清观看 | 91字幕亚洲| 国产高清激情床上av| 亚洲狠狠婷婷综合久久图片| 欧美黑人巨大hd| 一进一出抽搐动态| 国产精品久久电影中文字幕| 国产激情欧美一区二区| 又黄又粗又硬又大视频| 色哟哟哟哟哟哟| 搡老岳熟女国产| 19禁男女啪啪无遮挡网站| 欧美激情在线99| 国内精品久久久久久久电影| 丰满人妻熟妇乱又伦精品不卡| 9191精品国产免费久久| 女同久久另类99精品国产91| 欧美日韩黄片免| 在线观看一区二区三区| 色综合站精品国产| 中亚洲国语对白在线视频| 免费观看人在逋| 国产私拍福利视频在线观看| 亚洲中文av在线| a在线观看视频网站| 91麻豆av在线| 好看av亚洲va欧美ⅴa在| 亚洲午夜精品一区,二区,三区| 人人妻,人人澡人人爽秒播| 日韩欧美三级三区| 国产成人精品无人区| 狂野欧美白嫩少妇大欣赏| 日本一本二区三区精品| 在线十欧美十亚洲十日本专区| 三级国产精品欧美在线观看 | 97超级碰碰碰精品色视频在线观看| 伦理电影免费视频| 久久精品亚洲精品国产色婷小说| 一区二区三区激情视频| 在线观看一区二区三区| 国产精品精品国产色婷婷| 亚洲精品在线观看二区| 99热只有精品国产| 国产成人精品久久二区二区91| 亚洲人成伊人成综合网2020| 亚洲av成人精品一区久久| 中文亚洲av片在线观看爽| 丁香欧美五月| 宅男免费午夜| 亚洲欧美日韩卡通动漫| 日本撒尿小便嘘嘘汇集6| 人妻丰满熟妇av一区二区三区| 色老头精品视频在线观看| 好男人电影高清在线观看| 88av欧美| 99riav亚洲国产免费| 国产成人啪精品午夜网站| 亚洲va日本ⅴa欧美va伊人久久| 黄色 视频免费看| 91麻豆精品激情在线观看国产| 18禁美女被吸乳视频| 非洲黑人性xxxx精品又粗又长| 精品国内亚洲2022精品成人| 久久香蕉精品热| 久久99热这里只有精品18| 一个人免费在线观看电影 | 精品一区二区三区视频在线观看免费| avwww免费| 99国产综合亚洲精品| 真人一进一出gif抽搐免费| 亚洲天堂国产精品一区在线| 国产精品乱码一区二三区的特点| 精品电影一区二区在线| 中文字幕人妻丝袜一区二区| 成人无遮挡网站| 久久精品国产99精品国产亚洲性色| 中文字幕高清在线视频| 老熟妇仑乱视频hdxx| 亚洲精品色激情综合| www.www免费av| www国产在线视频色| 中文资源天堂在线| 每晚都被弄得嗷嗷叫到高潮| 99热只有精品国产| 夜夜爽天天搞| 久久久久国产一级毛片高清牌| 成人永久免费在线观看视频| 国产乱人伦免费视频| 久久人人精品亚洲av| 99国产综合亚洲精品| 一进一出抽搐动态| 免费在线观看日本一区| 亚洲 欧美 日韩 在线 免费| 久久精品aⅴ一区二区三区四区| 在线观看美女被高潮喷水网站 | 亚洲无线观看免费| 久久精品91蜜桃| 男人舔奶头视频| 午夜福利免费观看在线| av女优亚洲男人天堂 | av国产免费在线观看| 成在线人永久免费视频| 成人av在线播放网站| 亚洲精品乱码久久久v下载方式 | 国产毛片a区久久久久| 国产精品久久久av美女十八| 欧美一区二区国产精品久久精品| 真人一进一出gif抽搐免费| 久久午夜综合久久蜜桃| 手机成人av网站| 色噜噜av男人的天堂激情| 狠狠狠狠99中文字幕| 一卡2卡三卡四卡精品乱码亚洲| 99国产精品一区二区三区| 2021天堂中文幕一二区在线观| 久久久水蜜桃国产精品网| www.www免费av| 制服人妻中文乱码| 女同久久另类99精品国产91| 色综合亚洲欧美另类图片| 亚洲黑人精品在线| 精品无人区乱码1区二区| 久久精品国产综合久久久| 老熟妇乱子伦视频在线观看| 波多野结衣高清无吗| 国产精品av视频在线免费观看| 亚洲精品国产精品久久久不卡| bbb黄色大片| 欧美乱色亚洲激情| 男人舔女人下体高潮全视频| 老鸭窝网址在线观看| 久久久久久久久免费视频了| 亚洲一区二区三区色噜噜| 波多野结衣高清作品| 一进一出抽搐动态| netflix在线观看网站| 色在线成人网| 国产伦人伦偷精品视频| 色综合欧美亚洲国产小说| 国内精品一区二区在线观看| 亚洲国产精品999在线| 欧美日韩乱码在线| 色综合欧美亚洲国产小说| 国产精品亚洲美女久久久| 免费看a级黄色片| 国内毛片毛片毛片毛片毛片| 亚洲成a人片在线一区二区| 国产伦在线观看视频一区| 亚洲国产精品999在线| 啪啪无遮挡十八禁网站| 亚洲一区高清亚洲精品| 9191精品国产免费久久| 精品久久久久久,| 成人午夜高清在线视频| 亚洲七黄色美女视频| 中文字幕精品亚洲无线码一区| netflix在线观看网站| 免费看a级黄色片| 最近视频中文字幕2019在线8| 精品一区二区三区四区五区乱码| 中文字幕高清在线视频| 99久国产av精品| 欧美绝顶高潮抽搐喷水| 亚洲成人精品中文字幕电影| 精品国产乱码久久久久久男人| 狂野欧美激情性xxxx| 无限看片的www在线观看| 91av网一区二区| 亚洲黑人精品在线| 成人18禁在线播放| 99视频精品全部免费 在线 | 很黄的视频免费| 天堂av国产一区二区熟女人妻| 婷婷精品国产亚洲av在线| 天天添夜夜摸| 99久国产av精品| 麻豆成人av在线观看| 丰满人妻一区二区三区视频av | 精品久久久久久久毛片微露脸| 性欧美人与动物交配| 超碰成人久久| 久久精品夜夜夜夜夜久久蜜豆| а√天堂www在线а√下载| 久久久国产成人精品二区| 国产精品乱码一区二三区的特点| 天天躁狠狠躁夜夜躁狠狠躁| 在线观看美女被高潮喷水网站 | 全区人妻精品视频| 日本精品一区二区三区蜜桃| 99久久国产精品久久久| 超碰成人久久| 黄片小视频在线播放| 无人区码免费观看不卡| 亚洲一区二区三区不卡视频| 色噜噜av男人的天堂激情| 一本一本综合久久| 亚洲成av人片在线播放无| 国产不卡一卡二| 日本一二三区视频观看| 窝窝影院91人妻| 色在线成人网| 久久亚洲真实| 真实男女啪啪啪动态图| 嫩草影视91久久| 国产精品女同一区二区软件 | 一个人看视频在线观看www免费 | 精品电影一区二区在线| 欧美日韩乱码在线| 真实男女啪啪啪动态图| 亚洲专区中文字幕在线| 国内毛片毛片毛片毛片毛片| 成人18禁在线播放| 国内精品美女久久久久久| 国产精品av久久久久免费| 欧美中文综合在线视频| 午夜福利在线观看免费完整高清在 | 成年版毛片免费区| 国产精品免费一区二区三区在线| 午夜精品在线福利| 麻豆一二三区av精品| 日韩欧美精品v在线| 精品久久久久久久末码| 免费观看精品视频网站| 波多野结衣高清无吗| 观看美女的网站| 日韩欧美在线二视频| 免费在线观看影片大全网站| 精品国产乱码久久久久久男人| 欧美中文综合在线视频| 亚洲电影在线观看av| 亚洲熟妇熟女久久| 少妇的丰满在线观看| 欧美日韩黄片免| 搡老妇女老女人老熟妇| 亚洲av成人精品一区久久| 亚洲成人精品中文字幕电影| 亚洲精华国产精华精| 午夜精品一区二区三区免费看| 无遮挡黄片免费观看| 久久久久九九精品影院| 中文字幕av在线有码专区| 午夜福利欧美成人| 1024手机看黄色片| 亚洲最大成人中文| 日本精品一区二区三区蜜桃| 两人在一起打扑克的视频| av天堂中文字幕网| 麻豆国产97在线/欧美| 精品99又大又爽又粗少妇毛片 | 午夜福利18| 久久亚洲真实| 中文字幕高清在线视频| 国产精品香港三级国产av潘金莲| 亚洲国产色片| 两性午夜刺激爽爽歪歪视频在线观看| 宅男免费午夜| 国产成人欧美在线观看| 999精品在线视频| 欧美成人性av电影在线观看| 免费在线观看日本一区| 少妇丰满av| 又爽又黄无遮挡网站| 日本黄大片高清| 亚洲aⅴ乱码一区二区在线播放| 欧美最黄视频在线播放免费| 久久精品aⅴ一区二区三区四区| 国内精品久久久久久久电影| 亚洲人成网站在线播放欧美日韩| 天天添夜夜摸| 午夜成年电影在线免费观看| 久久国产乱子伦精品免费另类| 操出白浆在线播放| 三级男女做爰猛烈吃奶摸视频| 国产精品精品国产色婷婷| 两个人看的免费小视频| 神马国产精品三级电影在线观看| 黄片大片在线免费观看| 国产精品亚洲美女久久久| 国产av不卡久久| 久久久久精品国产欧美久久久| 国产av在哪里看| 精品熟女少妇八av免费久了| 一级黄色大片毛片| 欧美日韩乱码在线| 一级毛片女人18水好多| 免费av毛片视频| 中出人妻视频一区二区| 午夜福利高清视频| 最近最新免费中文字幕在线| 色综合婷婷激情| 亚洲18禁久久av| 欧洲精品卡2卡3卡4卡5卡区| 午夜影院日韩av| 国产一区二区三区视频了| 欧美性猛交╳xxx乱大交人| 91老司机精品| 亚洲美女视频黄频| 国产成人一区二区三区免费视频网站| 精品国产超薄肉色丝袜足j| 99久久无色码亚洲精品果冻| 免费观看的影片在线观看| 成人美女网站在线观看视频| 国产一区二区在线观看日韩| 99热6这里只有精品| 国产精品久久久久久久电影| 最近中文字幕高清免费大全6| 中文字幕av在线有码专区| 亚洲精品乱久久久久久| 亚洲图色成人| 亚洲自拍偷在线| 一级黄片播放器| 1000部很黄的大片| 99国产精品一区二区蜜桃av| 亚洲精华国产精华液的使用体验| 爱豆传媒免费全集在线观看| 18禁动态无遮挡网站| 男人舔奶头视频| 春色校园在线视频观看| 白带黄色成豆腐渣| 色综合站精品国产| 久久久久久久久久久丰满| 色噜噜av男人的天堂激情| 韩国高清视频一区二区三区| 国内少妇人妻偷人精品xxx网站| 免费搜索国产男女视频| 欧美日韩国产亚洲二区| 国产亚洲午夜精品一区二区久久 | 日本猛色少妇xxxxx猛交久久| 国产91av在线免费观看| 91aial.com中文字幕在线观看| 成人性生交大片免费视频hd| 精品不卡国产一区二区三区| 91久久精品国产一区二区成人| 高清视频免费观看一区二区 | 日韩强制内射视频| 最近最新中文字幕大全电影3| 在线观看一区二区三区| 少妇熟女欧美另类| 中文天堂在线官网| 大香蕉97超碰在线| 亚洲电影在线观看av| 国产精品久久视频播放| 国产av一区在线观看免费| 亚洲精品成人久久久久久| 久久99热6这里只有精品| 中文字幕av成人在线电影| 日韩亚洲欧美综合| 亚洲国产高清在线一区二区三| 久久韩国三级中文字幕| 免费看光身美女| 国产亚洲最大av| 99热这里只有是精品50| 久久99热这里只有精品18| 国产精品久久电影中文字幕| 亚洲成人精品中文字幕电影| 午夜激情欧美在线| 国产女主播在线喷水免费视频网站 | 国产精品福利在线免费观看| 国产麻豆成人av免费视频| 日本-黄色视频高清免费观看| av卡一久久| 人人妻人人澡人人爽人人夜夜 | 亚洲av.av天堂| 免费黄网站久久成人精品| 97人妻精品一区二区三区麻豆| 久久精品久久久久久久性| 神马国产精品三级电影在线观看| 人妻少妇偷人精品九色| 国产一级毛片七仙女欲春2| 亚洲婷婷狠狠爱综合网| 国产黄片美女视频| 日日摸夜夜添夜夜爱| 亚洲在久久综合| 免费观看人在逋| 亚洲性久久影院| 最近视频中文字幕2019在线8| 人人妻人人看人人澡| 亚洲熟妇中文字幕五十中出| 丝袜喷水一区| 我的女老师完整版在线观看| 蜜桃久久精品国产亚洲av| 美女大奶头视频| 非洲黑人性xxxx精品又粗又长| 国产免费福利视频在线观看| 春色校园在线视频观看| 国产老妇女一区| 国产在视频线精品| 一个人看的www免费观看视频| 卡戴珊不雅视频在线播放| 九草在线视频观看| 深爱激情五月婷婷| 亚洲人成网站在线观看播放| 激情 狠狠 欧美| 人人妻人人看人人澡| 综合色av麻豆| 国产精品电影一区二区三区| 亚洲av成人av| 久久精品熟女亚洲av麻豆精品 | 国产激情偷乱视频一区二区| 97人妻精品一区二区三区麻豆| 国产成人a∨麻豆精品| 夜夜爽夜夜爽视频| 国产一区二区三区av在线| 18禁在线播放成人免费| 干丝袜人妻中文字幕| 三级经典国产精品| 亚洲自偷自拍三级| 成人av在线播放网站| 九九在线视频观看精品| 一区二区三区免费毛片| 欧美激情国产日韩精品一区| or卡值多少钱| 亚洲精华国产精华液的使用体验| 青春草亚洲视频在线观看| 中文资源天堂在线| 青青草视频在线视频观看| 精品少妇黑人巨大在线播放 | 欧美日本视频| 免费大片18禁| 伊人久久精品亚洲午夜| av在线播放精品| 波野结衣二区三区在线| 午夜老司机福利剧场| 欧美三级亚洲精品| 一边摸一边抽搐一进一小说| 99视频精品全部免费 在线| 国内精品宾馆在线| 22中文网久久字幕| 韩国av在线不卡| 黄片无遮挡物在线观看| 晚上一个人看的免费电影| 午夜a级毛片| 99久久成人亚洲精品观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲中文字幕一区二区三区有码在线看| 人妻少妇偷人精品九色| 国产av在哪里看| 久久草成人影院| 99久久精品热视频| 丝袜喷水一区| 国产高清国产精品国产三级 | 欧美一区二区精品小视频在线| 国产黄色视频一区二区在线观看 | 亚州av有码| 欧美潮喷喷水| 中国国产av一级| 特级一级黄色大片| 一区二区三区四区激情视频| 一个人看的www免费观看视频| 男人的好看免费观看在线视频| 身体一侧抽搐| 免费黄色在线免费观看| 少妇人妻一区二区三区视频| 国产91av在线免费观看| 最近最新中文字幕免费大全7| av专区在线播放| 偷拍熟女少妇极品色| h日本视频在线播放| 2021少妇久久久久久久久久久| 天天躁夜夜躁狠狠久久av| 三级国产精品片| 欧美bdsm另类| 国产色爽女视频免费观看| 国产精品日韩av在线免费观看| 亚洲,欧美,日韩| 97热精品久久久久久| 永久免费av网站大全| 久久久久性生活片| eeuss影院久久| 亚洲人成网站高清观看|