• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of temperature on photoresponse properties of solar-blind Schottky barrier diode photodetector based on single crystal Ga2O3?

    2019-04-13 01:14:46ChaoYang楊超HongweiLiang梁紅偉ZhenzhongZhang張振中XiaochuanXia夏曉川HeqiuZhang張賀秋RenshengShen申人升YingminLuo駱英民andGuotongDu杜國(guó)同
    Chinese Physics B 2019年4期
    關(guān)鍵詞:楊超

    Chao Yang(楊超),Hongwei Liang(梁紅偉),?,Zhenzhong Zhang(張振中),Xiaochuan Xia(夏曉川),Heqiu Zhang(張賀秋),Rensheng Shen(申人升),Yingmin Luo(駱英民),and Guotong Du(杜國(guó)同)

    1School of Microelectronics,Dalian University of Technology,Dalian 116024,China

    2State Key Laboratory of Luminescence and Applications,Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences,Changchun 130033,China

    1.Introduction

    A solar-blind photodetector is used in the detection of photon signal shorter than 280 nm and scarcely responds to the wavelength above 280 nm.Owing to the strong absorption by the ozone layer,the radiation in the range 200 nm–280 nm emitted by the sun cannot reach the Earth’s surface.[1,2]Therefore,‘zero-background noise’is a prominent advantage for the application of solar-blind wavelength in many communication fields.The solar-blind photodetector is now widely applied in missile warning,corona electrical discharge, fire alarms,ozone monitoring,under water and space communication,and so on.[3–6]

    Various wide band gap semiconductors have been investigated to fabricate solar-blind photodetectors,such as β-Ga2O3,AlxGa1?xN,MgxZn1?xO.High Al and Mg composition is,respectively,necessary to modulate the band gap of AlGaN and MgZnO and keeps the photodetector response range in solar-blind wavelength.However,the crystal quality of AlGaN films deteriorates rapidly[1,7–9]and the MgZnO appears phase segregation[10,11]as the Al or Mg composition increases.β-Ga2O3is one of the most suitable materials for solar-blind photodetection because its band gap(Eg)is about 4.9 eV and locates at the center position of the solarblind wavelength without the need of composition modulation.Ga2O3solar-blind photodetectors are mainly fabricated on nanostructure,thin films,and single crystal.Solar-blind photodetectors based on Ga2O3nanostructure are characterized by simple growth and high internal gains.[12,13]Nevertheless,the solar-blind Ga2O3photodetector with large size of detect area or even capability of imaging is desired in many application fields.[6,14,15]Large size and high quality Ga2O3single crystals can be achieved through conventional methods such as floating zone(FZ),[16]edge-defined film-fed growth(EFG),[17]and Czochralski(CZ)[18]methods.Moreover,high quality Ga2O3single crystals can reduce the defects density to a very low level and lower the effect of persistent photoconductivity,and thus increase the device response speed.

    A junction-type Ga2O3photodetector,compared with photoconductive type,presents a higher response speed at room temperature(RT).The photoresponse properties of photodetector at higher temperature are even more important in applications such as flame detection.However,few studies of the properties of junction-type Ga2O3photodetector at high temperature have been published.Among the various kinds of junction-type Ga2O3photodetector,a relatively simple preparation process is required for Schottky barrier diode(SBD)photodetector.In this work,the current–voltage(I–V)characteristics,response speed,and solar-blind selectivity of Ga2O3SBD solar-blind photodetector are investigated.Meanwhile,a Cu Schottky electrode with honeycomb porous structure is adopted to the fabrication of solar-blind photodetector.The photodetector presents good rectifying properties at RT and clear photoresponse to the ultraviolet shorter than 259 nm and maintains a high reversibility and response speed,even at 85.8?C.

    2.Experimental details

    The commercial(ˉ201)-orient β-Ga2O3substrate with 600-μm thickness is used to fabricate the SBD photodetector by cutting along the[010]and[102]orientation into 5 mm×5 mm pieces.The unintentional doped Ga2O3crystal is n-type with a carrier concentration of about 1017cm?3.The sample is degreased using methanol(5 min)/acetone(5 min)/methanol(5 min)/deionized water(5 min),successively.Then,the samples are etched in the solution with H2SO4:H2O2:H2O=4:1:1 for 5 min.Finally,the samples are dipped in 90-?C deionized water.

    The metal deposition is performed by vacuum thermal evaporation method.A Ti/Au(20 nm/200 nm)Ohmic contact with 4 mm×4 mm is first deposited on the back side of the substrate and is subsequently thermally annealed at 450?C in nitrogen for 3 min.Cu is used to prepare Schottky contact because it can form similar effective barrier height to that prepared with Au,[19,20]which is also proven in this work.Moreover,the adhesion property of Cu electrode is much better than Ni and Au in our experiments.The 200-nm Cu electrode is deposited on the top surface of the Ga2O3substrate.Cu Schottky electrodes with a diameter of 0.6-mm are formed to investigate the effect of annealing temperature on the electrical properties of Cu/Ga2O3SBD.Samples are annealed at 100?C/200?C/300?C in nitrogen for 5 min.The I–V characteristics of Cu/Ga2O3SBD obtained from the samples annealed at different temperature show that relatively better rectifying properties can be achieved after being annealed at 200?C.Consequently,the Cu Schottky electrode of Ga2O3solar-blind photodetector is annealed at 200?C in nitrogen for 5 min.The Schottky electrode of the photodetector is prepared using standard photolithography and lift-off techniques.The electrode is designed in honeycomb porous structure with diameter of 2.8 mm.Any three adjacent holes can be grouped into an equilateral triangle.The diameter of the holes and spacing between them are 40μm in this experiment and the effect of the size on the photoresponse properties will be investigated in future experiments.The schematic structure of the photodetector is shown in the inset of Fig.1(a).

    The I–V characteristics for the SBD are measured using Keithley 4200-SCS semiconductor characterization system.Time-resolved photocurrent response spectra are conducted under 253-nm light with Keithley 4200-SCS semiconductor characterization system.The photoresponse spectra of the photodetectors are measured in an SPEX scanning monochromator employing a 150-W Xe lamp as the illumination source.The responsivity spectrum is obtained by measuring the photocurrent (calibrated with a standard Si photodiode)under the illumination of an Xe lamp spectrum from 200 nm to 500 nm using a scanning monochromator.

    3.Results and discussion

    The forward and reverse I–V characteristics of the Cu/Ga2O3SBD annealed at different temperatures are shown in Fig.1. The forward current is linear in the semilogarithmic scale at low forward bias voltages as shown in Fig.1(a).The dominant current transport mechanism can be determined by comparing the thermal energy KT with E00W hen KT?E00,thermionic emission is the dominant transport mechanism.[21]Considering the effect of series resistance Rs,the diode equations can be written as Eq.(1):[22,23]

    where Is=A??T2exp(?qφb/kT).I,Is,V,K,q,n,A??, φb,and T is current,saturation current density,applied forward bias voltage,Boltzmann constant,elementary charge,ideality factor,effective Richardson constant,barrier height,and temperature,respectively.The effective Richardson constant A??is calculated to be 41.04 A·cm?2·K?2[24]at RT,using electron effective mass m?=0.342 m0,[25]and free electron Richardson constant A?=120 A·cm?2·K?2.Fitting this model to the line arrange of the semi-logplot of I versus V,the change trend of φband n of all the samples annealed at different temperatures is shown in Fig.1(c).The sample without annealing(w/o ann.)shows a relatively lower Schottky barrier height.As the annealing temperature increases,the barrier height increases while the ideality factor decreases first and then reaches a minimum(1.145)at 200?C.When the annealing temperature increases further,the ideality factor increases slightly.The ideality factor results indicate the Cu/Ga2O3Schottky contact is closest to thermionic emission model after annealed at 200?C.Reverse I–V characteristics are shown in Fig.1(b).The reverse current of the sample without annealing increases dramatically at low bias and shows poor rectifying properties.The current reduces by over two orders of magnitude after being annealed at 100?C and reaches 10 nA at?48 V.The rectifying properties are improved and a current of 10 nA is obtained at a higher voltage(69 V)after being annealed at 200?C.The reverse current increases slightly after annealed at 300?C.

    Fig.1.The I–V characteristics of the Cu/Ga2O3SBD annealed at different temperatures:(a)forward I–V curves(the inset is the top view and schematic structure of the photodetector),(b)reverse I–V curves,and(c)the ideality factor and barrier height.

    Based on these results,the Schottky contact electrode of the photodetector is annealed in nitrogen at 200?C for 5 min.The photoresponse spectra of the photodetector are measured at various reverse bias range from 0 V to 42 V.The responsivity of the photodetector can be calculated by Eq.(2):[26]

    where Rλis the responsivity of the photodetector,Iphotois the photo current,Idarkis the dark current,S is the effective illuminated area,and P is the light intensity.The photoresponse spectra measured at 0 V and 42 V are shown in Fig.2(a).An obvious response can be detected at solar-blind wavelength when zero bias voltage is applied,which proves that the device can be used as a self-powered solar-blind photodetector.The photocurrent at a 0 V bias is the result of the photovoltaic effect.When the reverse bias is elevated to 42 V,the maximum responsivity is about 0.8 A/W.Quantum efficiency η is a function of Rλas Eq.(3):[21,27]

    where h is Planck’s constant,c is the velocity of light,e is the basic electron charge,and λ is the incident light wavelength.The quantum efficiency exceeds 100%when the bias is larger than 36 V and reaches 400%at 42 V,which benefits from the honeycomb porous structural Schottky electrode.Although the UV photons are blocked by the region covered with Cu,the area of enhanced electric field in the depletion layer is beyond the edge of the Schottky electrode and forms ring area in the exposed holes to collect the photogenerated carriers.Highly symmetric electrode structure can reduce the concentration of electric field in some large curvature area.The maximum of responsivity and quantum efficiency of the photodetector at each bias are extracted out and the relation between the maximum value and reverse bias voltage is shown in Fig.2(b).As the reverse bias increases,the responsivity increases gradually in the low bias range and then increases dramatically when the bias exceeds 35 V.The increased responsivity in low bias range can be attribute to the widening ring area with enhanced electric field as the reverse bias increases according to the simulation results(not shown here).The dramatically increased responsivity in high bias range is also analyzed in another report,[27]which is attributed to avalanche multiplication mechanism.The positive temperature coefficient of the breakdown voltage is recognized as the criterion to determinate avalanche mechanism.[13,21,28,29]However,no obviously positive shift of breakdown voltage is observed in the reverse dark current as the temperature increases as shown in Fig.3(b),which indicates the response process involved other unknown gain mechanism.A further investigation will be required to obtain a better understanding of this mechanism.The cutoff wavelength and the rejection ratio are two important parameters to characterize the selectivity of solar-blind photodetector.The cutoff wavelength is defined as the ratio between the position of maximum responsivity and the natural constant(e≈2.718).The cutoff wavelength of the photodetector is limited to 259 nm which demonstrates an excellent solar-blind selectivity.The solar-blind/visible(=3213)and solar-blind/UV(=834)rejection ratiosare calculated from the ratio of responsivity at peak to 400 nm and peak to 280 nm,both of which indicate the photodetector scarcely responds to the light out of solar-blind range.A comparison among the reported solarblind photodetectors[30–32]based on single crystal Ga2O3is summarized in Table 1 to analyze the effect of electrode on the photoresponse properties.A uniform semi-transparent electrode with a large area is adopted in the first two reports,both of which show clear response to the light close to and even above 280 nm.This phenomenon can be attributed to the internal photoemission.[21]In this process,electrons in the thin electrode can surmount the Schottky barrier and be collected by the semiconductor due to the excitation of smaller energy photon(qφb

    Fig.2.Photoresponse characteristics for the photodetector:(a)responsivity of the detector measured under 0-V and 42-V biases,and(b)the relation between the reverse bias and the maximum of responsivity and quantum efficiency.

    Table 1.Comparison of the photoresponse parameters among the single crystal Ga2O3-based photodetectors.

    The I–V characteristics of the photodetector is measured from RT to 85.8?C,as shown in Fig.3.Figure 3(a)shows the forward temperature-dependent I–V characteristics of the photodetector.The ideality factor and barrier height are fitted based on the linear parts in the semilogarithmic scale,and are shown in Fig.3(c).Both the ideality factor and the barrier height are almost a constant(1.05 and 1.20)at RT and higher temperatures,which is also mentioned in other reports.[33,34]An increase of the reverse dark current and a lowering of the reverse photo current with elevated temperature are observed in Fig.3(b).The reason for the increase of dark current can be explained with Eq.(1),which can be written as a form of Eq.(4)under higher reverse bias:

    The reverse dark current monotonically increases with the elevated temperature.The reason for this lowering of photo current can be attributed to the comprehensive factors of enhanced carrier recombination,[35]stronger lattice scattering,[36]and the narrowing of depletion width WDat high temperatures.The depletion width WDcan be written by Eq.(5)[21]

    where the εsis dielectric permittivity,NDis doping concentration,and ψbiis built-in potential.The first[33]and third terms in the parentheses decreases as the temperature increases,which weakens the separation of photogenerated electron–hole pairs.

    The time-resolved photoresponse of the photodetector at different temperatures is carried out under 253-nm illumination by on/off switching.Ten cycles of on/off state current under?5-V and?10-V biases are shown in Figs.4(a)and 4(b),respectively.Although a slight fluctuation of photocurrent is measured at?5 V,the photodetector shows a high response speed—especially in the decay edge.When the reverse bias is set to?10 V,the 10-periods photocurrent is stabilized at around 500 nA.As the temperature increases,the photocurrent shows almost no fluctuation.This proves the high reversibility and high reproducibility of the photodetector.Both the rise time curve and decay time curve can be fitted with a secondorder exponential formula[37,38]

    Fig.3.The I–V characteristics of the photodetector measured at different temperatures:(a)forward I–V curves,(b)reverse I–V curves under dark and illumination,and(c)the ideality factor and barrier height.

    where I0is the steady state photocurrent,t is the time,A and B are constants,τ1and τ2are two relaxation time constants corresponding to a fast-response component and a slow-response component.The constant τ1is related to the rapid change of the carrier concentration when the UV light is turned on/off,and τ2is related to carrier trapping and releases due to the oxygen vacancy defects.[39,40]The sharp decay edge results in two equal relaxation time constants,which means the formula is simplified to be I=I0+Ae?t/τd.The relaxation time constants are fitted based on time-resolved photocurrent plots at different temperatures under?10-V bias,as shown in Table 2.Both the rise time and decay time constant show almost no change as the temperature increases,which indicates a stable response speed of the photodetector at elevated temperature.

    Fig.4.Time-resolved characteristics of the solar-blind Cu/Ga2O3SBD photodetector measured at:(a)?5 V and(b)?10 V.

    Table 2.The rise time constant τrand decay time constant τdat different temperatures at?10-V bias.

    4.Conclusion

    A vertical structural SBD solar-blind photodetector is fabricated on a single crystal Ga2O3.The effect of annealing temperature on Cu/Ga2O3Schottky contact properties is investigated and the Schottky electrode of the photodetector is annealed at200?C in nitrogen for 5 min.The quantum efficiency of the photodetector can reach 400%at 42 V.High solar-blind selectivity of the photodetector is demonstrated by a sharp cutoff wavelength at 259 nm with high solar-blind/visible(=3213)and solar-blind/UV(=834)rejection ratio.Both the quantum efficiency and sharp cutoff wavelength benefit from the honeycomb porous structure Schottky electrode.The I–V characteristics and time-resolved photoresponse of the photodetector are investigated at 253-nm illumination from RT to 85.8?C.Both of the ideality factor and barrier height are almost constant(1.05 and 1.20)at RT and higher temperatures.Although the elevated temperature leads to an increased dark current and decreased photocurrent,the photodetector main-tains a high reversibility and response speed—even at high temperatures.

    [1]Sang L,Liao M and Sumiya M 2013 Sensors 13 10482

    [2]Razeghi M and Rogalski A 1996 J.Appl.Phys.79 7433

    [3]Razeghi M 2002 Proc.IEEE 90 1006

    [4]Monroy E,Omn`es F and Calle F 2003 Semicond.Sci.Technol.18 R33

    [5]Xu Z Y and Sadler B M 2008 IEEE Commun.Mag.46 67

    [6]Li J,Zhou Y,Yi X,Zhang M,Chen X,Cui M and Yan F 2017 Curr.Opt.Photon.1 196

    [7]Walker D,Kumar V,Mi K,Sandvik P,Kung P,Zhang X H and Razeghi M 2000 Appl.Phys.Lett.76 403

    [8]Tut T,Gokkavas M,Inal A and Ozbay E 2007 Appl.Phys.Lett.90 163506

    [9]Parish G,Keller S,Kozodoy P,Ibbetson J P,March,H,Fini P T,Fleischer S B,DenBaars S P,Mishra U K and Tarsa E J 1999 Appl.Phys.Lett.75 247

    [10]Fan M M,Liu K W,Chen X,Wang X,Zhang Z Z,Li B H and Shen D Z 2015 ACS Appl.Mater.Interfaces 7 20600

    [11]Wang L K,Ju Z G,Zhang J Y,Zheng J,Shen D Z,Yao B,Zhao D X,Zhang Z Z,Li B H and Shan C X 2009 Appl.Phys.Lett.95 131113

    [12]Zhao B,Wang F,Chen H,Zheng L,Su L,Zhao D and Fang X 2017 Adv.Funct.Mater.27 1700264

    [13]Zhao B,Wang F,Chen H,Wang Y,Jiang M,Fang X and Zhao D 2015 Nano Lett.15 3988

    [14]Chen Y C,Lu Y J,Lin C N,Tian Y Z,Gao C J,Dong L and Shan C X 2018 J.Mater.Chem.C 6 5727

    [15]El-Shimy M A and Hranilovic S 2015 J.Lightwave Technol.33 2246

    [16]Ueda N,Hosono H,Waseda R and Kawazoe H 1997 Appl.Phys.Lett.70 3561

    [17]Aida H,Nishiguchi K,Takeda H,Aota N,Sunakawa K and Yaguchi Y 2008 Jpn.J.Appl.Phys.47 8506

    [18]Tomm Y,Reiche P,Klimm D and Fukuda T 2000 J.Crystal Growth 220 510

    [19]Mohamed M,Irmscher K,Janowitz C,Galazka Z,Manzke R and Fornari R 2012 Appl.Phys.Lett.101 132106

    [20]Splith D,Muller S,Schmidt F,von Wenckstern H,van Rensburg J J,Meyer W E and Grundmann M 2014 Phys.Status Solidi A 211 40

    [21]Sze S M and Ng K K 2007 Phys.Semiconductor Devices,3rd edn.(Hoboken:John Wiley&Sons)pp.165,154–158,681

    [22]Rhoderick E H and Williams R H 1988 Metal-semiconductor Contacts,2nd edn.(Oxford:Clarendon)p.99

    [23]Schroder D K 2006 Semicond.Material Device Characterization,3rd edn.(Hoboken:John Wiley&Sons)p.190

    [24]Sasaki K,Higashiwaki M,Kuramata A,Masui T and Yamakoshi S 2013 IEEE Electron Dev.Lett.34 493

    [25]He H,Orlando R,Blanco M A,Pandey R,Amzallag E,Baraille I and R′erat M 2006 Phys.Rev.B 74 195123

    [26]Kong W Y,Wu G A,Wang K Y,Zhang T F,Zou Y F,Wang D D and Luo L B 2016 Adv.Mater.28 10725

    [27]Hu G C,Shan C X,Zhang N,Jiang M M,Wang S P and Shen D Z 2015 Opt.Express 23 13554

    [28]Chen X,Xu Y,Zhou D,Yang S,Ren F F,Lu H,Tang K,Gu S,Zhang R,Zheng Y and Ye J 2017 ACS Appl.Mater.Interfaces 9 36997

    [29]Mahmoud W E 2016 Sol.Energy Mater.Sol.Cells 152 65

    [30]Oshima T,Okuno T,Arai N,Suzuki N,Hino H and Fujita S 2009 Jpn.J.Appl.Phys.48 011605

    [31]Suzuki R,Nakagomi S,Kokubun Y,Arai N and Ohira S 2009 Appl.Phys.Lett.94 222102

    [32]Mu W X,Jia Z T,Yin Y R,Hu Q Q,Zhang J,Feng Q,Hao Y and Tao X T 2017 Crystengcomm 19 5122

    [33]Higashiwaki M,Konishi K,Sasaki K,Goto K,Nomura K,Thieu Q T,Togashi R,Murakami H,Kumagai Y,Monemar B,Koukitu A,Kuramata A and Yamakoshi S 2016 Appl.Phys.Lett.108 133503

    [34]Jayawardena A,Ahyi A C and Dhar S 2016 Semicond.Sci.Technol.31 115002

    [35]Xie F,Lu H,Chen D,Ji X,Yan F,Zhang R,Zheng Y,Li L and Zhou J 2012 IEEE Sens.J.12 2086

    [36]Li G,Zhang J and Hou X 2014 Sens.Actuator A-Phys.209 149

    [37]Reemts J and Kittel A 2007 J.Appl.Phys.101 013709

    [38]Liu N,Fang G,Zeng W,Zhou H,Cheng F,Zheng Q,Yuan L,Zou X and Zhao X 2010 ACS Appl.Mater.Interfaces 2 1973

    [39]Juan Y M,Chang S J,Hsueh H T,Wang S H,Weng W Y,Cheng T C and Wu C L 2015 RSC Adv.5 84776

    [40]Rafique S,Han L and Zhao H 2017 Phys.Status Solidi A 214 1700063

    猜你喜歡
    楊超
    2022年高考理綜化學(xué)模擬試題A卷
    復(fù)方丹參滴丸治療高血壓的療效判定
    聯(lián)圖的消圈數(shù)
    Clinical observation of heat-sensitive moxibustion for acute ischemic stroke
    Multi-phase-field simulation of austenite peritectic solidification based on a ferrite grain*
    Comparison Principle of Very Weak Solutions for Nonhomogeneous Elliptic Equations
    Flurrer Analysis of Aircrafr Wing Using Equivalenr-Plare Models wirh Orrhogonal Polynomials
    Mixing Characteristics and Bubble Behavior in an Airlift Internal Loop Reactor with Low Aspect Ratio*
    霧中的背影
    參花(上)(2013年9期)2013-06-10 15:40:50
    Modeling and Numerical Simulation of Yield Viscoplastic Fluid Flow in Concentric and Eccentric Annuli*
    欧美日韩精品成人综合77777| 亚洲欧美成人精品一区二区| 久久久久国产网址| 国产精品一区二区在线观看99 | 人人妻人人澡欧美一区二区| 亚洲av成人av| 色播亚洲综合网| 成年免费大片在线观看| 美女被艹到高潮喷水动态| 夫妻性生交免费视频一级片| 亚洲乱码一区二区免费版| 少妇的逼好多水| 91久久精品国产一区二区成人| 国产乱来视频区| 久久精品熟女亚洲av麻豆精品 | or卡值多少钱| 久久久久性生活片| 尾随美女入室| freevideosex欧美| 国产一区亚洲一区在线观看| 国产精品熟女久久久久浪| 亚洲人成网站在线播| 国产精品99久久久久久久久| 91aial.com中文字幕在线观看| 激情五月婷婷亚洲| 久久精品国产亚洲网站| 赤兔流量卡办理| 人体艺术视频欧美日本| 亚洲熟女精品中文字幕| 国产成人福利小说| 亚洲人与动物交配视频| kizo精华| 少妇人妻一区二区三区视频| 青青草视频在线视频观看| 秋霞在线观看毛片| 免费看不卡的av| 日韩av不卡免费在线播放| 国产国拍精品亚洲av在线观看| 男插女下体视频免费在线播放| 国产久久久一区二区三区| 色综合色国产| 久久久久久伊人网av| 亚洲高清免费不卡视频| 丝袜喷水一区| 国产精品综合久久久久久久免费| 国产av不卡久久| 美女cb高潮喷水在线观看| 精品亚洲乱码少妇综合久久| 亚洲经典国产精华液单| 免费电影在线观看免费观看| 亚洲精品日本国产第一区| 天堂网av新在线| 亚洲国产高清在线一区二区三| 草草在线视频免费看| 日日摸夜夜添夜夜爱| 国产v大片淫在线免费观看| 国产成人一区二区在线| 国产三级在线视频| 久久6这里有精品| 国产精品久久久久久久久免| 99re6热这里在线精品视频| 只有这里有精品99| 国产精品精品国产色婷婷| 日韩一区二区三区影片| 一级毛片aaaaaa免费看小| 国产女主播在线喷水免费视频网站 | 亚洲怡红院男人天堂| 深爱激情五月婷婷| 99热这里只有是精品在线观看| 91精品一卡2卡3卡4卡| 2022亚洲国产成人精品| av在线播放精品| 18禁动态无遮挡网站| 国产成人freesex在线| 亚洲欧美精品专区久久| 在线观看免费高清a一片| 精品99又大又爽又粗少妇毛片| 白带黄色成豆腐渣| 久久精品夜夜夜夜夜久久蜜豆| 色吧在线观看| 国产精品国产三级国产av玫瑰| 精品午夜福利在线看| 国产亚洲最大av| 69人妻影院| 最后的刺客免费高清国语| 亚洲成人久久爱视频| 超碰97精品在线观看| 99热这里只有精品一区| 成人一区二区视频在线观看| h日本视频在线播放| 国产精品一区二区性色av| 亚洲精品,欧美精品| 精品国产一区二区三区久久久樱花 | 五月伊人婷婷丁香| 亚洲av二区三区四区| 赤兔流量卡办理| 国产精品麻豆人妻色哟哟久久 | 肉色欧美久久久久久久蜜桃 | 午夜久久久久精精品| 久热久热在线精品观看| 精品久久久久久久久久久久久| 中国美白少妇内射xxxbb| 人体艺术视频欧美日本| 国产一区亚洲一区在线观看| 国产乱来视频区| 亚洲性久久影院| 久久国产乱子免费精品| 一本久久精品| 免费看不卡的av| 日本与韩国留学比较| 国产综合精华液| 欧美成人精品欧美一级黄| 不卡视频在线观看欧美| 我的女老师完整版在线观看| av女优亚洲男人天堂| 午夜免费观看性视频| 日韩一本色道免费dvd| 亚洲最大成人av| 99热这里只有是精品在线观看| 久久精品国产亚洲av涩爱| 国产 一区精品| 啦啦啦中文免费视频观看日本| 熟妇人妻不卡中文字幕| 两个人的视频大全免费| 一级毛片久久久久久久久女| 极品少妇高潮喷水抽搐| 国产高潮美女av| 国产精品日韩av在线免费观看| 久久久久性生活片| 国产男女超爽视频在线观看| 97超视频在线观看视频| av女优亚洲男人天堂| 人人妻人人看人人澡| 黄片无遮挡物在线观看| 嫩草影院入口| 成人午夜精彩视频在线观看| 亚洲精品成人久久久久久| 毛片一级片免费看久久久久| 中文字幕久久专区| 91av网一区二区| 欧美激情在线99| 女的被弄到高潮叫床怎么办| 国产男女超爽视频在线观看| 一级毛片电影观看| 蜜桃久久精品国产亚洲av| 成人亚洲欧美一区二区av| 亚洲熟妇中文字幕五十中出| 欧美 日韩 精品 国产| 国产白丝娇喘喷水9色精品| 日日撸夜夜添| 水蜜桃什么品种好| 看十八女毛片水多多多| 国产成人免费观看mmmm| 麻豆乱淫一区二区| 久久久久久久久久人人人人人人| 国产亚洲午夜精品一区二区久久 | 国产伦一二天堂av在线观看| 国内揄拍国产精品人妻在线| 久久久久网色| 中文资源天堂在线| 久久久久精品久久久久真实原创| 成年人午夜在线观看视频 | 爱豆传媒免费全集在线观看| 日本黄色片子视频| 国产黄片美女视频| 亚洲最大成人av| 午夜福利成人在线免费观看| 1000部很黄的大片| 91在线精品国自产拍蜜月| 久久精品国产亚洲av天美| 午夜福利在线观看免费完整高清在| 欧美另类一区| 亚洲图色成人| 边亲边吃奶的免费视频| 女人十人毛片免费观看3o分钟| 尤物成人国产欧美一区二区三区| 男人舔奶头视频| av在线播放精品| 又黄又爽又刺激的免费视频.| 在线观看av片永久免费下载| 欧美日韩视频高清一区二区三区二| 中文字幕免费在线视频6| 国产精品久久久久久久电影| 欧美日韩视频高清一区二区三区二| 久久精品国产鲁丝片午夜精品| 大话2 男鬼变身卡| 亚洲av一区综合| 99久久人妻综合| 午夜福利网站1000一区二区三区| 国精品久久久久久国模美| 乱码一卡2卡4卡精品| 极品教师在线视频| 精品不卡国产一区二区三区| 男女国产视频网站| 精品人妻一区二区三区麻豆| 亚洲激情五月婷婷啪啪| 91久久精品国产一区二区成人| 午夜精品一区二区三区免费看| 亚洲乱码一区二区免费版| 能在线免费看毛片的网站| 亚洲丝袜综合中文字幕| 精品国产三级普通话版| 人妻少妇偷人精品九色| 亚洲av二区三区四区| 精品久久国产蜜桃| 别揉我奶头 嗯啊视频| 国产女主播在线喷水免费视频网站 | 国产色婷婷99| 亚洲国产精品sss在线观看| 97热精品久久久久久| 看黄色毛片网站| 久久久久精品久久久久真实原创| 人妻少妇偷人精品九色| 人体艺术视频欧美日本| 天美传媒精品一区二区| 美女被艹到高潮喷水动态| 五月伊人婷婷丁香| 午夜激情福利司机影院| 国产熟女欧美一区二区| 嫩草影院新地址| 国产成人a区在线观看| 黄片无遮挡物在线观看| 熟女人妻精品中文字幕| 欧美日韩综合久久久久久| 久久久久久国产a免费观看| 午夜精品国产一区二区电影 | 哪个播放器可以免费观看大片| videossex国产| 国产色爽女视频免费观看| 国产成人精品一,二区| 成人美女网站在线观看视频| 亚洲精品一二三| 身体一侧抽搐| 久久久国产一区二区| 国产精品av视频在线免费观看| 秋霞在线观看毛片| 亚洲av电影在线观看一区二区三区 | 在线观看av片永久免费下载| 亚洲国产欧美人成| 三级毛片av免费| 天堂av国产一区二区熟女人妻| 国内少妇人妻偷人精品xxx网站| 久久精品综合一区二区三区| 一本久久精品| 久久久久久久亚洲中文字幕| 亚洲欧美精品自产自拍| 我的女老师完整版在线观看| 亚洲四区av| av专区在线播放| 亚洲精品乱码久久久久久按摩| 激情 狠狠 欧美| 国产亚洲一区二区精品| 特级一级黄色大片| 国内揄拍国产精品人妻在线| 日韩欧美精品免费久久| 亚洲国产精品国产精品| 免费观看av网站的网址| 亚洲熟妇中文字幕五十中出| 亚洲av在线观看美女高潮| 亚洲精品视频女| 欧美xxxx黑人xx丫x性爽| 亚洲国产日韩欧美精品在线观看| 九色成人免费人妻av| 久久精品国产亚洲av天美| 蜜臀久久99精品久久宅男| 久久久久九九精品影院| 亚洲色图av天堂| 国产高清国产精品国产三级 | 中文字幕免费在线视频6| 国产乱人视频| 禁无遮挡网站| 看免费成人av毛片| 男女国产视频网站| 亚洲美女搞黄在线观看| 美女脱内裤让男人舔精品视频| 夜夜爽夜夜爽视频| 国产亚洲午夜精品一区二区久久 | 老女人水多毛片| 亚洲,欧美,日韩| 午夜福利高清视频| 亚洲精品日韩av片在线观看| 97超视频在线观看视频| 69人妻影院| 亚洲最大成人手机在线| 亚洲精品日本国产第一区| 国产片特级美女逼逼视频| 亚洲欧美中文字幕日韩二区| 天堂影院成人在线观看| 亚洲在久久综合| 久久热精品热| 国产精品一及| 欧美激情在线99| 精品人妻熟女av久视频| 男女那种视频在线观看| 日韩av在线免费看完整版不卡| 国产一区二区亚洲精品在线观看| 内地一区二区视频在线| 看免费成人av毛片| 婷婷六月久久综合丁香| 久久国内精品自在自线图片| 97超碰精品成人国产| 街头女战士在线观看网站| 69人妻影院| 亚洲在线观看片| 色网站视频免费| 精品久久国产蜜桃| 极品教师在线视频| 亚洲第一区二区三区不卡| 亚洲自偷自拍三级| 精品人妻熟女av久视频| 免费看光身美女| 国产精品国产三级国产av玫瑰| 99热全是精品| 欧美区成人在线视频| 爱豆传媒免费全集在线观看| 又爽又黄无遮挡网站| av福利片在线观看| 日本wwww免费看| 男人和女人高潮做爰伦理| av在线老鸭窝| 日产精品乱码卡一卡2卡三| 69av精品久久久久久| 亚洲美女搞黄在线观看| av在线亚洲专区| 免费黄网站久久成人精品| 欧美最新免费一区二区三区| 欧美精品国产亚洲| 国产亚洲一区二区精品| 人人妻人人澡人人爽人人夜夜 | 久久久色成人| 久久亚洲国产成人精品v| 亚洲欧洲国产日韩| 能在线免费看毛片的网站| 人人妻人人看人人澡| 草草在线视频免费看| 精品一区二区三区视频在线| 内射极品少妇av片p| 我的女老师完整版在线观看| 美女高潮的动态| 精品国产一区二区三区久久久樱花 | 亚洲av成人精品一二三区| av在线亚洲专区| 日本免费在线观看一区| 亚洲欧美一区二区三区黑人 | 丰满人妻一区二区三区视频av| 欧美成人a在线观看| 国产v大片淫在线免费观看| 欧美高清成人免费视频www| 午夜福利在线观看免费完整高清在| 精华霜和精华液先用哪个| 久久6这里有精品| 色尼玛亚洲综合影院| 伦理电影大哥的女人| 亚洲成人中文字幕在线播放| 嫩草影院新地址| 亚洲成人一二三区av| 亚洲精华国产精华液的使用体验| 久久久久久九九精品二区国产| 国产成人精品婷婷| 成年人午夜在线观看视频 | 一个人看视频在线观看www免费| 插逼视频在线观看| 中文字幕免费在线视频6| 国产精品综合久久久久久久免费| 黑人高潮一二区| 国产精品一区www在线观看| 日韩国内少妇激情av| 欧美精品国产亚洲| 精品久久久久久成人av| 在线观看av片永久免费下载| av卡一久久| 亚洲性久久影院| 色吧在线观看| 久久精品国产亚洲网站| 国产老妇女一区| 欧美性猛交╳xxx乱大交人| videos熟女内射| 日韩精品青青久久久久久| 久久午夜福利片| 色5月婷婷丁香| 精品一区二区免费观看| 亚洲欧美中文字幕日韩二区| 大香蕉久久网| 少妇的逼好多水| 内地一区二区视频在线| 男人舔奶头视频| 久久久久九九精品影院| 人妻一区二区av| 亚洲av免费在线观看| 国产单亲对白刺激| av在线蜜桃| 久久精品久久精品一区二区三区| 青春草视频在线免费观看| 国产黄频视频在线观看| 亚洲精品国产av成人精品| 久久亚洲国产成人精品v| 国产精品一及| 亚洲一区高清亚洲精品| 精品熟女少妇av免费看| 久久99热这里只频精品6学生| 一级毛片aaaaaa免费看小| 九色成人免费人妻av| av专区在线播放| 成人特级av手机在线观看| 18+在线观看网站| 国产黄a三级三级三级人| 可以在线观看毛片的网站| 色综合站精品国产| 色5月婷婷丁香| 一个人免费在线观看电影| 久久鲁丝午夜福利片| 69av精品久久久久久| 看十八女毛片水多多多| 亚洲精品国产av成人精品| 亚洲欧美一区二区三区黑人 | 亚洲乱码一区二区免费版| 成人二区视频| 在线观看一区二区三区| 中文在线观看免费www的网站| 久久久久久久久久黄片| 午夜免费观看性视频| av一本久久久久| 欧美日本视频| 国产av国产精品国产| 亚洲经典国产精华液单| 欧美成人一区二区免费高清观看| 精品一区二区三区人妻视频| 午夜激情欧美在线| 亚洲成人精品中文字幕电影| 午夜精品国产一区二区电影 | 国产精品日韩av在线免费观看| 国产精品人妻久久久久久| 嫩草影院精品99| 国产午夜精品论理片| 两个人视频免费观看高清| 国产精品一区二区在线观看99 | 少妇高潮的动态图| 18禁裸乳无遮挡免费网站照片| 寂寞人妻少妇视频99o| 乱系列少妇在线播放| 久久99精品国语久久久| 欧美 日韩 精品 国产| 亚洲美女视频黄频| 一级爰片在线观看| 亚洲精品国产成人久久av| 国产伦一二天堂av在线观看| 在线观看免费高清a一片| 精品国产露脸久久av麻豆 | 国产精品一区二区在线观看99 | 久久久久久久久久久免费av| 一区二区三区乱码不卡18| 三级国产精品欧美在线观看| 韩国av在线不卡| av在线观看视频网站免费| 欧美 日韩 精品 国产| 亚洲伊人久久精品综合| 日韩电影二区| 18禁在线播放成人免费| .国产精品久久| 亚洲欧美清纯卡通| 亚洲精品乱码久久久久久按摩| 免费看av在线观看网站| 色综合亚洲欧美另类图片| 久久久久久久亚洲中文字幕| 有码 亚洲区| 亚洲无线观看免费| 99热网站在线观看| 精品久久国产蜜桃| 精品久久久噜噜| 久久久久久久久大av| 蜜桃久久精品国产亚洲av| av免费观看日本| 超碰97精品在线观看| 2021天堂中文幕一二区在线观| 韩国av在线不卡| 久久久午夜欧美精品| 97精品久久久久久久久久精品| 成人毛片a级毛片在线播放| 午夜精品在线福利| 三级男女做爰猛烈吃奶摸视频| 六月丁香七月| 岛国毛片在线播放| 成人午夜高清在线视频| 欧美人与善性xxx| 18禁在线无遮挡免费观看视频| 天堂中文最新版在线下载 | 女的被弄到高潮叫床怎么办| 国产精品人妻久久久影院| 日韩在线高清观看一区二区三区| 亚洲高清免费不卡视频| 国产乱人视频| 精品久久久久久成人av| 少妇的逼好多水| 久久精品国产亚洲av涩爱| 亚洲va在线va天堂va国产| 亚洲精品自拍成人| 日本三级黄在线观看| 精品久久久久久久久av| 日本熟妇午夜| 免费观看的影片在线观看| 日韩精品青青久久久久久| 成年av动漫网址| 国产成人精品婷婷| 天天一区二区日本电影三级| 国内精品宾馆在线| 精品人妻视频免费看| 免费黄频网站在线观看国产| 18禁在线播放成人免费| 国产有黄有色有爽视频| 国产精品国产三级国产专区5o| 国产伦精品一区二区三区视频9| 精品一区二区三卡| 国产黄色小视频在线观看| 国产精品久久久久久久电影| 麻豆乱淫一区二区| 美女国产视频在线观看| 18+在线观看网站| 亚洲精品影视一区二区三区av| 国产精品综合久久久久久久免费| 狠狠精品人妻久久久久久综合| av又黄又爽大尺度在线免费看| 伦精品一区二区三区| 亚洲精品国产av成人精品| 蜜臀久久99精品久久宅男| 高清在线视频一区二区三区| 国产视频首页在线观看| 色网站视频免费| 久久人人爽人人片av| 日韩制服骚丝袜av| 免费黄网站久久成人精品| 精品久久国产蜜桃| 国产黄片美女视频| 在线免费观看不下载黄p国产| 国产精品av视频在线免费观看| 国产色婷婷99| 丝袜美腿在线中文| 日韩一本色道免费dvd| 国产久久久一区二区三区| 丰满乱子伦码专区| 免费大片黄手机在线观看| 精品久久久久久久末码| 亚洲第一区二区三区不卡| 能在线免费观看的黄片| 汤姆久久久久久久影院中文字幕 | 岛国毛片在线播放| 两个人视频免费观看高清| 国产老妇女一区| 乱系列少妇在线播放| 免费看a级黄色片| 99久国产av精品| 免费电影在线观看免费观看| 久久久久久久亚洲中文字幕| 夫妻午夜视频| 国产成人一区二区在线| 欧美日韩视频高清一区二区三区二| 国产一区二区三区综合在线观看 | 国产在视频线在精品| 在线免费观看的www视频| 啦啦啦韩国在线观看视频| 国产视频首页在线观看| 不卡视频在线观看欧美| av卡一久久| 亚洲国产高清在线一区二区三| 精品一区二区三区视频在线| 亚洲av国产av综合av卡| 国产精品伦人一区二区| 久久精品夜夜夜夜夜久久蜜豆| videos熟女内射| 一边亲一边摸免费视频| 中文资源天堂在线| 亚洲aⅴ乱码一区二区在线播放| 大陆偷拍与自拍| 一本一本综合久久| 亚洲精品久久久久久婷婷小说| 欧美 日韩 精品 国产| 国产成人91sexporn| 国产免费又黄又爽又色| 亚洲最大成人av| 免费大片黄手机在线观看| 国产淫片久久久久久久久| 久久这里只有精品中国| 国产又色又爽无遮挡免| 亚洲欧美清纯卡通| 日韩中字成人| 看黄色毛片网站| 春色校园在线视频观看| 黄片wwwwww| 波多野结衣巨乳人妻| 一本久久精品| 精华霜和精华液先用哪个| 天堂av国产一区二区熟女人妻| 亚洲国产最新在线播放| 久久国产乱子免费精品| 美女被艹到高潮喷水动态| videossex国产| 少妇人妻一区二区三区视频| 午夜免费观看性视频| 午夜老司机福利剧场| 国产 一区精品| 亚洲av中文字字幕乱码综合| 国产在视频线精品| eeuss影院久久| 久久久欧美国产精品| 禁无遮挡网站| 免费播放大片免费观看视频在线观看| 亚洲欧美成人精品一区二区| 一本一本综合久久| 亚洲怡红院男人天堂| 亚洲,欧美,日韩| 亚洲最大成人手机在线| 国产亚洲5aaaaa淫片| 高清毛片免费看| 有码 亚洲区| 国产探花极品一区二区| 午夜福利在线观看吧|