• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-phase-field simulation of austenite peritectic solidification based on a ferrite grain*

    2021-01-21 02:08:48ChaoYang楊超JingWang王靜JunshengWang王俊升YuLiu劉瑜GuominHan韓國民HaifengSong宋海峰andHoubingHuang黃厚兵
    Chinese Physics B 2021年1期
    關(guān)鍵詞:楊超劉瑜王靜

    Chao Yang(楊超), Jing Wang(王靜), Junsheng Wang(王俊升), Yu Liu(劉瑜),Guomin Han(韓國民), Haifeng Song(宋海峰),, and Houbing Huang(黃厚兵),?

    1School of Materials Science and Engineering,Beijing Institute of Technology,Beijing 100081,China

    2Advanced Research Institute of Multidisciplinary Science,Beijing Institute of Technology,Beijing 100081,China

    3Laboratory of Computational Physics,Institute of Applied Physics and Computational Mathematics,Beijing 100088,China

    4Software Center for High Performance Numerical Simulation,China Academy of Engineering Physics,Beijing 100088,China

    Keywords: multi-phase-field simulation,morphology evolution,peritectic solidification,carbon diffusion,Fe-C alloy

    1. Introduction

    As a typical non-equilibrium process, the peritectic solidification of Fe-C alloy involves the multi-phase interactions between ferrite (δ phase), austenite (γ phase), and liquid (L phase), and the carbon diffusion plays an important role in these non-equilibrium phase transformations.[1–3]The microstructure morphology and the carbon micro-segregation formed during this peritectic solidification can affect the subsequent solid state phase transformation, which in turn influences the material properties. However, the study on mesoscopic Fe-C peritectic solidification is limited on the one hand by the complexity of analyzing the non-equilibrium dynamic system,and on the other hand by the difficulty of hightemperature in situ experiments. The physical model coupled with the multi-phase field and the carbon concentration field can be used to simulate the non-equilibrium process at mesoscopic scale, which provides an approach to understand the dynamic mechanism of morphology and micro-segregation evolution.[4–6]

    The multi-phase field model can reveal the interaction mechanism of δ,γ,and L phases by simulating the movement of diffuse interface and the redistribution/diffusion of carbon at the interface region. The peritectic solidification of Fe-C alloy includes three kinds of interfaces,namely,δ–γ,δ–L,and γ–L interfaces, respectively. Based on the Gibbs–Thomson effect,the movement of these interfaces is driven by the local interface curvature and the driving forces of the phase transformations,where the driving forces ΔG include ΔGδ→γ,ΔGL→δ,and ΔGL→γ.The interface curvature effect is an inherent property of the phase-field method,[7]and the driving forces can be calculated by the Kim–Kim–Suzuki(KKS)model.[5,8,9]In addition,the redistribution/diffusion of carbon can be simulated by the diffusion equation,which is solved in conjunction with the interface dynamics equation derived by the multi-phase field. Through the above-mentioned simulation of interface movement and carbon redistribution/diffusion, the peritectic solidification simulation of Fe-C alloy can be achieved.[10–12]

    In recent years,experimental methods and numerical simulations are used to study the Fe-C peritectic solidification process. According to in-situ experiment, Yasuda et al.[13]explored the dendrite fragmentation induced by massive-like δ–γ transformation in Fe-C alloy, which illustrated the dendrite arm fragmentation mechanism during the peritectic solidification. Yang et al.[9,14,15]applied the multi-phase field method to study the peritectic solidification of Fe-C alloy based on dendritic and polycrystalline ferrite, which clarified the morphology evolution mechanism. Fan et al.[16]used a cellular automaton model to simulate the peritectic transformation of Fe-C system,compared the simulation results with the experimental measurements,and presented analytical predictions for the growth kinetics of the austenite and the concentration distributions. Although these works partially reveal the kinetic mechanism of the Fe-C peritectic solidification process,a deep understanding of the austenite nucleation and growth process based on ferrite equiaxed crystal grain remains lacking.

    In the present work,a multi-phase field and a carbon concentration field are introduced for the numerical simulation of Fe-C peritectic solidification. The nucleation and growth of γ phase is based on the existing δ phase equiaxed grain, and two sets of initial conditions with different thicknesses of primary γ phase are applied to explore the evolution of morphology and carbon segregation. Not only the influence of γ phase nucleation on the subsequent microstructure morphology and carbon distribution is discussed in this article,but also the formation mechanism of liquid phase channels and molten pools is revealed. The present work is useful for understanding the dynamic mechanism of the peritectic solidification of Fe-C alloy.

    2. Methods

    For the simulation of Fe-C peritectic solidification,multiphase field and carbon concentration filed are necessary for tracking the movement of the diffuse interfaces and calculating the redistribution/diffusion of carbon. The order parameters of the multi-phase field can be marked as φδ,φγ,and φL,which can be considered as the volume fractions of δ, γ, and L phases. As expressed by Eq.(1),the governing equation of those three order parameters is used to calculate the dynamic evolution of the interface and phase distribution, which follows the basic form of the Allen–Cahn equation.[17]Since the sum of the three phase volume fractions is one,equation(2)as a constraint is an important supplement to Eq.(1). In addition,the variable of the carbon concentration field can be marked as C,which can be expressed in the mole fraction.Equation(4)is the governing equation of this concentration field,which is applied to calculate the carbon redistribution/diffusion process.As a dynamic equation of the conserved field, equation (4)follows the form of Cahn–Hilliard equation.

    According to the Gibbs–Thomson effect, two key factors determine the interface movement. One is the interface curvature, the other is the driving force of phase transformation.[18,19]The gradient energy terms and the barrier energy term in Eq. (1) are related to the calculation of the local interface curvature,and the driving force term in this phase-field equation introduces the driving force into the interface dynamics process.[5,7]The driving force ΔG in Eq.(1)can be calculated from the local phase composition cα, and the related methods can refer to the parabolic approximation scheme of KKS model.[8,9]The carbon diffusion equation expressed by Eq.(4)is also based on the local phase composition cα. This equation can not only calculate the carbon diffusion in different phases with different kinetic coefficients,but also achieve the simulation of carbon redistribution at the interface region.

    where α,β,θ indicate the different phases and n is the quantity of total phases.Concretely,n=3 and α,β,θ represent the δ,γ,and L phases of the Fe-C system. φ is the order parameter of the phase field. M is the kinetic coefficient of the phase field. ε is the gradient energy coefficient. H is the barrier energy of the double-well function. ΔG is the driving force of phase transformation, which can be calculated from the local order parameter and carbon concentration by KKS model.[9]η is the noise term. fαis the free energy density function of the α phase.cαis the phase composition of carbon in α phase,which is derived from the KKS model.[9]C is the concentration of carbon. Dαis the diffusion coefficient of carbon in α phase.

    For the numerical simulation, we apply an explicit finite difference algorithm based on a distributed memory parallel system to solve the above equations, and a Fortran program with MPI (Message Passing Interface) library is designed for the calculation.[20]For each calculation task, 40 parallel threads are called by the parallel system. The memory requirement of each thread is about 100 MB,and it takes about 3 hours of CPU time to complete each calculation task. The mesh scale of the simulation is 2200×2200, and the spatial step size is one-sixth of the interface width of the phase field.The number of time iterations is 36000. The physical parameters used in the simulation have been listed in the previous article.[14,21]

    3. Results and discussion

    The peritectic solidification of Fe-C alloy involves existing L phase and δ phase,as well as the subsequent γ phase. In order to study the three-phase interactions,a δ phase equiaxed grain is first produced in the L phase, and then the γ phase nucleates on the δ–L interface. As the Fe-C phase diagram shown in Fig.1,the initial mole fraction of carbon in L phase is set as 0.01, and the solidification temperature 1750 K is slightly lower than the peritectic temperature.[22]At this concentration and temperature point, γ phase is the most stable phase. Based on the above initial concentration and constant temperature,the δ phase first grows into an equiaxed grain in the L phase,and the carbon distribution around this equiaxed grain is non-uniform. Due to the solute distribution and diffusion,the carbon concentration is higher at the dendrite gaps and lower at the dendrite tips. And the carbon concentration at the δ–L interface region determines the local driving forces ΔGL→γand ΔGα→γ, which in turn influence the nucleation of the γ phase. For the study of peritectic solidification, the nucleation of γ phase is necessary to be introduced in the simulation.

    Fig.1.Phase diagram of peritectic region in Fe-C system.The red,blue,and green lines present the equilibrium concentration of δ–γ phases,δ–L phases,and γ–L phases,respectively. And the dotted lines are the metastable extensions of two-phase equilibrium.

    At the δ–L interface region, the driving force from the L phase to γ phase ΔGL→γis calculated to be greater than the driving force from the δ phase to γ phase ΔGα→γ, which makes ΔGL→γa key criterion for the heterogeneous nucleation of γ phase. According to the local distribution of carbon concentration and order parameter,we introduce a nucleation mode to produce γ phase on the surface of the δ phase equiaxed grain,where the thickness of the primary γ phase is proportional to the local driving force ΔGL→γ. The setting details and techniques of this γ phase heterogeneous nucleation can be found in previous articles.[14,15]Although the relative thickness of the primary γ phase depends on the local driving force, the setting of this nucleation mode still requires artificial parameters to determine the absolute thickness. In order to reveal the influence of different thickness of the primary γ phase,two sets of initial conditions are applied in the simulations. In the first case,the maximum thickness of the primary γ phase is six times the interface width of the phase field,and the maximum thickness appears at the tip of the dendrite with a lower carbon concentration. For comparison,the maximum thickness of the primary γ phase in the second case is half of that in the first case. In addition,periodic boundary conditions are used in both sets of simulations.

    Based on the aforementioned mode of γ phase nucleation,the simulation reveals the dynamic process of order parameters and carbon concentration at the mesoscopic scale, which respectively represent the evolution of phase morphology and carbon segregation. Figures 2(a) and 2(e) show the initial phase field and concentration field, respectively. Based on the driving force calculated by the local carbon concentration,the γ phase preferentially nucleates at the tips of the dendrites and grows toward the L phase by solidification L →γ,which makes the carbon-rich L phase in the dendrite gaps evolve into liquid phase channels.[23]At the δ–γ interface, the previously formed δ phase transforms into γ phase through peritectic transformation δ →γ,but this process is slower than the solidification of γ phase. In the original secondary dendrite gaps, the δ phase slowly solidifies toward the carbon-rich L phase,and this process L →δ is controlled by the diffusion of solute carbon through the liquid phase channel and the solid phase region. In addition, the peritectic reaction L+δ →γ that occurs at the three-phase coexistence regions is not significant, because the carbon concentration at these regions is generally high. The phase-field evolution shown in Figs.2(a)–2(d) reveals that the γ phase gradually encloses the δ phase and partially blocks the liquid channels, which makes these liquid channels become carbon-rich molten pools. The evolution of the carbon concentration field shown in Figs.2(e)–2(h)reveals the redistribution of carbon at the solid–liquid interface region and the controlling effect of carbon diffusion on the phase transformations. Moreover, this micro-segregation of carbon can be used to analyze the evolution history of peritectic solidification. For example,some liquid phase channels and molten pools that have been solidified can still be traced from the carbon-rich regions, and the original δ phase distribution can be identified from the low-carbon areas.

    Fig.2. The dynamic process of phase morphology and carbon segregation. (a)–(d)The evolution of phase field; and(e)–(h)the evolution of carbon concentration. The red, blue, and green regions in (a)–(d) represent the distribution of δ, γ, and L phases, respectively. And the hue from blue to red represents the change in carbon concentration(mole fraction)from 0.0045 to 0.0400,which can be referred to the color scale bar on the right. Panels (a) and (e) show the initial fields of the simulation, and the maximum thickness of the primary γ phase in (a) is six times the interface width of the phase field.

    Fig.3. The dynamic process of phase morphology and carbon segregation. The color representation of each phase and the color scale bar of the carbon concentration(mole fraction)are the same as those in Fig.2. As the initial conditions,the maximum thickness of primary γ phase in(a)is three times the interface width of phase field,which is half of that in Fig.2(a).

    The initial heterogeneous nucleation of the γ phase can affect the phase morphology and carbon distribution during peritectic solidification. As shown in Fig. 3, the maximum thickness of the primary γ phase is half of that in Fig.2,which means that the initial conditions of Figs. 2(a) and 3(a) are slightly different. Comparing Fig. 2(b) with Fig. 3(b), when the evolution time is 12000 steps,the δ phase cannot be completely enclosed by γ phase in Fig. 3(b) because some secondary dendrites grow up on both sides of the tip of the δ phase primary dendrite. When the evolution time is 24000 steps,the γ phase in Fig.3(c)completely encloses the δ phase equiaxed grain and produces more liquid phase channels than the case in Fig. 2(c). As shown in Figs. 2(d) and 3(d), the contours of the γ–L interface are similar, but the distribution forms of the δ phase and γ phase are different. Compared with Fig. 2(d), the tips of the primary dendrites of δ phase in Fig. 3(d) become flatter, and the total volume of δ phase in Fig. 3(d) is also larger. Moreover, the evolution processes of carbon concentration in Figs.2 and 3 are slightly different.Due to the solidification of the δ phase secondary dendrites shown in Figs.3(b)and 3(f), the carbon content in the newly formed δ phase is lower,which changes the micro-segregation of carbon at a smaller scale and affects the local driving forces and thus the morphology of the peritectic transformation.

    In order to present the carbon distribution in different phases, the order parameters and carbon concentration along the directional lines in Figs. 2 and 3 are shown in Fig. 4.Specifically,figures 4(a)and 4(c)correspond to the horizontal lines in Figs.2 and 3,respectively. At the interval(0,780),the δ phase,L phase,and γ phase appear alternately due to crossing the molten pools and the liquid phase channels. Among these three phases, the carbon mole fraction of the L phase is the highest, about 0.035. The difference in carbon content between δ phase and γ phase is small. And this is because the diffusion coefficient of the solid phase is relatively small,making it difficult to achieve carbon redistribution at the δ–γ interface region. The γ–L interface appears at about x=790 in both Figs.4(a)and 4(c),where the solidification of γ phase occurs. The redistribution of carbon during the solidification makes the carbon be enriched in the L phase and diffuse into the deep region of the L phase, resulting in the formation of a stable carbon diffusion zone in the liquid phase close to the γ–L interface. This carbon diffuse zone determines the driving force ΔGL→γat the γ–L interface region,which makes the carbon diffusion a controlling factor for interface movement.

    Figures 4(b) and 4(d) correspond to the diagonal lines in Fig. 2 and 3, respectively. These sections do not cross the molten pools and the liquid phase channels, therefore the phase and carbon concentration distribution are simpler than the case in Figs. 4(a) and 4(c). Similarly, there is little difference in carbon concentration between δ phase and γ phase,and there is a diffusion zone close to the γ–L interface at about x/Δx=1130.The carbon concentration in the γ phase changes at about x/Δx=780,because part of the γ phase comes from the L phase by solidification,and the other part comes from the δ phase by peritectic transformation. And it can be concluded that the initial δ–L interface is located at x/Δx=780. In addition, the volume of δ phase in Fig. 4(d) is larger than that in Fig. 4(b), which is also revealed by the phase morphology in Figs.3(d)and 2(d). In Figs.4(b)and 4(d),the point around x/Δx=760 is the position of the original δ–L interface,which is also the position of the initial δ–γ interface when the γ phase nucleates. The carbon partition coefficients of δ–L interface and δ–γ interface are different,which causes the concentration fluctuation at this location.

    Fig.4. The order parameters and carbon concentration distribution along the directional lines of Figs.2(d),2(h),3(d),and 3(h). Panels(a)and(b)show the cross sections along the horizontal and diagonal lines in Fig.2,respectively. Panels(c)and(b)show the cross sections in Fig.3,which are at the same position as in Fig.2. In each panel,the red,blue,and green lines present the volume fractions(order parameters)of δ phase,γ phase,and L phase,respectively. And the black line presents the distribution of carbon concentration.

    4. Conclusion

    In short, a multi-phase field model is implemented to study the peritectic solidification of Fe-C alloy. The simulation is based on the γ phase nucleation on the surface of the existing δ phase equiaxed grain, and the initial carbon distribution around the δ phase grain makes the γ phase preferentially nucleate at the tips of the dendrites. Two different thicknesses of γ phase are used as the initial conditions to reveal the influence of the γ phase nucleation position. The simulation not only shows the interaction of the δ phase,γ phase,and L phase at the mesoscopic scale,but also presents the controlling effect of the carbon diffusion on phase transformations. The formation and evolution mechanism of liquid phase channels and molten pools are clarified in this work, and the different thicknesses of the primary γ phase can affect the final phase morphology and carbon segregation. Therefore, the present work contributes to the understanding of the evolution mechanism of micro-morphology and micro-segregation during Fe-C peritectic solidification.

    猜你喜歡
    楊超劉瑜王靜
    漢江春曉
    南風(2021年32期)2021-12-31 05:57:16
    The Management Methods And Thinking Of Personnel Files
    客聯(lián)(2021年9期)2021-11-07 19:21:33
    Clinical observation of heat-sensitive moxibustion for acute ischemic stroke
    守護生命之水,一家三代水庫人的堅守與傳承
    Comparison Principle of Very Weak Solutions for Nonhomogeneous Elliptic Equations
    The Development of Contemporary Oil Painting Art
    青年生活(2019年16期)2019-10-21 01:46:49
    劉瑜,走上“平凡之路”
    Income Inequality in Developing Countries
    商情(2017年17期)2017-06-10 12:27:58
    Let it Go隨它吧
    Comparison of Passive Conrrol Merhods on Caviry Aeroacousric Using Delayed Derached Eddy Simularion
    男人的好看免费观看在线视频| 美女高潮的动态| 国产视频内射| 亚洲欧洲精品一区二区精品久久久| 高潮久久久久久久久久久不卡| 国产精品99久久久久久久久| 久久久久久人人人人人| 神马国产精品三级电影在线观看| 宅男免费午夜| 夜夜爽天天搞| 非洲黑人性xxxx精品又粗又长| 日本在线视频免费播放| netflix在线观看网站| 亚洲国产精品合色在线| 日本五十路高清| 精品国产三级普通话版| 淫秽高清视频在线观看| tocl精华| 国产高清三级在线| 欧美日韩综合久久久久久 | 日本免费a在线| 这个男人来自地球电影免费观看| 蜜桃久久精品国产亚洲av| 国产亚洲精品综合一区在线观看| 人妻夜夜爽99麻豆av| 久久99热这里只有精品18| 黄频高清免费视频| 欧美极品一区二区三区四区| 欧美精品啪啪一区二区三区| 日韩 欧美 亚洲 中文字幕| 欧美日韩中文字幕国产精品一区二区三区| 桃红色精品国产亚洲av| 99re在线观看精品视频| 19禁男女啪啪无遮挡网站| av国产免费在线观看| 久久香蕉国产精品| 国产麻豆成人av免费视频| 久久热在线av| 亚洲 欧美 日韩 在线 免费| 欧美在线黄色| 国产精品久久久久久人妻精品电影| 女人被狂操c到高潮| 日日摸夜夜添夜夜添小说| 欧美三级亚洲精品| av欧美777| 99国产综合亚洲精品| bbb黄色大片| 两个人看的免费小视频| 国内精品美女久久久久久| 国产精品久久久人人做人人爽| 日韩av在线大香蕉| 亚洲欧洲精品一区二区精品久久久| 中文资源天堂在线| ponron亚洲| 在线免费观看的www视频| 天天躁日日操中文字幕| 日本在线视频免费播放| 亚洲色图av天堂| 18禁黄网站禁片免费观看直播| 99精品在免费线老司机午夜| 国产精品一区二区精品视频观看| 婷婷六月久久综合丁香| 亚洲黑人精品在线| 久久伊人香网站| 国内精品一区二区在线观看| 亚洲自拍偷在线| 舔av片在线| 欧美日韩一级在线毛片| 国产成人精品久久二区二区免费| 人人妻,人人澡人人爽秒播| 色综合站精品国产| 国产日本99.免费观看| 国产1区2区3区精品| 精品国产亚洲在线| 一进一出好大好爽视频| 午夜福利视频1000在线观看| 国产在线精品亚洲第一网站| 欧美一区二区精品小视频在线| 天堂动漫精品| 热99re8久久精品国产| 天堂影院成人在线观看| 国产精品98久久久久久宅男小说| 亚洲精品色激情综合| 十八禁人妻一区二区| 伦理电影免费视频| 精品国产超薄肉色丝袜足j| 精品乱码久久久久久99久播| 狂野欧美白嫩少妇大欣赏| 丁香六月欧美| 午夜福利18| 成在线人永久免费视频| 国产69精品久久久久777片 | 国产精品av久久久久免费| e午夜精品久久久久久久| 亚洲av成人一区二区三| 18禁黄网站禁片免费观看直播| 精品免费久久久久久久清纯| 国产精品永久免费网站| 在线观看免费视频日本深夜| 久久精品影院6| 欧美色视频一区免费| 国产激情偷乱视频一区二区| 日韩免费av在线播放| 国产亚洲欧美在线一区二区| 女人被狂操c到高潮| 亚洲国产精品合色在线| 天堂动漫精品| 99久久精品国产亚洲精品| 一本综合久久免费| 国内揄拍国产精品人妻在线| tocl精华| 欧美绝顶高潮抽搐喷水| 免费av毛片视频| 美女cb高潮喷水在线观看 | 99国产综合亚洲精品| 99久久综合精品五月天人人| 国产一区二区三区视频了| 久久精品影院6| 午夜激情福利司机影院| 日本熟妇午夜| 国产成年人精品一区二区| 欧美日韩一级在线毛片| 香蕉久久夜色| 91麻豆精品激情在线观看国产| 青草久久国产| 国产亚洲精品一区二区www| 国产精品久久久av美女十八| 中国美女看黄片| 国产在线精品亚洲第一网站| 无遮挡黄片免费观看| 日日干狠狠操夜夜爽| 国产精品永久免费网站| 午夜福利在线在线| 久久天躁狠狠躁夜夜2o2o| 99久久成人亚洲精品观看| 黑人巨大精品欧美一区二区mp4| 国产精品免费一区二区三区在线| 后天国语完整版免费观看| 可以在线观看毛片的网站| 18禁观看日本| 国产成人精品无人区| 天堂影院成人在线观看| 亚洲av成人不卡在线观看播放网| 91在线精品国自产拍蜜月 | 亚洲专区国产一区二区| 国产黄a三级三级三级人| 中文字幕精品亚洲无线码一区| 欧美日本视频| 日韩欧美一区二区三区在线观看| 可以在线观看的亚洲视频| 亚洲av片天天在线观看| 色噜噜av男人的天堂激情| 久久天躁狠狠躁夜夜2o2o| 国产高清三级在线| 日韩免费av在线播放| 香蕉丝袜av| 日韩欧美在线二视频| 日韩中文字幕欧美一区二区| 亚洲狠狠婷婷综合久久图片| 日本在线视频免费播放| 人人妻,人人澡人人爽秒播| 最近最新中文字幕大全免费视频| 国产又黄又爽又无遮挡在线| 午夜免费成人在线视频| 中亚洲国语对白在线视频| 日本一本二区三区精品| 欧美日本亚洲视频在线播放| 丝袜人妻中文字幕| 看免费av毛片| 巨乳人妻的诱惑在线观看| 久久精品91无色码中文字幕| 一级毛片高清免费大全| 亚洲美女视频黄频| 久久九九热精品免费| 亚洲av中文字字幕乱码综合| 久久亚洲精品不卡| 国产美女午夜福利| 欧美日韩精品网址| 女生性感内裤真人,穿戴方法视频| av片东京热男人的天堂| 亚洲精品在线美女| 午夜福利免费观看在线| 在线播放国产精品三级| 男人舔女人的私密视频| 一个人观看的视频www高清免费观看 | 日本黄大片高清| 久久久久久国产a免费观看| 美女高潮的动态| 久久国产精品影院| 国产精品女同一区二区软件 | 久久久水蜜桃国产精品网| aaaaa片日本免费| 国产毛片a区久久久久| 美女黄网站色视频| 日本黄色片子视频| 老熟妇仑乱视频hdxx| 亚洲国产高清在线一区二区三| 亚洲熟妇熟女久久| 欧美3d第一页| 麻豆久久精品国产亚洲av| 免费大片18禁| 免费观看精品视频网站| 国产高清激情床上av| 亚洲国产色片| 亚洲精品一卡2卡三卡4卡5卡| 国产亚洲欧美在线一区二区| 黑人欧美特级aaaaaa片| 一a级毛片在线观看| 1024手机看黄色片| 国产精品乱码一区二三区的特点| 国产三级黄色录像| 一本精品99久久精品77| 美女午夜性视频免费| 一本一本综合久久| 欧美不卡视频在线免费观看| 舔av片在线| 国产aⅴ精品一区二区三区波| 波多野结衣高清无吗| 母亲3免费完整高清在线观看| 国产精品电影一区二区三区| 国产私拍福利视频在线观看| 婷婷丁香在线五月| 亚洲 国产 在线| 久久精品91无色码中文字幕| 国产免费男女视频| 国产一区二区激情短视频| 成人亚洲精品av一区二区| 我的老师免费观看完整版| 我要搜黄色片| 啦啦啦韩国在线观看视频| 亚洲国产精品999在线| 1024手机看黄色片| av福利片在线观看| 亚洲无线在线观看| 久久久久精品国产欧美久久久| av中文乱码字幕在线| 欧美xxxx黑人xx丫x性爽| 欧美高清成人免费视频www| 日本 av在线| 无人区码免费观看不卡| 亚洲成人免费电影在线观看| 国产精品 国内视频| 美女被艹到高潮喷水动态| 美女免费视频网站| 无人区码免费观看不卡| 每晚都被弄得嗷嗷叫到高潮| 麻豆av在线久日| 小蜜桃在线观看免费完整版高清| 丰满人妻一区二区三区视频av | 熟女少妇亚洲综合色aaa.| 两个人的视频大全免费| 久久天躁狠狠躁夜夜2o2o| 国产午夜精品论理片| 美女高潮喷水抽搐中文字幕| 熟女少妇亚洲综合色aaa.| 成人国产一区最新在线观看| 一本一本综合久久| 亚洲成人免费电影在线观看| 久久天躁狠狠躁夜夜2o2o| 国产精品亚洲美女久久久| 亚洲精品色激情综合| 成人三级做爰电影| 少妇人妻一区二区三区视频| 亚洲人成伊人成综合网2020| 亚洲专区中文字幕在线| 日本一二三区视频观看| 免费无遮挡裸体视频| 久久久久久国产a免费观看| 色尼玛亚洲综合影院| 2021天堂中文幕一二区在线观| 男插女下体视频免费在线播放| 亚洲一区二区三区不卡视频| 麻豆国产97在线/欧美| www国产在线视频色| 国产亚洲精品一区二区www| 久9热在线精品视频| 真人做人爱边吃奶动态| 色噜噜av男人的天堂激情| 久久性视频一级片| 美女被艹到高潮喷水动态| 99久久久亚洲精品蜜臀av| 制服丝袜大香蕉在线| 国产高清三级在线| 色在线成人网| 午夜福利在线观看吧| 欧美大码av| av天堂在线播放| av视频在线观看入口| 亚洲第一电影网av| 亚洲精品在线美女| 国产成人福利小说| 午夜激情福利司机影院| av福利片在线观看| 欧美日韩中文字幕国产精品一区二区三区| 亚洲五月婷婷丁香| 日本熟妇午夜| 五月伊人婷婷丁香| 最近最新免费中文字幕在线| 久久热在线av| 国产精品影院久久| 一夜夜www| 亚洲国产精品久久男人天堂| 亚洲中文字幕日韩| 国产精品日韩av在线免费观看| xxxwww97欧美| 一二三四在线观看免费中文在| 亚洲精品美女久久av网站| 久久九九热精品免费| 无限看片的www在线观看| 黄片小视频在线播放| 国产麻豆成人av免费视频| 变态另类成人亚洲欧美熟女| 深夜精品福利| 亚洲黑人精品在线| 日本三级黄在线观看| 国产精品1区2区在线观看.| 久久久成人免费电影| 色精品久久人妻99蜜桃| 欧美日韩亚洲国产一区二区在线观看| 成人永久免费在线观看视频| 婷婷精品国产亚洲av在线| 国产伦人伦偷精品视频| 欧美色视频一区免费| 中文字幕高清在线视频| 女人高潮潮喷娇喘18禁视频| 欧美成人性av电影在线观看| 色av中文字幕| 久久久国产欧美日韩av| 国产亚洲欧美98| 悠悠久久av| 精品久久久久久久末码| h日本视频在线播放| 观看美女的网站| 国产1区2区3区精品| 欧美黑人欧美精品刺激| 国产精品永久免费网站| 久久这里只有精品中国| 精品日产1卡2卡| 亚洲精品一区av在线观看| 最近在线观看免费完整版| av天堂中文字幕网| 一个人免费在线观看电影 | 久久久久久国产a免费观看| 精品久久久久久久久久免费视频| 黄片小视频在线播放| 国产久久久一区二区三区| 村上凉子中文字幕在线| 国内精品久久久久久久电影| 成人av一区二区三区在线看| 久9热在线精品视频| 成人特级黄色片久久久久久久| 欧美激情在线99| 99国产精品一区二区三区| 九九热线精品视视频播放| 高潮久久久久久久久久久不卡| 国产精品一及| 国产高清videossex| 九九久久精品国产亚洲av麻豆 | 欧美一区二区精品小视频在线| 香蕉国产在线看| 国产视频一区二区在线看| 久久久久久久精品吃奶| 白带黄色成豆腐渣| 亚洲国产精品成人综合色| 国产成+人综合+亚洲专区| 最近视频中文字幕2019在线8| 精品国内亚洲2022精品成人| 床上黄色一级片| 黑人欧美特级aaaaaa片| 国产高清视频在线观看网站| 国产在线精品亚洲第一网站| 亚洲18禁久久av| 精品一区二区三区av网在线观看| 在线免费观看的www视频| 亚洲欧洲精品一区二区精品久久久| 国内揄拍国产精品人妻在线| 法律面前人人平等表现在哪些方面| 日韩欧美精品v在线| 热99re8久久精品国产| 悠悠久久av| 国产欧美日韩一区二区精品| 国产爱豆传媒在线观看| 熟女人妻精品中文字幕| 国内少妇人妻偷人精品xxx网站 | 精品国产三级普通话版| 日本三级黄在线观看| 99久久精品热视频| www.熟女人妻精品国产| 在线永久观看黄色视频| 色综合欧美亚洲国产小说| 亚洲成人精品中文字幕电影| 欧美3d第一页| 99re在线观看精品视频| 亚洲国产精品久久男人天堂| 精品国产美女av久久久久小说| 色尼玛亚洲综合影院| 国产伦精品一区二区三区视频9 | 国产高清三级在线| 国产精品一区二区三区四区久久| 国内精品久久久久精免费| 国产精品一区二区三区四区久久| 国产精品电影一区二区三区| 久久久国产精品麻豆| 少妇的逼水好多| 噜噜噜噜噜久久久久久91| 真人做人爱边吃奶动态| 国产精品自产拍在线观看55亚洲| 免费在线观看日本一区| 国产一区二区激情短视频| 99久久精品一区二区三区| 久久精品影院6| 国产激情欧美一区二区| 国产精品爽爽va在线观看网站| 国产1区2区3区精品| 噜噜噜噜噜久久久久久91| 黑人操中国人逼视频| 精品久久久久久久毛片微露脸| 亚洲无线观看免费| 一个人免费在线观看电影 | 久久性视频一级片| 国产高潮美女av| 国产成人一区二区三区免费视频网站| 人人妻人人澡欧美一区二区| 亚洲精品456在线播放app | 精品一区二区三区av网在线观看| 九色成人免费人妻av| 一级毛片精品| 听说在线观看完整版免费高清| 午夜日韩欧美国产| 俄罗斯特黄特色一大片| 又黄又爽又免费观看的视频| 免费看十八禁软件| 日本成人三级电影网站| 久久久久九九精品影院| 成人av一区二区三区在线看| 免费在线观看亚洲国产| 巨乳人妻的诱惑在线观看| 亚洲男人的天堂狠狠| 国产高清激情床上av| 国产 一区 欧美 日韩| 在线免费观看的www视频| 真实男女啪啪啪动态图| 蜜桃久久精品国产亚洲av| 男女午夜视频在线观看| 欧美成人免费av一区二区三区| 欧美在线黄色| 国产激情久久老熟女| 99re在线观看精品视频| 最新美女视频免费是黄的| 男女做爰动态图高潮gif福利片| 国产av一区在线观看免费| 黄片小视频在线播放| 美女被艹到高潮喷水动态| 亚洲无线在线观看| 一个人看视频在线观看www免费 | 一卡2卡三卡四卡精品乱码亚洲| 婷婷六月久久综合丁香| 夜夜躁狠狠躁天天躁| 国产精品日韩av在线免费观看| netflix在线观看网站| 一个人免费在线观看电影 | 熟女人妻精品中文字幕| 国产三级在线视频| 国产激情久久老熟女| 宅男免费午夜| 看片在线看免费视频| 日本免费a在线| 岛国在线观看网站| 一本久久中文字幕| 日韩免费av在线播放| 性欧美人与动物交配| 一级a爱片免费观看的视频| 欧美日韩亚洲国产一区二区在线观看| 宅男免费午夜| 亚洲av中文字字幕乱码综合| 国产黄色小视频在线观看| 99国产精品一区二区三区| 嫩草影院入口| ponron亚洲| 亚洲一区高清亚洲精品| 国产免费av片在线观看野外av| 国产 一区 欧美 日韩| 床上黄色一级片| 无限看片的www在线观看| 一个人观看的视频www高清免费观看 | 久久亚洲精品不卡| 亚洲在线观看片| 成年女人永久免费观看视频| 国产伦在线观看视频一区| 色播亚洲综合网| 成人特级黄色片久久久久久久| 欧美色视频一区免费| 日本五十路高清| 校园春色视频在线观看| 久久中文看片网| 国内精品久久久久精免费| av在线天堂中文字幕| 亚洲国产精品合色在线| 毛片女人毛片| 久久国产乱子伦精品免费另类| 一卡2卡三卡四卡精品乱码亚洲| 色吧在线观看| 人人妻人人看人人澡| 一个人免费在线观看电影 | 亚洲人成伊人成综合网2020| 一a级毛片在线观看| 天堂网av新在线| 亚洲性夜色夜夜综合| 成年版毛片免费区| 久久久国产成人免费| 村上凉子中文字幕在线| 国产aⅴ精品一区二区三区波| 九色成人免费人妻av| 熟妇人妻久久中文字幕3abv| 免费观看的影片在线观看| 国产乱人视频| 99久久综合精品五月天人人| 88av欧美| 免费在线观看视频国产中文字幕亚洲| 麻豆av在线久日| 国内少妇人妻偷人精品xxx网站 | 久久中文看片网| 中文字幕高清在线视频| 狠狠狠狠99中文字幕| 欧美日韩综合久久久久久 | 欧美日韩黄片免| 中文字幕精品亚洲无线码一区| 亚洲成人中文字幕在线播放| 国产在线精品亚洲第一网站| 免费观看人在逋| 国产亚洲精品久久久久久毛片| 女警被强在线播放| 久久国产乱子伦精品免费另类| 最新美女视频免费是黄的| 国产av不卡久久| 亚洲自偷自拍图片 自拍| 国产成人影院久久av| 此物有八面人人有两片| 国产成人啪精品午夜网站| 亚洲中文av在线| 天天一区二区日本电影三级| 给我免费播放毛片高清在线观看| 神马国产精品三级电影在线观看| 国产av一区在线观看免费| 一个人免费在线观看的高清视频| 日韩精品中文字幕看吧| 久久九九热精品免费| 国产成人系列免费观看| 国产精品一区二区免费欧美| 99国产综合亚洲精品| 黄色成人免费大全| 麻豆成人午夜福利视频| 最新中文字幕久久久久 | 他把我摸到了高潮在线观看| 亚洲成av人片在线播放无| www.www免费av| 国产三级在线视频| 亚洲av成人精品一区久久| 国产伦人伦偷精品视频| 黄色 视频免费看| 精品久久蜜臀av无| 九色成人免费人妻av| 亚洲午夜精品一区,二区,三区| 可以在线观看的亚洲视频| 男女做爰动态图高潮gif福利片| 一区二区三区国产精品乱码| 老鸭窝网址在线观看| 神马国产精品三级电影在线观看| 中文在线观看免费www的网站| 天天添夜夜摸| 中文亚洲av片在线观看爽| xxxwww97欧美| 五月玫瑰六月丁香| 久久久久国产精品人妻aⅴ院| 在线观看免费午夜福利视频| 一区福利在线观看| 天堂av国产一区二区熟女人妻| 亚洲五月天丁香| 亚洲专区中文字幕在线| 亚洲欧洲精品一区二区精品久久久| 久久中文字幕人妻熟女| 一区二区三区激情视频| 性欧美人与动物交配| АⅤ资源中文在线天堂| 色老头精品视频在线观看| 在线观看日韩欧美| 国产免费av片在线观看野外av| 欧美乱码精品一区二区三区| 男人的好看免费观看在线视频| 97人妻精品一区二区三区麻豆| 亚洲欧美日韩高清在线视频| 欧美成人性av电影在线观看| 91字幕亚洲| 国产aⅴ精品一区二区三区波| 黄频高清免费视频| 午夜福利高清视频| 精品久久久久久久久久久久久| 日韩欧美免费精品| 国产高清视频在线播放一区| www.熟女人妻精品国产| 精品国产乱码久久久久久男人| 亚洲中文字幕一区二区三区有码在线看 | 国产爱豆传媒在线观看| 伦理电影免费视频| 搡老妇女老女人老熟妇| 久久久久久人人人人人| 中文字幕最新亚洲高清| 国产高清有码在线观看视频| 日韩人妻高清精品专区| 级片在线观看| 欧美成人性av电影在线观看| 国产精品久久久久久亚洲av鲁大| 亚洲在线自拍视频| a级毛片在线看网站| 少妇人妻一区二区三区视频|