• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-phase-field simulation of austenite peritectic solidification based on a ferrite grain*

    2021-01-21 02:08:48ChaoYang楊超JingWang王靜JunshengWang王俊升YuLiu劉瑜GuominHan韓國民HaifengSong宋海峰andHoubingHuang黃厚兵
    Chinese Physics B 2021年1期
    關(guān)鍵詞:楊超劉瑜王靜

    Chao Yang(楊超), Jing Wang(王靜), Junsheng Wang(王俊升), Yu Liu(劉瑜),Guomin Han(韓國民), Haifeng Song(宋海峰),, and Houbing Huang(黃厚兵),?

    1School of Materials Science and Engineering,Beijing Institute of Technology,Beijing 100081,China

    2Advanced Research Institute of Multidisciplinary Science,Beijing Institute of Technology,Beijing 100081,China

    3Laboratory of Computational Physics,Institute of Applied Physics and Computational Mathematics,Beijing 100088,China

    4Software Center for High Performance Numerical Simulation,China Academy of Engineering Physics,Beijing 100088,China

    Keywords: multi-phase-field simulation,morphology evolution,peritectic solidification,carbon diffusion,Fe-C alloy

    1. Introduction

    As a typical non-equilibrium process, the peritectic solidification of Fe-C alloy involves the multi-phase interactions between ferrite (δ phase), austenite (γ phase), and liquid (L phase), and the carbon diffusion plays an important role in these non-equilibrium phase transformations.[1–3]The microstructure morphology and the carbon micro-segregation formed during this peritectic solidification can affect the subsequent solid state phase transformation, which in turn influences the material properties. However, the study on mesoscopic Fe-C peritectic solidification is limited on the one hand by the complexity of analyzing the non-equilibrium dynamic system,and on the other hand by the difficulty of hightemperature in situ experiments. The physical model coupled with the multi-phase field and the carbon concentration field can be used to simulate the non-equilibrium process at mesoscopic scale, which provides an approach to understand the dynamic mechanism of morphology and micro-segregation evolution.[4–6]

    The multi-phase field model can reveal the interaction mechanism of δ,γ,and L phases by simulating the movement of diffuse interface and the redistribution/diffusion of carbon at the interface region. The peritectic solidification of Fe-C alloy includes three kinds of interfaces,namely,δ–γ,δ–L,and γ–L interfaces, respectively. Based on the Gibbs–Thomson effect,the movement of these interfaces is driven by the local interface curvature and the driving forces of the phase transformations,where the driving forces ΔG include ΔGδ→γ,ΔGL→δ,and ΔGL→γ.The interface curvature effect is an inherent property of the phase-field method,[7]and the driving forces can be calculated by the Kim–Kim–Suzuki(KKS)model.[5,8,9]In addition,the redistribution/diffusion of carbon can be simulated by the diffusion equation,which is solved in conjunction with the interface dynamics equation derived by the multi-phase field. Through the above-mentioned simulation of interface movement and carbon redistribution/diffusion, the peritectic solidification simulation of Fe-C alloy can be achieved.[10–12]

    In recent years,experimental methods and numerical simulations are used to study the Fe-C peritectic solidification process. According to in-situ experiment, Yasuda et al.[13]explored the dendrite fragmentation induced by massive-like δ–γ transformation in Fe-C alloy, which illustrated the dendrite arm fragmentation mechanism during the peritectic solidification. Yang et al.[9,14,15]applied the multi-phase field method to study the peritectic solidification of Fe-C alloy based on dendritic and polycrystalline ferrite, which clarified the morphology evolution mechanism. Fan et al.[16]used a cellular automaton model to simulate the peritectic transformation of Fe-C system,compared the simulation results with the experimental measurements,and presented analytical predictions for the growth kinetics of the austenite and the concentration distributions. Although these works partially reveal the kinetic mechanism of the Fe-C peritectic solidification process,a deep understanding of the austenite nucleation and growth process based on ferrite equiaxed crystal grain remains lacking.

    In the present work,a multi-phase field and a carbon concentration field are introduced for the numerical simulation of Fe-C peritectic solidification. The nucleation and growth of γ phase is based on the existing δ phase equiaxed grain, and two sets of initial conditions with different thicknesses of primary γ phase are applied to explore the evolution of morphology and carbon segregation. Not only the influence of γ phase nucleation on the subsequent microstructure morphology and carbon distribution is discussed in this article,but also the formation mechanism of liquid phase channels and molten pools is revealed. The present work is useful for understanding the dynamic mechanism of the peritectic solidification of Fe-C alloy.

    2. Methods

    For the simulation of Fe-C peritectic solidification,multiphase field and carbon concentration filed are necessary for tracking the movement of the diffuse interfaces and calculating the redistribution/diffusion of carbon. The order parameters of the multi-phase field can be marked as φδ,φγ,and φL,which can be considered as the volume fractions of δ, γ, and L phases. As expressed by Eq.(1),the governing equation of those three order parameters is used to calculate the dynamic evolution of the interface and phase distribution, which follows the basic form of the Allen–Cahn equation.[17]Since the sum of the three phase volume fractions is one,equation(2)as a constraint is an important supplement to Eq.(1). In addition,the variable of the carbon concentration field can be marked as C,which can be expressed in the mole fraction.Equation(4)is the governing equation of this concentration field,which is applied to calculate the carbon redistribution/diffusion process.As a dynamic equation of the conserved field, equation (4)follows the form of Cahn–Hilliard equation.

    According to the Gibbs–Thomson effect, two key factors determine the interface movement. One is the interface curvature, the other is the driving force of phase transformation.[18,19]The gradient energy terms and the barrier energy term in Eq. (1) are related to the calculation of the local interface curvature,and the driving force term in this phase-field equation introduces the driving force into the interface dynamics process.[5,7]The driving force ΔG in Eq.(1)can be calculated from the local phase composition cα, and the related methods can refer to the parabolic approximation scheme of KKS model.[8,9]The carbon diffusion equation expressed by Eq.(4)is also based on the local phase composition cα. This equation can not only calculate the carbon diffusion in different phases with different kinetic coefficients,but also achieve the simulation of carbon redistribution at the interface region.

    where α,β,θ indicate the different phases and n is the quantity of total phases.Concretely,n=3 and α,β,θ represent the δ,γ,and L phases of the Fe-C system. φ is the order parameter of the phase field. M is the kinetic coefficient of the phase field. ε is the gradient energy coefficient. H is the barrier energy of the double-well function. ΔG is the driving force of phase transformation, which can be calculated from the local order parameter and carbon concentration by KKS model.[9]η is the noise term. fαis the free energy density function of the α phase.cαis the phase composition of carbon in α phase,which is derived from the KKS model.[9]C is the concentration of carbon. Dαis the diffusion coefficient of carbon in α phase.

    For the numerical simulation, we apply an explicit finite difference algorithm based on a distributed memory parallel system to solve the above equations, and a Fortran program with MPI (Message Passing Interface) library is designed for the calculation.[20]For each calculation task, 40 parallel threads are called by the parallel system. The memory requirement of each thread is about 100 MB,and it takes about 3 hours of CPU time to complete each calculation task. The mesh scale of the simulation is 2200×2200, and the spatial step size is one-sixth of the interface width of the phase field.The number of time iterations is 36000. The physical parameters used in the simulation have been listed in the previous article.[14,21]

    3. Results and discussion

    The peritectic solidification of Fe-C alloy involves existing L phase and δ phase,as well as the subsequent γ phase. In order to study the three-phase interactions,a δ phase equiaxed grain is first produced in the L phase, and then the γ phase nucleates on the δ–L interface. As the Fe-C phase diagram shown in Fig.1,the initial mole fraction of carbon in L phase is set as 0.01, and the solidification temperature 1750 K is slightly lower than the peritectic temperature.[22]At this concentration and temperature point, γ phase is the most stable phase. Based on the above initial concentration and constant temperature,the δ phase first grows into an equiaxed grain in the L phase,and the carbon distribution around this equiaxed grain is non-uniform. Due to the solute distribution and diffusion,the carbon concentration is higher at the dendrite gaps and lower at the dendrite tips. And the carbon concentration at the δ–L interface region determines the local driving forces ΔGL→γand ΔGα→γ, which in turn influence the nucleation of the γ phase. For the study of peritectic solidification, the nucleation of γ phase is necessary to be introduced in the simulation.

    Fig.1.Phase diagram of peritectic region in Fe-C system.The red,blue,and green lines present the equilibrium concentration of δ–γ phases,δ–L phases,and γ–L phases,respectively. And the dotted lines are the metastable extensions of two-phase equilibrium.

    At the δ–L interface region, the driving force from the L phase to γ phase ΔGL→γis calculated to be greater than the driving force from the δ phase to γ phase ΔGα→γ, which makes ΔGL→γa key criterion for the heterogeneous nucleation of γ phase. According to the local distribution of carbon concentration and order parameter,we introduce a nucleation mode to produce γ phase on the surface of the δ phase equiaxed grain,where the thickness of the primary γ phase is proportional to the local driving force ΔGL→γ. The setting details and techniques of this γ phase heterogeneous nucleation can be found in previous articles.[14,15]Although the relative thickness of the primary γ phase depends on the local driving force, the setting of this nucleation mode still requires artificial parameters to determine the absolute thickness. In order to reveal the influence of different thickness of the primary γ phase,two sets of initial conditions are applied in the simulations. In the first case,the maximum thickness of the primary γ phase is six times the interface width of the phase field,and the maximum thickness appears at the tip of the dendrite with a lower carbon concentration. For comparison,the maximum thickness of the primary γ phase in the second case is half of that in the first case. In addition,periodic boundary conditions are used in both sets of simulations.

    Based on the aforementioned mode of γ phase nucleation,the simulation reveals the dynamic process of order parameters and carbon concentration at the mesoscopic scale, which respectively represent the evolution of phase morphology and carbon segregation. Figures 2(a) and 2(e) show the initial phase field and concentration field, respectively. Based on the driving force calculated by the local carbon concentration,the γ phase preferentially nucleates at the tips of the dendrites and grows toward the L phase by solidification L →γ,which makes the carbon-rich L phase in the dendrite gaps evolve into liquid phase channels.[23]At the δ–γ interface, the previously formed δ phase transforms into γ phase through peritectic transformation δ →γ,but this process is slower than the solidification of γ phase. In the original secondary dendrite gaps, the δ phase slowly solidifies toward the carbon-rich L phase,and this process L →δ is controlled by the diffusion of solute carbon through the liquid phase channel and the solid phase region. In addition, the peritectic reaction L+δ →γ that occurs at the three-phase coexistence regions is not significant, because the carbon concentration at these regions is generally high. The phase-field evolution shown in Figs.2(a)–2(d) reveals that the γ phase gradually encloses the δ phase and partially blocks the liquid channels, which makes these liquid channels become carbon-rich molten pools. The evolution of the carbon concentration field shown in Figs.2(e)–2(h)reveals the redistribution of carbon at the solid–liquid interface region and the controlling effect of carbon diffusion on the phase transformations. Moreover, this micro-segregation of carbon can be used to analyze the evolution history of peritectic solidification. For example,some liquid phase channels and molten pools that have been solidified can still be traced from the carbon-rich regions, and the original δ phase distribution can be identified from the low-carbon areas.

    Fig.2. The dynamic process of phase morphology and carbon segregation. (a)–(d)The evolution of phase field; and(e)–(h)the evolution of carbon concentration. The red, blue, and green regions in (a)–(d) represent the distribution of δ, γ, and L phases, respectively. And the hue from blue to red represents the change in carbon concentration(mole fraction)from 0.0045 to 0.0400,which can be referred to the color scale bar on the right. Panels (a) and (e) show the initial fields of the simulation, and the maximum thickness of the primary γ phase in (a) is six times the interface width of the phase field.

    Fig.3. The dynamic process of phase morphology and carbon segregation. The color representation of each phase and the color scale bar of the carbon concentration(mole fraction)are the same as those in Fig.2. As the initial conditions,the maximum thickness of primary γ phase in(a)is three times the interface width of phase field,which is half of that in Fig.2(a).

    The initial heterogeneous nucleation of the γ phase can affect the phase morphology and carbon distribution during peritectic solidification. As shown in Fig. 3, the maximum thickness of the primary γ phase is half of that in Fig.2,which means that the initial conditions of Figs. 2(a) and 3(a) are slightly different. Comparing Fig. 2(b) with Fig. 3(b), when the evolution time is 12000 steps,the δ phase cannot be completely enclosed by γ phase in Fig. 3(b) because some secondary dendrites grow up on both sides of the tip of the δ phase primary dendrite. When the evolution time is 24000 steps,the γ phase in Fig.3(c)completely encloses the δ phase equiaxed grain and produces more liquid phase channels than the case in Fig. 2(c). As shown in Figs. 2(d) and 3(d), the contours of the γ–L interface are similar, but the distribution forms of the δ phase and γ phase are different. Compared with Fig. 2(d), the tips of the primary dendrites of δ phase in Fig. 3(d) become flatter, and the total volume of δ phase in Fig. 3(d) is also larger. Moreover, the evolution processes of carbon concentration in Figs.2 and 3 are slightly different.Due to the solidification of the δ phase secondary dendrites shown in Figs.3(b)and 3(f), the carbon content in the newly formed δ phase is lower,which changes the micro-segregation of carbon at a smaller scale and affects the local driving forces and thus the morphology of the peritectic transformation.

    In order to present the carbon distribution in different phases, the order parameters and carbon concentration along the directional lines in Figs. 2 and 3 are shown in Fig. 4.Specifically,figures 4(a)and 4(c)correspond to the horizontal lines in Figs.2 and 3,respectively. At the interval(0,780),the δ phase,L phase,and γ phase appear alternately due to crossing the molten pools and the liquid phase channels. Among these three phases, the carbon mole fraction of the L phase is the highest, about 0.035. The difference in carbon content between δ phase and γ phase is small. And this is because the diffusion coefficient of the solid phase is relatively small,making it difficult to achieve carbon redistribution at the δ–γ interface region. The γ–L interface appears at about x=790 in both Figs.4(a)and 4(c),where the solidification of γ phase occurs. The redistribution of carbon during the solidification makes the carbon be enriched in the L phase and diffuse into the deep region of the L phase, resulting in the formation of a stable carbon diffusion zone in the liquid phase close to the γ–L interface. This carbon diffuse zone determines the driving force ΔGL→γat the γ–L interface region,which makes the carbon diffusion a controlling factor for interface movement.

    Figures 4(b) and 4(d) correspond to the diagonal lines in Fig. 2 and 3, respectively. These sections do not cross the molten pools and the liquid phase channels, therefore the phase and carbon concentration distribution are simpler than the case in Figs. 4(a) and 4(c). Similarly, there is little difference in carbon concentration between δ phase and γ phase,and there is a diffusion zone close to the γ–L interface at about x/Δx=1130.The carbon concentration in the γ phase changes at about x/Δx=780,because part of the γ phase comes from the L phase by solidification,and the other part comes from the δ phase by peritectic transformation. And it can be concluded that the initial δ–L interface is located at x/Δx=780. In addition, the volume of δ phase in Fig. 4(d) is larger than that in Fig. 4(b), which is also revealed by the phase morphology in Figs.3(d)and 2(d). In Figs.4(b)and 4(d),the point around x/Δx=760 is the position of the original δ–L interface,which is also the position of the initial δ–γ interface when the γ phase nucleates. The carbon partition coefficients of δ–L interface and δ–γ interface are different,which causes the concentration fluctuation at this location.

    Fig.4. The order parameters and carbon concentration distribution along the directional lines of Figs.2(d),2(h),3(d),and 3(h). Panels(a)and(b)show the cross sections along the horizontal and diagonal lines in Fig.2,respectively. Panels(c)and(b)show the cross sections in Fig.3,which are at the same position as in Fig.2. In each panel,the red,blue,and green lines present the volume fractions(order parameters)of δ phase,γ phase,and L phase,respectively. And the black line presents the distribution of carbon concentration.

    4. Conclusion

    In short, a multi-phase field model is implemented to study the peritectic solidification of Fe-C alloy. The simulation is based on the γ phase nucleation on the surface of the existing δ phase equiaxed grain, and the initial carbon distribution around the δ phase grain makes the γ phase preferentially nucleate at the tips of the dendrites. Two different thicknesses of γ phase are used as the initial conditions to reveal the influence of the γ phase nucleation position. The simulation not only shows the interaction of the δ phase,γ phase,and L phase at the mesoscopic scale,but also presents the controlling effect of the carbon diffusion on phase transformations. The formation and evolution mechanism of liquid phase channels and molten pools are clarified in this work, and the different thicknesses of the primary γ phase can affect the final phase morphology and carbon segregation. Therefore, the present work contributes to the understanding of the evolution mechanism of micro-morphology and micro-segregation during Fe-C peritectic solidification.

    猜你喜歡
    楊超劉瑜王靜
    漢江春曉
    南風(2021年32期)2021-12-31 05:57:16
    The Management Methods And Thinking Of Personnel Files
    客聯(lián)(2021年9期)2021-11-07 19:21:33
    Clinical observation of heat-sensitive moxibustion for acute ischemic stroke
    守護生命之水,一家三代水庫人的堅守與傳承
    Comparison Principle of Very Weak Solutions for Nonhomogeneous Elliptic Equations
    The Development of Contemporary Oil Painting Art
    青年生活(2019年16期)2019-10-21 01:46:49
    劉瑜,走上“平凡之路”
    Income Inequality in Developing Countries
    商情(2017年17期)2017-06-10 12:27:58
    Let it Go隨它吧
    Comparison of Passive Conrrol Merhods on Caviry Aeroacousric Using Delayed Derached Eddy Simularion
    色视频www国产| 久久久久久久久久人人人人人人| 乱系列少妇在线播放| 亚洲伊人久久精品综合| 日韩国内少妇激情av| 建设人人有责人人尽责人人享有的 | 亚洲真实伦在线观看| 国产高清三级在线| 麻豆精品久久久久久蜜桃| 国产亚洲最大av| 亚洲熟女精品中文字幕| 欧美最新免费一区二区三区| 国产精品久久久久久精品古装| 久久6这里有精品| 五月伊人婷婷丁香| 亚洲在久久综合| 久久99热6这里只有精品| 97在线视频观看| 午夜福利网站1000一区二区三区| 少妇精品久久久久久久| 最近的中文字幕免费完整| 日韩欧美精品免费久久| 一本色道久久久久久精品综合| 大陆偷拍与自拍| 欧美高清性xxxxhd video| 狂野欧美激情性xxxx在线观看| 欧美精品一区二区大全| 亚洲人成网站高清观看| 嫩草影院新地址| 欧美精品一区二区免费开放| 一级毛片aaaaaa免费看小| 日本爱情动作片www.在线观看| 国产黄频视频在线观看| 人人妻人人看人人澡| 精品人妻熟女av久视频| 精品久久国产蜜桃| 在线看a的网站| 热re99久久精品国产66热6| 搡老乐熟女国产| 中文字幕av成人在线电影| 久久国产精品男人的天堂亚洲 | 大话2 男鬼变身卡| 欧美人与善性xxx| 欧美日本视频| 国产精品蜜桃在线观看| 日本黄色片子视频| 狂野欧美激情性bbbbbb| 午夜老司机福利剧场| 成人18禁高潮啪啪吃奶动态图 | 久久毛片免费看一区二区三区| 亚洲精品成人av观看孕妇| 毛片女人毛片| 下体分泌物呈黄色| 一级黄片播放器| 成人二区视频| 麻豆精品久久久久久蜜桃| 最近的中文字幕免费完整| 最后的刺客免费高清国语| 在现免费观看毛片| 国产精品嫩草影院av在线观看| 中文乱码字字幕精品一区二区三区| 精品久久久精品久久久| 搡老乐熟女国产| 在线观看国产h片| 国产视频首页在线观看| 免费av中文字幕在线| 欧美国产精品一级二级三级 | 亚洲精品国产av蜜桃| 久久人人爽人人片av| 99久国产av精品国产电影| 亚洲精品日本国产第一区| 亚洲精品国产av成人精品| 啦啦啦在线观看免费高清www| 日韩中文字幕视频在线看片 | 六月丁香七月| 免费观看无遮挡的男女| 久久99热这里只频精品6学生| 伦理电影免费视频| 各种免费的搞黄视频| 亚洲av国产av综合av卡| 人人妻人人澡人人爽人人夜夜| 精品亚洲成a人片在线观看 | 国产精品偷伦视频观看了| 亚洲精品自拍成人| 亚洲精品亚洲一区二区| 男女边摸边吃奶| 男的添女的下面高潮视频| 纵有疾风起免费观看全集完整版| 91久久精品电影网| 亚洲欧美一区二区三区黑人 | 成人一区二区视频在线观看| 中文字幕久久专区| 免费黄色在线免费观看| 久久久久久久精品精品| 亚州av有码| 国产亚洲5aaaaa淫片| 国产乱来视频区| 一级a做视频免费观看| 日韩欧美 国产精品| 熟妇人妻不卡中文字幕| 久久久久精品性色| 亚洲成人手机| 激情五月婷婷亚洲| 日韩精品有码人妻一区| 纵有疾风起免费观看全集完整版| 不卡视频在线观看欧美| 18禁动态无遮挡网站| 国产片特级美女逼逼视频| 搡老乐熟女国产| 日韩伦理黄色片| 日韩人妻高清精品专区| 黄色日韩在线| 99热这里只有精品一区| 国产老妇伦熟女老妇高清| 日本爱情动作片www.在线观看| 九色成人免费人妻av| 久久精品久久久久久噜噜老黄| 国产在线视频一区二区| 久久国产精品男人的天堂亚洲 | 久久鲁丝午夜福利片| 韩国高清视频一区二区三区| 欧美成人一区二区免费高清观看| 多毛熟女@视频| 午夜激情久久久久久久| 亚洲精品色激情综合| 亚洲av成人精品一二三区| 美女主播在线视频| 久久国产乱子免费精品| 亚洲精品视频女| 亚洲精品aⅴ在线观看| 国产成人精品福利久久| 成人午夜精彩视频在线观看| 中文在线观看免费www的网站| 亚洲精品中文字幕在线视频 | 中国美白少妇内射xxxbb| 亚洲av综合色区一区| 大香蕉97超碰在线| 午夜福利视频精品| 一级毛片久久久久久久久女| 有码 亚洲区| 日韩中文字幕视频在线看片 | 欧美另类一区| 国产成人91sexporn| 日本午夜av视频| 日本-黄色视频高清免费观看| 免费大片黄手机在线观看| 青春草视频在线免费观看| 亚洲人成网站在线播| 亚洲av综合色区一区| 最近2019中文字幕mv第一页| 国产精品精品国产色婷婷| 又粗又硬又长又爽又黄的视频| 一区在线观看完整版| 欧美精品一区二区大全| 国产白丝娇喘喷水9色精品| 国产成人一区二区在线| 免费人成在线观看视频色| 精品99又大又爽又粗少妇毛片| 简卡轻食公司| 青青草视频在线视频观看| 五月玫瑰六月丁香| 国内揄拍国产精品人妻在线| 亚洲av中文av极速乱| 日本免费在线观看一区| 大香蕉久久网| 中文字幕免费在线视频6| 国产片特级美女逼逼视频| 能在线免费看毛片的网站| 欧美xxxx黑人xx丫x性爽| 国产精品熟女久久久久浪| 插阴视频在线观看视频| 下体分泌物呈黄色| 美女高潮的动态| 久久久久久人妻| 日日啪夜夜爽| 午夜激情福利司机影院| 毛片女人毛片| 插阴视频在线观看视频| 99久国产av精品国产电影| 一区二区三区四区激情视频| 国产男女内射视频| 中国三级夫妇交换| 亚洲第一区二区三区不卡| 黄色配什么色好看| 久久久久久久久久成人| 亚洲人成网站在线观看播放| 精品亚洲成a人片在线观看 | 熟妇人妻不卡中文字幕| 国产精品一区www在线观看| 久久国内精品自在自线图片| 日本av手机在线免费观看| 日韩强制内射视频| 日本vs欧美在线观看视频 | 一个人免费看片子| 国产亚洲一区二区精品| 亚洲国产色片| 国产精品久久久久成人av| 国产免费一区二区三区四区乱码| 在线观看美女被高潮喷水网站| 我要看日韩黄色一级片| 国产精品三级大全| 午夜激情久久久久久久| 各种免费的搞黄视频| 久久精品久久久久久噜噜老黄| 3wmmmm亚洲av在线观看| 亚洲熟女精品中文字幕| 国产黄频视频在线观看| 久久99精品国语久久久| 男女边摸边吃奶| 午夜福利高清视频| 国产av码专区亚洲av| 国产午夜精品一二区理论片| 国产乱人偷精品视频| 成人美女网站在线观看视频| 啦啦啦啦在线视频资源| 少妇熟女欧美另类| 欧美xxxx性猛交bbbb| 丝袜脚勾引网站| 国产精品嫩草影院av在线观看| 99久国产av精品国产电影| 国产精品熟女久久久久浪| 色婷婷久久久亚洲欧美| 一本一本综合久久| 青青草视频在线视频观看| 成人影院久久| 成人特级av手机在线观看| 97在线视频观看| 亚洲aⅴ乱码一区二区在线播放| 成年人午夜在线观看视频| 97热精品久久久久久| 精品人妻熟女av久视频| 中文字幕免费在线视频6| 精品一区二区三卡| 国产精品一区二区三区四区免费观看| 欧美激情极品国产一区二区三区 | 国产精品秋霞免费鲁丝片| 深夜a级毛片| 国产精品秋霞免费鲁丝片| www.色视频.com| 各种免费的搞黄视频| 麻豆国产97在线/欧美| 成人影院久久| 午夜免费鲁丝| 毛片一级片免费看久久久久| 欧美xxxx黑人xx丫x性爽| 一本一本综合久久| 国产一级毛片在线| 久久国产精品男人的天堂亚洲 | 丝袜喷水一区| 99re6热这里在线精品视频| 久久毛片免费看一区二区三区| 久热这里只有精品99| 夜夜爽夜夜爽视频| 高清在线视频一区二区三区| 99热这里只有是精品50| 国产免费又黄又爽又色| 男人添女人高潮全过程视频| 日韩欧美一区视频在线观看 | 国产 一区精品| 美女主播在线视频| 少妇人妻 视频| 久久久成人免费电影| 一本—道久久a久久精品蜜桃钙片| 国产精品av视频在线免费观看| 亚洲欧美一区二区三区黑人 | 女性被躁到高潮视频| 最近的中文字幕免费完整| 熟女人妻精品中文字幕| 简卡轻食公司| 中文精品一卡2卡3卡4更新| 日韩制服骚丝袜av| 丰满人妻一区二区三区视频av| 亚洲精品乱久久久久久| 日韩中文字幕视频在线看片 | 在现免费观看毛片| 国产人妻一区二区三区在| 简卡轻食公司| 国产无遮挡羞羞视频在线观看| 18禁动态无遮挡网站| 国产深夜福利视频在线观看| 一个人免费看片子| 国产午夜精品一二区理论片| 国产成人一区二区在线| 欧美区成人在线视频| 亚洲av二区三区四区| 婷婷色麻豆天堂久久| 自拍欧美九色日韩亚洲蝌蚪91 | 在线天堂最新版资源| 亚洲精品亚洲一区二区| 少妇人妻 视频| 五月伊人婷婷丁香| 一本色道久久久久久精品综合| 成人特级av手机在线观看| 亚洲欧美日韩卡通动漫| 观看美女的网站| 天天躁日日操中文字幕| 老司机影院成人| 亚洲精品成人av观看孕妇| 国产精品蜜桃在线观看| 观看免费一级毛片| 国产精品国产av在线观看| www.av在线官网国产| av.在线天堂| 免费高清在线观看视频在线观看| 又大又黄又爽视频免费| 日韩大片免费观看网站| 精品一区在线观看国产| 少妇人妻久久综合中文| 大片电影免费在线观看免费| 免费久久久久久久精品成人欧美视频 | 亚洲精品乱码久久久v下载方式| 国产日韩欧美亚洲二区| 另类亚洲欧美激情| 国产毛片在线视频| 美女脱内裤让男人舔精品视频| 在线观看av片永久免费下载| 这个男人来自地球电影免费观看 | 中文天堂在线官网| 亚洲精品日韩av片在线观看| 十分钟在线观看高清视频www | 国国产精品蜜臀av免费| 日本av手机在线免费观看| 看十八女毛片水多多多| 少妇高潮的动态图| 91aial.com中文字幕在线观看| 黑人猛操日本美女一级片| 中文字幕精品免费在线观看视频 | 久久 成人 亚洲| 美女高潮的动态| 中文资源天堂在线| 久久久午夜欧美精品| 有码 亚洲区| 国产淫片久久久久久久久| 国产色爽女视频免费观看| 性高湖久久久久久久久免费观看| av免费观看日本| 亚洲综合精品二区| 九九爱精品视频在线观看| 在线精品无人区一区二区三 | 99久国产av精品国产电影| 国产乱人偷精品视频| 网址你懂的国产日韩在线| 国产真实伦视频高清在线观看| 国产精品爽爽va在线观看网站| 丝袜脚勾引网站| 精品一区二区三卡| 欧美xxⅹ黑人| 亚洲精品乱久久久久久| 丰满少妇做爰视频| 欧美成人午夜免费资源| 不卡视频在线观看欧美| 街头女战士在线观看网站| 在线观看国产h片| 97精品久久久久久久久久精品| 国产免费又黄又爽又色| 天堂中文最新版在线下载| 国产精品一及| 欧美成人a在线观看| 久久久久久人妻| 少妇高潮的动态图| 日韩精品有码人妻一区| 久久97久久精品| 一级av片app| 日本欧美国产在线视频| 国产高清三级在线| 男女免费视频国产| 精品午夜福利在线看| 日韩亚洲欧美综合| 精品久久久噜噜| 身体一侧抽搐| 国产男女内射视频| 久久久久国产精品人妻一区二区| 国产又色又爽无遮挡免| 精品人妻视频免费看| 久久 成人 亚洲| av在线app专区| 天堂中文最新版在线下载| 男女边吃奶边做爰视频| 丝瓜视频免费看黄片| 制服丝袜香蕉在线| 亚洲精品国产成人久久av| 精品亚洲成国产av| 日本午夜av视频| av女优亚洲男人天堂| 女性生殖器流出的白浆| 国产视频首页在线观看| 久久久a久久爽久久v久久| 哪个播放器可以免费观看大片| 久久人人爽人人片av| 亚洲国产日韩一区二区| 欧美国产精品一级二级三级 | videos熟女内射| 国产亚洲5aaaaa淫片| 99久久精品国产国产毛片| 人妻制服诱惑在线中文字幕| 多毛熟女@视频| 国产色爽女视频免费观看| 国产一区二区在线观看日韩| 亚洲精品成人av观看孕妇| 永久网站在线| 国产精品久久久久久av不卡| 日韩视频在线欧美| 亚洲伊人久久精品综合| 欧美丝袜亚洲另类| 成人亚洲精品一区在线观看 | 国产乱来视频区| 一个人看的www免费观看视频| 国产亚洲91精品色在线| 99久久人妻综合| 久久国产乱子免费精品| a 毛片基地| 免费观看av网站的网址| 久久 成人 亚洲| 99re6热这里在线精品视频| 伦理电影免费视频| 久久国产精品男人的天堂亚洲 | 国产视频首页在线观看| 中文在线观看免费www的网站| 99热国产这里只有精品6| 国产乱来视频区| 亚洲精品乱码久久久久久按摩| 亚洲综合精品二区| 大香蕉久久网| 成人漫画全彩无遮挡| 男人添女人高潮全过程视频| 国产伦精品一区二区三区视频9| 天堂俺去俺来也www色官网| 久久人妻熟女aⅴ| 国产成人a∨麻豆精品| 欧美日本视频| 国产国拍精品亚洲av在线观看| 熟妇人妻不卡中文字幕| 只有这里有精品99| 简卡轻食公司| 肉色欧美久久久久久久蜜桃| 91精品伊人久久大香线蕉| 日韩在线高清观看一区二区三区| 中国三级夫妇交换| 中文字幕免费在线视频6| 久久精品人妻少妇| 大香蕉97超碰在线| 亚洲国产日韩一区二区| 噜噜噜噜噜久久久久久91| 国产色婷婷99| 18禁裸乳无遮挡动漫免费视频| 97在线人人人人妻| 只有这里有精品99| 久久精品夜色国产| 欧美日韩一区二区视频在线观看视频在线| 一级毛片电影观看| 蜜桃久久精品国产亚洲av| 欧美区成人在线视频| 久久 成人 亚洲| 亚洲最大成人中文| 深爱激情五月婷婷| 国产成人午夜福利电影在线观看| 亚洲美女视频黄频| 欧美日韩视频高清一区二区三区二| 国产成人a区在线观看| 在线观看一区二区三区| 99热6这里只有精品| 中文天堂在线官网| 免费观看的影片在线观看| 日韩国内少妇激情av| 91久久精品国产一区二区三区| 精品亚洲成a人片在线观看 | 女性被躁到高潮视频| 国产精品一区二区三区四区免费观看| 日韩强制内射视频| 国产淫语在线视频| 高清日韩中文字幕在线| 一级黄片播放器| 亚洲电影在线观看av| 午夜福利视频精品| 欧美日韩一区二区视频在线观看视频在线| 国产成人aa在线观看| 少妇人妻一区二区三区视频| 精品亚洲成a人片在线观看 | 国产成人精品福利久久| 亚洲av免费高清在线观看| 婷婷色麻豆天堂久久| 欧美极品一区二区三区四区| 亚洲国产欧美在线一区| 伦精品一区二区三区| 99久久综合免费| 两个人的视频大全免费| 男人狂女人下面高潮的视频| 亚洲一级一片aⅴ在线观看| 国产午夜精品一二区理论片| 91精品国产国语对白视频| 午夜福利在线观看免费完整高清在| 精品人妻熟女av久视频| 精品国产乱码久久久久久小说| 精品亚洲成国产av| 久久久久人妻精品一区果冻| 女人久久www免费人成看片| 国产精品嫩草影院av在线观看| 久久99精品国语久久久| 高清在线视频一区二区三区| 黑人猛操日本美女一级片| 黄色配什么色好看| 国产片特级美女逼逼视频| 欧美日韩在线观看h| videos熟女内射| 91久久精品国产一区二区三区| 亚洲中文av在线| 久久久久网色| av国产免费在线观看| 亚洲国产毛片av蜜桃av| 一级毛片久久久久久久久女| 国产有黄有色有爽视频| 久久99热6这里只有精品| www.色视频.com| av视频免费观看在线观看| 欧美zozozo另类| 国产精品一区二区性色av| 亚洲成人一二三区av| 中国三级夫妇交换| 亚洲性久久影院| 亚洲va在线va天堂va国产| 国产极品天堂在线| 极品少妇高潮喷水抽搐| 搡老乐熟女国产| 久久国产精品大桥未久av | h视频一区二区三区| 国产高清有码在线观看视频| 我的老师免费观看完整版| 久热久热在线精品观看| 韩国高清视频一区二区三区| 九九久久精品国产亚洲av麻豆| 久久这里有精品视频免费| 久久 成人 亚洲| 交换朋友夫妻互换小说| 狠狠精品人妻久久久久久综合| 国产国拍精品亚洲av在线观看| 亚洲欧美日韩东京热| 国产老妇伦熟女老妇高清| 婷婷色综合大香蕉| 成人一区二区视频在线观看| 一二三四中文在线观看免费高清| 亚洲av欧美aⅴ国产| 国产欧美日韩一区二区三区在线 | 日韩中字成人| 男女无遮挡免费网站观看| 国产av国产精品国产| 国产女主播在线喷水免费视频网站| 晚上一个人看的免费电影| 大片电影免费在线观看免费| 精品酒店卫生间| 水蜜桃什么品种好| 日本wwww免费看| 亚洲av中文字字幕乱码综合| 王馨瑶露胸无遮挡在线观看| 亚洲激情五月婷婷啪啪| 尤物成人国产欧美一区二区三区| 成人特级av手机在线观看| 黄色日韩在线| 三级国产精品片| 一本—道久久a久久精品蜜桃钙片| 91狼人影院| 美女cb高潮喷水在线观看| 深夜a级毛片| 欧美一级a爱片免费观看看| 国产黄片视频在线免费观看| 国产高潮美女av| 内地一区二区视频在线| 亚洲国产欧美人成| 波野结衣二区三区在线| 51国产日韩欧美| 精品久久久久久久久亚洲| 国产欧美日韩精品一区二区| 午夜福利视频精品| 亚洲精品久久久久久婷婷小说| 国产大屁股一区二区在线视频| 青青草视频在线视频观看| 男女免费视频国产| 99热这里只有精品一区| 狂野欧美激情性xxxx在线观看| 国产高清不卡午夜福利| 久久久久性生活片| 最近最新中文字幕免费大全7| 亚洲久久久国产精品| 免费观看的影片在线观看| 亚洲精品日韩av片在线观看| 精品一品国产午夜福利视频| 国产精品久久久久久av不卡| 午夜福利高清视频| 久久久久久久久久久丰满| 成人18禁高潮啪啪吃奶动态图 | 直男gayav资源| 舔av片在线| 亚洲欧美一区二区三区黑人 | 久久精品国产亚洲av涩爱| 一本一本综合久久| 日韩精品有码人妻一区| 日韩在线高清观看一区二区三区| 2021少妇久久久久久久久久久| 少妇被粗大猛烈的视频| av视频免费观看在线观看| 午夜福利影视在线免费观看| av国产免费在线观看| 亚洲人成网站在线观看播放| 春色校园在线视频观看| 最黄视频免费看| 国产成人午夜福利电影在线观看| 免费观看的影片在线观看| 99热国产这里只有精品6| 97超碰精品成人国产| 2021少妇久久久久久久久久久| 最新中文字幕久久久久| 久久亚洲国产成人精品v| 亚洲精品日本国产第一区| 亚洲国产av新网站| 国产精品99久久久久久久久| 国产精品99久久99久久久不卡 |