• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of carrier mobility on performance of perovskite solar cells?

    2019-04-13 01:14:56YiFanGu顧一帆HuiJingDu杜會(huì)靜NanNanLi李楠楠LeiYang楊蕾andChunYuZhou周春宇
    Chinese Physics B 2019年4期

    Yi-Fan Gu(顧一帆),Hui-Jing Du(杜會(huì)靜),Nan-Nan Li(李楠楠),Lei Yang(楊蕾),and Chun-Yu Zhou(周春宇)

    Key Laboratory for Microstructural Material Physics of Hebei Province,School of Science,Yanshan University,Qinhuangdao 066004,China

    1.Introduction

    Perovskite solar cells(PSCs)have attracted considerable attention in the past few years due to their rapid photovoltaic efficiency improvement,from 10%in 2012[1,2]to 23.2%in 2018.[3]The excellent photovoltaic performance of PSCs is ascribed to its excellent optoelectrical characteristics,such as high light absorption coefficient,[4,5]long carrier diffusion length,[6,7]high carrier mobility,[8,9]and long recombination lifetime.[9]The transportation of carriers from the absorber to charge transport layer and the collection of them by electrodes are key processes to determine the cell efficiency,hence carrier mobility is one of the significant factors affecting cell performance.The carrier mobility and diffusion length of perovskite crystal have reached to hundreds of cm2/V·s and hundreds ofμm respectively.However,can the higher mobility and the longer diffusion length lead to better PSCs’performance?Research has drawn different conclusions about the influence of carrier mobility[10–12]and diffusion length[10,13–15]on PSCs performance.Simulation studies based on one-dimensional simulation software SCAPS show that the diffusion length longer than 1μm and higher mobility of the carriers have no positive effect on the cell performance promotion,[13,15]and high mobility of the charge transport layer is also necessary for the high efficiency.[16,17]The influence of carrier mobility on the cell performance is restricted by other cell parameters,such as doping concentration,layer thickness,etc.In these papers,these factors were not considered as a whole.Carrier transportation can be enhanced if the parameters of the cell are well matched,and thus improve cell performance.Many experimental and theoretical studies of the mobility influence on the organic solar cells’performance demonstrated that there exists an optimal value of mobility for obtaining high efficiency organic cells.[18–21]While the systematic study of carrier mobility in PSCs is very rare,this would affect the best utilization of the excellent carriers’transportation characters of perovskite material to improve cell performance.To clarify these questions,we construct the device model and simulate the carrier transportation to understand the mechanism of carrier mobility influencing the cell performance.Our simulation study shows that the optimal mobility also exists in perovskite solar cells,and by matching the carrier mobility of the transportation layer and the absorption layer,the efficiency of perovskite solar cells can be enhanced.The optimized cells’structure with a diffusion length of nearly 1.9μm and the photovoltaic efficiency of 27.39%is obtained ultimately.

    2.Device model and simulation parameters

    In our previous research on lead-free perovskite solar cells,[22]we obtained an efficiency of 23.36%by optimizing the doping concentration,defect density and electron affinity of the buffer.To elucidate the mechanism of high carrier mobility and long diffusion length of the perovskite materials influencing the cell performance,our simulation is based on that previous optimized structure(glass substrate/TCO/buffer layer TiO2(ETM)/absorption layer CH3NH3SnI3/hole transport material(HTM)spiro-OMeTAD/metal back contact)to avoid the influence of other cell parameters.The parameters of that previous structure,serving as our initial simulation parameters,are listed in the following Table 1.The simulation principle,the cell architecture,and other simulation parameters selected for each layer can also be found from our previous studies.[22]

    Table 1.Simulation parameters and performances of device during optimization.The parameters in bold text are the optimal value during the optimization.

    The current density–voltage( J–V)characteristic curve of the cell with initial parameters is shown in Fig.1(curve 1).Short-circuit current density( Jsc)of 31.59 mA/cm2,opencircuit voltage(Voc)of 0.92 V, fill factor(FF)of 79.99%,and power conversion efficiency(PCE)of 23.36%are obtained.

    Fig.1. J–V curves of PSCs during optimization.

    Based on previous optimized structure,we further investigate the relation between the carrier mobility and the cell performance.Taking into account the influence of each layer on the performance of perovskite solar cells,the optimization process consists of four steps.The parameters of thickness,carrier mobility,and doping concentration are optimized in the absorber layer,HTM,and ETM layers in sequence at the first three steps.At the fourth step,the parameters of the absorber layer are re-optimized to realize the matching optimization of all the parameters.Experimental research has shown that the mobilityμis independent of charge carrier concentration of the perovskite absorber layer at lower concentrations(1016cm?3–1018cm?3).[23,24]

    3.Results and discussion

    3.1.Optimization of the absorption layer

    In this step,the relation of the mobility with the thickness and doping concentration of the absorber is investigated first based on the parameters of the initial cell in Table 1.Figures 2 and 3 illustrate the effects of mobility on the device performance under various absorber thickness values and doping concentrations.It can be seen that the optimal value of mobility(Figs.2(a)and 3(a))changes with the absorber thickness and doping concentration.At an optimal value of 5 cm2/V·s(1100 nm),the cell efficiency increases slightly from the initial 23.36%to 24.66%.With the enhancement of the mobility,the FF and the Jscincrease significantly,which is consistent with the experimental research in the literature.[19,25]When the carrier mobilityμ is smaller than 10 cm2/V·s,efficiency and Jscof the device first rise and then decreases with thickness increasing,and a moderate thickness of 800 nm is conducible to the improvement of efficiency, so we adopted an optimal thickness 600 nm of the absorption layer when μ was 2 cm2/V·s in our previous paper.[22]This is consistent with the experimental research that the absorber thickness is always about 700 nm,because the mobility of the polycrystalline perovskite film is always lower than 10 cm2/V·s.[3,26,27]When μ is higher than 10 cm2/V·s,the absorber thicker than 800 nm is more suitable to the obtaining of a higher efficiency,which is embodied with the significant increment of Jsc.The higher the thickness absorber layer,the more the generated photo-carriers is,and especially more longwaves can be absorbed.[28,29]This can be seen in the external quantum efficiency(QE)curve(Fig.4),where the QE at the longwave increases with the augmentation of the absorber thickness.

    Fig.2.Variations of(a)efficiency,(b)Voc,(c) Jsc,and(d)FF of PSCs with thickness and mobility of the first optimization of absorber.

    Fig.3.Variations of(a)efficiency,(b)Voc,(c) Jsc,and(d)FF of PSCs with doping concentration and mobility of the first optimization of absorber.

    Figure 3 illustrates the effects of mobility on the cell performance at various doping concentrations of the absorber layer based on the optimized absorber thickness of 800 nm obtained from Fig.2.The Jscand FF both increase with mobility increasing at different doping concentrations,especially the Jsccan be significantly augmented(Fig.3(c)).The obvious influence of mobility on Jsccan be observed when NAis higher than 1×1016cm?3.With a certain mobility,say,μ =6 cm2/V·s, Jscfirst increases with the augment of doping concentration and then decreases significantly with NAfurther increasing to 5×1016cm?3.This is because both Jscand recombination rate increase with the augment of doping concentration.Mobility can surmount the contradiction between high Jscand high recombination rate caused by the high doping concentration.Recombination can be weakened through good transportation performance of perovskite material with high mobility,which would be explained in the paper in the last simulation step(see Fig.11).The optimal value of mobility gradually decreases with NAincreasing,thus lowering the negative effect of the doping concentration increment(see Fig.3(a)).Moderate doping concentration(5×1015cm?3≤NA<1×1016cm?3)is beneficial to the improvement of efficiency forμ >10 cm2/V·s.

    Fig.4.Curves of external quantum efficiency versus wavelength of PSCs during optimization.

    This analysis presents that monotonically increasing the mobility of the absorber layer is not beneficial to the performance of the PSCs.Taking into account the influence of the thickness and doping concentration,an optimal value of mobility exists.The corresponding J–V characteristic curve(curve 2)is shown in Fig.1,and Jscrises significantly from the initial 31.59 mA/cm2to 33.30 mA/cm2.TheVocof 0.90 V,FF of 82.38%,and PCE of 24.78%are obtained at this preliminary optimization of the absorption layer.

    The transportation parameter’s matching between the absorber and the charge transport layer is important to avoid the excessive accumulation of the carriers at their interface during the photon-generated carriers transporting to the corresponding electrodes.Hence,after the absorber layer optimization,the carrier mobility and other parameters,such as doping concentration and thickness,of HTM and ETM should also be optimized.

    3.2.Optimization of the charge transport layer

    3.2.1.Optimization of the hole transport layer(HTM)

    The HTM layer is optimized based on the preliminarily optimized absorber layer.The effects of mobility on the performance of perovskite solar cells under various HTM thickness values(Fig.5(a))and doping concentrations(Fig.5(b))are given.In a 3-nm–15-nm range of HTM thickness,when the mobility of HTM increases from 10?4cm2/V·s to 5 ×10?2cm2/V·s,the efficiency of perovskite solar cells increases gradually.Little change of the efficiency can be seen forμ >1×10?2cm2/V·s because the carriers’diffusion length is longer than the thickness of the HTM.When doping concentration is smaller than 1×1019cm?3,PSCs’efficiency augments gradually with mobility increasing and reaches a saturation level at an HTM mobility of 0.1 cm2/V·s.When the doping concentration is 1×1019cm?3,the effect of the mobility is very weak on the cell’s efficiency.

    Fig.5.Plots of efficiency versus mobility of PSCs for various(a)thickness values and(b)doping concentrations of HTM.

    Figure6 shows the variation trends of device performance affected by thickness,doping concentration,and mobility of HTM,respectively.During simulation,other two parameters are kept unchanged when the optimized parameters are extracted from Fig.5 with an HTM thickness of 5 nm,a doping concentration of 1×1019cm?3and mobility of 0.1 cm2/V·s.The efficiency, Jscand FF rise with the mobility of HTM increasing,and the open-circuit voltage Vocis almost constant,which is in accordance with the work of Alnuaimi.[30]Doping concentration enhancement of HTM can increase its conductivity,hole mobility and charge density,and this will significantly improve the device performance.[31,32]The improvement of device performance with doping concentration growing is consistent with the scenario in the literature,[33]and we set 3×1019cm?3and 0.1 cm2/V·s as the optimal doping concentration and mobility of HTM,respectively.The optimal mobility value of 0.1 cm2/V·s is in agreement with that in the literature.[30]Although thinner thickness is more beneficial to the cell performance promoting,considering the difficulty of preparation,the optimal thickness value of HTM is taken to be 5 nm.After the optimization of the HTM,a PCE of 24.89%is obtained with Jscof 33.32 mA/cm2,Vocof 0.904 V,FF of 82.66%,and its J–V curve is depicted with curve 3 in Fig.1.In comparison with the preliminary optimization of the absorber layer(curve 2 Fig.1),an obvious augment of Vocis obtained.

    Fig.6.Variations of performance parameters of PSCs with(a)thickness,(b)doping concentration,and(c)mobility of HTM.

    Fig.7.Plots of efficiency of PSC versus mobility for(a)various thickness values and(b)various doping concentrations of ETM.

    3.2.2.Optimization of the electron transport layer(ETM)

    The parameters of the ETM layer are optimized in sequence.Figure 7 reveals the influences of ETM mobility on device efficiency with various thickness values and doping concentrations.The efficiency decreases with the thickness of ETM increasing from 3 nm to 20 nm but does not vary with the mobility of ETM.Figure 8 exhibits the variations in thickness,doping concentration,and mobility of ETM versus device performance parameters,respectively.When the ETM thickness increases from 1 nm to 15 nm,all the performance parameters,such as Jsc,Voc,FF,and PCE of the device first rise and then decrease,and there exists an optimal thickness value of 5 nm for the ETM layer.For polycrystalline perovskite,CH3NH3PbI3,whose diffusion length is short,a thick mesoporous ETM layer is generally required.[34]But for the single crystal perovskite with L on the order of micros,the ETM layer is not necessary for the high efficiency cell.The TiO2ETM of the planner structured PSC can be prepared fast by spraying pyrolysis with good crystallinity.[35]

    The device performance parameters continuously increase as the doping concentration of ETM increases because of the enhancement of the carrier concentration and conductivity,[36,37]while they do not vary with the mobility of optimization of electron transport layer.We take 3×1019cm?3as the optimum doping concentration for ETM,which is compatible to that in Refs.[38]and[39]and highly efficient semiconducting TiO2can also be obtained by aerosol pyrolysis.[40]The importance of the high doping of the TiO2ETM to match the HTM with high mobility was also investigated systematically in Ref.[17].The J–V curve of the device after the optimization of ETM is illustrated in curve 4 of Fig.1,and Jscof 34.16 mA/cm2,Vocof 0.947 V,FF of 83.95%,and PCE of 27.17%are obtained.

    Because the diffusion length L of micrometer magnitude caused by the high mobility(1 cm2/V·s–40 cm2/V·s)of ETM is far beyond the ETM thickness(5 nm–40 nm),the influence of the ETM mobility on device performance is weaker than that of the HTM.

    Fig.8.Variations of performance parameters of PSCs with(a)thickness,(b)doping concentration,and(c)mobility of ETM.

    3.3.Ultimate optimization of absorption layer

    After the preliminary optimization of the absorber and charge transport layer,ultimate optimization of the absorption layer is carried out to access a good match between layers.Figure 9 depicts the relationships between mobility and efficiency of PSCs at diverse thickness values and doping concentrations of the absorber layer.The optimal absorber thickness increases from about 800 nm to 1200 nm whenμrises from 3 cm2/V·s to 12 cm2/V·s,which can be seen from the partially detailed map inset in Fig.9(a)clearly.A similar parabola relation between the absorber mobility and the cell efficiency is exhibited in an organic cell.[18,19]The optimal mobility is small for the thin absorber,and when the mobility of the absorber is higher than 10 cm2/V·s,a thicker absorber is more beneficial to the cell efficiency improvement.This enhancement of the optimal thickness of the absorber is induced by increasing the absorber mobility and the NA,Dof the charge transportation layer,the same change trend is observed in Ref.[41].

    Fig.9.Efficiency of PSCs as a function of mobility with(a)thickness and(b)doping concentration of the second optimization of absorber.

    However,the excessive thickness and mobility do not achieve higher efficiency(Figs.10(a)and 10(c)),and the efficiency reaches a saturation level at a thickness of 1200 nm.An optimal value of 12 cm2/V·s for the mobility exists with an absorber thickness of 1200 nm.[42]When the doping concentration changes from 1014cm?3to 1016cm?3,the maximum efficiency of the cell appears at NAof 1.2×1016cm?3.The enhancement of the mobility results in the increase of FF and Jsc,while the Vocreduces.The Vocaugments obviously with NAfurther increasing from 8×1015cm?3(preliminary optimization)to 1.2×1016cm?3(ultimate optimization),which is reflected in the J–V curves 2 and 4 in Fig.1,respectively.The change of the optimal value of NAis caused by increasing the optimal value of the thickness and mobility of the absorber.

    Fig.10.Plots of PSCs’performance with(a)thickness,(b)doping concentration,and(c)mobility of the second optimization of absorber.

    Finally,after the four optimizing steps,the device PCE reaches 27.39%with Jscof 34.21 mA/cm2,Vocof 0.942 V,FF of 84.97%.The efficiency increases by 4.03%compared with the initial one,and this efficiency is highest,to our knowledge,for the single junction PSCs obtained by simulation.The optimal match between the mobility and other parameters of the absorber and the charge transport layer induces the value of Jscand Vocto obviously augment,which can be seen in the J–V characteristic curve(curve 5)of the ultimate optimized cell in Fig.1.

    4.Detailed analysis of the influence mechanism of carrier mobility on cell influence

    4.1.Effect of mobility on JJsc

    Jsccan be approximated as

    The photo-generation rate G can be considered as a constant under certain lighting conditions AM1.5.Depletion width w of the p-n junction depends on carrier concentration. The value of Jscwould ascend with the increase of diffusion length L,because the value of w is unchangeable in the NA,Dinvariable situation(Fig.3(c)).The significant increase of Jscas NA,Dincreases can be seen in Figs.3(c),6,and 8.This happens because the depletion width decreases due to the increase of NA,D,and this can lower the contact resistance of the interface,which is favorable to the transportation of the carriers.

    4.2.Effect of mobility on open-circuit voltage VVoooccc

    Obvious improvement of Vocis obtained for the optimized cell,and this is the combined influence of doping concentration and the carrier mobility.The formula of Vocand reverse saturation current J0can be expressed as

    According to the Einstein relationship and the diffusion length(Ln)formula, Jcan be described as

    In our simulation,the lifetime τ can be considered as a constant in the case of invariable defect concentration.The value of J0decreases with the increase of NA,Dof the charge transport layer.Owing to the influence of the strong increase of Jscwith the increase of NA,D,the Vocwill increase based on formula(2).Because of the considerable difference in magnitude between NA,Dandμn,p,the influence of mobility on J0is negligible.

    According to formulas(1)–(4),Voccan be expressed as

    Keeping the NA,Dconstant,Vocdecreases with the enhancement of diffusion length,that is,Vocdecreases with the enhancement of mobility under the NA,Dinvariable condition(see Fig.3(b)).

    4.3.Effect of mobility on other cell parameters

    The final part of this article is dedicated to investigating the contribution of mobility to recombination rate R,carrier density distribution,and band structure in planar heterojunction PSCs.The recombination rate of the process of optimization of ETM layer and the second optimization of the absorber layer is depicted in Fig.11.The increasing of doping concentration of the absorber layer from 8×1015cm?3to 1.2×1016cm?3in the last optimization step should cause the recombination rate to increase,while a weakened recombination rate can be seen in Fig.11.

    Fig.11.Recombination distributions of different optimizations.

    We ascribe the weakening of recombination to the increasing of mobility of the absorber from 5 cm2/V·s to 12cm2/V·s,which improves the transportation performance of the cell.The influence of carrier mobility on the carrier transportation is studied based on the last optimized cell structure through the observation of carrier concentration distribution in the absorber layer with the mobility increasing from 2 cm2/V·s to 40 cm2/V·s(see Fig.12).The empty and the solid symbols represent holes and electrons,respectively.The simulation is conducted based on the final optimization step,with keeping all the parameters constant,except for the enhanced mobility of the absorber.The carriers’concentration of the absorber does not rise consistently with the mobility increase,and the maximum concentration of carriers appears at a mobility of 12 cm2/V·s,which is the optimal value of the mobility in the absorber.The enhanced drift velocity v(v=μE)of the carriers,caused by the improved mobility,can augment the concentration of carriers crossing the cell section,which benefits the cell performance improvement.While the enhanced carrier concentration also increases the recombination rate,and there is a competing mechanism between the improvement of the carrier transportation and the enhanced recombination brought by the enhanced mobility,only an optimal mobility value can improve the cell performance.[43]

    Fig.12.Carrier’s density distribution with different mobility values of absorber layer.

    Fig.13.Difference in quasi-Fermi energy(a)?Epand(b)?Enversus depth from cell surface for different mobility values of absorber layer.

    The distribution of carriers in a nonequilibrium state is related to quasi-Femi energy.The energy bands of the simulated structure with different absorber mobility values are studied based on the last optimized cell structure,and we obtain the energy difference between the Ev(Ec)and EFp(EFn)(Fig.13).When the energy difference ?Ep(?En)is smaller,the carrier concentration is higher.It can be seen that the electrons(holes)transport from the absorber layer to the ETM(HTM)layer,because of the rapid reduction of the?En(?Ep)at their interface.The fastest decline in?E,namely the fastest growing of the carrier concentration,appears at the architecture with a mobility of 12 cm2/V·s,which means the fastest transportation of the carriers.So the mobility of 12 cm2/V·s is an optimal value of our simulated structure with the highest efficiency of 27.39%.

    Fig.14.Plots of efficiency of PSC versus carrier diffusion length L during optimization.

    4.4.How long carrier diffusion length is enough to achieve high cell efficiency?

    Getting a long diffusion length by improving perovskite process can enhance cell efficiency.[16]Diffusion length L of single CH3NH3PbI3crystal has reached 175μm.[44]Now,a question arises:can the longer L achieve the better performance of the PSCs?In this paper,L is adjusted by changing the mobility,with the defect concentration of the absorber unchanged.The efficiency of the cell with the changing of L at the different optimization steps in the paper is shown in Fig.14.The length L of 0.7μm is enough to construct the initial cell with a small absorber thickness(600 nm),and this thickness value is consistent with those for most of the PSCs with high efficiency in the experimental research.The appropriate L rises with the increase of thickness and mobility of the absorber.[38]Finally,the highest efficiency appears at L of 1.9μm,which is larger than the absorber thickness of 1200 nm.Many researchers have pointed out that L of 1μm is enough to construct the cell device,but this conclusion is obtained under specified circumstances,such as the thickness of the absorber is about hundreds of nanometers.In Ref.[6],L(1.2 μm)is twice the CH3NH3PbI3?xClxabsorber thickness(500 nm).The L higher than the absorber thickness in the perovskite is needed for efficient carriers’extraction before significant recombination occurs.The Jscis limited by the material’s long wavelength response,and the higher absorber thickness benefits the strong red spectral absorption.[28,43]In Fig.2,the trends of Jsc,and Vocvarying with absorber thickness are opposite,which can be seen asμ >10 cm2/V·s.Improving L(namely,mobility)of the perovskite material can avoid the joint reduction of Jscand Vocwhen the absorber layer thickness increases.

    Many researchers have indicated that the PCE of the PSCs is insensitive to the absorber thickness beyond 600 nm,this lies in the fact that the recombination rate of the thicker perovskite layer is higher than that of the thinner layer.In the research by Jeon et al.,[3]the PSC reached a high efficiency of 23.2%.The absorber thickness is selected to be 600 nm to avoid the carriers crossing the grain boundaries during transporting to the electrodes.We expect that if the crystal size presented in Joen et al.’s research[3]can be improved to 1 μm and an absorber thicker than 600 nm can be obtained,the cell efficiency can be further improved based on our simulation.Now the single perovskite crystal with a size of 300μm has been achieved in experiment.[44]High-performance PSC with absorber layer thickness of 1150 nm has been realized by the hot casting method.[42]And more importantly,the thick- film PSC has good stability.This research bodes well for the great potential of thick- film PSCs in mass-produce of PSCs.

    The relatively undoped(Sn4+-free)and pinhole-free CH3NH3SnI3perovskite films and the near-single-crystalline FASnI3film have been fabricated.[22,45–47]If the background doping of CH3NH3SnI3can decrease to 1015cm?3,then L can reach to micrometers.With the advance in preparation technology,lead-free perovskite materials with low defect and longer diffusion can be achieved.

    5.Conclusions

    The effects of the carrier mobility and diffusion length on the PSC’s performance are studied systematically with the device simulation.A similar parabolic relationship between the mobility of absorber and the efficiency for PSC to that for the organic solar cell is observed and there also exists an optimal mobility of the absorber.Diffusion length longer than 1 μm is also beneficial to the PSCs’performance when the absorber is thick and has high crystalline quality.The improved carrier mobility of the absorber and the HTM appropriately is favorable to the reduction of the recombination rate and the improvement of the carrier transportation,which can avoid the joint reduction of Jsc,and Vocwhen the absorber layer thickness increases,and these can improve the cell’s efficiency.The doping of the carrier transport layer has a significant role in improving the cell performance.Finally,we obtain the Jscof 34.21 mA/cm2,Vocof 0.942 V,FF of 84.97%,and PCE of 27.39%in our cell structure with an absorber thickness of 1200 nm,a high mobility of 12 cm2/V·s,and long diffusion length of 2μm.Using the hot casting method to realize high quality perovskite films may be a promising method to realize the high efficiency PSCs with thick absorber and high stability.

    [1]Kim H S,Lee C R,Im J H,Lee K B,Moehl T,Marchioro A,Moon S J,Humphry-Baker R,Yum J H,Moser J E,Gratzel M and Park N G 2012 Sci.Rep.2 591

    [2]Lee M M,Teuscher J,Miyasaka T,Murakami T N and Snaith H J 2012 Science 338 643

    [3]Jeon N J,Na H,Jung E H,Yang T Y,Lee Y G,Kim G,Shin H W,Seok S I,Lee J and Seo J 2018 Nat.Energy 3 682

    [4]Baikie T,Fang Y,Kadro J M,Schreyer M,Wei F,Mhaisalkar S G,Graetzel M and White T J 2013 J.Mater.Chem.A 1 5628

    [5]Phillips L J,Rashed A M,Treharne R E,Kay J,Yates P,Mitrovic I Z,Weerakkody A,Hall S and Durose K 2016 Sol.Energy Mater.Sol.Cells 147 327

    [6]Stranks S D,Eperon G E,Grancini G,Menelaou C,Alcocer M J,Leijtens T,Herz L M,Petrozza A and Snaith H J 2013 Science 342 341

    [7]Zhao Y,Nardes A M and Zhu K 2014 J.Phys.Chem.Lett.5 490

    [8]Takahashi Y,Hasegawa H,Takahashi Y and Inabe T 2013 J.Solid State Chem.205 39

    [9]Ponseca C S,Jr.,Savenije T J,Abdellah M,Zheng K,Yartsev A,Pascher T,Harlang T,Chabera P,Pullerits T,Stepanov A,Wolf J P and Sundstrom V 2014 J.Am.Chem.Soc.136 5189

    [10]Huang L,Sun X,Li C,Xu R,Xu J,Du Y,Wu Y,Ni J,Cai H,Li J,Hu Z and Zhang J 2016 Sol.Energy Mater.Sol.Cells 157 1038

    [11]Fu K,Zhou Q,Chen Y,Lu J and Yang S E 2015 J.Opt.17 105904

    [12]Zhou Y and Gray-Weale A 2016 Phys.Chem.Chem.Phys.18 4476

    [13]Da Y,Xuan Y and Li Q 2018 Sol.Energy Mater.Sol.Cells 174 206

    [14]Sheikh A D,Bera A,Haque M A,Rakhi R B,Gobbo S D,Alshareef H N and Wu T 2015 Sol.Energy Mater.Sol.Cells 137 6

    [15]Minemoto T and Murata M 2014 J.Appl.Phys.116 054505

    [16]Kour N,Mehra R and Chandni 2018 Chin.Phys.B 27 018801

    [17]Adhikari K R,Gurung S,Bhattarai B K and Soucase B M 2016 Phys.Status Solidi C 13 13

    [18]Mandoc M M,Koster L J A and Blom P W M 2007 Appl.Phys.Lett.90 133504

    [19]Deibel C,Wagenpfahl A and Dyakonov V 2008 Phys.Status Solidi-Rapid Res.Lett.2 175

    [20]Ram′?rez O,Cabrera V and Res′endiz L M 2014 Opt.Quantum Electron.46 1291

    [21]Shieh J T,Liu C H,Meng H F,Tseng S R,Chao Y C and Horng S F 2010 J.Appl.Phys.107 084503

    [22]Du H J,Wang W C and Zhu J Z 2016 Chin.Phys.B 25 108802

    [23]Manser J S,Christians J A and Kamat P V 2016 Chem.Rev.116 12956[24]He Y and Galli G 2017 Chem.Mater.29 682

    [25]Jiang C S,Yang M,Zhou Y,To B,Nanayakkara S U,Luther J M,Zhou W,Berry J J,Lagemaat J,Padture N P,Zhu K and Al-Jassim M M 2015 Nat.Commun.6 8397

    [26]Yang G,Ding B,Li Y,Huang S,Chu Q,Li C and Li C 2017 J.Mater.Chem.A 5 6840

    [27]Tan H,Jain A,Voznyy O,Lan X,Arquer F P G,Fan J Z,Bermudez R Q,Yuan M,Zhang B,Zhao Y,Fan F,Li P,Quan L N,Zhao Y,Lu Z H,Yang Z,Hoogl,S and Sargent E H 2017 Science 355 722

    [28]Shirayama M,Kadowaki H,Miyadera T,Sugita T,Tamakoshi M,Kato M,Fujiseki T,Murata D,Hara S,Murakami T N,Fujimoto S,Chikamatsu M and Fujiwara H 2016 Phys.Rev.Appl.5 014012

    [29]Albrecht S,Saliba M,Correa-Baena J P,J¨ager K,Korte L,Hagfeldt A,Gr¨atzel M and Rech B 2016 J.Opt.18 064012

    [30]Alnuaimi A,Almansouri I and Nayfeh A 2016 J.Comput.Electron.15 1110

    [31]Abate A,Leijtens T,Pathak S,Teuscher J,Avolio R,Errico M E,Kirkpatrik J,Ball J M,Docampo P,McPherson I and Snaith H J 2013 Phys.Chem.Chem.Phys.15 2572

    [32]Leijtens T,Lim J,Teuscher J,Park T and Snaith H J 2013 Adv.Mater.25 3227

    [33]Toshniwal A,Jariwala A,Kheraj V,Opanasyuk A S and Panchal C J 2017 J.Nano-Electron.Phys.9 03038

    [34]Edri E,Kirmayer S,Henning A,Mukhopadhyay S,Gartsman K,Rosenwaks Y,Hodes G and Cahen D 2014 Nano Lett.14 1000

    [35]Liu X,Bu T,Li J,He J,Li T,Zhang J,Li W,Ku Z,Peng Y,Huang F,Cheng Y B and Zhong J 2018 Nano Energy 44 34

    [36]Zhang H,Shi J,Xu X,Zhu L,Luo Y,Li D and Meng Q 2016 J.Mater.Chem.A 4 15383

    [37]Liu D,Li S,Zhang P,Wang Y,Zhang R,Sarvari H,Wang F,Wu J,Wang Z and Chen Z D 2017 Nano Energy 31 462

    [38]Zhou Q,Jiao D,Fu K,Wu X,Chen Y,Lu J and Yang S E 2016 Sol.Energy 123 51

    [39]Iftiquar S M and Yi J 2018 Mater.Sci.Semicond.Process 79 46

    [40]Kavan L and Gr¨atzel M 1995 Electrochim.Acta 40 643

    [41]Momblona C,Malinkiewicz O,Rold′an-Carmona C,Soriano A,Gil-Escrig L,Bandiello E,Scheepers M,Edri E and Bolink H J 2014 APL Mater.2 081504

    [42]Chen J,Zuo L,Zhang Y,Lian X,Fu W,Yan J,Li J,Wu G,Li C Z and Chen H 2018 Adv.Energy Mater.8 1800438

    [43]Chiang C H and Wu C G 2016 Nat.Photon.10 196

    [44]Dong Q,Fang Y,Shao Y,Mulligan P,Qiu J,Cao L and Huang J 2015 Science 347 967

    [45]Koh T M,Krishnamoorthy T,Yantara N,Shi C,Leong W L,Boix P P,Grimsdale A C,Mhaisalkar S G and Mathews N 2015 J.Mater.Chem.A 3 14996

    [46]Bansode U,Naphade R,Game O,Agarkar S and Ogale S 2015 J.Phys.Chem.C 119 9177

    [47]Shao S,Liu J,Portale G,Fang H H,Blake G R,ten Brink G H,Koster L J A and Loi M A 2018 Adv.Energy Mater.8 1702019

    亚洲一区高清亚洲精品| 久久久久国产网址| 久久午夜福利片| 99视频精品全部免费 在线| 91狼人影院| 春色校园在线视频观看| 日韩亚洲欧美综合| 好男人在线观看高清免费视频| 亚洲国产色片| 国产精品熟女久久久久浪| 春色校园在线视频观看| 麻豆乱淫一区二区| 免费看日本二区| 直男gayav资源| 美女被艹到高潮喷水动态| 高清视频免费观看一区二区 | 看免费成人av毛片| 国产精品一区二区在线观看99 | 欧美+日韩+精品| 国产精品.久久久| 日本-黄色视频高清免费观看| 22中文网久久字幕| 亚洲自拍偷在线| 久久99热这里只有精品18| 国产成年人精品一区二区| 一级二级三级毛片免费看| av视频在线观看入口| 2021少妇久久久久久久久久久| 久久午夜福利片| 一二三四中文在线观看免费高清| 综合色av麻豆| 久久久久久国产a免费观看| 亚洲最大成人av| 超碰av人人做人人爽久久| 一个人观看的视频www高清免费观看| 一区二区三区免费毛片| 99在线视频只有这里精品首页| 一区二区三区乱码不卡18| kizo精华| 一级毛片aaaaaa免费看小| 中文字幕av在线有码专区| 免费一级毛片在线播放高清视频| 国产黄色视频一区二区在线观看 | 欧美性猛交╳xxx乱大交人| 最近视频中文字幕2019在线8| 成人午夜高清在线视频| 毛片女人毛片| 热99re8久久精品国产| 亚洲一区高清亚洲精品| 亚洲人与动物交配视频| 欧美日韩在线观看h| 婷婷色综合大香蕉| 日本午夜av视频| 男女下面进入的视频免费午夜| 日韩欧美精品v在线| 精品久久久久久久久亚洲| 日本色播在线视频| www.色视频.com| 亚洲av免费在线观看| 亚洲欧洲日产国产| 日本av手机在线免费观看| 听说在线观看完整版免费高清| 亚洲av一区综合| 久久午夜福利片| 成人性生交大片免费视频hd| 晚上一个人看的免费电影| 欧美高清性xxxxhd video| 国产淫片久久久久久久久| 九九爱精品视频在线观看| 日本熟妇午夜| 免费av毛片视频| 亚洲五月天丁香| av线在线观看网站| 国产成人精品久久久久久| 在线免费观看的www视频| 国模一区二区三区四区视频| 真实男女啪啪啪动态图| 午夜福利高清视频| 亚洲一级一片aⅴ在线观看| 亚洲精品色激情综合| 黄色一级大片看看| 人人妻人人澡人人爽人人夜夜 | 色视频www国产| 中文乱码字字幕精品一区二区三区 | 欧美色视频一区免费| 男女下面进入的视频免费午夜| 中国国产av一级| 久久人人爽人人片av| 亚洲人成网站在线观看播放| 国产真实伦视频高清在线观看| 嫩草影院精品99| 免费在线观看成人毛片| 少妇熟女aⅴ在线视频| av免费观看日本| 国产亚洲最大av| 秋霞在线观看毛片| 一个人看视频在线观看www免费| 日本午夜av视频| 女人十人毛片免费观看3o分钟| 中文字幕免费在线视频6| 伦理电影大哥的女人| 热99在线观看视频| 在现免费观看毛片| 日韩在线高清观看一区二区三区| 日韩精品有码人妻一区| 久久久色成人| 免费看光身美女| av国产免费在线观看| 日日摸夜夜添夜夜爱| 99热这里只有精品一区| 国产高潮美女av| 亚洲国产欧美人成| 特大巨黑吊av在线直播| 你懂的网址亚洲精品在线观看 | 久久久久久久久久久丰满| 黄色配什么色好看| 亚洲国产精品专区欧美| 亚洲国产色片| 天天一区二区日本电影三级| 国产私拍福利视频在线观看| 最近的中文字幕免费完整| 少妇的逼水好多| 男人舔奶头视频| 99九九线精品视频在线观看视频| 亚洲不卡免费看| 九九在线视频观看精品| 嫩草影院精品99| 一级av片app| 久久久久国产网址| 最近最新中文字幕免费大全7| 美女cb高潮喷水在线观看| 国产又黄又爽又无遮挡在线| 亚洲精品自拍成人| 长腿黑丝高跟| 99久久精品国产国产毛片| 国产探花在线观看一区二区| 日韩一本色道免费dvd| av在线天堂中文字幕| 一级av片app| 亚洲成色77777| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 免费不卡的大黄色大毛片视频在线观看 | 51国产日韩欧美| 尾随美女入室| 久久婷婷人人爽人人干人人爱| 亚洲综合精品二区| 91精品一卡2卡3卡4卡| 国产 一区精品| 欧美zozozo另类| 亚洲天堂国产精品一区在线| 男人舔奶头视频| 久久精品久久精品一区二区三区| 国产亚洲av片在线观看秒播厂 | 哪个播放器可以免费观看大片| 嫩草影院入口| 美女被艹到高潮喷水动态| 自拍偷自拍亚洲精品老妇| 校园人妻丝袜中文字幕| 中文字幕久久专区| 国产不卡一卡二| 男插女下体视频免费在线播放| 日韩一区二区视频免费看| 亚洲乱码一区二区免费版| 国产高清有码在线观看视频| 十八禁国产超污无遮挡网站| 一级黄色大片毛片| 中文字幕av成人在线电影| 久久精品熟女亚洲av麻豆精品 | 男人的好看免费观看在线视频| 美女高潮的动态| 小蜜桃在线观看免费完整版高清| 你懂的网址亚洲精品在线观看 | 国产91av在线免费观看| 91久久精品电影网| 久久久久久久久大av| 国产免费视频播放在线视频 | 欧美成人午夜免费资源| 国产精品乱码一区二三区的特点| 日韩精品青青久久久久久| 色综合站精品国产| 国产精品久久电影中文字幕| 欧美精品一区二区大全| 国产成人a∨麻豆精品| 夜夜爽夜夜爽视频| 国产三级在线视频| 国产精品爽爽va在线观看网站| 国产精品日韩av在线免费观看| 免费不卡的大黄色大毛片视频在线观看 | 国产精品不卡视频一区二区| 女人久久www免费人成看片 | 蜜桃久久精品国产亚洲av| 小说图片视频综合网站| 久久精品国产自在天天线| 国产精品人妻久久久影院| 亚洲婷婷狠狠爱综合网| 中文字幕亚洲精品专区| 久久久欧美国产精品| 亚洲精品aⅴ在线观看| 综合色丁香网| 精品久久久久久久人妻蜜臀av| 婷婷色综合大香蕉| 99在线视频只有这里精品首页| 日韩国内少妇激情av| 亚州av有码| 成人二区视频| 午夜日本视频在线| 精品欧美国产一区二区三| 国产成人一区二区在线| 久久久久久伊人网av| 精品无人区乱码1区二区| 夫妻性生交免费视频一级片| 国产黄色小视频在线观看| 中文字幕人妻熟人妻熟丝袜美| 国产爱豆传媒在线观看| 99久久精品国产国产毛片| 97在线视频观看| 嫩草影院精品99| 韩国高清视频一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 久久精品夜色国产| 亚洲性久久影院| 少妇的逼好多水| 亚洲精品乱码久久久v下载方式| 国产在线一区二区三区精 | 桃色一区二区三区在线观看| 日本黄色视频三级网站网址| 国产私拍福利视频在线观看| av在线天堂中文字幕| 男插女下体视频免费在线播放| 国产女主播在线喷水免费视频网站 | 禁无遮挡网站| 内射极品少妇av片p| 婷婷色综合大香蕉| 91在线精品国自产拍蜜月| 久久精品熟女亚洲av麻豆精品 | 亚洲国产最新在线播放| 亚洲av免费在线观看| 免费看a级黄色片| 欧美97在线视频| 成年免费大片在线观看| 精品99又大又爽又粗少妇毛片| 黑人高潮一二区| 亚洲成色77777| videossex国产| 岛国在线免费视频观看| 黑人高潮一二区| 国产av不卡久久| av免费在线看不卡| 午夜福利高清视频| 成人漫画全彩无遮挡| 国产精品熟女久久久久浪| 精品久久久久久电影网 | 欧美性猛交黑人性爽| 日韩 亚洲 欧美在线| 国产高清国产精品国产三级 | 日韩强制内射视频| 久久精品国产鲁丝片午夜精品| 成人无遮挡网站| 激情 狠狠 欧美| 欧美一区二区精品小视频在线| 免费av观看视频| 亚洲中文字幕日韩| 午夜福利在线在线| 久久久久精品久久久久真实原创| 国内精品美女久久久久久| 看免费成人av毛片| 午夜免费男女啪啪视频观看| 亚洲av中文字字幕乱码综合| 国产又黄又爽又无遮挡在线| 成年av动漫网址| 亚洲国产最新在线播放| 亚洲精品国产成人久久av| 少妇的逼好多水| 国产精品人妻久久久影院| 亚洲国产精品sss在线观看| 欧美性猛交黑人性爽| 少妇的逼好多水| 国产一区二区在线观看日韩| 日本午夜av视频| 大话2 男鬼变身卡| 伊人久久精品亚洲午夜| 少妇的逼水好多| 国产成人a区在线观看| 久久久久久久国产电影| 男人狂女人下面高潮的视频| 少妇人妻精品综合一区二区| 三级毛片av免费| 超碰97精品在线观看| 欧美3d第一页| 51国产日韩欧美| 最近2019中文字幕mv第一页| 亚洲人与动物交配视频| 久久精品久久精品一区二区三区| 中文字幕熟女人妻在线| 美女大奶头视频| 亚洲欧美精品专区久久| 国产精品一及| 国产精品,欧美在线| 免费av毛片视频| 久久久成人免费电影| 国产 一区精品| 成人毛片60女人毛片免费| 国产探花极品一区二区| 真实男女啪啪啪动态图| 久久久a久久爽久久v久久| 中文在线观看免费www的网站| 网址你懂的国产日韩在线| 三级国产精品欧美在线观看| 国产精品一区二区性色av| 国产白丝娇喘喷水9色精品| 日韩成人伦理影院| 高清午夜精品一区二区三区| 波多野结衣高清无吗| 国产精品av视频在线免费观看| 国产精品av视频在线免费观看| 亚洲精品乱久久久久久| 亚洲国产欧美在线一区| 视频中文字幕在线观看| 激情 狠狠 欧美| 九九热线精品视视频播放| 亚洲18禁久久av| 久久国产乱子免费精品| 久久国产乱子免费精品| 成人三级黄色视频| 日本wwww免费看| 最新中文字幕久久久久| 国产不卡一卡二| 久久久久久伊人网av| 国产精品女同一区二区软件| 亚洲av.av天堂| 一边亲一边摸免费视频| 激情 狠狠 欧美| 亚洲综合精品二区| 性色avwww在线观看| 春色校园在线视频观看| 国产在视频线精品| 在线免费十八禁| 国产精品国产三级国产专区5o | 亚洲欧美日韩高清专用| 听说在线观看完整版免费高清| 五月伊人婷婷丁香| 五月伊人婷婷丁香| 免费不卡的大黄色大毛片视频在线观看 | 国产一区亚洲一区在线观看| 成年女人永久免费观看视频| 免费观看人在逋| 最后的刺客免费高清国语| 亚洲欧美中文字幕日韩二区| 观看免费一级毛片| 一个人看的www免费观看视频| 国产一级毛片七仙女欲春2| 国产av码专区亚洲av| 成年版毛片免费区| 高清视频免费观看一区二区 | 亚洲av电影在线观看一区二区三区 | 日本-黄色视频高清免费观看| ponron亚洲| 久久99热这里只有精品18| 日本猛色少妇xxxxx猛交久久| 国产黄片视频在线免费观看| 毛片一级片免费看久久久久| 国产亚洲一区二区精品| av线在线观看网站| 嘟嘟电影网在线观看| 国产免费又黄又爽又色| 97超碰精品成人国产| 伊人久久精品亚洲午夜| av天堂中文字幕网| 欧美日韩在线观看h| 国产老妇女一区| 欧美日本亚洲视频在线播放| 国产私拍福利视频在线观看| 日本爱情动作片www.在线观看| 日本免费a在线| 亚洲国产色片| 国产av一区在线观看免费| 亚洲av中文字字幕乱码综合| 国产精品.久久久| 国产伦理片在线播放av一区| 边亲边吃奶的免费视频| 久久久成人免费电影| 我要搜黄色片| 亚洲欧美中文字幕日韩二区| 久久精品国产鲁丝片午夜精品| 亚洲丝袜综合中文字幕| 国产老妇女一区| 男人舔女人下体高潮全视频| 久久99热这里只有精品18| 久久久精品94久久精品| 99热全是精品| 在线天堂最新版资源| 亚洲18禁久久av| 秋霞在线观看毛片| 久久久久免费精品人妻一区二区| 日本wwww免费看| 最后的刺客免费高清国语| 久久久精品大字幕| 人妻夜夜爽99麻豆av| 国产一区二区亚洲精品在线观看| 插阴视频在线观看视频| 我要搜黄色片| 国产单亲对白刺激| 人人妻人人澡人人爽人人夜夜 | 一个人观看的视频www高清免费观看| 欧美3d第一页| 伦理电影大哥的女人| 国产午夜精品久久久久久一区二区三区| 亚洲伊人久久精品综合 | 又粗又爽又猛毛片免费看| 亚洲av.av天堂| 一级二级三级毛片免费看| 日日摸夜夜添夜夜爱| 国产精品熟女久久久久浪| 中文字幕亚洲精品专区| 小蜜桃在线观看免费完整版高清| 1000部很黄的大片| 日韩制服骚丝袜av| 69人妻影院| 国产老妇伦熟女老妇高清| 蜜桃久久精品国产亚洲av| 色5月婷婷丁香| 成人亚洲欧美一区二区av| 人人妻人人澡欧美一区二区| 亚洲av成人av| 岛国在线免费视频观看| 欧美色视频一区免费| 午夜精品国产一区二区电影 | 亚洲国产色片| 精品99又大又爽又粗少妇毛片| 久久久精品大字幕| 中文亚洲av片在线观看爽| 成人国产麻豆网| 国产精品女同一区二区软件| 毛片女人毛片| 高清在线视频一区二区三区 | 亚洲av免费高清在线观看| 免费看av在线观看网站| 97超碰精品成人国产| 国内少妇人妻偷人精品xxx网站| 免费不卡的大黄色大毛片视频在线观看 | 春色校园在线视频观看| 日本三级黄在线观看| 亚洲人成网站在线观看播放| 欧美+日韩+精品| 日本黄色视频三级网站网址| 中文字幕av成人在线电影| 99久久中文字幕三级久久日本| 久久精品久久精品一区二区三区| 日本黄色片子视频| 久久这里有精品视频免费| 午夜精品一区二区三区免费看| 精品酒店卫生间| 亚洲精品日韩av片在线观看| 99在线人妻在线中文字幕| 一级毛片我不卡| 级片在线观看| 国产白丝娇喘喷水9色精品| 亚洲精品日韩av片在线观看| 一级毛片久久久久久久久女| 少妇熟女欧美另类| 国产午夜精品一二区理论片| 精品国产露脸久久av麻豆 | 午夜亚洲福利在线播放| 三级国产精品片| 国产午夜精品一二区理论片| 亚洲电影在线观看av| 最近最新中文字幕免费大全7| 一夜夜www| 成人二区视频| 久久久久久久久久成人| 久久99精品国语久久久| 青春草亚洲视频在线观看| 亚洲欧美一区二区三区国产| 欧美一级a爱片免费观看看| 小说图片视频综合网站| 精品久久久久久电影网 | 如何舔出高潮| 中文字幕久久专区| 精品不卡国产一区二区三区| 久久久久精品久久久久真实原创| 亚洲欧美日韩卡通动漫| 欧美成人免费av一区二区三区| 99热精品在线国产| 91久久精品电影网| 有码 亚洲区| 六月丁香七月| 99热这里只有是精品在线观看| 国产一区有黄有色的免费视频 | 日日啪夜夜撸| 综合色丁香网| 欧美xxxx性猛交bbbb| 成人欧美大片| 亚洲av男天堂| 久久韩国三级中文字幕| 级片在线观看| 国产极品天堂在线| 久久久久久大精品| 蜜桃亚洲精品一区二区三区| 99久久九九国产精品国产免费| 久久久久精品久久久久真实原创| 嫩草影院入口| 秋霞在线观看毛片| 欧美日韩国产亚洲二区| 成人三级黄色视频| 在线观看美女被高潮喷水网站| 久久久国产成人精品二区| 亚洲,欧美,日韩| 在线观看一区二区三区| 能在线免费看毛片的网站| 高清在线视频一区二区三区 | 麻豆久久精品国产亚洲av| 91久久精品国产一区二区成人| 少妇的逼水好多| 亚洲国产欧美在线一区| 久久精品国产亚洲av天美| 国产极品天堂在线| 男人和女人高潮做爰伦理| 国产精品.久久久| 免费看美女性在线毛片视频| 少妇的逼水好多| 亚洲av电影在线观看一区二区三区 | 国产精品一区二区三区四区免费观看| 色哟哟·www| 又黄又爽又刺激的免费视频.| 久久这里只有精品中国| 特大巨黑吊av在线直播| 国产精品无大码| 午夜福利成人在线免费观看| 91aial.com中文字幕在线观看| 国产精品精品国产色婷婷| 一级二级三级毛片免费看| 国产v大片淫在线免费观看| 大香蕉久久网| 国产成年人精品一区二区| 欧美xxxx性猛交bbbb| 熟妇人妻久久中文字幕3abv| 日日撸夜夜添| 午夜爱爱视频在线播放| 91狼人影院| 中文亚洲av片在线观看爽| 国国产精品蜜臀av免费| 久久久久久久国产电影| 日本黄色视频三级网站网址| 91久久精品国产一区二区三区| 成人亚洲精品av一区二区| 欧美日韩一区二区视频在线观看视频在线 | 日韩欧美三级三区| 最近2019中文字幕mv第一页| 少妇熟女aⅴ在线视频| 国产亚洲91精品色在线| 麻豆av噜噜一区二区三区| 精品国产露脸久久av麻豆 | 亚洲精品亚洲一区二区| 久久综合国产亚洲精品| 亚洲在线自拍视频| 只有这里有精品99| 日本一二三区视频观看| 精品人妻一区二区三区麻豆| 日韩一本色道免费dvd| 69人妻影院| 日本一本二区三区精品| 久久99精品国语久久久| 亚洲综合精品二区| av在线亚洲专区| 99久久精品热视频| 午夜激情福利司机影院| 亚洲成色77777| 国产av不卡久久| 蜜桃久久精品国产亚洲av| 永久免费av网站大全| 日本猛色少妇xxxxx猛交久久| 亚洲av不卡在线观看| 永久免费av网站大全| 少妇猛男粗大的猛烈进出视频 | 午夜免费激情av| 中国美白少妇内射xxxbb| 亚洲精品成人久久久久久| 一本一本综合久久| 亚洲最大成人中文| 国产一区亚洲一区在线观看| 欧美3d第一页| 国产一级毛片七仙女欲春2| 免费看美女性在线毛片视频| 又黄又爽又刺激的免费视频.| 人人妻人人澡欧美一区二区| 亚洲欧美清纯卡通| 观看免费一级毛片| 麻豆久久精品国产亚洲av| 欧美激情在线99| 久久这里有精品视频免费| 搡女人真爽免费视频火全软件| 一区二区三区乱码不卡18| 日韩一区二区视频免费看| 久久久久久伊人网av| 18禁动态无遮挡网站| 午夜福利在线在线| av卡一久久| 国产成人午夜福利电影在线观看| 丰满人妻一区二区三区视频av| 国产精品一区www在线观看| 精品国产一区二区三区久久久樱花 | 插逼视频在线观看| 亚洲av.av天堂| 久久精品国产99精品国产亚洲性色| 国产一级毛片七仙女欲春2| 一级毛片久久久久久久久女| 成人一区二区视频在线观看| 国产精品av视频在线免费观看| 午夜激情福利司机影院| 国产精品一区二区性色av| 嫩草影院入口| 高清视频免费观看一区二区 | 日本黄色片子视频| 亚洲欧美精品自产自拍| 久久99热这里只频精品6学生 |