• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Detection of Magnetic Field Gradient and Single Spin Using Optically Levitated Nano-Particle in Vacuum?

    2018-07-09 06:46:46KeWenXiao肖科文LeiMingZhou周雷鳴ZhangQiYin尹璋琦andNanZhao趙楠BeijingComputationalScienceResearchCenterBeijing00084China
    Communications in Theoretical Physics 2018年7期
    關(guān)鍵詞:雷鳴

    Ke-Wen Xiao(肖科文),Lei-Ming Zhou(周雷鳴),Zhang-Qi Yin(尹璋琦),and Nan Zhao(趙楠)Beijing Computational Science Research Center,Beijing 00084,China

    2Center for Quantum Information,Institute for Interdisciplinary Information Sciences,Tsinghua University,Beijing 100084,China

    1 Introduction

    The pioneering work of Ashkin and co-workers in 1970s[1?3]has stimulated the investigations of the optical trapping of dielectric objects. Since then,the optical tweezers give rise to enormous research progress in biophysics,[1,4?5]colloidal sciences,[6]micro- fluidic dynamics.[7]When the system is in high vaccum,the optically levitated particle can make quality factor potenitially reach 1012[8?11]and has high position measurement sensitivity due to the untethered feature of this system.[8,12]Therefore it is a promising system for the ground state cooling of the mechanical oscillator[13]and the preparation of the macroscopic quantum state[8,14]and other remarkable investigations.[10,12,15?19]Different material and different scale particle levitated by optical tweezers(OT)[9?10,12]can be applied for searching of non-Newtonian gravity,[20]the detection of gravitational wave[21]and the torsional mode by nonspherical particle.[22?23]

    The position measurement of the microparticle trapped by OT has many technologies,for example,total internal reflection microscopy,dynamic light-scattering(DLS)[24]and diffusing wave spectroscopy(DWS).[25?26]Total internal reflection microscopy can achieve 1 nm spatial resolution and up to 1μs temporal resolution.[27]Furthermore,DLS and DWS can have a spatial resolution of sub-nanometers and a temporal resolution on the order of nanoseconds.[26,28?29]However,these techniques can only get ensemble averaged results using these techniques,thus,they cannot be used to measure the instantaneous velocity of a single microscopic particle.[30]For better spatial and temporal resolution,balanced beam detection is brought up and became the standard tool to measure positions of microscopic particles for more and more researches.[31?32]By improving this technology,the spatial resolution and temporal resolution respectively achieve 0.03 nm and 0.01μs,[33]and it prompts the direct observations that the instantaneous velocity of microparticle[12,16]and the full transition from ballistic regime to diffusive Brownian motion[12,16,34]in air or liquid.This technology is very helpful to the detection of the single spin and the gradient of the magnetic field.

    Because of the reconfiguration of the OT system,the particle with the single spins trapped by OT is used for the spin-optomechanical hybrid system for investigation.[9]In the usual case,the negatively charged nitrogen-vacancy center(NV?)in diamond is a stable source of single spin or spin ensembles and it has stimulated substantial interest in quantum metrology,[35?36]quantum information,[37?38]the fundamental principle of quantum mechanics[39?40]and nanoscale sensing.[41?42]It displays a long ground-state spin coherence lifetime at room temperature[43]and can be considered as a stable optically accessible qubit in bulk diamond,[44]and has been leveraged to spin reading and writing to nuclei.[45]Nowadays,nanodiamond trapped with ensembles NV center[46]or single defect[47]by OT be used to the detection of the biological magnetic sensing.[48?49]Compared to diamonds,the ferromagnetic material is also a good spin source,which has high spin density,for example,the spin density of yttrium-iron-garnet(YIG)is(2×1022cm?3)[50?51]and is also suitable for the application of the experiment of superconductor quantum bit because its magnetic ordering(Curie)temperature is as high as 559 K.[52]

    By utilizing progressive detective technologies of displacement and spin-optomechanical hybrid system,we have proposed a scheme for detecting the single spin and the gradient of magnetic field.In this spin-mechanics hybrid system,a ferromagnatic nano-particle or nanodiamond is trapped by OT,and the collision between the residual air molecules and nano-particle results in the Brownian motion of particle.[16]The temperature and the pressure of the residual air affect the displacement of the particle trapped by OT.At the same time,the spin loading in the nanoparticle also prompts particle to move in the magnetic field gradient.In general,the displacement fluctuation of the particle caused by spin flipping in the magnetic field is overwhelmed caused by molecular collision of the residual air,therefore the effect of the spin is not detected.In order to extract the position signal caused by spin flipping,lowing temperature,increment of the gradient of magnetic field,and spin number are promising methods.Based on these method,the displacement fluctuation ratio caused by spin flipping and environments is introduced.Combining the theoretical analysis and the numerically simulation,the displacement fluctuation caused by spin flipping plays a leading role to the environments when the ratio is larger than unity.Therefore,the gradient of magnetic field single spin can be detected by this spin-optomechanics hybrid system.

    This paper is organized as follows.In Sec.2,we introduce the model of this system and deduced the ratio of the particle’s displacement fluctuation caused by spins flipping in the magnetic field gradient and caused by collision between the particle and the residual air molecules.In Sec.3,we present the measurement scheme of the gradient of the magnetic field by utilizing YIG nanoparticle trapped by optical tweezers and verified by numerical simulation and theoretical analysis.In Sec.4,the single spin detection can be realised based on the nanodiamond with NV center trapped by OT and we describe the methods of promoting the displacement fluctuation ratio of the particle caused by spin flipping and collision between nanoparticle and residual air.The conclusion is presented the last section in this paper.

    2 Model

    An optically trapped nanoparticle in non-perfect vacuum will exhibit Brownian motion due to collisions between the nanoparticle and residual air molecules in their three decoupled translational spatial dimensions.[22]When the spins are loaded into the nanoparticle as shown in Fig.1,according to the Newton’s law,the equation of motion for the optically trapped micro-sphere without feedback cooling in x direction is[17]

    where we can use the mass m of particle and the stiffness factor k due to optica√l trap to define the particle’s oscillating frequency ?0=without no damping.

    Fig.1 A nanoparticle loaded spins is trapped by lasers and controlled by magnetic field B.The particle stochastically moves in the focal plane,and the direction of magnetic filed is along x direction.

    In the experiment,the nanoparticle can be trapped by the strongly foused beam.We can adjust the trapping laser power Pt,the wave length of laser λ and the numerical aperture of the lens NA for trapping nanoparticle. In this paper,Pt= 0.1 W,λ = 1064 nm,and NA=0.8,so we can get the oscillating frequencyfor different material nanoparticles,where c is the light velocity and n is the refractive index of particle.For the damping system,the Stokes friction coefficient due to air molecules is γ,and Ftot=Fmol+Fspin,[50,54]Fmol=is the Brownian stochastic force due to residual air molecules.For convenience,we can set

    where ξ(t)is a normalized white-noise process,N is the number of spin in nano-particle,g and mJare respectively the electron’s Lande g-factor and magnetic quantum number.μBis Bohr magneton,GBis the gradient of the magnetic field and the direction of GBis parallel to the direciton of B,and Szis the spin loaded in the particle,every spin has two state,up and down.In our paper,we set the up state of spin is 1 and the down state is?1,every spin can be affected by the temperature of the particle,the interaction of spins and other reasons so that the random flipping.Therefore,the relaxation time of spin can be introduced for describing the random process of the spin flipping as follow

    where τcis relaxation time.Hence at different times t and t′,the correlation function of acceleration,Amol(t)and Aspin(t),as follow:

    where the amplitude of acceleration caused by molecules and spins arerespectively.

    The solution of Eq.(1)is:

    where the cyclic frequency of the damped oscillator isand Γ depends on temperature and the air pressure of the residual air in the high vacuum from A1.It is obviously that ?x(t)?=0,δx(t)=x(t)??,so

    and ?δx?≡ 0 in the long-time condition.The correlation function of displacement ?x(t)x(t+ τ)?can be given as follow:

    where τ is time interval.When τ approaches zero,this correlation function of displacement presents the variance of displacement.

    In Eqs.(6)and(7),A(t)is acceleration resulting from the force of molecules and spins,so the correlation function of displacement?x(t)x(t+ τ)?can be decomposed into two parts,

    where

    According Eq.(9),Imol/spinis represented the displacement correlation caused by molecular collision of residual air or by spin flipping in magnetic field.At first,we give the displacements correlation of Imol,

    when τ is very short,

    the variance of the displacement only depends on the temperature for the trapped nanoparticle.

    On the other hand,for the displacement correlation function caused by spin flipping,Ispinis given

    from computation Eq.(9),where

    For investigating the variance of the displacement caused by spin flipping,we set τ→ 0,Ispinis simplified to

    For comparing displacements caused by molecular collision and spin flipping,κ=Ispin/Imolis proposed as fol-low:

    The ratio κ of displacement correlation caused by spins flipping and by moleculardetermines which effect is the dominant role,andis the ratio of the displacement fluctuation of the particle resulting from spin flipping and molecular collision.When ratio is greater than unity,the spins flipping in magnetic field prevail and the signal of the particle’s displacement caused by spin flipping can be detected,on the contrary,signal of the displacement caused by spin flipping is covered up by molecular collision of residual air.From appendix A,Γ is relevant to residual air pressure and temperature in this system.

    3 Detection of the Magnetic Field Gradient

    The increment of the spin number can enhance the spin signal from Eq.(14),which is beneficial for the detection of the magnetic field gradient.That is because the randomly flipping effect of the spin can become strong after increasing the spin number.In this scheme,we take the YIG nanoparticle for example and consider a YIG nanoparticle trapped by OT and the spin can be affected by magnetic if eld.Because of the ferromagnetism of the particle,we can assume that the spins in YIG can be randomly flipped by the spin relaxation.

    In the first case,we take the 100 nm YIG nanoparticle for example and there are 8.85×107spins below the 273 K in particle.These spins flip collectively from one state to another,therefore,the position of the nanoparticle moves from one position to another.Figure 2 shows the flipping of the spin state and the displacement fluctuation resulting from molecular collision and spin flipping.In this case,the standard deviation of the particle’s displacement caused by molecular collision of residual air(?air)is 0.40 nm and GB=10 kT/m.The standard deviation of the particle’s displacement caused by spin flipping in magnetic field(?B)is 1.03 nm.κ1/2is 2.58,the collective effect of the spin can be detective.From our simulation,the position of the particle changes synchronously with the spinflipping in Fig.2(a).The inset of Fig.2(a)shows the harmonic oscillation of the particle when the spins do not flip.In this simulation,the simulating time is 100 ms and simulating time-step is 1μs.By numerically simulating,we can obtain a series of sampling points,and every sampling point corresponds different displacement of nano-particle at different time.For any sampling point,we can get the nano-particle’s displacement and count the number of occurrences of any displacement.Base on this result,we can get the Fig.2(b).In this case,we assume that all spins of the nanoparticle flip at the same time from the same state to another.However,in the realistic case all the spins ensembles do not collectively flip from one state to another at the same time.Therefore the displacement fluctuation caused by spin flipping in magnetic field gradient should be investigated anew.

    Fig.2 (Color online)The spin of the YIG nanoparticle collectively randomly flips and the position synchronously changes with spin state,and the position of the YIG particle is statistically analysed.(a)shows the every spin of YIG nanoparticle has the same property of flipping and the flipping time is random,however,the mean flipping time is determined,1 ms(blue curve).The yellow curve corresponds to the changing of the position of the particle.(b)The statistics of the position of the particle and its fitting.The radius of this YIG particle is 100 nm and the temperature and the residual air pressure are respectively 10 mK and 10 Pa.The gradient of magnetic field is 104T/m.The refractive index of YIG is 2.2.

    In the realistic case,the displacement fluctuation caused by molecular collision of residual air is not changed for the determined environment,but the displacement fluctuation caused by spin flipping in magnetic field is relevant to the equivalent spin number in YIG.Every spin flipping is random,therefore,the equivalent number of spin up and spin down is random and less than 8.85×107below the 273 K.The effect of displacement fluctuation caused by spin flipping is so week that cannot be detected compared to previous case.In addition,the position distribution of particle can be detected as a Gaussian distribution and is not similar to two peaks distribution in Fig.2.For distinguishing the displacement fluctuation caused by molecular collision and by spin flipping,at first,we can theoretically and numerically compute the displacement fluctuation caused by the residual air molecular collision,and then numerically compute the total displacement fluctuation,at last,the displacement fluctuation caused by spin flipping can be got from the difference between the total displacement fluctuation and the displacement fluctuation caused by molecular collision.For increasing the displacement fluctuation caused by spin flipping in magnetic field,we can increase the gradient of the magnetic field,GB.

    For the 100 nm YIG nanopartice,the state of the spin ensembles are Fig.3.This particle contains many spins and every spin flips randomly,therefore,the particle will randomly move in the focal plane. The oscillatory displacement of particle is determined by the gradient of magnetic field and the environments.When the temperature and the residual air pressure are respectively 1 mK and 1000 Pa,?airand?Bare respectively 0.18 nm and 2.0 nm by the statistical computation under GB=10 kT/m.These are depicted in Fig.3.

    Fig.3 (Color online)The synchronously oscillation of the nanoparticle with the flipping of the spins ensemble.The blue curve is the state flipping of the spin ensembles of the YIG nanoparitcle.The yellow curve shows the changing of the position change of the particle.The inset is the oscillation of the particle in the short time.The radius of this YIG particle is 100 nm and the temperature and the residual air pressure are respectively 1 mK and 1 kPa.The gradient of magnetic field is 104T/m and the refractive index of YIG is 2.2.

    On the contrary,if we have statistically computed the displacement fluctuation caused by spin flipping in the magnetic field,the gradient of the magnetic field can be got.Different gradient of magnetic field can stimulate different displacement fluctuation,therefore,the correspondence between the displacement fluctuation and the gradient of magnetic field can be depicted.For this system,when the magnetic field does not exist,the particle’s displacement fluctuation only results from the molecular collision of residual air.The fluctuation of the displacement caused by residual air molecular is constant.However,when the magnetic field exists,the displacement of the particle can be very larger than the thermal fluctuation of the particle.In this case,we can give the relation between displacement fluctuation of the particle and the gradient of magnetic field GBlike Fig.4.When GBis very small,?Bis not much bigger than?air.However,when GBincreases to 104T/m,?Band?aircan be distinguished significantly.The larger gradient of the magnetic field will result in the bigger position fluctuation.Considering the determined environment,?airis not changed and we can know that?Bcan be detected when GB≥1 kT/m.There are three styles line derived from simulation, fitting and analysis.From Eq.(14),the sensitivity to the gradient of the magnetic field is determined by

    The sensitivity has positive correlation with the spin number.When a 100 nm YIG nanoparticle trapped by OT,the position detective technology and statistical method can give different magnetic field gradient,and the results from numerical simulation and theoretical analysis can match well.In Fig.4,the fitting result of sensitivity is 1.67×10?13m/T(the dashed curve)and the analysis result is 1.95× 10?13m/T(the “+”symbol).They can match better each other in a longer time statistics.The inset figure(a)depicts that the displacement caused by magnetic field can be detected until GB≥103T/m,even though the displacement caused by GBis smaller than the displacement caused by residual airs.

    Fig.4 The relationship between displacement fluctuation of particle and the graident of the magnetic field in the environment of the temperature(1 mK)and the air pressure(1 kPa).The inset(a)is the smaller gradient of the magnetic field and the inset(b)is the larger gradient of the magnetic field.The the circle,dashed line and‘+′line are respectively simulating results, fitting results and the analytical results.The refractive index of YIG is 2.2.

    4 The Detection of the Single Spin

    A nanodiamond containing an NV center have one spin,it also can be trapped by OT.[9]In the theoretical analysis,we can get the ratio of standard deviation between xspinand xmol,the particle’s displacement can be also simulated at the same time.The position of the particle oscillates synchronously following the flipping of the spin in the NV center of the particle like Fig.5(a).The spin state flips between state?1 and state 1,and the particle synchronously oscillates in the region between?10 nm and 10 nm.

    Fig.5 The synchronous oscillation of the nanoparticle with the flipping of the single spin and the statistical and fitting results about the distribution of the particle’s position.(a)The blue curve is the spin state in the nanoparitcle with NV center.The yellow curve shows the changing of the position of the particle.The inset is the oscillation of the particle in the short time.(b)The statistical and fitting results about the distribution of the particle’s position. ?Band ?airare respectively the displacement of the particle caused by the magnetic field and the residual air.The radius of this nanodiamond particle is 30 nm which contains only one spin,and the temperature and the residual air pressure are respectively 1 mK and 0.5 Pa.The gradient of magnetic if eld is 106T/m.

    By utilizing the statistical and fitting methods,we can give the statistical property of the particle’s position caused by molecular collision of residual air and the spinflipping of magnetic field.In proper coefficients,there are two most probable positions of particle in the focal plane,which can be detected by detector of the position.This represents the particle oscillates randomly between two positions.The width of the position peak of particle results from the collision between the particle and the residual air molecules.Figure 5(b)is the statistical and fitting results.In this case,?Band?airare respectively 3.44 nm and 2.38 nm,which match well with the theoretical results 3.49 nm and 2.25 nm from Eqs.(11)and(13).It is easy to distinguish the displacement fluctuation caused by molecular collision and by single spin flipping,the single spin can be detected.

    The statistical method shows two maximum counts of detector about the position of the particle. These maximums represent that the particle prefers staying the greater probability positions to the other position.These maximum positions are just caused by spin flipping from one state to another in the magnetic field.At the same time,if the spin stays in one state and the nanoparticle is collided by the residual air,therefore,the nanoparticle has the property of the Brownian motion near the maximum position.

    In the last example,the ratio κ1/2is 1.5,although it is enough for distinguishing the effect between magnetic field and the residual air,we can get more significant effect of the magnetic field about the particle position by adjusting other coefficients.Hence,it is necessary to know the property of κ about the trapping frequency(?0),the relaxation time of spin(τc)and so on.

    In order to discuss the problem,we set:

    for Eq.(14).? is independent of the coefficients of the trapping lasers which determines the trapping frequency,?0.Therefore,the investigation about the relationship between κ and ?0is our first subject.

    4.1 ?0-dependence

    From Eq.(14),κ is monotonous decreasing function when increasing ?0,and ?κ/??0is as follow:

    Equation(17)is eternity negative for Γ >0 and τc>0.This presents κ decreasing with increasing of ?0for fixed

    Although κ declines with the trapping frequency ?0,different relaxation time of spin also affects the displacement of the particle caused by the gradientthe magneticFig.6.From this figurehe decreasing function with ?0which matches with Eq.(17).However,under normal case,the trapping frequency must be larger than 80 kHz otherwise the particle would not be trapped for the 30 nm radius of particle.Therefore,the inset of this figure shows the range of the trapping frequency 80 kHz to 160 kHz.It is obvious that the longer the relaxation time of spin is,the more significant the displacement fluctuation of√ spin flipping in the magnetic field gradient is.Althoughis slightly more than 1,we can increase τcin order to increase displacement fluctuation caused by spin flipping by some method.[56?57]Nevertheless,when the trapping frequency is larger, is not sensitive to τc.This property can be verified by analysis of the relationship between κ and τc.

    Fig.6 The relation between and ?about different0 τc.In this case,the radius of the nanodiamond particle is R=30 nm,the temperature is 1 mK,the residue air pres√sure is P=10 Pa.Different curves represent different with different τc.The units of inset is the same with main figure.

    Equation(18)shows that κ has two critical points, τc0=?1/(?0+Γ)and τc0=1/(?0?Γ),which give some interesting characters for our investigation.In one case,when the system is under-damping,?0> Γ,and the space of τcis divided into two range,i.e.τc∈ (0,1/(?0?Γ))and τc∈ (1/(?0? Γ),+∞).They correspond to ?κ/?τc>0 and ?κ/?τc<0,respectively.In this case, κ increases with the increment of τcuntil τc=1/(?0? Γ)and when τc>1/(?0?Γ),κ will decrease.

    In another case,when the system is over-damping,?0< Γ,κ increases with the increment of τc.The longer the relaxation time of the spin is,the more obvious the effect of spin is.By analysis the second order derivative of κ about τc,

    4.2 τc-dependence

    The relaxation time of spin can affect the ratio between Ispinand Imolas well.The derivative of κ with respect to τcis always stands up for the over-damping case.These two case can be corresponded with Fig.7.√This figure intuitively shows that the relation betweenκ and τc.For the under-damping case,?0=0.25Γ,this trapping frequency is general case,?0=98 kHz.That is over-damping,κ has a maximum value when τcis very short.Therefore the relaxation time is not as√ longer as better.However,for the under-damping case,κ increases with the increment of τclike the dashed line in Fig.7,hence the larger displacement of particle caused by magnetic field can be got by adjusting the relaxation of the spin.

    Fig.7 The relation betweenand τabout differentc?0.In this case,the radius of the nanodiamond particle is R=30 nm,the temperature is 1 mK,the residue air pressure is P=10 Pa.

    4.3 Environment Damping

    In real system,environmental temperature and the residual air pressure will affect the damping coefficient Γ from Appendix A,and then affect the ratio,κ.Therefore,for convenience,we investigate straightforwardly the relationship between κ and Γ. ?κ/?Γ clearly shows that κ decreases with the increment of the Γ as follow:

    Because ?κ/?Γ is always negative for the arbitrary parameters.For getting more remarkable displacement of the particle caused by spin flipping,we can reduce the temperature and the air pressure of the residual air.That is because the reduction of the temperature is equivalent to reduction of the fluctuation of thermal displacement of the particle and strengthening the effect of the spin flipping.The reduction of the air pressure will reduce the friction of the particle with the residual air molecules,the motion of the particle is more obvious.Although,the reducing residual air pressure can strength the signal of the spin flipping,the damping γradresulting from the photon shot noise will be primary and damping Γ from the interaction with residual air can be neglected at very low air pressure.In this case,we can introduce feedback cooling in order to solve this problem.Fortunately,ultrahigh vacuum(P ~ 10?8mbar)is not strictly demanded in our system,therefore,γradis neglectly smaller than the damping Γ by computation from Ref.[11]so that shot noise is unnecessarily considered.

    5 Conclusion

    In this paper,we have systematically investigated the motion of the nano-particle loading spins trapped by the optical tweezers in the high vacuum environment.Based on this system,the theoretical analysis has been utilized to study the displacement of the particle caused by molecular collision of the residual air and by spin flipping under the gradient of magnetic field,as well as their ratio.This theoretical analysis inspires a series of proposal about the detection of the gradient of the magnetic field and the detection of the single spin.By utilizing theoretical analysis and the numerical simulation,we present and verify the scheme of the detection of the gradient of the magnetic by trapping YIG nanoparticle.Similarly,this system also can be applied for detection of the single spin by trapping the diamond nanoparticle with NV center.By regulating the parameters,we can make the displacement fluctuation of the particle caused by the spin flipping in magnetic field gradient more remarkable.At last,we present the method about increasing the displacement fluctuation resulting from spin flipping,such as reducing the trapping frequency,increasing the relaxation time of the spin and reducing the temperature and residual air.This spin-mechanics hybrid system with spin have provided a novel experiment platform for high sensitive measurement,macro-ground state cooling etc.

    Appendix A:The Damping Factor in the High Vacuum

    In the high and ultrahigh vacuum,the damping factor,Γ,can be calculated,[10,58]

    where η =18.52 × 10?6Pa ·s is the viscosity coefficient of air in room temperature and atmospheric pressure,r is the radius of the particle,Kn=s/r is the Knudsen number with s being the mean the free path of air molecules,and cK=0.31Kn/(0.758+1.152Kn+Kn2).The mean free path is

    here P is the residual air pressure and mairis the mass of the single air molecule,the value is mair=4.80×10?26kg.

    Acknowledgement

    We thank Professor Renbao Liu for inspiring discussions.

    [1]A.Ashkin,Phys.Rev.Lett.24(1970)156.

    [2]A.Ashkin and J.M.Dziedzic,Appl.Phys.Lett.19(1971)283.

    [3]A.Ashkin and J.M.Dziedzic,Appl.Phys.Lett.28(1976)333.

    [4]A.Ashkin,J.M.Dziedzic,and T.Yamane,Nature(London)330(1987)769.

    [5]A.Ashkin and J.Dziedzic,Science 235(1987)1517.

    [6]K.Dholakia and P.Zemánek,Rev.Mod.Phys.82(2010)1767.

    [7]K.Dholakia,Chemical Society Reviews 37(2008)42.

    [8]Z.Q.Yin,A.A.Geraci,and T.Li,Int.J.Mod.Phys.B 27(2013)1330018.

    [9]L.P.Neukirch,E.V.Haartman,J.M.Rosenholm,and A.N.Vamivakas,Nature Photonics 9(2015)653.

    [10]T.Li,S.Kheifets,and M.G.Raizen,Nature Physics 7(2011)527.

    [11]V.Jain,J.Gieseler,C.Moritz,C.Dellago,et al.,Phys.Rev.Lett.116(2016)243601.

    [12]T.Li,S.Kheifets,D.Medellin,and M.G.Raizen,Science 328(2010)1673.

    [13]P.Rabl,P.Cappellaro,M.V.G.Dutt,et al.,Phys.Rev.B 79(2009)041302.

    [14]D.E.Chang,C.A.Regal,S.B.Papp,et al.,Proceedings of the National Academy of Sciences of the United States of America 107(2010)1005.

    [15]O.Romero-Isart,A.C.P flanzer,F.Blaser,et al.,Phys.Rev.Lett.107(2011)020405.

    [16]S.Kheifets,A.Simha,K.Melin,et al.,Science 343(2014)1493.

    [17]J.Gieseler,B.M.Deutsch,R.Quidant,and L.Novotny,Phys.Rev.Lett.109(2012)103603.

    [18]J.Gieseler,R.Quidant,C.Dellago,and L.Novotny,Nature Nanotechnol.9(2014)358.

    [19]J.Bateman,S.Nimmrichter,K.Hornberger,and H.Ulbricht,Nature Commun.5(2014)4788.

    [20]A.A.Geraci,S.B.Papp,and J.Kitching,Phys.Rev.Lett.105(2010)101101.

    [21]A.Arvanitaki and A.A.Geraci,Phys.Rev.Lett.110(2013)071105.

    [22]T.M.Hoang,Y.Ma,J.Ahn,et al.,Phys.Rev.Lett.117(2016)123604.

    [23]K.W.Xiao,N.Zhao,and Z.Q.Yin,Phys.Rev.A 96(2017)013837.

    [24]B.Berne and R.Pecora,Tanpakushitsu Kakusan Koso Protein Nucleic Acid Enzyme 49(1976)1676.

    [25]G.Maret,et al.,Zeit.Für Phys.B Con.Matt.65(1987)409.

    [26]D.J.Pine,D.A.Weitz,P.M.Chaikin,and E.Herbolzheimer,Phys.Rev.Lett.60(1988)1134.

    [27]L.Liu,A.Woolf,A.W.Rodriguez,and F.Capasso,Proceedings of the National Academy of Sciences of the United States of America 111(2014)E5609.

    [28]P.Zakharov,F.Cardinaux,and F.Scheffold,Phys.Rev.E 73(2006)011413.

    [29]J.X.Zhu,D.J.Durian,J.Müller,et al.,Phys.Rev.Lett.68(1992)2559.

    [30]J.Mo,J.Chem.Phys.49(2015)5158.

    [31]B.Luki′c,S.Jeney,C.Tischer,et al.,Phys.Rev.Lett.95(2005)160601.

    [32]T.Franosch,M.Grimm,M.Belushkin,et al.,Nature(London)478(2011)85.

    [33]P.N.Pusey,Science 332(2011)802.

    [34]R.Huang,I.Chavez,K.M.Taute,et al.,Nature Phys.7(2011)439.

    [35]P.Kumar and M.Bhattacharya,Opt.Express 25(2017)719568.

    [36]N.Zhao and Z.Q.Yin,Phys.Rev.A 90(2014)042118.

    [37]J.Wrachtrup and F.Jelezko,J.Phys.Condens.Matter 18(2006)S807.

    [38]P.Neumann,R.Kolesov,B.Naydenov,et al.,Nature Phys.6(2010)249.

    [39]Z.Yin and T.Li,Contemp.Phys.58(2017)1.

    [40]G.Anetsberger,P.Verlot,E.Gavartin,et al.,Nature Nanotechnol.4(2009)820.

    [41]J.R.Maze,P.L.Stanwix,J.S.Hodges,et al.,Nature(London)455(2008)644.

    [42]H.J.Mamin,M.Kim,M.H.Sherwood,et al.,Science 339(2013)557.

    [43]P.L.Stanwix,L.M.Pham,J.R.Maze,et al.,Phys.Rev.B 82(2010)201201.

    [44]F.Jelezko,T.Gaebel,I.Popa,et al.,Phys.Rev.Lett.93(2004)130501.

    [45]P.C.Maurer,G.Kucsko,C.Latta,et al.,Science 336(2012)1283.

    [46]V.R.Horowitz,B.J.Alemán,D.J.Christle,et al.,Proce.National Acad.Sci.109(2012)13493.

    [47]M.Geiselmann,M.L.Juan,J.Renger,et al.,Nature Nanotechnol.8(2013)175.

    [48]A.W.Schell,P.Engel,and O.Benson,arXiv:1303.0814(2013).

    [49]R.Beams,D.Smith,T.W.Johnson,et al.,Nano Lett.13(2013)3807.

    [50]H.Huebl,C.W.Zollitsch,J.Lotze,et al.,Phys.Rev.Lett.111(2013)127003.

    [51]M.A.Gilleo and S.Geller,Phys.Rev.110(1958)73.

    [52]D.Zhang,X.M.Wang,T.F.Li,et al.,npj Quantum Inform.1(2015)15014.

    [53]O.Romero-Isart,A.C.Panzer,M.L.Juan,et al.,Phys.Rev.A 83(2011)013803.

    [54]M.G.Raizen,R.J.Thompson,R.J.Brecha,et al.,Phys.Rev.Lett.63(1989)240.

    [55]F.Bloch,Phys.Rev.70(1946)460.

    [56]G.Q.Liu,Q.Q.Jiang,Y.C.Chang,et al.,Nanoscale 6(2014)10134.

    [57]J.Du,X.Rong,N.Zhao,et al.,Nature(London)461(2009)1265.

    [58]S.A.Beresnev,V.G.Chernyak,and G.A.Fomyagin,J.Fluid Mech.219(1990)405.

    猜你喜歡
    雷鳴
    Quantitative determination of the critical points of Mott metal–insulator transition in strongly correlated systems
    雷鳴和細雨
    In-situ ultrasonic calibrations of pressure and temperature in a hinge-type double-stage cubic large volume press
    Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
    Measuring the flexibility matrix of an eagle's flight feather and a method to estimate the stiffness distribution?
    動物可笑堂
    強勁、震撼 Rythmik Audio(雷鳴)FV25HP
    Tunneling field effect transistors based on in-plane and vertical layered phosphorus heterostructures?
    Capital Market Analysis
    商情(2017年5期)2017-03-30 23:58:25
    坑人的兄弟
    国产野战对白在线观看| 男女午夜视频在线观看| 国产三级中文精品| 99国产极品粉嫩在线观看| 亚洲自拍偷在线| 精品国产三级普通话版| 亚洲av成人av| 精品久久久久久久毛片微露脸| 日韩欧美免费精品| 19禁男女啪啪无遮挡网站| 久久午夜综合久久蜜桃| 高清在线国产一区| 亚洲 欧美一区二区三区| 天堂网av新在线| 国产激情偷乱视频一区二区| 国产精品99久久久久久久久| 久久久久免费精品人妻一区二区| 又黄又爽又免费观看的视频| 欧美日韩综合久久久久久 | 色尼玛亚洲综合影院| www.精华液| 国产高清三级在线| 成熟少妇高潮喷水视频| 久久久久精品国产欧美久久久| 伦理电影免费视频| 国产av一区在线观看免费| 一级毛片女人18水好多| 国产亚洲精品一区二区www| 曰老女人黄片| 一个人看的www免费观看视频| 久久精品91蜜桃| 欧美又色又爽又黄视频| 一a级毛片在线观看| 国产精品免费一区二区三区在线| 国产一区二区在线av高清观看| 国产精品自产拍在线观看55亚洲| 日日干狠狠操夜夜爽| www.www免费av| 国产麻豆成人av免费视频| 色视频www国产| 欧美国产日韩亚洲一区| 99精品在免费线老司机午夜| 可以在线观看毛片的网站| 国产亚洲精品一区二区www| 国产精品一区二区精品视频观看| 国内精品美女久久久久久| 亚洲美女黄片视频| 欧美午夜高清在线| 国产精品九九99| а√天堂www在线а√下载| 亚洲五月婷婷丁香| 熟女人妻精品中文字幕| 欧美丝袜亚洲另类 | 欧美最黄视频在线播放免费| 韩国av一区二区三区四区| 亚洲专区国产一区二区| 欧美+亚洲+日韩+国产| 久久亚洲精品不卡| 午夜福利免费观看在线| 国产成人影院久久av| 久久草成人影院| 亚洲 欧美一区二区三区| 国产精品一区二区精品视频观看| 天堂动漫精品| 日本撒尿小便嘘嘘汇集6| 男女那种视频在线观看| 亚洲午夜理论影院| 两性午夜刺激爽爽歪歪视频在线观看| 一个人看的www免费观看视频| 91字幕亚洲| 久久99热这里只有精品18| 欧美一区二区国产精品久久精品| 欧美黑人巨大hd| 一进一出抽搐动态| 国产激情久久老熟女| 看片在线看免费视频| 亚洲成av人片在线播放无| 九九在线视频观看精品| 国产高清视频在线播放一区| 每晚都被弄得嗷嗷叫到高潮| 97人妻精品一区二区三区麻豆| 久久久成人免费电影| 精品国产美女av久久久久小说| 丰满的人妻完整版| 日本精品一区二区三区蜜桃| 精品久久久久久久毛片微露脸| 亚洲av第一区精品v没综合| 欧美黑人巨大hd| 国产成人一区二区三区免费视频网站| 午夜成年电影在线免费观看| netflix在线观看网站| 国产乱人伦免费视频| 不卡一级毛片| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲,欧美精品.| 免费大片18禁| 免费观看的影片在线观看| 老司机午夜十八禁免费视频| www.熟女人妻精品国产| 一进一出抽搐gif免费好疼| 我的老师免费观看完整版| 五月伊人婷婷丁香| 1024香蕉在线观看| 欧美一区二区国产精品久久精品| 啪啪无遮挡十八禁网站| 后天国语完整版免费观看| 人妻久久中文字幕网| 亚洲在线自拍视频| 成年版毛片免费区| 精品人妻1区二区| 午夜免费观看网址| 免费看美女性在线毛片视频| 成人无遮挡网站| 国产亚洲欧美98| 怎么达到女性高潮| 免费无遮挡裸体视频| 日韩欧美国产一区二区入口| 香蕉av资源在线| 中文字幕人妻丝袜一区二区| 91av网站免费观看| 精品一区二区三区视频在线 | av视频在线观看入口| 毛片女人毛片| 中出人妻视频一区二区| 国产成人精品久久二区二区免费| 久久久久国产精品人妻aⅴ院| 999久久久精品免费观看国产| 久久久国产欧美日韩av| 国产精品一区二区三区四区久久| 最近视频中文字幕2019在线8| 91av网站免费观看| 最近在线观看免费完整版| 观看免费一级毛片| 男女那种视频在线观看| 麻豆成人av在线观看| 亚洲欧美日韩无卡精品| АⅤ资源中文在线天堂| 精品久久久久久久末码| 国产成人欧美在线观看| 91在线观看av| 亚洲中文字幕一区二区三区有码在线看 | 欧美不卡视频在线免费观看| bbb黄色大片| 中文字幕精品亚洲无线码一区| 久久久久性生活片| 国产v大片淫在线免费观看| 久久伊人香网站| 日韩精品中文字幕看吧| av中文乱码字幕在线| 亚洲熟妇熟女久久| 丝袜人妻中文字幕| 99久国产av精品| 成人精品一区二区免费| 中文亚洲av片在线观看爽| 巨乳人妻的诱惑在线观看| 舔av片在线| 在线观看免费午夜福利视频| 久久国产精品人妻蜜桃| 国产乱人伦免费视频| 亚洲成人中文字幕在线播放| 亚洲性夜色夜夜综合| 国产淫片久久久久久久久 | 成人国产一区最新在线观看| 亚洲美女视频黄频| 日本a在线网址| aaaaa片日本免费| 亚洲 欧美一区二区三区| 动漫黄色视频在线观看| 99久久精品热视频| 两个人视频免费观看高清| 日本撒尿小便嘘嘘汇集6| 小蜜桃在线观看免费完整版高清| 国产精品久久久久久久电影 | 在线观看一区二区三区| 男女之事视频高清在线观看| 国产69精品久久久久777片 | 九九热线精品视视频播放| 久久久色成人| 99久久成人亚洲精品观看| 国产三级中文精品| 美女高潮喷水抽搐中文字幕| 久久天躁狠狠躁夜夜2o2o| 99久久综合精品五月天人人| 每晚都被弄得嗷嗷叫到高潮| 亚洲国产欧美一区二区综合| 99久久精品一区二区三区| 精华霜和精华液先用哪个| 禁无遮挡网站| 国产免费男女视频| 国产精品日韩av在线免费观看| 特大巨黑吊av在线直播| 999久久久国产精品视频| 51午夜福利影视在线观看| 国产 一区 欧美 日韩| 国产精品综合久久久久久久免费| 欧美成人性av电影在线观看| 看黄色毛片网站| 亚洲国产精品999在线| 99riav亚洲国产免费| 中文字幕久久专区| 久久婷婷人人爽人人干人人爱| 可以在线观看的亚洲视频| 成人国产综合亚洲| 天天添夜夜摸| 亚洲国产中文字幕在线视频| 91在线观看av| 色哟哟哟哟哟哟| 国产精品久久久人人做人人爽| a级毛片在线看网站| 伦理电影免费视频| 日韩国内少妇激情av| 色在线成人网| 国产精品国产高清国产av| 国产91精品成人一区二区三区| 国产成人aa在线观看| 欧美不卡视频在线免费观看| 国产精品女同一区二区软件 | 亚洲中文av在线| 免费看日本二区| 亚洲中文字幕日韩| 一个人观看的视频www高清免费观看 | 亚洲国产高清在线一区二区三| 黄色视频,在线免费观看| 国产 一区 欧美 日韩| 亚洲自拍偷在线| 久久午夜亚洲精品久久| 无限看片的www在线观看| 亚洲欧美日韩无卡精品| 久久天堂一区二区三区四区| 精品人妻1区二区| 亚洲av成人av| 国产成人影院久久av| 亚洲国产精品久久男人天堂| 伦理电影免费视频| 搞女人的毛片| 无遮挡黄片免费观看| 亚洲av成人av| 成人三级黄色视频| 偷拍熟女少妇极品色| 日本撒尿小便嘘嘘汇集6| 香蕉久久夜色| 亚洲成人中文字幕在线播放| 国产成人精品久久二区二区91| 亚洲avbb在线观看| 亚洲专区国产一区二区| 亚洲激情在线av| 国产亚洲av嫩草精品影院| 成人一区二区视频在线观看| 久久天堂一区二区三区四区| 精品久久久久久成人av| 欧美又色又爽又黄视频| 可以在线观看的亚洲视频| 一级黄色大片毛片| 叶爱在线成人免费视频播放| 脱女人内裤的视频| 九九久久精品国产亚洲av麻豆 | 精品一区二区三区av网在线观看| 亚洲欧美日韩无卡精品| 欧美色欧美亚洲另类二区| 亚洲人成网站在线播放欧美日韩| 啪啪无遮挡十八禁网站| 久久久久国产精品人妻aⅴ院| 久久久久久久午夜电影| 成人亚洲精品av一区二区| av在线蜜桃| 亚洲精华国产精华精| 中文字幕久久专区| 午夜福利在线观看免费完整高清在 | 国产精品精品国产色婷婷| 婷婷丁香在线五月| 一个人看的www免费观看视频| 香蕉av资源在线| 毛片女人毛片| 色综合婷婷激情| 亚洲国产精品sss在线观看| 91av网站免费观看| 国产亚洲欧美98| 激情在线观看视频在线高清| 久久婷婷人人爽人人干人人爱| 性色avwww在线观看| 中文字幕久久专区| av天堂在线播放| 99国产综合亚洲精品| 成人三级做爰电影| 九九在线视频观看精品| 国产午夜精品久久久久久| av片东京热男人的天堂| 成人高潮视频无遮挡免费网站| 一区福利在线观看| 午夜福利视频1000在线观看| 国产av麻豆久久久久久久| 国产三级在线视频| 欧美日韩乱码在线| 欧美色欧美亚洲另类二区| 两性午夜刺激爽爽歪歪视频在线观看| 97超视频在线观看视频| 精品一区二区三区视频在线 | 国产伦一二天堂av在线观看| 少妇人妻一区二区三区视频| 观看美女的网站| 九色国产91popny在线| 日本免费一区二区三区高清不卡| 男女之事视频高清在线观看| 丰满人妻熟妇乱又伦精品不卡| 亚洲熟女毛片儿| 国产一区二区在线av高清观看| 中文字幕精品亚洲无线码一区| 国产激情偷乱视频一区二区| 2021天堂中文幕一二区在线观| 亚洲aⅴ乱码一区二区在线播放| 男女那种视频在线观看| 成人国产一区最新在线观看| 久久久久久久精品吃奶| 高潮久久久久久久久久久不卡| 一区二区三区高清视频在线| 精品久久久久久久毛片微露脸| 亚洲第一欧美日韩一区二区三区| 黄色成人免费大全| 琪琪午夜伦伦电影理论片6080| e午夜精品久久久久久久| 一本综合久久免费| 国产免费av片在线观看野外av| 两性夫妻黄色片| 亚洲av成人一区二区三| 日本 av在线| 一级作爱视频免费观看| 国产精品亚洲美女久久久| 亚洲激情在线av| 亚洲欧美激情综合另类| 欧美日韩精品网址| 亚洲国产精品999在线| 美女cb高潮喷水在线观看 | 国产精品一区二区三区四区久久| 热99re8久久精品国产| 国产毛片a区久久久久| 欧美黄色片欧美黄色片| 欧美3d第一页| 精品国产超薄肉色丝袜足j| 成在线人永久免费视频| 亚洲国产中文字幕在线视频| 999久久久国产精品视频| 欧美成人性av电影在线观看| 久久久精品大字幕| 亚洲美女黄片视频| 高清毛片免费观看视频网站| 国产亚洲精品av在线| 婷婷六月久久综合丁香| 一进一出抽搐动态| 婷婷亚洲欧美| 国产精品美女特级片免费视频播放器 | 一区二区三区激情视频| 精品久久久久久久毛片微露脸| 午夜成年电影在线免费观看| 日本免费一区二区三区高清不卡| 欧美激情在线99| 99热精品在线国产| 18禁黄网站禁片免费观看直播| 一本一本综合久久| 国产精品乱码一区二三区的特点| 免费av毛片视频| 很黄的视频免费| 精品不卡国产一区二区三区| 亚洲av电影在线进入| 国内久久婷婷六月综合欲色啪| 亚洲专区中文字幕在线| 亚洲黑人精品在线| 一级毛片高清免费大全| 日本 av在线| 在线免费观看不下载黄p国产 | 18禁国产床啪视频网站| x7x7x7水蜜桃| 精品不卡国产一区二区三区| 最近视频中文字幕2019在线8| 中文字幕最新亚洲高清| 亚洲精品一区av在线观看| 桃红色精品国产亚洲av| 欧美日韩国产亚洲二区| 亚洲国产欧洲综合997久久,| 欧美一级毛片孕妇| 999久久久精品免费观看国产| 久久中文字幕人妻熟女| 观看免费一级毛片| 成人三级黄色视频| 欧美日韩一级在线毛片| 精品福利观看| 中文字幕熟女人妻在线| av黄色大香蕉| av天堂在线播放| 精品一区二区三区四区五区乱码| 久久人人精品亚洲av| 国产97色在线日韩免费| 亚洲自拍偷在线| 99久国产av精品| 国产不卡一卡二| 国产成人啪精品午夜网站| 黄色女人牲交| 国产成人av激情在线播放| 一二三四社区在线视频社区8| 怎么达到女性高潮| 一个人免费在线观看的高清视频| 特级一级黄色大片| 一个人观看的视频www高清免费观看 | 久久亚洲精品不卡| 观看免费一级毛片| 国产av不卡久久| 亚洲av中文字字幕乱码综合| 日韩欧美免费精品| 一个人看的www免费观看视频| 国模一区二区三区四区视频 | 老司机午夜十八禁免费视频| av国产免费在线观看| 国产单亲对白刺激| 1000部很黄的大片| 欧美激情在线99| 亚洲欧美精品综合久久99| 国产毛片a区久久久久| 十八禁网站免费在线| 欧美成狂野欧美在线观看| 亚洲午夜理论影院| 免费高清视频大片| 欧美国产日韩亚洲一区| 亚洲国产精品sss在线观看| 精品无人区乱码1区二区| 2021天堂中文幕一二区在线观| 久久久久国产一级毛片高清牌| 国产又色又爽无遮挡免费看| 伦理电影免费视频| 床上黄色一级片| 亚洲国产欧美网| 观看美女的网站| 757午夜福利合集在线观看| 男女之事视频高清在线观看| 又紧又爽又黄一区二区| 成人av在线播放网站| 国产精品久久久久久亚洲av鲁大| 欧美成人免费av一区二区三区| 久久99热这里只有精品18| 精品久久久久久久久久免费视频| 淫秽高清视频在线观看| 国产毛片a区久久久久| 久久久久国内视频| 99久久久亚洲精品蜜臀av| 很黄的视频免费| 丁香欧美五月| www.精华液| 色吧在线观看| 脱女人内裤的视频| 露出奶头的视频| 亚洲avbb在线观看| 97超视频在线观看视频| 国产av麻豆久久久久久久| 亚洲九九香蕉| 一级黄色大片毛片| 操出白浆在线播放| 亚洲专区中文字幕在线| 最近在线观看免费完整版| 久久国产精品影院| 午夜亚洲福利在线播放| 中文字幕av在线有码专区| 深夜精品福利| 天堂影院成人在线观看| 国产高清激情床上av| 特大巨黑吊av在线直播| 亚洲乱码一区二区免费版| 免费在线观看亚洲国产| 久久久久久九九精品二区国产| 国产精华一区二区三区| 一级黄色大片毛片| 亚洲国产欧美一区二区综合| 欧美日韩瑟瑟在线播放| 在线观看美女被高潮喷水网站 | 亚洲精品国产精品久久久不卡| 久久久精品大字幕| 久久中文看片网| 亚洲第一电影网av| avwww免费| 午夜福利成人在线免费观看| 亚洲国产精品999在线| 成年免费大片在线观看| 欧美+亚洲+日韩+国产| 一进一出抽搐动态| 日韩免费av在线播放| 成年人黄色毛片网站| 亚洲熟女毛片儿| 久久久久国内视频| 三级男女做爰猛烈吃奶摸视频| 99久久无色码亚洲精品果冻| 久久久久国产精品人妻aⅴ院| 男女之事视频高清在线观看| 91九色精品人成在线观看| 国产成年人精品一区二区| 国产综合懂色| 丰满人妻一区二区三区视频av | 亚洲一区高清亚洲精品| 男女午夜视频在线观看| xxxwww97欧美| 亚洲精品在线观看二区| 精品无人区乱码1区二区| 久久精品人妻少妇| 在线观看免费午夜福利视频| 成人av一区二区三区在线看| 久久久色成人| 日韩欧美 国产精品| 在线观看日韩欧美| 日本免费一区二区三区高清不卡| 精品熟女少妇八av免费久了| 国产高潮美女av| 99在线视频只有这里精品首页| 成人av一区二区三区在线看| av女优亚洲男人天堂 | 五月伊人婷婷丁香| 国产v大片淫在线免费观看| 亚洲自拍偷在线| www国产在线视频色| 中文字幕人成人乱码亚洲影| 成人亚洲精品av一区二区| 日韩 欧美 亚洲 中文字幕| 成人亚洲精品av一区二区| 一a级毛片在线观看| 精品久久久久久成人av| 丰满的人妻完整版| 两个人看的免费小视频| 亚洲精品色激情综合| 夜夜躁狠狠躁天天躁| 美女高潮喷水抽搐中文字幕| 夜夜躁狠狠躁天天躁| 久久久水蜜桃国产精品网| 啦啦啦韩国在线观看视频| 久久香蕉国产精品| 中文字幕av在线有码专区| 久久久精品欧美日韩精品| 香蕉久久夜色| 日本a在线网址| 亚洲va日本ⅴa欧美va伊人久久| 最近最新中文字幕大全免费视频| 国产精品国产高清国产av| 欧美黑人巨大hd| 日本成人三级电影网站| 黄片大片在线免费观看| 久久精品91蜜桃| 最近在线观看免费完整版| 国内少妇人妻偷人精品xxx网站 | 成人国产一区最新在线观看| 老司机午夜十八禁免费视频| 最好的美女福利视频网| 色视频www国产| 国产一区在线观看成人免费| 欧美成人免费av一区二区三区| 久久亚洲精品不卡| 日韩欧美国产在线观看| 美女高潮喷水抽搐中文字幕| 精品国产乱子伦一区二区三区| 日韩三级视频一区二区三区| 国产激情偷乱视频一区二区| 久久久精品欧美日韩精品| 熟妇人妻久久中文字幕3abv| 69av精品久久久久久| 国产亚洲av高清不卡| 最近在线观看免费完整版| 久久精品人妻少妇| 国产97色在线日韩免费| 国产真人三级小视频在线观看| 午夜福利成人在线免费观看| 久久99热这里只有精品18| 国产高清三级在线| 亚洲精品国产精品久久久不卡| 中文字幕高清在线视频| a级毛片a级免费在线| 欧美日韩国产亚洲二区| 欧美zozozo另类| 又紧又爽又黄一区二区| 久久久色成人| 午夜福利在线在线| 精品午夜福利视频在线观看一区| 免费av毛片视频| 一级毛片女人18水好多| 亚洲狠狠婷婷综合久久图片| 亚洲va日本ⅴa欧美va伊人久久| 久久亚洲真实| 亚洲中文字幕一区二区三区有码在线看 | 久久午夜综合久久蜜桃| 美女黄网站色视频| 看片在线看免费视频| 观看美女的网站| av福利片在线观看| 1024手机看黄色片| 亚洲精品在线观看二区| 婷婷丁香在线五月| 国产精品一及| 国产激情欧美一区二区| 免费高清视频大片| 九色国产91popny在线| 久久久成人免费电影| 啦啦啦观看免费观看视频高清| 老汉色av国产亚洲站长工具| 级片在线观看| 国产精品香港三级国产av潘金莲| 久久久精品大字幕| 极品教师在线免费播放| 亚洲色图av天堂| 久久久久九九精品影院| 大型黄色视频在线免费观看| www国产在线视频色| 国产私拍福利视频在线观看| 99久久精品一区二区三区| 国产伦人伦偷精品视频| 国语自产精品视频在线第100页| 亚洲成av人片免费观看| 国产精品久久久久久亚洲av鲁大| 特大巨黑吊av在线直播| 99热只有精品国产| 少妇的逼水好多| 69av精品久久久久久| 国产一级毛片七仙女欲春2| 国内精品久久久久久久电影|