• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Detection of Magnetic Field Gradient and Single Spin Using Optically Levitated Nano-Particle in Vacuum?

    2018-07-09 06:46:46KeWenXiao肖科文LeiMingZhou周雷鳴ZhangQiYin尹璋琦andNanZhao趙楠BeijingComputationalScienceResearchCenterBeijing00084China
    Communications in Theoretical Physics 2018年7期
    關(guān)鍵詞:雷鳴

    Ke-Wen Xiao(肖科文),Lei-Ming Zhou(周雷鳴),Zhang-Qi Yin(尹璋琦),and Nan Zhao(趙楠)Beijing Computational Science Research Center,Beijing 00084,China

    2Center for Quantum Information,Institute for Interdisciplinary Information Sciences,Tsinghua University,Beijing 100084,China

    1 Introduction

    The pioneering work of Ashkin and co-workers in 1970s[1?3]has stimulated the investigations of the optical trapping of dielectric objects. Since then,the optical tweezers give rise to enormous research progress in biophysics,[1,4?5]colloidal sciences,[6]micro- fluidic dynamics.[7]When the system is in high vaccum,the optically levitated particle can make quality factor potenitially reach 1012[8?11]and has high position measurement sensitivity due to the untethered feature of this system.[8,12]Therefore it is a promising system for the ground state cooling of the mechanical oscillator[13]and the preparation of the macroscopic quantum state[8,14]and other remarkable investigations.[10,12,15?19]Different material and different scale particle levitated by optical tweezers(OT)[9?10,12]can be applied for searching of non-Newtonian gravity,[20]the detection of gravitational wave[21]and the torsional mode by nonspherical particle.[22?23]

    The position measurement of the microparticle trapped by OT has many technologies,for example,total internal reflection microscopy,dynamic light-scattering(DLS)[24]and diffusing wave spectroscopy(DWS).[25?26]Total internal reflection microscopy can achieve 1 nm spatial resolution and up to 1μs temporal resolution.[27]Furthermore,DLS and DWS can have a spatial resolution of sub-nanometers and a temporal resolution on the order of nanoseconds.[26,28?29]However,these techniques can only get ensemble averaged results using these techniques,thus,they cannot be used to measure the instantaneous velocity of a single microscopic particle.[30]For better spatial and temporal resolution,balanced beam detection is brought up and became the standard tool to measure positions of microscopic particles for more and more researches.[31?32]By improving this technology,the spatial resolution and temporal resolution respectively achieve 0.03 nm and 0.01μs,[33]and it prompts the direct observations that the instantaneous velocity of microparticle[12,16]and the full transition from ballistic regime to diffusive Brownian motion[12,16,34]in air or liquid.This technology is very helpful to the detection of the single spin and the gradient of the magnetic field.

    Because of the reconfiguration of the OT system,the particle with the single spins trapped by OT is used for the spin-optomechanical hybrid system for investigation.[9]In the usual case,the negatively charged nitrogen-vacancy center(NV?)in diamond is a stable source of single spin or spin ensembles and it has stimulated substantial interest in quantum metrology,[35?36]quantum information,[37?38]the fundamental principle of quantum mechanics[39?40]and nanoscale sensing.[41?42]It displays a long ground-state spin coherence lifetime at room temperature[43]and can be considered as a stable optically accessible qubit in bulk diamond,[44]and has been leveraged to spin reading and writing to nuclei.[45]Nowadays,nanodiamond trapped with ensembles NV center[46]or single defect[47]by OT be used to the detection of the biological magnetic sensing.[48?49]Compared to diamonds,the ferromagnetic material is also a good spin source,which has high spin density,for example,the spin density of yttrium-iron-garnet(YIG)is(2×1022cm?3)[50?51]and is also suitable for the application of the experiment of superconductor quantum bit because its magnetic ordering(Curie)temperature is as high as 559 K.[52]

    By utilizing progressive detective technologies of displacement and spin-optomechanical hybrid system,we have proposed a scheme for detecting the single spin and the gradient of magnetic field.In this spin-mechanics hybrid system,a ferromagnatic nano-particle or nanodiamond is trapped by OT,and the collision between the residual air molecules and nano-particle results in the Brownian motion of particle.[16]The temperature and the pressure of the residual air affect the displacement of the particle trapped by OT.At the same time,the spin loading in the nanoparticle also prompts particle to move in the magnetic field gradient.In general,the displacement fluctuation of the particle caused by spin flipping in the magnetic field is overwhelmed caused by molecular collision of the residual air,therefore the effect of the spin is not detected.In order to extract the position signal caused by spin flipping,lowing temperature,increment of the gradient of magnetic field,and spin number are promising methods.Based on these method,the displacement fluctuation ratio caused by spin flipping and environments is introduced.Combining the theoretical analysis and the numerically simulation,the displacement fluctuation caused by spin flipping plays a leading role to the environments when the ratio is larger than unity.Therefore,the gradient of magnetic field single spin can be detected by this spin-optomechanics hybrid system.

    This paper is organized as follows.In Sec.2,we introduce the model of this system and deduced the ratio of the particle’s displacement fluctuation caused by spins flipping in the magnetic field gradient and caused by collision between the particle and the residual air molecules.In Sec.3,we present the measurement scheme of the gradient of the magnetic field by utilizing YIG nanoparticle trapped by optical tweezers and verified by numerical simulation and theoretical analysis.In Sec.4,the single spin detection can be realised based on the nanodiamond with NV center trapped by OT and we describe the methods of promoting the displacement fluctuation ratio of the particle caused by spin flipping and collision between nanoparticle and residual air.The conclusion is presented the last section in this paper.

    2 Model

    An optically trapped nanoparticle in non-perfect vacuum will exhibit Brownian motion due to collisions between the nanoparticle and residual air molecules in their three decoupled translational spatial dimensions.[22]When the spins are loaded into the nanoparticle as shown in Fig.1,according to the Newton’s law,the equation of motion for the optically trapped micro-sphere without feedback cooling in x direction is[17]

    where we can use the mass m of particle and the stiffness factor k due to optica√l trap to define the particle’s oscillating frequency ?0=without no damping.

    Fig.1 A nanoparticle loaded spins is trapped by lasers and controlled by magnetic field B.The particle stochastically moves in the focal plane,and the direction of magnetic filed is along x direction.

    In the experiment,the nanoparticle can be trapped by the strongly foused beam.We can adjust the trapping laser power Pt,the wave length of laser λ and the numerical aperture of the lens NA for trapping nanoparticle. In this paper,Pt= 0.1 W,λ = 1064 nm,and NA=0.8,so we can get the oscillating frequencyfor different material nanoparticles,where c is the light velocity and n is the refractive index of particle.For the damping system,the Stokes friction coefficient due to air molecules is γ,and Ftot=Fmol+Fspin,[50,54]Fmol=is the Brownian stochastic force due to residual air molecules.For convenience,we can set

    where ξ(t)is a normalized white-noise process,N is the number of spin in nano-particle,g and mJare respectively the electron’s Lande g-factor and magnetic quantum number.μBis Bohr magneton,GBis the gradient of the magnetic field and the direction of GBis parallel to the direciton of B,and Szis the spin loaded in the particle,every spin has two state,up and down.In our paper,we set the up state of spin is 1 and the down state is?1,every spin can be affected by the temperature of the particle,the interaction of spins and other reasons so that the random flipping.Therefore,the relaxation time of spin can be introduced for describing the random process of the spin flipping as follow

    where τcis relaxation time.Hence at different times t and t′,the correlation function of acceleration,Amol(t)and Aspin(t),as follow:

    where the amplitude of acceleration caused by molecules and spins arerespectively.

    The solution of Eq.(1)is:

    where the cyclic frequency of the damped oscillator isand Γ depends on temperature and the air pressure of the residual air in the high vacuum from A1.It is obviously that ?x(t)?=0,δx(t)=x(t)??,so

    and ?δx?≡ 0 in the long-time condition.The correlation function of displacement ?x(t)x(t+ τ)?can be given as follow:

    where τ is time interval.When τ approaches zero,this correlation function of displacement presents the variance of displacement.

    In Eqs.(6)and(7),A(t)is acceleration resulting from the force of molecules and spins,so the correlation function of displacement?x(t)x(t+ τ)?can be decomposed into two parts,

    where

    According Eq.(9),Imol/spinis represented the displacement correlation caused by molecular collision of residual air or by spin flipping in magnetic field.At first,we give the displacements correlation of Imol,

    when τ is very short,

    the variance of the displacement only depends on the temperature for the trapped nanoparticle.

    On the other hand,for the displacement correlation function caused by spin flipping,Ispinis given

    from computation Eq.(9),where

    For investigating the variance of the displacement caused by spin flipping,we set τ→ 0,Ispinis simplified to

    For comparing displacements caused by molecular collision and spin flipping,κ=Ispin/Imolis proposed as fol-low:

    The ratio κ of displacement correlation caused by spins flipping and by moleculardetermines which effect is the dominant role,andis the ratio of the displacement fluctuation of the particle resulting from spin flipping and molecular collision.When ratio is greater than unity,the spins flipping in magnetic field prevail and the signal of the particle’s displacement caused by spin flipping can be detected,on the contrary,signal of the displacement caused by spin flipping is covered up by molecular collision of residual air.From appendix A,Γ is relevant to residual air pressure and temperature in this system.

    3 Detection of the Magnetic Field Gradient

    The increment of the spin number can enhance the spin signal from Eq.(14),which is beneficial for the detection of the magnetic field gradient.That is because the randomly flipping effect of the spin can become strong after increasing the spin number.In this scheme,we take the YIG nanoparticle for example and consider a YIG nanoparticle trapped by OT and the spin can be affected by magnetic if eld.Because of the ferromagnetism of the particle,we can assume that the spins in YIG can be randomly flipped by the spin relaxation.

    In the first case,we take the 100 nm YIG nanoparticle for example and there are 8.85×107spins below the 273 K in particle.These spins flip collectively from one state to another,therefore,the position of the nanoparticle moves from one position to another.Figure 2 shows the flipping of the spin state and the displacement fluctuation resulting from molecular collision and spin flipping.In this case,the standard deviation of the particle’s displacement caused by molecular collision of residual air(?air)is 0.40 nm and GB=10 kT/m.The standard deviation of the particle’s displacement caused by spin flipping in magnetic field(?B)is 1.03 nm.κ1/2is 2.58,the collective effect of the spin can be detective.From our simulation,the position of the particle changes synchronously with the spinflipping in Fig.2(a).The inset of Fig.2(a)shows the harmonic oscillation of the particle when the spins do not flip.In this simulation,the simulating time is 100 ms and simulating time-step is 1μs.By numerically simulating,we can obtain a series of sampling points,and every sampling point corresponds different displacement of nano-particle at different time.For any sampling point,we can get the nano-particle’s displacement and count the number of occurrences of any displacement.Base on this result,we can get the Fig.2(b).In this case,we assume that all spins of the nanoparticle flip at the same time from the same state to another.However,in the realistic case all the spins ensembles do not collectively flip from one state to another at the same time.Therefore the displacement fluctuation caused by spin flipping in magnetic field gradient should be investigated anew.

    Fig.2 (Color online)The spin of the YIG nanoparticle collectively randomly flips and the position synchronously changes with spin state,and the position of the YIG particle is statistically analysed.(a)shows the every spin of YIG nanoparticle has the same property of flipping and the flipping time is random,however,the mean flipping time is determined,1 ms(blue curve).The yellow curve corresponds to the changing of the position of the particle.(b)The statistics of the position of the particle and its fitting.The radius of this YIG particle is 100 nm and the temperature and the residual air pressure are respectively 10 mK and 10 Pa.The gradient of magnetic field is 104T/m.The refractive index of YIG is 2.2.

    In the realistic case,the displacement fluctuation caused by molecular collision of residual air is not changed for the determined environment,but the displacement fluctuation caused by spin flipping in magnetic field is relevant to the equivalent spin number in YIG.Every spin flipping is random,therefore,the equivalent number of spin up and spin down is random and less than 8.85×107below the 273 K.The effect of displacement fluctuation caused by spin flipping is so week that cannot be detected compared to previous case.In addition,the position distribution of particle can be detected as a Gaussian distribution and is not similar to two peaks distribution in Fig.2.For distinguishing the displacement fluctuation caused by molecular collision and by spin flipping,at first,we can theoretically and numerically compute the displacement fluctuation caused by the residual air molecular collision,and then numerically compute the total displacement fluctuation,at last,the displacement fluctuation caused by spin flipping can be got from the difference between the total displacement fluctuation and the displacement fluctuation caused by molecular collision.For increasing the displacement fluctuation caused by spin flipping in magnetic field,we can increase the gradient of the magnetic field,GB.

    For the 100 nm YIG nanopartice,the state of the spin ensembles are Fig.3.This particle contains many spins and every spin flips randomly,therefore,the particle will randomly move in the focal plane. The oscillatory displacement of particle is determined by the gradient of magnetic field and the environments.When the temperature and the residual air pressure are respectively 1 mK and 1000 Pa,?airand?Bare respectively 0.18 nm and 2.0 nm by the statistical computation under GB=10 kT/m.These are depicted in Fig.3.

    Fig.3 (Color online)The synchronously oscillation of the nanoparticle with the flipping of the spins ensemble.The blue curve is the state flipping of the spin ensembles of the YIG nanoparitcle.The yellow curve shows the changing of the position change of the particle.The inset is the oscillation of the particle in the short time.The radius of this YIG particle is 100 nm and the temperature and the residual air pressure are respectively 1 mK and 1 kPa.The gradient of magnetic field is 104T/m and the refractive index of YIG is 2.2.

    On the contrary,if we have statistically computed the displacement fluctuation caused by spin flipping in the magnetic field,the gradient of the magnetic field can be got.Different gradient of magnetic field can stimulate different displacement fluctuation,therefore,the correspondence between the displacement fluctuation and the gradient of magnetic field can be depicted.For this system,when the magnetic field does not exist,the particle’s displacement fluctuation only results from the molecular collision of residual air.The fluctuation of the displacement caused by residual air molecular is constant.However,when the magnetic field exists,the displacement of the particle can be very larger than the thermal fluctuation of the particle.In this case,we can give the relation between displacement fluctuation of the particle and the gradient of magnetic field GBlike Fig.4.When GBis very small,?Bis not much bigger than?air.However,when GBincreases to 104T/m,?Band?aircan be distinguished significantly.The larger gradient of the magnetic field will result in the bigger position fluctuation.Considering the determined environment,?airis not changed and we can know that?Bcan be detected when GB≥1 kT/m.There are three styles line derived from simulation, fitting and analysis.From Eq.(14),the sensitivity to the gradient of the magnetic field is determined by

    The sensitivity has positive correlation with the spin number.When a 100 nm YIG nanoparticle trapped by OT,the position detective technology and statistical method can give different magnetic field gradient,and the results from numerical simulation and theoretical analysis can match well.In Fig.4,the fitting result of sensitivity is 1.67×10?13m/T(the dashed curve)and the analysis result is 1.95× 10?13m/T(the “+”symbol).They can match better each other in a longer time statistics.The inset figure(a)depicts that the displacement caused by magnetic field can be detected until GB≥103T/m,even though the displacement caused by GBis smaller than the displacement caused by residual airs.

    Fig.4 The relationship between displacement fluctuation of particle and the graident of the magnetic field in the environment of the temperature(1 mK)and the air pressure(1 kPa).The inset(a)is the smaller gradient of the magnetic field and the inset(b)is the larger gradient of the magnetic field.The the circle,dashed line and‘+′line are respectively simulating results, fitting results and the analytical results.The refractive index of YIG is 2.2.

    4 The Detection of the Single Spin

    A nanodiamond containing an NV center have one spin,it also can be trapped by OT.[9]In the theoretical analysis,we can get the ratio of standard deviation between xspinand xmol,the particle’s displacement can be also simulated at the same time.The position of the particle oscillates synchronously following the flipping of the spin in the NV center of the particle like Fig.5(a).The spin state flips between state?1 and state 1,and the particle synchronously oscillates in the region between?10 nm and 10 nm.

    Fig.5 The synchronous oscillation of the nanoparticle with the flipping of the single spin and the statistical and fitting results about the distribution of the particle’s position.(a)The blue curve is the spin state in the nanoparitcle with NV center.The yellow curve shows the changing of the position of the particle.The inset is the oscillation of the particle in the short time.(b)The statistical and fitting results about the distribution of the particle’s position. ?Band ?airare respectively the displacement of the particle caused by the magnetic field and the residual air.The radius of this nanodiamond particle is 30 nm which contains only one spin,and the temperature and the residual air pressure are respectively 1 mK and 0.5 Pa.The gradient of magnetic if eld is 106T/m.

    By utilizing the statistical and fitting methods,we can give the statistical property of the particle’s position caused by molecular collision of residual air and the spinflipping of magnetic field.In proper coefficients,there are two most probable positions of particle in the focal plane,which can be detected by detector of the position.This represents the particle oscillates randomly between two positions.The width of the position peak of particle results from the collision between the particle and the residual air molecules.Figure 5(b)is the statistical and fitting results.In this case,?Band?airare respectively 3.44 nm and 2.38 nm,which match well with the theoretical results 3.49 nm and 2.25 nm from Eqs.(11)and(13).It is easy to distinguish the displacement fluctuation caused by molecular collision and by single spin flipping,the single spin can be detected.

    The statistical method shows two maximum counts of detector about the position of the particle. These maximums represent that the particle prefers staying the greater probability positions to the other position.These maximum positions are just caused by spin flipping from one state to another in the magnetic field.At the same time,if the spin stays in one state and the nanoparticle is collided by the residual air,therefore,the nanoparticle has the property of the Brownian motion near the maximum position.

    In the last example,the ratio κ1/2is 1.5,although it is enough for distinguishing the effect between magnetic field and the residual air,we can get more significant effect of the magnetic field about the particle position by adjusting other coefficients.Hence,it is necessary to know the property of κ about the trapping frequency(?0),the relaxation time of spin(τc)and so on.

    In order to discuss the problem,we set:

    for Eq.(14).? is independent of the coefficients of the trapping lasers which determines the trapping frequency,?0.Therefore,the investigation about the relationship between κ and ?0is our first subject.

    4.1 ?0-dependence

    From Eq.(14),κ is monotonous decreasing function when increasing ?0,and ?κ/??0is as follow:

    Equation(17)is eternity negative for Γ >0 and τc>0.This presents κ decreasing with increasing of ?0for fixed

    Although κ declines with the trapping frequency ?0,different relaxation time of spin also affects the displacement of the particle caused by the gradientthe magneticFig.6.From this figurehe decreasing function with ?0which matches with Eq.(17).However,under normal case,the trapping frequency must be larger than 80 kHz otherwise the particle would not be trapped for the 30 nm radius of particle.Therefore,the inset of this figure shows the range of the trapping frequency 80 kHz to 160 kHz.It is obvious that the longer the relaxation time of spin is,the more significant the displacement fluctuation of√ spin flipping in the magnetic field gradient is.Althoughis slightly more than 1,we can increase τcin order to increase displacement fluctuation caused by spin flipping by some method.[56?57]Nevertheless,when the trapping frequency is larger, is not sensitive to τc.This property can be verified by analysis of the relationship between κ and τc.

    Fig.6 The relation between and ?about different0 τc.In this case,the radius of the nanodiamond particle is R=30 nm,the temperature is 1 mK,the residue air pres√sure is P=10 Pa.Different curves represent different with different τc.The units of inset is the same with main figure.

    Equation(18)shows that κ has two critical points, τc0=?1/(?0+Γ)and τc0=1/(?0?Γ),which give some interesting characters for our investigation.In one case,when the system is under-damping,?0> Γ,and the space of τcis divided into two range,i.e.τc∈ (0,1/(?0?Γ))and τc∈ (1/(?0? Γ),+∞).They correspond to ?κ/?τc>0 and ?κ/?τc<0,respectively.In this case, κ increases with the increment of τcuntil τc=1/(?0? Γ)and when τc>1/(?0?Γ),κ will decrease.

    In another case,when the system is over-damping,?0< Γ,κ increases with the increment of τc.The longer the relaxation time of the spin is,the more obvious the effect of spin is.By analysis the second order derivative of κ about τc,

    4.2 τc-dependence

    The relaxation time of spin can affect the ratio between Ispinand Imolas well.The derivative of κ with respect to τcis always stands up for the over-damping case.These two case can be corresponded with Fig.7.√This figure intuitively shows that the relation betweenκ and τc.For the under-damping case,?0=0.25Γ,this trapping frequency is general case,?0=98 kHz.That is over-damping,κ has a maximum value when τcis very short.Therefore the relaxation time is not as√ longer as better.However,for the under-damping case,κ increases with the increment of τclike the dashed line in Fig.7,hence the larger displacement of particle caused by magnetic field can be got by adjusting the relaxation of the spin.

    Fig.7 The relation betweenand τabout differentc?0.In this case,the radius of the nanodiamond particle is R=30 nm,the temperature is 1 mK,the residue air pressure is P=10 Pa.

    4.3 Environment Damping

    In real system,environmental temperature and the residual air pressure will affect the damping coefficient Γ from Appendix A,and then affect the ratio,κ.Therefore,for convenience,we investigate straightforwardly the relationship between κ and Γ. ?κ/?Γ clearly shows that κ decreases with the increment of the Γ as follow:

    Because ?κ/?Γ is always negative for the arbitrary parameters.For getting more remarkable displacement of the particle caused by spin flipping,we can reduce the temperature and the air pressure of the residual air.That is because the reduction of the temperature is equivalent to reduction of the fluctuation of thermal displacement of the particle and strengthening the effect of the spin flipping.The reduction of the air pressure will reduce the friction of the particle with the residual air molecules,the motion of the particle is more obvious.Although,the reducing residual air pressure can strength the signal of the spin flipping,the damping γradresulting from the photon shot noise will be primary and damping Γ from the interaction with residual air can be neglected at very low air pressure.In this case,we can introduce feedback cooling in order to solve this problem.Fortunately,ultrahigh vacuum(P ~ 10?8mbar)is not strictly demanded in our system,therefore,γradis neglectly smaller than the damping Γ by computation from Ref.[11]so that shot noise is unnecessarily considered.

    5 Conclusion

    In this paper,we have systematically investigated the motion of the nano-particle loading spins trapped by the optical tweezers in the high vacuum environment.Based on this system,the theoretical analysis has been utilized to study the displacement of the particle caused by molecular collision of the residual air and by spin flipping under the gradient of magnetic field,as well as their ratio.This theoretical analysis inspires a series of proposal about the detection of the gradient of the magnetic field and the detection of the single spin.By utilizing theoretical analysis and the numerical simulation,we present and verify the scheme of the detection of the gradient of the magnetic by trapping YIG nanoparticle.Similarly,this system also can be applied for detection of the single spin by trapping the diamond nanoparticle with NV center.By regulating the parameters,we can make the displacement fluctuation of the particle caused by the spin flipping in magnetic field gradient more remarkable.At last,we present the method about increasing the displacement fluctuation resulting from spin flipping,such as reducing the trapping frequency,increasing the relaxation time of the spin and reducing the temperature and residual air.This spin-mechanics hybrid system with spin have provided a novel experiment platform for high sensitive measurement,macro-ground state cooling etc.

    Appendix A:The Damping Factor in the High Vacuum

    In the high and ultrahigh vacuum,the damping factor,Γ,can be calculated,[10,58]

    where η =18.52 × 10?6Pa ·s is the viscosity coefficient of air in room temperature and atmospheric pressure,r is the radius of the particle,Kn=s/r is the Knudsen number with s being the mean the free path of air molecules,and cK=0.31Kn/(0.758+1.152Kn+Kn2).The mean free path is

    here P is the residual air pressure and mairis the mass of the single air molecule,the value is mair=4.80×10?26kg.

    Acknowledgement

    We thank Professor Renbao Liu for inspiring discussions.

    [1]A.Ashkin,Phys.Rev.Lett.24(1970)156.

    [2]A.Ashkin and J.M.Dziedzic,Appl.Phys.Lett.19(1971)283.

    [3]A.Ashkin and J.M.Dziedzic,Appl.Phys.Lett.28(1976)333.

    [4]A.Ashkin,J.M.Dziedzic,and T.Yamane,Nature(London)330(1987)769.

    [5]A.Ashkin and J.Dziedzic,Science 235(1987)1517.

    [6]K.Dholakia and P.Zemánek,Rev.Mod.Phys.82(2010)1767.

    [7]K.Dholakia,Chemical Society Reviews 37(2008)42.

    [8]Z.Q.Yin,A.A.Geraci,and T.Li,Int.J.Mod.Phys.B 27(2013)1330018.

    [9]L.P.Neukirch,E.V.Haartman,J.M.Rosenholm,and A.N.Vamivakas,Nature Photonics 9(2015)653.

    [10]T.Li,S.Kheifets,and M.G.Raizen,Nature Physics 7(2011)527.

    [11]V.Jain,J.Gieseler,C.Moritz,C.Dellago,et al.,Phys.Rev.Lett.116(2016)243601.

    [12]T.Li,S.Kheifets,D.Medellin,and M.G.Raizen,Science 328(2010)1673.

    [13]P.Rabl,P.Cappellaro,M.V.G.Dutt,et al.,Phys.Rev.B 79(2009)041302.

    [14]D.E.Chang,C.A.Regal,S.B.Papp,et al.,Proceedings of the National Academy of Sciences of the United States of America 107(2010)1005.

    [15]O.Romero-Isart,A.C.P flanzer,F.Blaser,et al.,Phys.Rev.Lett.107(2011)020405.

    [16]S.Kheifets,A.Simha,K.Melin,et al.,Science 343(2014)1493.

    [17]J.Gieseler,B.M.Deutsch,R.Quidant,and L.Novotny,Phys.Rev.Lett.109(2012)103603.

    [18]J.Gieseler,R.Quidant,C.Dellago,and L.Novotny,Nature Nanotechnol.9(2014)358.

    [19]J.Bateman,S.Nimmrichter,K.Hornberger,and H.Ulbricht,Nature Commun.5(2014)4788.

    [20]A.A.Geraci,S.B.Papp,and J.Kitching,Phys.Rev.Lett.105(2010)101101.

    [21]A.Arvanitaki and A.A.Geraci,Phys.Rev.Lett.110(2013)071105.

    [22]T.M.Hoang,Y.Ma,J.Ahn,et al.,Phys.Rev.Lett.117(2016)123604.

    [23]K.W.Xiao,N.Zhao,and Z.Q.Yin,Phys.Rev.A 96(2017)013837.

    [24]B.Berne and R.Pecora,Tanpakushitsu Kakusan Koso Protein Nucleic Acid Enzyme 49(1976)1676.

    [25]G.Maret,et al.,Zeit.Für Phys.B Con.Matt.65(1987)409.

    [26]D.J.Pine,D.A.Weitz,P.M.Chaikin,and E.Herbolzheimer,Phys.Rev.Lett.60(1988)1134.

    [27]L.Liu,A.Woolf,A.W.Rodriguez,and F.Capasso,Proceedings of the National Academy of Sciences of the United States of America 111(2014)E5609.

    [28]P.Zakharov,F.Cardinaux,and F.Scheffold,Phys.Rev.E 73(2006)011413.

    [29]J.X.Zhu,D.J.Durian,J.Müller,et al.,Phys.Rev.Lett.68(1992)2559.

    [30]J.Mo,J.Chem.Phys.49(2015)5158.

    [31]B.Luki′c,S.Jeney,C.Tischer,et al.,Phys.Rev.Lett.95(2005)160601.

    [32]T.Franosch,M.Grimm,M.Belushkin,et al.,Nature(London)478(2011)85.

    [33]P.N.Pusey,Science 332(2011)802.

    [34]R.Huang,I.Chavez,K.M.Taute,et al.,Nature Phys.7(2011)439.

    [35]P.Kumar and M.Bhattacharya,Opt.Express 25(2017)719568.

    [36]N.Zhao and Z.Q.Yin,Phys.Rev.A 90(2014)042118.

    [37]J.Wrachtrup and F.Jelezko,J.Phys.Condens.Matter 18(2006)S807.

    [38]P.Neumann,R.Kolesov,B.Naydenov,et al.,Nature Phys.6(2010)249.

    [39]Z.Yin and T.Li,Contemp.Phys.58(2017)1.

    [40]G.Anetsberger,P.Verlot,E.Gavartin,et al.,Nature Nanotechnol.4(2009)820.

    [41]J.R.Maze,P.L.Stanwix,J.S.Hodges,et al.,Nature(London)455(2008)644.

    [42]H.J.Mamin,M.Kim,M.H.Sherwood,et al.,Science 339(2013)557.

    [43]P.L.Stanwix,L.M.Pham,J.R.Maze,et al.,Phys.Rev.B 82(2010)201201.

    [44]F.Jelezko,T.Gaebel,I.Popa,et al.,Phys.Rev.Lett.93(2004)130501.

    [45]P.C.Maurer,G.Kucsko,C.Latta,et al.,Science 336(2012)1283.

    [46]V.R.Horowitz,B.J.Alemán,D.J.Christle,et al.,Proce.National Acad.Sci.109(2012)13493.

    [47]M.Geiselmann,M.L.Juan,J.Renger,et al.,Nature Nanotechnol.8(2013)175.

    [48]A.W.Schell,P.Engel,and O.Benson,arXiv:1303.0814(2013).

    [49]R.Beams,D.Smith,T.W.Johnson,et al.,Nano Lett.13(2013)3807.

    [50]H.Huebl,C.W.Zollitsch,J.Lotze,et al.,Phys.Rev.Lett.111(2013)127003.

    [51]M.A.Gilleo and S.Geller,Phys.Rev.110(1958)73.

    [52]D.Zhang,X.M.Wang,T.F.Li,et al.,npj Quantum Inform.1(2015)15014.

    [53]O.Romero-Isart,A.C.Panzer,M.L.Juan,et al.,Phys.Rev.A 83(2011)013803.

    [54]M.G.Raizen,R.J.Thompson,R.J.Brecha,et al.,Phys.Rev.Lett.63(1989)240.

    [55]F.Bloch,Phys.Rev.70(1946)460.

    [56]G.Q.Liu,Q.Q.Jiang,Y.C.Chang,et al.,Nanoscale 6(2014)10134.

    [57]J.Du,X.Rong,N.Zhao,et al.,Nature(London)461(2009)1265.

    [58]S.A.Beresnev,V.G.Chernyak,and G.A.Fomyagin,J.Fluid Mech.219(1990)405.

    猜你喜歡
    雷鳴
    Quantitative determination of the critical points of Mott metal–insulator transition in strongly correlated systems
    雷鳴和細雨
    In-situ ultrasonic calibrations of pressure and temperature in a hinge-type double-stage cubic large volume press
    Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
    Measuring the flexibility matrix of an eagle's flight feather and a method to estimate the stiffness distribution?
    動物可笑堂
    強勁、震撼 Rythmik Audio(雷鳴)FV25HP
    Tunneling field effect transistors based on in-plane and vertical layered phosphorus heterostructures?
    Capital Market Analysis
    商情(2017年5期)2017-03-30 23:58:25
    坑人的兄弟
    一级片'在线观看视频| 91国产中文字幕| 亚洲人成电影免费在线| 看免费av毛片| 狠狠精品人妻久久久久久综合| 久久毛片免费看一区二区三区| 成年美女黄网站色视频大全免费| 国产97色在线日韩免费| 9191精品国产免费久久| 伊人久久大香线蕉亚洲五| 亚洲久久久国产精品| 久久精品成人免费网站| 国产亚洲午夜精品一区二区久久| 国产黄色视频一区二区在线观看| 男女无遮挡免费网站观看| 少妇裸体淫交视频免费看高清 | 黄色片一级片一级黄色片| 50天的宝宝边吃奶边哭怎么回事| 欧美成人精品欧美一级黄| 尾随美女入室| 亚洲一卡2卡3卡4卡5卡精品中文| 高清不卡的av网站| 精品亚洲乱码少妇综合久久| 黄频高清免费视频| 大片电影免费在线观看免费| 亚洲精品一卡2卡三卡4卡5卡 | 欧美激情 高清一区二区三区| 波野结衣二区三区在线| 亚洲一区二区三区欧美精品| 夫妻午夜视频| 侵犯人妻中文字幕一二三四区| 黄色 视频免费看| 99久久人妻综合| 欧美黑人欧美精品刺激| 一级毛片黄色毛片免费观看视频| 女人精品久久久久毛片| 免费日韩欧美在线观看| 成年动漫av网址| 最近中文字幕2019免费版| 亚洲欧洲国产日韩| 一本久久精品| 国产淫语在线视频| 最新的欧美精品一区二区| 国产激情久久老熟女| 在现免费观看毛片| av视频免费观看在线观看| 天天操日日干夜夜撸| 国产精品人妻久久久影院| av电影中文网址| 女人高潮潮喷娇喘18禁视频| 国产男女超爽视频在线观看| 久久久久视频综合| 国产黄色视频一区二区在线观看| 一本一本久久a久久精品综合妖精| 最新的欧美精品一区二区| 中文字幕最新亚洲高清| 久久久精品区二区三区| 黄色视频不卡| 女人精品久久久久毛片| 一本综合久久免费| 青春草视频在线免费观看| 亚洲av日韩在线播放| 狂野欧美激情性xxxx| 日韩免费高清中文字幕av| 97在线人人人人妻| 男女下面插进去视频免费观看| 国产男人的电影天堂91| 侵犯人妻中文字幕一二三四区| 少妇被粗大的猛进出69影院| 久久九九热精品免费| 两个人看的免费小视频| 老司机靠b影院| 捣出白浆h1v1| 两人在一起打扑克的视频| 好男人视频免费观看在线| 嫩草影视91久久| 精品久久久久久久毛片微露脸 | 国产男女内射视频| 国产亚洲av高清不卡| 18禁国产床啪视频网站| 精品国产乱码久久久久久小说| 丁香六月欧美| 精品人妻一区二区三区麻豆| 日本a在线网址| 国产男人的电影天堂91| 亚洲熟女毛片儿| 欧美激情 高清一区二区三区| 久久精品亚洲av国产电影网| 在线观看免费高清a一片| 伊人久久大香线蕉亚洲五| 国产免费现黄频在线看| 最新在线观看一区二区三区 | 19禁男女啪啪无遮挡网站| 18禁黄网站禁片午夜丰满| 大片免费播放器 马上看| 亚洲av在线观看美女高潮| 成在线人永久免费视频| 国产精品亚洲av一区麻豆| 一本大道久久a久久精品| 国产在线观看jvid| 国产成人影院久久av| 欧美久久黑人一区二区| 日韩制服丝袜自拍偷拍| 日韩制服丝袜自拍偷拍| 久久精品久久久久久久性| 亚洲精品一区蜜桃| av视频免费观看在线观看| 捣出白浆h1v1| 亚洲欧美一区二区三区黑人| 久久免费观看电影| 欧美日韩福利视频一区二区| 午夜激情久久久久久久| 国产高清国产精品国产三级| 99国产精品99久久久久| 午夜激情av网站| 亚洲国产精品国产精品| 人妻 亚洲 视频| 90打野战视频偷拍视频| 午夜激情久久久久久久| 999精品在线视频| 成人免费观看视频高清| 日韩av免费高清视频| 97人妻天天添夜夜摸| 久久毛片免费看一区二区三区| 一级,二级,三级黄色视频| 中国国产av一级| 丰满饥渴人妻一区二区三| 国产在线视频一区二区| 精品欧美一区二区三区在线| 在线观看www视频免费| 亚洲精品美女久久av网站| 又大又黄又爽视频免费| 美女国产高潮福利片在线看| 亚洲,欧美,日韩| 女警被强在线播放| 最近手机中文字幕大全| 欧美激情 高清一区二区三区| 观看av在线不卡| 国产成人精品久久二区二区免费| h视频一区二区三区| 超色免费av| 亚洲色图综合在线观看| 国产日韩欧美在线精品| 成人手机av| 丁香六月欧美| 欧美黑人精品巨大| 亚洲天堂av无毛| 精品卡一卡二卡四卡免费| 日本欧美视频一区| 欧美人与性动交α欧美精品济南到| netflix在线观看网站| 91成人精品电影| 一级片免费观看大全| 青春草亚洲视频在线观看| 女性被躁到高潮视频| 国产亚洲精品第一综合不卡| 中文欧美无线码| 国产成人a∨麻豆精品| 波多野结衣av一区二区av| 国产精品 国内视频| 黄片播放在线免费| 在线观看一区二区三区激情| 日本色播在线视频| 久久久久网色| 美女高潮到喷水免费观看| 精品久久久久久电影网| 久久久久国产精品人妻一区二区| 午夜福利在线免费观看网站| 国产精品一区二区在线不卡| av在线老鸭窝| 日本午夜av视频| 午夜福利影视在线免费观看| 人人妻人人爽人人添夜夜欢视频| 十分钟在线观看高清视频www| 亚洲国产精品成人久久小说| 亚洲成色77777| 一级片'在线观看视频| 一区二区三区激情视频| 51午夜福利影视在线观看| 亚洲精品国产色婷婷电影| 亚洲国产成人一精品久久久| av网站免费在线观看视频| 男女边吃奶边做爰视频| 国产在线一区二区三区精| 国产精品久久久久久人妻精品电影 | 欧美+亚洲+日韩+国产| 少妇裸体淫交视频免费看高清 | svipshipincom国产片| 黄网站色视频无遮挡免费观看| 国产成人精品在线电影| 国产亚洲欧美精品永久| 国产欧美日韩一区二区三区在线| 国产精品 国内视频| 日日摸夜夜添夜夜爱| 国产一区有黄有色的免费视频| 免费看十八禁软件| 一本综合久久免费| 一二三四社区在线视频社区8| 国产一区二区在线观看av| 9热在线视频观看99| 宅男免费午夜| 性少妇av在线| 亚洲精品中文字幕在线视频| 老鸭窝网址在线观看| 黄色怎么调成土黄色| 国产日韩欧美亚洲二区| 成年人黄色毛片网站| 丰满少妇做爰视频| 老汉色av国产亚洲站长工具| 久久久久国产一级毛片高清牌| 啦啦啦啦在线视频资源| 大话2 男鬼变身卡| 91精品伊人久久大香线蕉| 亚洲精品久久成人aⅴ小说| 亚洲人成电影免费在线| 国产视频一区二区在线看| 亚洲av电影在线进入| 欧美另类一区| 91成人精品电影| 汤姆久久久久久久影院中文字幕| 一本大道久久a久久精品| 深夜精品福利| 黑人猛操日本美女一级片| 亚洲伊人色综图| 亚洲精品自拍成人| 老司机影院成人| 蜜桃在线观看..| 亚洲av男天堂| 三上悠亚av全集在线观看| 51午夜福利影视在线观看| 久久青草综合色| 国产精品香港三级国产av潘金莲 | 丝瓜视频免费看黄片| 麻豆av在线久日| 国产成人a∨麻豆精品| 国产又色又爽无遮挡免| 久久久久视频综合| 成人国产一区最新在线观看 | 亚洲中文字幕日韩| 大型av网站在线播放| 中文字幕av电影在线播放| 午夜免费观看性视频| 国产精品秋霞免费鲁丝片| 亚洲欧美日韩另类电影网站| 免费高清在线观看日韩| 91国产中文字幕| 色视频在线一区二区三区| 一级a爱视频在线免费观看| 午夜福利乱码中文字幕| 亚洲国产欧美一区二区综合| 又粗又硬又长又爽又黄的视频| 久久精品亚洲熟妇少妇任你| 无遮挡黄片免费观看| 亚洲欧美精品自产自拍| 成人三级做爰电影| 欧美国产精品va在线观看不卡| 国产亚洲精品第一综合不卡| 天天添夜夜摸| 十分钟在线观看高清视频www| 人人妻人人添人人爽欧美一区卜| 老司机影院成人| 青春草视频在线免费观看| 久久精品成人免费网站| 女性被躁到高潮视频| 亚洲av日韩精品久久久久久密 | 女人被躁到高潮嗷嗷叫费观| 交换朋友夫妻互换小说| 亚洲欧美清纯卡通| 国产男女超爽视频在线观看| 中文字幕av电影在线播放| 午夜免费男女啪啪视频观看| 欧美日韩亚洲国产一区二区在线观看 | 黄片小视频在线播放| 中文字幕色久视频| 狠狠精品人妻久久久久久综合| 18在线观看网站| 热99国产精品久久久久久7| 成年人免费黄色播放视频| 国产成人啪精品午夜网站| 极品少妇高潮喷水抽搐| 最黄视频免费看| 久久人人爽人人片av| 男女免费视频国产| 夜夜骑夜夜射夜夜干| 19禁男女啪啪无遮挡网站| 搡老乐熟女国产| 国产xxxxx性猛交| 午夜老司机福利片| 天天躁夜夜躁狠狠躁躁| 婷婷色综合大香蕉| 免费在线观看影片大全网站 | 不卡av一区二区三区| 色94色欧美一区二区| 国产成人av激情在线播放| 考比视频在线观看| 国产精品 欧美亚洲| 精品亚洲成国产av| 亚洲国产av影院在线观看| 国产无遮挡羞羞视频在线观看| 日韩一本色道免费dvd| 国产精品久久久久成人av| 成人亚洲精品一区在线观看| 日日摸夜夜添夜夜爱| 国产成人一区二区在线| 欧美久久黑人一区二区| 91麻豆精品激情在线观看国产 | 亚洲欧美中文字幕日韩二区| 久久精品国产亚洲av高清一级| 亚洲国产欧美网| 亚洲成av片中文字幕在线观看| 男女高潮啪啪啪动态图| 国产av一区二区精品久久| 777米奇影视久久| 精品人妻一区二区三区麻豆| 两人在一起打扑克的视频| 91字幕亚洲| 一区在线观看完整版| 一边摸一边做爽爽视频免费| 18在线观看网站| 国产精品99久久99久久久不卡| 国产伦人伦偷精品视频| 超碰成人久久| 最近最新中文字幕大全免费视频 | 亚洲激情五月婷婷啪啪| 黄色视频在线播放观看不卡| 国产精品久久久久久人妻精品电影 | 亚洲欧美成人综合另类久久久| 另类精品久久| 亚洲天堂av无毛| 久久精品久久久久久久性| 国产黄色免费在线视频| 秋霞在线观看毛片| 免费人妻精品一区二区三区视频| 日韩中文字幕欧美一区二区 | 成年av动漫网址| 午夜av观看不卡| 亚洲欧美日韩另类电影网站| 日韩大码丰满熟妇| 一区二区三区激情视频| 亚洲美女黄色视频免费看| 午夜两性在线视频| 嫁个100分男人电影在线观看 | 国产极品粉嫩免费观看在线| 伊人久久大香线蕉亚洲五| 最黄视频免费看| 丝袜在线中文字幕| 婷婷色综合大香蕉| 91字幕亚洲| 欧美日韩一级在线毛片| 亚洲精品国产av蜜桃| 69精品国产乱码久久久| 欧美成人精品欧美一级黄| 国产精品一国产av| 老汉色∧v一级毛片| 青草久久国产| 妹子高潮喷水视频| 久9热在线精品视频| 另类精品久久| 婷婷色综合大香蕉| 自线自在国产av| 在线观看免费午夜福利视频| 成年av动漫网址| 18禁黄网站禁片午夜丰满| 亚洲国产成人一精品久久久| 亚洲av成人精品一二三区| 成年av动漫网址| 又大又黄又爽视频免费| 黄网站色视频无遮挡免费观看| 男女之事视频高清在线观看 | 91国产中文字幕| 美女福利国产在线| 久久av网站| 一级毛片电影观看| 精品亚洲成国产av| 免费看十八禁软件| 又黄又粗又硬又大视频| 亚洲中文av在线| 2018国产大陆天天弄谢| 欧美日韩亚洲高清精品| 男女免费视频国产| 国产成人a∨麻豆精品| 人妻一区二区av| 午夜久久久在线观看| 十八禁高潮呻吟视频| 女警被强在线播放| 丝袜在线中文字幕| 中国美女看黄片| 无限看片的www在线观看| 国产精品.久久久| 亚洲情色 制服丝袜| 考比视频在线观看| 十分钟在线观看高清视频www| 免费在线观看影片大全网站 | 亚洲欧洲精品一区二区精品久久久| videos熟女内射| 亚洲精品久久久久久婷婷小说| 国产片特级美女逼逼视频| 精品国产乱码久久久久久男人| 熟女少妇亚洲综合色aaa.| 亚洲三区欧美一区| 亚洲国产精品一区二区三区在线| 中文精品一卡2卡3卡4更新| 十八禁高潮呻吟视频| bbb黄色大片| videos熟女内射| a级毛片在线看网站| 精品久久久精品久久久| 久久精品人人爽人人爽视色| 国产人伦9x9x在线观看| 亚洲 国产 在线| 大话2 男鬼变身卡| 国产av国产精品国产| 国产精品香港三级国产av潘金莲 | 老司机亚洲免费影院| 欧美人与善性xxx| 成人三级做爰电影| 亚洲av综合色区一区| 大话2 男鬼变身卡| xxxhd国产人妻xxx| 男女无遮挡免费网站观看| 日韩伦理黄色片| 一级黄色大片毛片| 国产av精品麻豆| 两个人看的免费小视频| 一区福利在线观看| 成人国语在线视频| 午夜精品国产一区二区电影| 国产精品国产三级专区第一集| 国产精品久久久久成人av| 久久99一区二区三区| 亚洲精品一卡2卡三卡4卡5卡 | 国产极品粉嫩免费观看在线| 午夜福利视频在线观看免费| 男女边吃奶边做爰视频| 亚洲成人国产一区在线观看 | 一级毛片黄色毛片免费观看视频| 老司机在亚洲福利影院| 香蕉国产在线看| 另类精品久久| 少妇人妻久久综合中文| 成年动漫av网址| 国产高清国产精品国产三级| 黄色一级大片看看| 免费在线观看视频国产中文字幕亚洲 | 一级毛片黄色毛片免费观看视频| 人妻人人澡人人爽人人| 人成视频在线观看免费观看| 亚洲中文字幕日韩| 精品国产一区二区久久| 精品一区二区三卡| 久久热在线av| 国产免费现黄频在线看| 中文乱码字字幕精品一区二区三区| 久久天躁狠狠躁夜夜2o2o | 黄色片一级片一级黄色片| 最新的欧美精品一区二区| 精品高清国产在线一区| 免费观看人在逋| 下体分泌物呈黄色| 久久免费观看电影| 最近手机中文字幕大全| 欧美日本中文国产一区发布| 青春草亚洲视频在线观看| 蜜桃在线观看..| 9色porny在线观看| 19禁男女啪啪无遮挡网站| 欧美中文综合在线视频| 久久久国产欧美日韩av| 中文字幕色久视频| 国产xxxxx性猛交| 亚洲伊人久久精品综合| 国产精品国产三级国产专区5o| 久久性视频一级片| 欧美成人精品欧美一级黄| 少妇人妻 视频| 日本五十路高清| 七月丁香在线播放| 波多野结衣av一区二区av| 少妇人妻久久综合中文| 丝袜喷水一区| 国产男女内射视频| 国产av一区二区精品久久| 又粗又硬又长又爽又黄的视频| 亚洲成人免费av在线播放| 亚洲综合色网址| 亚洲国产看品久久| 伦理电影免费视频| 久久久欧美国产精品| 免费久久久久久久精品成人欧美视频| 国产一卡二卡三卡精品| 亚洲,一卡二卡三卡| 免费高清在线观看日韩| 在线 av 中文字幕| 男的添女的下面高潮视频| 久久久久国产精品人妻一区二区| 超色免费av| 免费在线观看影片大全网站 | 高清欧美精品videossex| 日本a在线网址| 亚洲精品第二区| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲专区中文字幕在线| 一本—道久久a久久精品蜜桃钙片| 精品亚洲成a人片在线观看| 亚洲国产av新网站| 精品人妻1区二区| 精品久久蜜臀av无| 18禁国产床啪视频网站| 久久国产亚洲av麻豆专区| 满18在线观看网站| 国产成人欧美| 日韩中文字幕视频在线看片| 两个人免费观看高清视频| 中国国产av一级| www.av在线官网国产| 99国产精品99久久久久| 亚洲七黄色美女视频| 久久人人爽人人片av| 别揉我奶头~嗯~啊~动态视频 | 久久精品国产a三级三级三级| 午夜老司机福利片| 青春草视频在线免费观看| 男女国产视频网站| 精品少妇黑人巨大在线播放| 亚洲欧美一区二区三区久久| 交换朋友夫妻互换小说| 性色av一级| 精品久久久久久电影网| 日韩精品免费视频一区二区三区| 黄色a级毛片大全视频| 国产亚洲欧美在线一区二区| 久久久久网色| 日本色播在线视频| 丝袜喷水一区| 欧美大码av| 亚洲av日韩精品久久久久久密 | 亚洲国产精品国产精品| 国产精品欧美亚洲77777| 午夜福利一区二区在线看| 国产视频首页在线观看| 国产精品九九99| 亚洲国产最新在线播放| 日韩av在线免费看完整版不卡| 欧美亚洲日本最大视频资源| 操美女的视频在线观看| 一个人免费看片子| 2018国产大陆天天弄谢| 亚洲第一青青草原| 真人做人爱边吃奶动态| 国产亚洲精品久久久久5区| 婷婷色综合www| 1024视频免费在线观看| 欧美亚洲日本最大视频资源| 久久久精品国产亚洲av高清涩受| 欧美av亚洲av综合av国产av| 国产高清videossex| 国产一区二区激情短视频 | 欧美精品啪啪一区二区三区 | 国产精品九九99| 热re99久久国产66热| 少妇裸体淫交视频免费看高清 | 十八禁高潮呻吟视频| videos熟女内射| 两个人看的免费小视频| 欧美日韩亚洲综合一区二区三区_| 美女国产高潮福利片在线看| 久久九九热精品免费| 久久久国产欧美日韩av| 午夜久久久在线观看| 十八禁网站网址无遮挡| 国产成人精品久久二区二区免费| 亚洲国产欧美一区二区综合| 黄网站色视频无遮挡免费观看| 色婷婷av一区二区三区视频| 日韩精品免费视频一区二区三区| 久久热在线av| 欧美日韩亚洲综合一区二区三区_| 一级黄片播放器| 日韩制服骚丝袜av| 亚洲视频免费观看视频| 热re99久久国产66热| 美女大奶头黄色视频| 妹子高潮喷水视频| 日韩大片免费观看网站| 国产欧美日韩一区二区三 | 国产成人啪精品午夜网站| 十八禁网站网址无遮挡| 久久精品亚洲熟妇少妇任你| 在线观看免费日韩欧美大片| av在线app专区| svipshipincom国产片| 国产欧美亚洲国产| 免费日韩欧美在线观看| 青草久久国产| 国产日韩欧美在线精品| 久久综合国产亚洲精品| 日韩,欧美,国产一区二区三区| av电影中文网址| 制服诱惑二区| 欧美在线黄色| 亚洲 欧美一区二区三区| 交换朋友夫妻互换小说| 悠悠久久av| av网站在线播放免费| 在线天堂中文资源库| 欧美性长视频在线观看| 亚洲精品自拍成人| 欧美日韩亚洲高清精品| 夫妻午夜视频| 成人亚洲欧美一区二区av| 久久国产精品影院| 日韩制服骚丝袜av| 宅男免费午夜| 亚洲精品国产av成人精品| 日本av免费视频播放|