• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Detection of Magnetic Field Gradient and Single Spin Using Optically Levitated Nano-Particle in Vacuum?

    2018-07-09 06:46:46KeWenXiao肖科文LeiMingZhou周雷鳴ZhangQiYin尹璋琦andNanZhao趙楠BeijingComputationalScienceResearchCenterBeijing00084China
    Communications in Theoretical Physics 2018年7期
    關(guān)鍵詞:雷鳴

    Ke-Wen Xiao(肖科文),Lei-Ming Zhou(周雷鳴),Zhang-Qi Yin(尹璋琦),and Nan Zhao(趙楠)Beijing Computational Science Research Center,Beijing 00084,China

    2Center for Quantum Information,Institute for Interdisciplinary Information Sciences,Tsinghua University,Beijing 100084,China

    1 Introduction

    The pioneering work of Ashkin and co-workers in 1970s[1?3]has stimulated the investigations of the optical trapping of dielectric objects. Since then,the optical tweezers give rise to enormous research progress in biophysics,[1,4?5]colloidal sciences,[6]micro- fluidic dynamics.[7]When the system is in high vaccum,the optically levitated particle can make quality factor potenitially reach 1012[8?11]and has high position measurement sensitivity due to the untethered feature of this system.[8,12]Therefore it is a promising system for the ground state cooling of the mechanical oscillator[13]and the preparation of the macroscopic quantum state[8,14]and other remarkable investigations.[10,12,15?19]Different material and different scale particle levitated by optical tweezers(OT)[9?10,12]can be applied for searching of non-Newtonian gravity,[20]the detection of gravitational wave[21]and the torsional mode by nonspherical particle.[22?23]

    The position measurement of the microparticle trapped by OT has many technologies,for example,total internal reflection microscopy,dynamic light-scattering(DLS)[24]and diffusing wave spectroscopy(DWS).[25?26]Total internal reflection microscopy can achieve 1 nm spatial resolution and up to 1μs temporal resolution.[27]Furthermore,DLS and DWS can have a spatial resolution of sub-nanometers and a temporal resolution on the order of nanoseconds.[26,28?29]However,these techniques can only get ensemble averaged results using these techniques,thus,they cannot be used to measure the instantaneous velocity of a single microscopic particle.[30]For better spatial and temporal resolution,balanced beam detection is brought up and became the standard tool to measure positions of microscopic particles for more and more researches.[31?32]By improving this technology,the spatial resolution and temporal resolution respectively achieve 0.03 nm and 0.01μs,[33]and it prompts the direct observations that the instantaneous velocity of microparticle[12,16]and the full transition from ballistic regime to diffusive Brownian motion[12,16,34]in air or liquid.This technology is very helpful to the detection of the single spin and the gradient of the magnetic field.

    Because of the reconfiguration of the OT system,the particle with the single spins trapped by OT is used for the spin-optomechanical hybrid system for investigation.[9]In the usual case,the negatively charged nitrogen-vacancy center(NV?)in diamond is a stable source of single spin or spin ensembles and it has stimulated substantial interest in quantum metrology,[35?36]quantum information,[37?38]the fundamental principle of quantum mechanics[39?40]and nanoscale sensing.[41?42]It displays a long ground-state spin coherence lifetime at room temperature[43]and can be considered as a stable optically accessible qubit in bulk diamond,[44]and has been leveraged to spin reading and writing to nuclei.[45]Nowadays,nanodiamond trapped with ensembles NV center[46]or single defect[47]by OT be used to the detection of the biological magnetic sensing.[48?49]Compared to diamonds,the ferromagnetic material is also a good spin source,which has high spin density,for example,the spin density of yttrium-iron-garnet(YIG)is(2×1022cm?3)[50?51]and is also suitable for the application of the experiment of superconductor quantum bit because its magnetic ordering(Curie)temperature is as high as 559 K.[52]

    By utilizing progressive detective technologies of displacement and spin-optomechanical hybrid system,we have proposed a scheme for detecting the single spin and the gradient of magnetic field.In this spin-mechanics hybrid system,a ferromagnatic nano-particle or nanodiamond is trapped by OT,and the collision between the residual air molecules and nano-particle results in the Brownian motion of particle.[16]The temperature and the pressure of the residual air affect the displacement of the particle trapped by OT.At the same time,the spin loading in the nanoparticle also prompts particle to move in the magnetic field gradient.In general,the displacement fluctuation of the particle caused by spin flipping in the magnetic field is overwhelmed caused by molecular collision of the residual air,therefore the effect of the spin is not detected.In order to extract the position signal caused by spin flipping,lowing temperature,increment of the gradient of magnetic field,and spin number are promising methods.Based on these method,the displacement fluctuation ratio caused by spin flipping and environments is introduced.Combining the theoretical analysis and the numerically simulation,the displacement fluctuation caused by spin flipping plays a leading role to the environments when the ratio is larger than unity.Therefore,the gradient of magnetic field single spin can be detected by this spin-optomechanics hybrid system.

    This paper is organized as follows.In Sec.2,we introduce the model of this system and deduced the ratio of the particle’s displacement fluctuation caused by spins flipping in the magnetic field gradient and caused by collision between the particle and the residual air molecules.In Sec.3,we present the measurement scheme of the gradient of the magnetic field by utilizing YIG nanoparticle trapped by optical tweezers and verified by numerical simulation and theoretical analysis.In Sec.4,the single spin detection can be realised based on the nanodiamond with NV center trapped by OT and we describe the methods of promoting the displacement fluctuation ratio of the particle caused by spin flipping and collision between nanoparticle and residual air.The conclusion is presented the last section in this paper.

    2 Model

    An optically trapped nanoparticle in non-perfect vacuum will exhibit Brownian motion due to collisions between the nanoparticle and residual air molecules in their three decoupled translational spatial dimensions.[22]When the spins are loaded into the nanoparticle as shown in Fig.1,according to the Newton’s law,the equation of motion for the optically trapped micro-sphere without feedback cooling in x direction is[17]

    where we can use the mass m of particle and the stiffness factor k due to optica√l trap to define the particle’s oscillating frequency ?0=without no damping.

    Fig.1 A nanoparticle loaded spins is trapped by lasers and controlled by magnetic field B.The particle stochastically moves in the focal plane,and the direction of magnetic filed is along x direction.

    In the experiment,the nanoparticle can be trapped by the strongly foused beam.We can adjust the trapping laser power Pt,the wave length of laser λ and the numerical aperture of the lens NA for trapping nanoparticle. In this paper,Pt= 0.1 W,λ = 1064 nm,and NA=0.8,so we can get the oscillating frequencyfor different material nanoparticles,where c is the light velocity and n is the refractive index of particle.For the damping system,the Stokes friction coefficient due to air molecules is γ,and Ftot=Fmol+Fspin,[50,54]Fmol=is the Brownian stochastic force due to residual air molecules.For convenience,we can set

    where ξ(t)is a normalized white-noise process,N is the number of spin in nano-particle,g and mJare respectively the electron’s Lande g-factor and magnetic quantum number.μBis Bohr magneton,GBis the gradient of the magnetic field and the direction of GBis parallel to the direciton of B,and Szis the spin loaded in the particle,every spin has two state,up and down.In our paper,we set the up state of spin is 1 and the down state is?1,every spin can be affected by the temperature of the particle,the interaction of spins and other reasons so that the random flipping.Therefore,the relaxation time of spin can be introduced for describing the random process of the spin flipping as follow

    where τcis relaxation time.Hence at different times t and t′,the correlation function of acceleration,Amol(t)and Aspin(t),as follow:

    where the amplitude of acceleration caused by molecules and spins arerespectively.

    The solution of Eq.(1)is:

    where the cyclic frequency of the damped oscillator isand Γ depends on temperature and the air pressure of the residual air in the high vacuum from A1.It is obviously that ?x(t)?=0,δx(t)=x(t)??,so

    and ?δx?≡ 0 in the long-time condition.The correlation function of displacement ?x(t)x(t+ τ)?can be given as follow:

    where τ is time interval.When τ approaches zero,this correlation function of displacement presents the variance of displacement.

    In Eqs.(6)and(7),A(t)is acceleration resulting from the force of molecules and spins,so the correlation function of displacement?x(t)x(t+ τ)?can be decomposed into two parts,

    where

    According Eq.(9),Imol/spinis represented the displacement correlation caused by molecular collision of residual air or by spin flipping in magnetic field.At first,we give the displacements correlation of Imol,

    when τ is very short,

    the variance of the displacement only depends on the temperature for the trapped nanoparticle.

    On the other hand,for the displacement correlation function caused by spin flipping,Ispinis given

    from computation Eq.(9),where

    For investigating the variance of the displacement caused by spin flipping,we set τ→ 0,Ispinis simplified to

    For comparing displacements caused by molecular collision and spin flipping,κ=Ispin/Imolis proposed as fol-low:

    The ratio κ of displacement correlation caused by spins flipping and by moleculardetermines which effect is the dominant role,andis the ratio of the displacement fluctuation of the particle resulting from spin flipping and molecular collision.When ratio is greater than unity,the spins flipping in magnetic field prevail and the signal of the particle’s displacement caused by spin flipping can be detected,on the contrary,signal of the displacement caused by spin flipping is covered up by molecular collision of residual air.From appendix A,Γ is relevant to residual air pressure and temperature in this system.

    3 Detection of the Magnetic Field Gradient

    The increment of the spin number can enhance the spin signal from Eq.(14),which is beneficial for the detection of the magnetic field gradient.That is because the randomly flipping effect of the spin can become strong after increasing the spin number.In this scheme,we take the YIG nanoparticle for example and consider a YIG nanoparticle trapped by OT and the spin can be affected by magnetic if eld.Because of the ferromagnetism of the particle,we can assume that the spins in YIG can be randomly flipped by the spin relaxation.

    In the first case,we take the 100 nm YIG nanoparticle for example and there are 8.85×107spins below the 273 K in particle.These spins flip collectively from one state to another,therefore,the position of the nanoparticle moves from one position to another.Figure 2 shows the flipping of the spin state and the displacement fluctuation resulting from molecular collision and spin flipping.In this case,the standard deviation of the particle’s displacement caused by molecular collision of residual air(?air)is 0.40 nm and GB=10 kT/m.The standard deviation of the particle’s displacement caused by spin flipping in magnetic field(?B)is 1.03 nm.κ1/2is 2.58,the collective effect of the spin can be detective.From our simulation,the position of the particle changes synchronously with the spinflipping in Fig.2(a).The inset of Fig.2(a)shows the harmonic oscillation of the particle when the spins do not flip.In this simulation,the simulating time is 100 ms and simulating time-step is 1μs.By numerically simulating,we can obtain a series of sampling points,and every sampling point corresponds different displacement of nano-particle at different time.For any sampling point,we can get the nano-particle’s displacement and count the number of occurrences of any displacement.Base on this result,we can get the Fig.2(b).In this case,we assume that all spins of the nanoparticle flip at the same time from the same state to another.However,in the realistic case all the spins ensembles do not collectively flip from one state to another at the same time.Therefore the displacement fluctuation caused by spin flipping in magnetic field gradient should be investigated anew.

    Fig.2 (Color online)The spin of the YIG nanoparticle collectively randomly flips and the position synchronously changes with spin state,and the position of the YIG particle is statistically analysed.(a)shows the every spin of YIG nanoparticle has the same property of flipping and the flipping time is random,however,the mean flipping time is determined,1 ms(blue curve).The yellow curve corresponds to the changing of the position of the particle.(b)The statistics of the position of the particle and its fitting.The radius of this YIG particle is 100 nm and the temperature and the residual air pressure are respectively 10 mK and 10 Pa.The gradient of magnetic field is 104T/m.The refractive index of YIG is 2.2.

    In the realistic case,the displacement fluctuation caused by molecular collision of residual air is not changed for the determined environment,but the displacement fluctuation caused by spin flipping in magnetic field is relevant to the equivalent spin number in YIG.Every spin flipping is random,therefore,the equivalent number of spin up and spin down is random and less than 8.85×107below the 273 K.The effect of displacement fluctuation caused by spin flipping is so week that cannot be detected compared to previous case.In addition,the position distribution of particle can be detected as a Gaussian distribution and is not similar to two peaks distribution in Fig.2.For distinguishing the displacement fluctuation caused by molecular collision and by spin flipping,at first,we can theoretically and numerically compute the displacement fluctuation caused by the residual air molecular collision,and then numerically compute the total displacement fluctuation,at last,the displacement fluctuation caused by spin flipping can be got from the difference between the total displacement fluctuation and the displacement fluctuation caused by molecular collision.For increasing the displacement fluctuation caused by spin flipping in magnetic field,we can increase the gradient of the magnetic field,GB.

    For the 100 nm YIG nanopartice,the state of the spin ensembles are Fig.3.This particle contains many spins and every spin flips randomly,therefore,the particle will randomly move in the focal plane. The oscillatory displacement of particle is determined by the gradient of magnetic field and the environments.When the temperature and the residual air pressure are respectively 1 mK and 1000 Pa,?airand?Bare respectively 0.18 nm and 2.0 nm by the statistical computation under GB=10 kT/m.These are depicted in Fig.3.

    Fig.3 (Color online)The synchronously oscillation of the nanoparticle with the flipping of the spins ensemble.The blue curve is the state flipping of the spin ensembles of the YIG nanoparitcle.The yellow curve shows the changing of the position change of the particle.The inset is the oscillation of the particle in the short time.The radius of this YIG particle is 100 nm and the temperature and the residual air pressure are respectively 1 mK and 1 kPa.The gradient of magnetic field is 104T/m and the refractive index of YIG is 2.2.

    On the contrary,if we have statistically computed the displacement fluctuation caused by spin flipping in the magnetic field,the gradient of the magnetic field can be got.Different gradient of magnetic field can stimulate different displacement fluctuation,therefore,the correspondence between the displacement fluctuation and the gradient of magnetic field can be depicted.For this system,when the magnetic field does not exist,the particle’s displacement fluctuation only results from the molecular collision of residual air.The fluctuation of the displacement caused by residual air molecular is constant.However,when the magnetic field exists,the displacement of the particle can be very larger than the thermal fluctuation of the particle.In this case,we can give the relation between displacement fluctuation of the particle and the gradient of magnetic field GBlike Fig.4.When GBis very small,?Bis not much bigger than?air.However,when GBincreases to 104T/m,?Band?aircan be distinguished significantly.The larger gradient of the magnetic field will result in the bigger position fluctuation.Considering the determined environment,?airis not changed and we can know that?Bcan be detected when GB≥1 kT/m.There are three styles line derived from simulation, fitting and analysis.From Eq.(14),the sensitivity to the gradient of the magnetic field is determined by

    The sensitivity has positive correlation with the spin number.When a 100 nm YIG nanoparticle trapped by OT,the position detective technology and statistical method can give different magnetic field gradient,and the results from numerical simulation and theoretical analysis can match well.In Fig.4,the fitting result of sensitivity is 1.67×10?13m/T(the dashed curve)and the analysis result is 1.95× 10?13m/T(the “+”symbol).They can match better each other in a longer time statistics.The inset figure(a)depicts that the displacement caused by magnetic field can be detected until GB≥103T/m,even though the displacement caused by GBis smaller than the displacement caused by residual airs.

    Fig.4 The relationship between displacement fluctuation of particle and the graident of the magnetic field in the environment of the temperature(1 mK)and the air pressure(1 kPa).The inset(a)is the smaller gradient of the magnetic field and the inset(b)is the larger gradient of the magnetic field.The the circle,dashed line and‘+′line are respectively simulating results, fitting results and the analytical results.The refractive index of YIG is 2.2.

    4 The Detection of the Single Spin

    A nanodiamond containing an NV center have one spin,it also can be trapped by OT.[9]In the theoretical analysis,we can get the ratio of standard deviation between xspinand xmol,the particle’s displacement can be also simulated at the same time.The position of the particle oscillates synchronously following the flipping of the spin in the NV center of the particle like Fig.5(a).The spin state flips between state?1 and state 1,and the particle synchronously oscillates in the region between?10 nm and 10 nm.

    Fig.5 The synchronous oscillation of the nanoparticle with the flipping of the single spin and the statistical and fitting results about the distribution of the particle’s position.(a)The blue curve is the spin state in the nanoparitcle with NV center.The yellow curve shows the changing of the position of the particle.The inset is the oscillation of the particle in the short time.(b)The statistical and fitting results about the distribution of the particle’s position. ?Band ?airare respectively the displacement of the particle caused by the magnetic field and the residual air.The radius of this nanodiamond particle is 30 nm which contains only one spin,and the temperature and the residual air pressure are respectively 1 mK and 0.5 Pa.The gradient of magnetic if eld is 106T/m.

    By utilizing the statistical and fitting methods,we can give the statistical property of the particle’s position caused by molecular collision of residual air and the spinflipping of magnetic field.In proper coefficients,there are two most probable positions of particle in the focal plane,which can be detected by detector of the position.This represents the particle oscillates randomly between two positions.The width of the position peak of particle results from the collision between the particle and the residual air molecules.Figure 5(b)is the statistical and fitting results.In this case,?Band?airare respectively 3.44 nm and 2.38 nm,which match well with the theoretical results 3.49 nm and 2.25 nm from Eqs.(11)and(13).It is easy to distinguish the displacement fluctuation caused by molecular collision and by single spin flipping,the single spin can be detected.

    The statistical method shows two maximum counts of detector about the position of the particle. These maximums represent that the particle prefers staying the greater probability positions to the other position.These maximum positions are just caused by spin flipping from one state to another in the magnetic field.At the same time,if the spin stays in one state and the nanoparticle is collided by the residual air,therefore,the nanoparticle has the property of the Brownian motion near the maximum position.

    In the last example,the ratio κ1/2is 1.5,although it is enough for distinguishing the effect between magnetic field and the residual air,we can get more significant effect of the magnetic field about the particle position by adjusting other coefficients.Hence,it is necessary to know the property of κ about the trapping frequency(?0),the relaxation time of spin(τc)and so on.

    In order to discuss the problem,we set:

    for Eq.(14).? is independent of the coefficients of the trapping lasers which determines the trapping frequency,?0.Therefore,the investigation about the relationship between κ and ?0is our first subject.

    4.1 ?0-dependence

    From Eq.(14),κ is monotonous decreasing function when increasing ?0,and ?κ/??0is as follow:

    Equation(17)is eternity negative for Γ >0 and τc>0.This presents κ decreasing with increasing of ?0for fixed

    Although κ declines with the trapping frequency ?0,different relaxation time of spin also affects the displacement of the particle caused by the gradientthe magneticFig.6.From this figurehe decreasing function with ?0which matches with Eq.(17).However,under normal case,the trapping frequency must be larger than 80 kHz otherwise the particle would not be trapped for the 30 nm radius of particle.Therefore,the inset of this figure shows the range of the trapping frequency 80 kHz to 160 kHz.It is obvious that the longer the relaxation time of spin is,the more significant the displacement fluctuation of√ spin flipping in the magnetic field gradient is.Althoughis slightly more than 1,we can increase τcin order to increase displacement fluctuation caused by spin flipping by some method.[56?57]Nevertheless,when the trapping frequency is larger, is not sensitive to τc.This property can be verified by analysis of the relationship between κ and τc.

    Fig.6 The relation between and ?about different0 τc.In this case,the radius of the nanodiamond particle is R=30 nm,the temperature is 1 mK,the residue air pres√sure is P=10 Pa.Different curves represent different with different τc.The units of inset is the same with main figure.

    Equation(18)shows that κ has two critical points, τc0=?1/(?0+Γ)and τc0=1/(?0?Γ),which give some interesting characters for our investigation.In one case,when the system is under-damping,?0> Γ,and the space of τcis divided into two range,i.e.τc∈ (0,1/(?0?Γ))and τc∈ (1/(?0? Γ),+∞).They correspond to ?κ/?τc>0 and ?κ/?τc<0,respectively.In this case, κ increases with the increment of τcuntil τc=1/(?0? Γ)and when τc>1/(?0?Γ),κ will decrease.

    In another case,when the system is over-damping,?0< Γ,κ increases with the increment of τc.The longer the relaxation time of the spin is,the more obvious the effect of spin is.By analysis the second order derivative of κ about τc,

    4.2 τc-dependence

    The relaxation time of spin can affect the ratio between Ispinand Imolas well.The derivative of κ with respect to τcis always stands up for the over-damping case.These two case can be corresponded with Fig.7.√This figure intuitively shows that the relation betweenκ and τc.For the under-damping case,?0=0.25Γ,this trapping frequency is general case,?0=98 kHz.That is over-damping,κ has a maximum value when τcis very short.Therefore the relaxation time is not as√ longer as better.However,for the under-damping case,κ increases with the increment of τclike the dashed line in Fig.7,hence the larger displacement of particle caused by magnetic field can be got by adjusting the relaxation of the spin.

    Fig.7 The relation betweenand τabout differentc?0.In this case,the radius of the nanodiamond particle is R=30 nm,the temperature is 1 mK,the residue air pressure is P=10 Pa.

    4.3 Environment Damping

    In real system,environmental temperature and the residual air pressure will affect the damping coefficient Γ from Appendix A,and then affect the ratio,κ.Therefore,for convenience,we investigate straightforwardly the relationship between κ and Γ. ?κ/?Γ clearly shows that κ decreases with the increment of the Γ as follow:

    Because ?κ/?Γ is always negative for the arbitrary parameters.For getting more remarkable displacement of the particle caused by spin flipping,we can reduce the temperature and the air pressure of the residual air.That is because the reduction of the temperature is equivalent to reduction of the fluctuation of thermal displacement of the particle and strengthening the effect of the spin flipping.The reduction of the air pressure will reduce the friction of the particle with the residual air molecules,the motion of the particle is more obvious.Although,the reducing residual air pressure can strength the signal of the spin flipping,the damping γradresulting from the photon shot noise will be primary and damping Γ from the interaction with residual air can be neglected at very low air pressure.In this case,we can introduce feedback cooling in order to solve this problem.Fortunately,ultrahigh vacuum(P ~ 10?8mbar)is not strictly demanded in our system,therefore,γradis neglectly smaller than the damping Γ by computation from Ref.[11]so that shot noise is unnecessarily considered.

    5 Conclusion

    In this paper,we have systematically investigated the motion of the nano-particle loading spins trapped by the optical tweezers in the high vacuum environment.Based on this system,the theoretical analysis has been utilized to study the displacement of the particle caused by molecular collision of the residual air and by spin flipping under the gradient of magnetic field,as well as their ratio.This theoretical analysis inspires a series of proposal about the detection of the gradient of the magnetic field and the detection of the single spin.By utilizing theoretical analysis and the numerical simulation,we present and verify the scheme of the detection of the gradient of the magnetic by trapping YIG nanoparticle.Similarly,this system also can be applied for detection of the single spin by trapping the diamond nanoparticle with NV center.By regulating the parameters,we can make the displacement fluctuation of the particle caused by the spin flipping in magnetic field gradient more remarkable.At last,we present the method about increasing the displacement fluctuation resulting from spin flipping,such as reducing the trapping frequency,increasing the relaxation time of the spin and reducing the temperature and residual air.This spin-mechanics hybrid system with spin have provided a novel experiment platform for high sensitive measurement,macro-ground state cooling etc.

    Appendix A:The Damping Factor in the High Vacuum

    In the high and ultrahigh vacuum,the damping factor,Γ,can be calculated,[10,58]

    where η =18.52 × 10?6Pa ·s is the viscosity coefficient of air in room temperature and atmospheric pressure,r is the radius of the particle,Kn=s/r is the Knudsen number with s being the mean the free path of air molecules,and cK=0.31Kn/(0.758+1.152Kn+Kn2).The mean free path is

    here P is the residual air pressure and mairis the mass of the single air molecule,the value is mair=4.80×10?26kg.

    Acknowledgement

    We thank Professor Renbao Liu for inspiring discussions.

    [1]A.Ashkin,Phys.Rev.Lett.24(1970)156.

    [2]A.Ashkin and J.M.Dziedzic,Appl.Phys.Lett.19(1971)283.

    [3]A.Ashkin and J.M.Dziedzic,Appl.Phys.Lett.28(1976)333.

    [4]A.Ashkin,J.M.Dziedzic,and T.Yamane,Nature(London)330(1987)769.

    [5]A.Ashkin and J.Dziedzic,Science 235(1987)1517.

    [6]K.Dholakia and P.Zemánek,Rev.Mod.Phys.82(2010)1767.

    [7]K.Dholakia,Chemical Society Reviews 37(2008)42.

    [8]Z.Q.Yin,A.A.Geraci,and T.Li,Int.J.Mod.Phys.B 27(2013)1330018.

    [9]L.P.Neukirch,E.V.Haartman,J.M.Rosenholm,and A.N.Vamivakas,Nature Photonics 9(2015)653.

    [10]T.Li,S.Kheifets,and M.G.Raizen,Nature Physics 7(2011)527.

    [11]V.Jain,J.Gieseler,C.Moritz,C.Dellago,et al.,Phys.Rev.Lett.116(2016)243601.

    [12]T.Li,S.Kheifets,D.Medellin,and M.G.Raizen,Science 328(2010)1673.

    [13]P.Rabl,P.Cappellaro,M.V.G.Dutt,et al.,Phys.Rev.B 79(2009)041302.

    [14]D.E.Chang,C.A.Regal,S.B.Papp,et al.,Proceedings of the National Academy of Sciences of the United States of America 107(2010)1005.

    [15]O.Romero-Isart,A.C.P flanzer,F.Blaser,et al.,Phys.Rev.Lett.107(2011)020405.

    [16]S.Kheifets,A.Simha,K.Melin,et al.,Science 343(2014)1493.

    [17]J.Gieseler,B.M.Deutsch,R.Quidant,and L.Novotny,Phys.Rev.Lett.109(2012)103603.

    [18]J.Gieseler,R.Quidant,C.Dellago,and L.Novotny,Nature Nanotechnol.9(2014)358.

    [19]J.Bateman,S.Nimmrichter,K.Hornberger,and H.Ulbricht,Nature Commun.5(2014)4788.

    [20]A.A.Geraci,S.B.Papp,and J.Kitching,Phys.Rev.Lett.105(2010)101101.

    [21]A.Arvanitaki and A.A.Geraci,Phys.Rev.Lett.110(2013)071105.

    [22]T.M.Hoang,Y.Ma,J.Ahn,et al.,Phys.Rev.Lett.117(2016)123604.

    [23]K.W.Xiao,N.Zhao,and Z.Q.Yin,Phys.Rev.A 96(2017)013837.

    [24]B.Berne and R.Pecora,Tanpakushitsu Kakusan Koso Protein Nucleic Acid Enzyme 49(1976)1676.

    [25]G.Maret,et al.,Zeit.Für Phys.B Con.Matt.65(1987)409.

    [26]D.J.Pine,D.A.Weitz,P.M.Chaikin,and E.Herbolzheimer,Phys.Rev.Lett.60(1988)1134.

    [27]L.Liu,A.Woolf,A.W.Rodriguez,and F.Capasso,Proceedings of the National Academy of Sciences of the United States of America 111(2014)E5609.

    [28]P.Zakharov,F.Cardinaux,and F.Scheffold,Phys.Rev.E 73(2006)011413.

    [29]J.X.Zhu,D.J.Durian,J.Müller,et al.,Phys.Rev.Lett.68(1992)2559.

    [30]J.Mo,J.Chem.Phys.49(2015)5158.

    [31]B.Luki′c,S.Jeney,C.Tischer,et al.,Phys.Rev.Lett.95(2005)160601.

    [32]T.Franosch,M.Grimm,M.Belushkin,et al.,Nature(London)478(2011)85.

    [33]P.N.Pusey,Science 332(2011)802.

    [34]R.Huang,I.Chavez,K.M.Taute,et al.,Nature Phys.7(2011)439.

    [35]P.Kumar and M.Bhattacharya,Opt.Express 25(2017)719568.

    [36]N.Zhao and Z.Q.Yin,Phys.Rev.A 90(2014)042118.

    [37]J.Wrachtrup and F.Jelezko,J.Phys.Condens.Matter 18(2006)S807.

    [38]P.Neumann,R.Kolesov,B.Naydenov,et al.,Nature Phys.6(2010)249.

    [39]Z.Yin and T.Li,Contemp.Phys.58(2017)1.

    [40]G.Anetsberger,P.Verlot,E.Gavartin,et al.,Nature Nanotechnol.4(2009)820.

    [41]J.R.Maze,P.L.Stanwix,J.S.Hodges,et al.,Nature(London)455(2008)644.

    [42]H.J.Mamin,M.Kim,M.H.Sherwood,et al.,Science 339(2013)557.

    [43]P.L.Stanwix,L.M.Pham,J.R.Maze,et al.,Phys.Rev.B 82(2010)201201.

    [44]F.Jelezko,T.Gaebel,I.Popa,et al.,Phys.Rev.Lett.93(2004)130501.

    [45]P.C.Maurer,G.Kucsko,C.Latta,et al.,Science 336(2012)1283.

    [46]V.R.Horowitz,B.J.Alemán,D.J.Christle,et al.,Proce.National Acad.Sci.109(2012)13493.

    [47]M.Geiselmann,M.L.Juan,J.Renger,et al.,Nature Nanotechnol.8(2013)175.

    [48]A.W.Schell,P.Engel,and O.Benson,arXiv:1303.0814(2013).

    [49]R.Beams,D.Smith,T.W.Johnson,et al.,Nano Lett.13(2013)3807.

    [50]H.Huebl,C.W.Zollitsch,J.Lotze,et al.,Phys.Rev.Lett.111(2013)127003.

    [51]M.A.Gilleo and S.Geller,Phys.Rev.110(1958)73.

    [52]D.Zhang,X.M.Wang,T.F.Li,et al.,npj Quantum Inform.1(2015)15014.

    [53]O.Romero-Isart,A.C.Panzer,M.L.Juan,et al.,Phys.Rev.A 83(2011)013803.

    [54]M.G.Raizen,R.J.Thompson,R.J.Brecha,et al.,Phys.Rev.Lett.63(1989)240.

    [55]F.Bloch,Phys.Rev.70(1946)460.

    [56]G.Q.Liu,Q.Q.Jiang,Y.C.Chang,et al.,Nanoscale 6(2014)10134.

    [57]J.Du,X.Rong,N.Zhao,et al.,Nature(London)461(2009)1265.

    [58]S.A.Beresnev,V.G.Chernyak,and G.A.Fomyagin,J.Fluid Mech.219(1990)405.

    猜你喜歡
    雷鳴
    Quantitative determination of the critical points of Mott metal–insulator transition in strongly correlated systems
    雷鳴和細雨
    In-situ ultrasonic calibrations of pressure and temperature in a hinge-type double-stage cubic large volume press
    Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
    Measuring the flexibility matrix of an eagle's flight feather and a method to estimate the stiffness distribution?
    動物可笑堂
    強勁、震撼 Rythmik Audio(雷鳴)FV25HP
    Tunneling field effect transistors based on in-plane and vertical layered phosphorus heterostructures?
    Capital Market Analysis
    商情(2017年5期)2017-03-30 23:58:25
    坑人的兄弟
    亚洲国产欧美网| 成在线人永久免费视频| 久久精品国产a三级三级三级| 天天影视国产精品| 国产精品久久久人人做人人爽| 一区福利在线观看| 久热这里只有精品99| 五月开心婷婷网| 视频区欧美日本亚洲| 日本精品一区二区三区蜜桃| 亚洲中文av在线| 国产成人精品在线电影| 久久久欧美国产精品| 九色亚洲精品在线播放| 国产男人的电影天堂91| 啪啪无遮挡十八禁网站| 男人添女人高潮全过程视频| 久久国产精品影院| 正在播放国产对白刺激| 国产一区二区三区av在线| 国产伦人伦偷精品视频| 国产xxxxx性猛交| 亚洲欧美精品综合一区二区三区| 国产成人精品久久二区二区免费| 2018国产大陆天天弄谢| 爱豆传媒免费全集在线观看| 黑人操中国人逼视频| 欧美人与性动交α欧美软件| 成年人午夜在线观看视频| 久久人人97超碰香蕉20202| 男女午夜视频在线观看| 欧美97在线视频| 午夜福利在线免费观看网站| av超薄肉色丝袜交足视频| 一区二区三区精品91| 视频区图区小说| 亚洲伊人久久精品综合| 中文精品一卡2卡3卡4更新| 高潮久久久久久久久久久不卡| 一级毛片精品| 大片免费播放器 马上看| 久久久久久免费高清国产稀缺| 另类精品久久| 手机成人av网站| 久久久久久久国产电影| 久久毛片免费看一区二区三区| 欧美午夜高清在线| 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品自拍成人| 国产男人的电影天堂91| 午夜日韩欧美国产| 一级a爱视频在线免费观看| 无遮挡黄片免费观看| 久久亚洲精品不卡| 亚洲av美国av| 大香蕉久久成人网| 亚洲免费av在线视频| 青青草视频在线视频观看| 黑人操中国人逼视频| 欧美日韩国产mv在线观看视频| 久久热在线av| 黑人巨大精品欧美一区二区mp4| 婷婷成人精品国产| 成年动漫av网址| 国产精品一区二区在线观看99| 91成年电影在线观看| 最近最新中文字幕大全免费视频| 高清av免费在线| 亚洲欧洲精品一区二区精品久久久| av天堂久久9| 热99国产精品久久久久久7| 国产精品一区二区精品视频观看| 欧美性长视频在线观看| 99国产极品粉嫩在线观看| 国产一区有黄有色的免费视频| 精品亚洲乱码少妇综合久久| 国产又色又爽无遮挡免| 亚洲男人天堂网一区| 亚洲精品一二三| 欧美97在线视频| 亚洲国产精品999| 免费少妇av软件| 国产一级毛片在线| 国产野战对白在线观看| 999精品在线视频| 嫩草影视91久久| 免费日韩欧美在线观看| 中文精品一卡2卡3卡4更新| 亚洲伊人久久精品综合| 国产精品亚洲av一区麻豆| 在线观看免费日韩欧美大片| 在线看a的网站| 亚洲视频免费观看视频| 婷婷色av中文字幕| 中文欧美无线码| 国产成人av教育| 99久久人妻综合| 亚洲国产av新网站| 久久亚洲国产成人精品v| 亚洲精品av麻豆狂野| 999久久久国产精品视频| 淫妇啪啪啪对白视频 | 欧美另类亚洲清纯唯美| 亚洲av成人不卡在线观看播放网 | 午夜免费鲁丝| 久久女婷五月综合色啪小说| 涩涩av久久男人的天堂| 在线亚洲精品国产二区图片欧美| 国产亚洲精品一区二区www | 人人妻人人澡人人看| 成年av动漫网址| 亚洲精品乱久久久久久| 性高湖久久久久久久久免费观看| 男女高潮啪啪啪动态图| 99re6热这里在线精品视频| 亚洲精品国产一区二区精华液| 亚洲色图综合在线观看| 黑人巨大精品欧美一区二区蜜桃| 美国免费a级毛片| 色婷婷av一区二区三区视频| 亚洲视频免费观看视频| 别揉我奶头~嗯~啊~动态视频 | 一本色道久久久久久精品综合| 国内毛片毛片毛片毛片毛片| 99re6热这里在线精品视频| 久久狼人影院| 国产精品久久久av美女十八| 男人舔女人的私密视频| 亚洲少妇的诱惑av| 国产无遮挡羞羞视频在线观看| 91成人精品电影| 日韩欧美一区视频在线观看| 一本一本久久a久久精品综合妖精| 丝袜喷水一区| 国产一区二区三区在线臀色熟女 | 亚洲熟女精品中文字幕| 大片电影免费在线观看免费| 久久久精品94久久精品| 亚洲欧洲精品一区二区精品久久久| 高清在线国产一区| 久久影院123| 久久99热这里只频精品6学生| 国产精品一区二区在线不卡| 一本综合久久免费| 亚洲欧美清纯卡通| 777久久人妻少妇嫩草av网站| 成年人午夜在线观看视频| 丝瓜视频免费看黄片| 精品亚洲乱码少妇综合久久| 777久久人妻少妇嫩草av网站| 精品人妻一区二区三区麻豆| 免费黄频网站在线观看国产| 亚洲国产日韩一区二区| 深夜精品福利| 亚洲国产精品999| 成人免费观看视频高清| 亚洲av日韩在线播放| 99久久国产精品久久久| √禁漫天堂资源中文www| 天堂8中文在线网| 女人爽到高潮嗷嗷叫在线视频| 曰老女人黄片| 成人av一区二区三区在线看 | 精品一区二区三区四区五区乱码| 免费av中文字幕在线| 亚洲av成人一区二区三| 天堂8中文在线网| 男女国产视频网站| 精品国产一区二区三区久久久樱花| 老司机在亚洲福利影院| 国产精品一区二区免费欧美 | 久久免费观看电影| 51午夜福利影视在线观看| 亚洲久久久国产精品| 丝袜喷水一区| 秋霞在线观看毛片| 一区二区三区乱码不卡18| 丰满迷人的少妇在线观看| 国产人伦9x9x在线观看| 欧美另类亚洲清纯唯美| 色播在线永久视频| 欧美成人午夜精品| 美女中出高潮动态图| 两个人免费观看高清视频| 亚洲成人国产一区在线观看| 国产不卡av网站在线观看| 亚洲欧美一区二区三区黑人| 最近最新中文字幕大全免费视频| 午夜福利影视在线免费观看| 成人三级做爰电影| 久久ye,这里只有精品| 美女扒开内裤让男人捅视频| av又黄又爽大尺度在线免费看| 国产高清国产精品国产三级| 在线观看免费日韩欧美大片| tocl精华| 91国产中文字幕| 肉色欧美久久久久久久蜜桃| 男女下面插进去视频免费观看| 狠狠婷婷综合久久久久久88av| 国产一区二区激情短视频 | 69精品国产乱码久久久| 欧美人与性动交α欧美精品济南到| 国产精品偷伦视频观看了| a级毛片在线看网站| 肉色欧美久久久久久久蜜桃| 叶爱在线成人免费视频播放| 超色免费av| 免费高清在线观看视频在线观看| 日韩人妻精品一区2区三区| 亚洲九九香蕉| 五月开心婷婷网| 精品久久久久久久毛片微露脸 | 欧美激情极品国产一区二区三区| 亚洲av日韩精品久久久久久密| 在线精品无人区一区二区三| 蜜桃在线观看..| 精品人妻1区二区| 久久精品国产综合久久久| 国产成人a∨麻豆精品| 一级毛片精品| 黑人巨大精品欧美一区二区mp4| 午夜两性在线视频| 久久久久久人人人人人| av免费在线观看网站| 亚洲精品成人av观看孕妇| 免费在线观看影片大全网站| 亚洲精品中文字幕在线视频| 成人av一区二区三区在线看 | 久久精品国产a三级三级三级| 91字幕亚洲| 老熟女久久久| 亚洲伊人色综图| 天天影视国产精品| 精品一品国产午夜福利视频| 欧美老熟妇乱子伦牲交| 午夜福利乱码中文字幕| 亚洲男人天堂网一区| 亚洲av日韩精品久久久久久密| 欧美黄色片欧美黄色片| 久久天躁狠狠躁夜夜2o2o| 国产男人的电影天堂91| 国产精品99久久99久久久不卡| 精品人妻一区二区三区麻豆| 欧美成狂野欧美在线观看| 黑人猛操日本美女一级片| 午夜激情av网站| 99re6热这里在线精品视频| 亚洲精华国产精华精| 国产高清videossex| 欧美+亚洲+日韩+国产| 精品乱码久久久久久99久播| 久久久国产成人免费| 国产人伦9x9x在线观看| 国产深夜福利视频在线观看| 91成年电影在线观看| 久久久精品国产亚洲av高清涩受| 亚洲精品成人av观看孕妇| 精品一区二区三卡| 国产av精品麻豆| 91大片在线观看| 777久久人妻少妇嫩草av网站| a级片在线免费高清观看视频| 性色av乱码一区二区三区2| 精品久久久久久电影网| 国产精品1区2区在线观看. | 欧美精品av麻豆av| 啪啪无遮挡十八禁网站| 精品一区在线观看国产| 蜜桃国产av成人99| 蜜桃在线观看..| 亚洲色图 男人天堂 中文字幕| 精品一区在线观看国产| 国产一级毛片在线| 母亲3免费完整高清在线观看| 欧美另类亚洲清纯唯美| 欧美精品啪啪一区二区三区 | av超薄肉色丝袜交足视频| 一区在线观看完整版| 国产免费视频播放在线视频| 好男人电影高清在线观看| 国产av精品麻豆| 99久久精品国产亚洲精品| 久久久国产一区二区| 精品一区在线观看国产| 欧美黄色淫秽网站| 如日韩欧美国产精品一区二区三区| av福利片在线| 大香蕉久久成人网| 日韩制服骚丝袜av| 亚洲欧洲日产国产| 91老司机精品| 啦啦啦在线免费观看视频4| 丝袜美足系列| 99国产精品一区二区三区| 久久久久国产精品人妻一区二区| 色老头精品视频在线观看| 人妻人人澡人人爽人人| 精品少妇内射三级| 99九九在线精品视频| 波多野结衣一区麻豆| 国产一区二区在线观看av| 欧美黄色淫秽网站| 丝袜脚勾引网站| 十八禁网站免费在线| 免费人妻精品一区二区三区视频| 亚洲欧美日韩高清在线视频 | 亚洲,欧美精品.| 色精品久久人妻99蜜桃| 精品第一国产精品| 日韩一区二区三区影片| 国产av精品麻豆| 亚洲综合色网址| 亚洲精品在线美女| 在线天堂中文资源库| 久久这里只有精品19| 天堂俺去俺来也www色官网| 欧美激情 高清一区二区三区| 久久这里只有精品19| 欧美国产精品va在线观看不卡| 日韩电影二区| 天天操日日干夜夜撸| 在线观看免费高清a一片| 久久久国产欧美日韩av| 美女脱内裤让男人舔精品视频| 男女国产视频网站| 12—13女人毛片做爰片一| 免费黄频网站在线观看国产| 桃红色精品国产亚洲av| 看免费av毛片| 丝袜在线中文字幕| 亚洲七黄色美女视频| 亚洲国产欧美在线一区| 黑人操中国人逼视频| 久久久精品免费免费高清| 日韩大码丰满熟妇| 正在播放国产对白刺激| 人妻 亚洲 视频| 国产片内射在线| 97在线人人人人妻| 国产激情久久老熟女| 99国产极品粉嫩在线观看| 亚洲天堂av无毛| 日韩,欧美,国产一区二区三区| 妹子高潮喷水视频| 一区二区三区激情视频| 精品卡一卡二卡四卡免费| 女人精品久久久久毛片| 国产成人精品久久二区二区91| 中文字幕精品免费在线观看视频| 国产成人一区二区三区免费视频网站| 国产男女超爽视频在线观看| 亚洲欧美色中文字幕在线| 建设人人有责人人尽责人人享有的| 制服诱惑二区| 免费高清在线观看日韩| 免费少妇av软件| 欧美亚洲日本最大视频资源| 一区福利在线观看| 满18在线观看网站| 久久久久视频综合| 在线亚洲精品国产二区图片欧美| 成年动漫av网址| 纵有疾风起免费观看全集完整版| 国产精品一区二区在线不卡| 欧美日韩黄片免| 欧美激情高清一区二区三区| 色婷婷av一区二区三区视频| 亚洲国产精品成人久久小说| 欧美变态另类bdsm刘玥| 肉色欧美久久久久久久蜜桃| 欧美日韩亚洲国产一区二区在线观看 | 看免费av毛片| 午夜免费成人在线视频| 久久99一区二区三区| 亚洲成国产人片在线观看| 亚洲自偷自拍图片 自拍| 国产xxxxx性猛交| 国产男女超爽视频在线观看| 成人国产av品久久久| 午夜激情久久久久久久| 久久国产精品影院| 久久精品人人爽人人爽视色| 亚洲精品久久午夜乱码| 成人国产一区最新在线观看| 国产精品久久久久久人妻精品电影 | 亚洲人成电影免费在线| 久久国产精品影院| 久久精品人人爽人人爽视色| 777米奇影视久久| 美女视频免费永久观看网站| 日韩三级视频一区二区三区| 色婷婷av一区二区三区视频| 97人妻天天添夜夜摸| 久久国产精品大桥未久av| 亚洲国产欧美在线一区| 一区二区三区激情视频| 日韩欧美免费精品| 人人澡人人妻人| 亚洲精品国产区一区二| 久久久国产精品麻豆| 久久ye,这里只有精品| 亚洲国产欧美日韩在线播放| 精品国产一区二区三区久久久樱花| 国产精品偷伦视频观看了| 搡老乐熟女国产| 水蜜桃什么品种好| 日韩视频在线欧美| 日本五十路高清| 国精品久久久久久国模美| 黄网站色视频无遮挡免费观看| 在线观看免费午夜福利视频| 精品国产一区二区三区久久久樱花| 国产亚洲av片在线观看秒播厂| www.精华液| 老司机在亚洲福利影院| 亚洲精华国产精华精| 国产精品久久久久成人av| 1024视频免费在线观看| 精品国产乱码久久久久久男人| 亚洲国产日韩一区二区| 美女大奶头黄色视频| 黑人欧美特级aaaaaa片| 天天影视国产精品| 国产黄色免费在线视频| 亚洲av片天天在线观看| 免费在线观看完整版高清| 日韩大片免费观看网站| 女性被躁到高潮视频| 两个人免费观看高清视频| 女警被强在线播放| 亚洲精品第二区| 亚洲久久久国产精品| 各种免费的搞黄视频| 无限看片的www在线观看| 欧美激情极品国产一区二区三区| 中文字幕人妻丝袜制服| 老司机午夜福利在线观看视频 | 国产免费视频播放在线视频| 亚洲成av片中文字幕在线观看| 伦理电影免费视频| 午夜福利一区二区在线看| 爱豆传媒免费全集在线观看| 色老头精品视频在线观看| 亚洲欧美激情在线| 欧美另类亚洲清纯唯美| 丝袜美足系列| 亚洲专区中文字幕在线| 午夜福利,免费看| 久久久久国内视频| 久久ye,这里只有精品| av不卡在线播放| 国产精品久久久久成人av| 亚洲成人手机| 乱人伦中国视频| 中亚洲国语对白在线视频| 一级毛片精品| 美女午夜性视频免费| 亚洲人成电影免费在线| 热99国产精品久久久久久7| 亚洲视频免费观看视频| 国产精品秋霞免费鲁丝片| 亚洲精品av麻豆狂野| 捣出白浆h1v1| 成人影院久久| av天堂在线播放| 麻豆国产av国片精品| 国产精品久久久久久精品电影小说| 日韩三级视频一区二区三区| 午夜久久久在线观看| 在线观看一区二区三区激情| 欧美日韩一级在线毛片| 亚洲专区字幕在线| 一本一本久久a久久精品综合妖精| 国产成人免费观看mmmm| 性色av一级| 91av网站免费观看| 人人妻人人添人人爽欧美一区卜| 99久久人妻综合| 亚洲精品自拍成人| 国产成人免费无遮挡视频| 五月开心婷婷网| 国产人伦9x9x在线观看| 中文字幕制服av| 老鸭窝网址在线观看| 老司机亚洲免费影院| 18禁国产床啪视频网站| 欧美日韩福利视频一区二区| 黑人操中国人逼视频| 国产一区有黄有色的免费视频| 欧美日韩亚洲综合一区二区三区_| 欧美黄色淫秽网站| 国产亚洲精品一区二区www | 免费在线观看影片大全网站| 欧美xxⅹ黑人| 大码成人一级视频| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲国产成人一精品久久久| 91av网站免费观看| 亚洲精品乱久久久久久| www日本在线高清视频| 亚洲少妇的诱惑av| 人成视频在线观看免费观看| www.熟女人妻精品国产| 啦啦啦啦在线视频资源| 欧美日韩中文字幕国产精品一区二区三区 | cao死你这个sao货| 成年人午夜在线观看视频| 19禁男女啪啪无遮挡网站| 久久久精品94久久精品| 精品人妻一区二区三区麻豆| 国产成人一区二区三区免费视频网站| 老熟妇仑乱视频hdxx| 在线观看免费日韩欧美大片| 久久久久久久精品精品| 国产三级黄色录像| 我的亚洲天堂| 人人妻人人爽人人添夜夜欢视频| 亚洲av电影在线观看一区二区三区| 80岁老熟妇乱子伦牲交| 午夜久久久在线观看| 少妇粗大呻吟视频| 国产精品秋霞免费鲁丝片| 国产欧美日韩一区二区三区在线| 一区在线观看完整版| 欧美日韩黄片免| 美女大奶头黄色视频| 老司机深夜福利视频在线观看 | 午夜成年电影在线免费观看| 中文字幕人妻丝袜一区二区| 亚洲成国产人片在线观看| 秋霞在线观看毛片| 香蕉丝袜av| 各种免费的搞黄视频| 一区二区三区激情视频| 99re6热这里在线精品视频| 在线看a的网站| 成人三级做爰电影| 九色亚洲精品在线播放| 1024香蕉在线观看| 亚洲五月婷婷丁香| 午夜免费鲁丝| 韩国高清视频一区二区三区| 深夜精品福利| 国产欧美日韩综合在线一区二区| 一本大道久久a久久精品| 久久久国产欧美日韩av| 久久天躁狠狠躁夜夜2o2o| 国产片内射在线| 国产亚洲精品第一综合不卡| 亚洲七黄色美女视频| 国产人伦9x9x在线观看| 国产精品久久久av美女十八| 亚洲av男天堂| 欧美日韩精品网址| 亚洲视频免费观看视频| 久久亚洲国产成人精品v| 亚洲 国产 在线| 国产福利在线免费观看视频| 脱女人内裤的视频| 午夜免费成人在线视频| 桃红色精品国产亚洲av| xxxhd国产人妻xxx| 久热这里只有精品99| 青草久久国产| 曰老女人黄片| 日韩三级视频一区二区三区| 老司机福利观看| 美女视频免费永久观看网站| 日本a在线网址| 欧美国产精品va在线观看不卡| 人妻一区二区av| 一本—道久久a久久精品蜜桃钙片| 亚洲成人免费电影在线观看| 免费观看av网站的网址| 人人妻人人添人人爽欧美一区卜| 日韩欧美国产一区二区入口| 免费观看人在逋| 亚洲欧美日韩高清在线视频 | 性少妇av在线| 欧美激情久久久久久爽电影 | 在线观看舔阴道视频| 在线观看一区二区三区激情| 久久天躁狠狠躁夜夜2o2o| 日日夜夜操网爽| 黑人巨大精品欧美一区二区蜜桃| 满18在线观看网站| 脱女人内裤的视频| 欧美97在线视频| 桃红色精品国产亚洲av| 黑人操中国人逼视频| a级片在线免费高清观看视频| 亚洲人成电影免费在线| 亚洲精品第二区| 亚洲人成电影观看| 啦啦啦啦在线视频资源| 天天操日日干夜夜撸| 在线亚洲精品国产二区图片欧美| 热99re8久久精品国产| 日韩欧美国产一区二区入口| 欧美日韩成人在线一区二区| 亚洲av成人不卡在线观看播放网 | 免费观看av网站的网址| 侵犯人妻中文字幕一二三四区| 国产成人精品无人区| 亚洲欧美清纯卡通| 俄罗斯特黄特色一大片| 又紧又爽又黄一区二区| 一区二区三区精品91| 妹子高潮喷水视频| 国产黄频视频在线观看| 老汉色∧v一级毛片| 香蕉国产在线看| 国产无遮挡羞羞视频在线观看| 老司机午夜福利在线观看视频 |