• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tunneling field effect transistors based on in-plane and vertical layered phosphorus heterostructures?

    2017-08-30 08:26:30ShenyanFeng馮申艷QiaoxuanZhang張巧璇JieYang楊潔MingLei雷鳴andRugeQuhe屈賀如歌
    Chinese Physics B 2017年9期
    關(guān)鍵詞:楊潔雷鳴

    Shenyan Feng(馮申艷),Qiaoxuan Zhang(張巧璇),Jie Yang(楊潔),Ming Lei(雷鳴),and Ruge Quhe(屈賀如歌)

    State Key Laboratory of Information Photonics and Optical Communications and School of Science, Beijing University of Posts and Telecommunications,Beijing 100876,China

    Tunneling field effect transistors based on in-plane and vertical layered phosphorus heterostructures?

    Shenyan Feng(馮申艷),Qiaoxuan Zhang(張巧璇),Jie Yang(楊潔),Ming Lei(雷鳴)?,and Ruge Quhe(屈賀如歌)?

    State Key Laboratory of Information Photonics and Optical Communications and School of Science, Beijing University of Posts and Telecommunications,Beijing 100876,China

    Tunneling field effect transistors(TFETs)based on two-dimensional materials are promising contenders to the traditional metal oxide semiconductor field effect transistor,mainly due to potential applications in low power devices.Here, we investigate the TFETs based on two different integration types:in-plane and vertical heterostructures composed of two kinds of layered phosphorous(β-P and δ-P)by ab initio quantum transport simulations.NDR effects have been observed in both in-plane and vertical heterostructures,and the effects become significant with the highest peak-to-valley ratio(PVR) when the intrinsic region length is near zero.Compared with the in-plane TFET based on β-P and δ-P,better performance with a higher on/off current ratio of~106 and a steeper subthreshold swing(SS)of~23 mV/dec is achieved in the vertical TFET.Such differences in the NDR effects,on/off current ratio and SS are attributed to the distinct interaction nature of the β-P and δ-P layers in the in-plane and vertical heterostructures.

    tunneling field effect transistors,negative differential resistance effect,on/off current ratio,subthreshold swing

    1.Introduction

    The metal oxide semiconductor field effect transistor (MOSFET)is the basic building block of modern digital,analog,and memory circuits.However,the power consumption becomes a severe issue with the scaling down of the transistor.Tunneling field effect transistor(TFET)is based on the switching mechanism of band to band tunneling instead of thermionic emission as in the case of MOSFET.[1,2]Therefore,TFET does not suffer from the 60 mV/dec limit of the subthreshold swing(SS),rendering it promising forlow-power applications.

    TFETs based on bulk semiconductors,such as Si and III–V materials,have been explored for TFETs.[3–7]Especially,the SS of sub-60 mV/dec has been realized in the fabricated Si[8,9]and GeSn quantum well p-channel TFETs.[10]Compared with the conventional bulk semiconductors with the presence of band-tail states,the two-dimensional(2D)semiconductors and related heterostructures with sharp band edges have shown promise to obtain sharp switching in 2D based TFETs.The fabricated 2D WSe2/SnSe2vertical heterostructure TFET achieves a SS of 100 mV/dec at room temperature over several orders of magnitude of drain current.[11]A record-low minimum SS of 3.9 mV/dec is realized in the atomically thin MoS2TFET at room temperature.[12]Theoretically,the 2D phosphorene TFETs are predicted to show SS below 60 mV/dec and a wide range of on-current depending on the transport direction due to the highly anisotropic nature of phosphorene.[13]

    Besides the potential for low power applications,[14,15]another attractive feature of TFET is the possibility of a novel negative differential resistance(NDR)effect under forward bias voltage,which is caused by the quantum mechanical tunneling of electrons through an ultrathin barrier to provide high currentatlow voltage.[16]This NDR effect has a good prospect on high frequency switching oscillators and analog-to-digital converters.[17,18]

    Recently,2D van der Waals(vdW)vertical heterostructures,such as graphene/BN/graphene,[19]MoS2/h BN/MoS2,[20]WSe2/SnSe2,[21]MoS2/WSe2,[22]and MoS2/MoSe2[23]have been used to fabricate TFETs.In these TFETs,it is a vdW interaction between the layers in the vertical heterostructures.Apart from the weak vdW interaction, heterostructures can be formed through the strong covalent interaction in the atomic interface between the two materials in the in-plane direction.While the current researches on 2D TFETs are mostly focused on those based on the vdW vertical heterostructures,there are few studies concerning the 2D in-plane TFETs,to the best of our knowledge.

    The 2D layered phosphorus,which possesses a few stable structural phases,is attracting increasing attention recently. Among these phases,except for the commonly studied black phosphorus,few layered blue phosphorus(β-P),an in-planehexagonal isotropic structure,has also been successfully synthesized on Au(111).[24]TFET based on black phosphorushas been studied theoretically.[13]Unlike the isotropic β-P with a sizable band gap of around 2 eV,few layered δ-P is with a narrow band gap of 0.45 eV.[25]Beyond these phases mentioned above,other new monolayer(ML)phosphorus allotropes are also predicted based on ab initio calculations.[26]These different phosphorus phases could coexist by applying certain strain. The coexistence of different structural phases of layered phosphorus with fantastic properties enriches this material family and offers a novel platform for the next generation development of photoelectric devices.

    In this paper,we investigate transport properties of the prototype p–i–n TFETs based on in-plane and vertical het-erostructures formed by semi-infinite β-P and δ-P layers via ab initio quantum transport simulations.Both the in-plane and vertical tunneling junctions of δ-P and β-P show a significant NDR effect.We discover that different integrations of heterostructures can affect the NDR effect.The PVR of in-plane heterostructures decreases with the increase of the intrinsic region length.However,this phenomenon is not found in vertical heterostructures.In addition,vertical TFET has a higher on/off current ratio of~106and a steeper SS of~23 mV/dec than the in-plane one,suggesting a greater probability to create an apparent switching effect and reduce operating voltage. Therefore,for heterostructures based on δ-P and β-P,the vertical heterostructure is more suitable for TFET than the in plane heterostructure,providing new prospects of the phase manipulated layered phosphorus for novel electronics.

    2.Calculations methods

    The electron transport properties are performed by using density functional theory(DFT)[27]coupled with the nonequilibrium Green’s function(NEGF)method,[28–30]as implemented in the ATK 2015 package.We use the generalized gradient approximation(GGA)in the form of the Perdew–Burke–Ernzerhof(PBE)functional for exchange and correlation potential.[31]To correctly account for the dispersion interaction,we apply the optimized exchange van der Waals functional B86E of the Becke(optB86b vdW)functional.[32]We employ the single-zeta-polarized(SZP)basis set during the device simulations.The k-points of the electrodes(channel) are set to 1×18×18(1×18×6)to make the separation of k-point near~0.01?A?1in the Brillouin zone,and the mesh cutoff is set to be 75 Hartree.The temperature is set to 300 K.

    The current is calculated by using the Landauer–Buttiker formula[33,34]

    where T(ε,Vbias)represents the energy and voltage-resolved transmission function,f is the Fermi–Dirac distribution function,andμL,R=Ef±Vbias/2 represent the chemical potentials of the left and right electrodes,respectively.To make sure of the accuracy of the calculations,we have performed test calculations with different exchange and correlation methods and basis sets.Consistent results by these methods are obtained, which suggests that our settings are reasonable(see Supplementary materials for details).

    3.Results and discussion

    To research the transport properties,two kinds of p–i–n junction models based on 5-nm in-plane and vertical heterostructure channels and semi-infinite δ-P and β-P electrodes have been simulated as shown in Fig.1.[35]After geometry optimization,the vdW distance of the vertical heterostructure between the β-P and δ-P layer is 2.98?A.The δ-P in the pregion and β-P in the n-region are heavily doped with the density of ρ(p)=ρ(n)=1×1021m?3,a reasonable doping concentration,which can be achieved for the real device fabrication.[36]The different lengths of the intrinsic region (L1=0?A,L2=11?A,and L3=19?A)are considered.

    Fig.1.(color online)Heterostructures based on(a)in-plane and(b)vertical heterostructures.The source and drain are semi-infinite δ-P and β-P represented by blue arrows,respectively.The channel is composed of δ-P and β-P in-plane and vertical heterostructures,respectively.

    We apply different bias voltages on in-plane and vertical heterostructures,respectively.The I–Vbiascurves with different lengths of the intrinsic region of in-plane and vertically stacked heterostructures are depicted in Fig.2.For in-plane heterostructures,significant NDR effects are observed in the output characteristic in Fig.2.The peaks and valleys of the current are located at around Vbias=0.25–0.30 V and 1.125–1.25 V,and the PVR values of the device with intrinsic region lengths of L1,L2,and L3are 59,49,and 11,respectively.The origin of the NDR effect is the change of band alignment between source and drain under different bias voltages,as shown in Fig.3.With heavily doped source and drain,the junction is of a broken type(type-III)band alignment under Vbias=0 V. The interband tunneling between source and drain dominates the current at a small bias voltage.At Vbias=0.25–0.30 V,the tunneling current reaches a peak.As the bias voltage becomes higher,the band alignment becomes type-II.The interband tunneling is unlikely to occur,and the current is dominated by thermionic injection of carriers.At Vbias=1.125–1.25 V,the current reaches a local minimum.The tunable type of band alignment by external voltage has also been demonstrated in the fabricated WSe2–MoS2heterostructures.[22]

    Fig.2.(color online)(a1)and(a2)Two-probe models of the p–i–n junction composed of δ-P and β-P based on in-plane and vertically stacked heterostructures.The unit cells in gray and green shadows are heavily p-type and n-type doped,respectively.In these cases, the length of the intrinsic region is L1=0?A,L2=11?A,and L3=19?A.Yellow balls:δ-P;blue balls:β-P.(b1)and(b2)The I–V bias curves with different lengths of intrinsic region of in-plane heterostructures and vertically stacked heterostructures.

    Fig.3.(color online)Spatial resolved LDOS and transmission spectra of the in-plane β/δ p–i–n junction at(a)–(d)current peak (V bias=0.25–0.30 V)and(e)–(h)valley(V bias=1.125 V),respectively.The lengths of the intrinsic regions are L1 in panels(a)and (e),L2 in panels(b)and(f),and L3 in panels(c)and(g),respectively.The Fermi levels of the left and right electrodes are denoted by E f,L and E f,R,respectively.

    The NDR effect can also be understood by comparing the transmission spectra when the current reaches a peak and valley in Figs.3(d)and 3(h).Under Vbias=0.25–0.30 V (current peak),there are two gaps located in the range of 0.72 eV<E<1.08 eV and?1.86 eV<E<?0.48 eV,corresponding to the band gap of δ-P and β-P,respectively.Apparent transport humps are located between the gaps inside the bias window,contributing to the interband tunneling current.By contrast,the transmission possibility inside the bias window is almost zero under Vbias=1.125–1.25 V(current valley),suggesting a very low interband tunneling possibility. The decreasing PVR with the increase of the length of intrinsic region results from the thicker tunneling barrier in the intrinsic region and thus lower tunneling probability occurs at the current“valley”state.This trend is similar to that in the single-walled carbon nanotube and graphene nanoribbon p–n junction.[37–39]

    For the vertical heterostructures of δ-P and β-P,we also observe significant NDR effects in the output characteristic in Fig.2.The peaks are located at around Vbias=0.5 V(L1= 0?A),0.375 V(L2=11?A),and 0.125 V(L3=19?A),whereas valleys of current are located at around Vbias=1.125–1.25 V. The PVR of the device with the intrinsic region lengths of L1, L2,and L3are 137,45,and 56,respectively.

    The origin of the NDR effect vertical heterostructure is similar to that of in-plane heterostructuresas shown in Fig.4. Under Vbias=0 V,the junction is of broken type(type-III) band alignment resulting from the heavily doped source and drain as well.At a small bias voltage,the current is dominated by the interband tunneling between source and drain regions.At around Vbias=0.5 V,0.375 V,and 0.125 V,the tunneling current would reach a peak,then with a higher bias voltage,the band alignment transforms into type-II.There is low probability for achieving interband tunneling,and then the thermionic injection of carriers dominates the current.At around Vbias=1.125–1.25 V,the current would be a valley state.Comparing the transmission spectra in Figs.4(d)and 4(h),the phenomenon and principle of a vertical heterostructure are similar to those of an in-plane heterostructure.

    Fig.4.(color online)Spatial resolved LDOS and transmission spectra of the vertically stacked β/δ p–i–n junction at current peak (V bias=0.125–0.50 V)(a)–(d)and valley(V bias=1.125–1.25 V)(e)–(h),respectively.The lengths of the intrinsic regions are L1in panels(a)and(e),L2 in panels(b)and(f),and L3 in panels(c)and(g),respectively.The Fermi levels of the left and right electrodes are denoted by E f,L and E f,R,respectively.

    For both in-plane and vertical heterostructures,the transmission eigenstates of the on-and off-state current and the kpoints Γ(0,0)are shown in Fig.5.In the upper panel,the transmission eigenstates can easily reach the drain(β-P)from the source region(δ-P),and the current reaches a peak.However,when the bias increases to~1.2 V,the carriers can hardly transport from the source to the drain region,and the current reaches a valley.

    Comparing the NDR effect of in-plane and vertical heterostructures,we notice that the PVR value of the device with the intrinsic length of 0?A is the maximum value in both inplane and vertical heterostructures compared to the other two cases(L2=11?A and L3=19?A),resulting from the narrow intrinsic region.For the vertical heterostructures,PVR of the device with intrinsic lengths of 0?A and 19?A are 137 and 56,respectively,which are higher than those of in-plane heterostructures(59 and 11).However,PVR of the device with the intrinsic region length of 11?A is 45,which is similar to that of in-plane heterostructure(49).

    The PVR is determined by the peak current and the valley current.When the intrinsic region length decreases,the peak current and valley current also decrease in both in-plane and vertical heterostructures.When the intrinsic region lengths are 0?A and 19?A,the PVRs of vertical heterostructures are higher than those of in-plane ones,because the valley current is similar but the peak currents of the vertical heterostructure are about 4.3 and 4.9 times larger than those of the in-plane heterostructure,respectively.However,when the intrinsic region length is 11?A,the peak current and valley current of the vertical heterostructure are both around 3 times larger than those of the in-plane heterostructure,so the PVR of in-plane and vertical heterostructures are similar.That is because the valley current of the in-plane heterostructure decreases rapidly from 0?A to 11?A relative to the vertical one.We can analyse this phenomenon from the transmission spectrum and LDOS.In the transmission spectrum in Fig.6,there are humps inside the bias window.Compared with transmission humps,we find that hump widths are almost the same,but the hump height of L2=11?A is one-third of that of L1=0?A,resulting in a great decrease in the valley current from 0?A to 11?A.The decrease of the transmission hump height is related to the existence of the interface states.In the in-plane heterostructure,the carriers could transport through the interface states from the left to the right electrodes,increasing the transmission possibility. Comparing the spatial resolved LDOS with L=0?A and 11?A, less interface states inside the gap of the intrinsic region of in-plane heterostructure are found when the intrinsic length is 11?A.Therefore,the transmission possibility from the left to the right electrodes decreases significantly when Liincreases from 0 to 11?A.

    Fig.5.(color online)Transmission eigenstate of the current peak and current valley states of the(a)in-plane and(b)vertical heterostructures.Yellow balls:δ-P;blue balls:β-P.

    Fig.6.(color online)(a)Transmission spectra and spatial resolved LDOS of the in-plane β/δ p–i–n junction current peak valley (V bias=1.125–1.25 V),respectively.The black dash line represents the bias window.The lengths of the intrinsic regions are L1=0?A in panel(b)and L2=11?A in panel(c),respectively.The Fermi levels of the left and right electrodes are denoted by E f,L and E f,R, respectively.

    Fig.7.Transfer characteristics of(a)in-plane and(b)vertically stacked TFETs at V bias=0.1 V.

    Because of the inefficient gate control and severe short channel effects with the short channel of 5 nm,we further study a long channel TFET(L=16 nm).The intrinsic region length is 13 nm in this device.The Ids–Vgcurves of in-plane and vertical TFETs are shown in Fig.7.

    For in-plane TFET,the off-state current,which is read at the state where the minimum current appears,is 2.0× 10?5μA/μm.Within a supply voltage Vdd=1.2 V,the onstate is~3μA/μm and the on/off current ratio is 1.6×105. The steepest SS value is 108 mV/dec.Compared with the in-plane one,the vertical TFET shows better performance in both on/off current ratio and SS value.Within a 1.2 V supply voltage,the on/off current ratio of the vertical TFET is about 2.2×106,one order of magnitude greater than that of the inplane one.The steepest SS value is only 23 mV/dec,indicating a much stronger gate control ability in the vertical TFET than that in the in-plane one.Therefore,in terms of the higher on/off current ratio and lower SS value,the vertical TFET has a greater probability to create an apparent switching effect and reduce the operate voltage than the in-plane one.

    The reason for the more significant NDR effect,the higher on/off current ratio and steeper SS in the vertical heterostructure than in the in-plane one might be their distinct nature of the interaction between the two materials in the heterostructures.In the vertical heterostructure,the β-P and δ-P are connected by the vdW interaction along the vertical direction.Interlayer vdW interaction will not induce structural disorder and scattering center that affects the charge transport in the vertical heterostructure.[40–42]However,in the in-plane heterostructure,the β-P and δ-P layers are connected by the strong covalent bonds,and a grain boundary forms between the two materials.As shown in Fig.8,there are some localized interface states as shown in the ellipse circle and the energy of interface states is in a range from 0.4 eV to 0.6 eV inside the band gap of β-P.Like the metal induced gap states in the metal-semiconductor heterojunction,the interface states could serve as a reservoir for holes or electrons.The interface states can become the sources of Coulomb scattering when they are charged.[43]Therefore,the existence of interface states in the in-plane heterostructure could lead to the mobility degradation and the electrical conductivity reduction.[44–47]

    Fig.8.(color online)Spatial resolved LDOS of in-plane heterostructures without doping.The Fermi level is set to zero.

    4.Conclusions

    In summary,we show apparent NDR effects in p–i–n tunneling junction based on β-P and δ-P heterostructures.The PVR value is the highest when the intrinsic region length becomes zero in both in-plane and vertical tunneling junctions. For the vertical heterostructures,the PVRs of the device with intrinsic region lengthsof0?Aand 19?Aare 137 and 56,respectively,which are higher than those in the case of the in-plane heterostructures(59 and 11).However,the PVR of the device with an intrinsic region length of 11?A is 45,which is similar to that of in-plane heterostructure(49).Moreover,the 16-nm channel vertical TFET exhibits a high on/off current ratio of~106and a steep SS of~23 mV/dec,which has better performances than in-plane TFET based on β-P and δ-P.These outstanding performances in the TFET based on the vertical heterostructure are related to the relatively high electrical conductivity as the interlayer vdW interaction without inducing a scattering center,in contrast with the formation of the grain boundary in the in-plane heterostructures.

    [1]Avci U E,Rios R,Kuhn K and Young I A 2011 Symposium on VLSI Technology-Digest of Technical Papers 124

    [2]Wang Y,Jiao W L,Hu H F,Liu Y T and Cao F 2012 Chin.Phys.B 21 056104

    [3]Tomioka K,Yoshimura M and Fukui T 2012 Symposium on VLSI Technology,June 12–14,2012,Honolulu,HI,USA,p.12879740

    [4]Liu M,Liu Y,Wang H,Zhang Q,Zhang C,Hu S,Hao Y and Han G 2015 IEEE Trans.Electron Devices 62 1262

    [5]Wang H,Han G,Liu Y,Hu S,Zhang C,Zhang J and Hao Y 2016 IEEE Trans.Electron Devices 63 303

    [6]Pandey R,Schulte-Braucks C,Sajjad R N,Barth M,Ghosh R K, Grisafe B,Sharma P,von den Driesch N,Vohra A,Rayner B,Loo R, Mantl S,Buca D,Yeh C C,Wu C H,Tsai W,Antoniadis D and Datta S 2016 IEEE International Electron Devices Meeting(IEDM),December 3–7,2016,San Francisco,CA,USA,p.16651056

    [7]Wang Y,Han G,Liu Y,Zhang C,Feng Q,Zhang J and Hao Y 2017 IEEE Trans.Electron Devices 64 1541

    [8]Huang Q,Huang R,Zhan Z,Qiu Y,Jiang W,Wu C and Wang Y 2012 IEEE International Electron Devices Meeting,December 10–13,2012, San Francisco,CA,USA,p.13384027

    [9]Jeon K,Loh W Y,Patel P,Kang C Y,Oh J,Bowonder A,Park C,Park C S,Smith C,Majhi P,Tseng H H,Jammy R,Liu T J K and Hu C 2010 Symposium on VLSI Technology,June 15–17,2010,Honolulu, HI,USA,p.11488276

    [10]Han G,Wang Y,Liu Y,Zhang C,Feng Q,Liu M,Zhao S,Cheng B, Zhang J and Hao Y 2016 IEEE Electron Device Lett.37 701

    [11]Roy T,Tosun M,Hettick M,Ahn G H,Hu C and Javey A 2016 Appl. Phys.Lett.108 083111

    [12]Sarkar D,Xie X,Liu W,Cao W,Kang J,Gong Y,Kraemer S,Ajayan P M and Banerjee K 2015 Nature 526 91

    [13]Chang J and Hobbs C 2015 Appl.Phys.Lett.106 083509

    [14]Ionescu A M and Riel H 2011 Nature 479 329

    [15]Seabaugh A C and Zhang Q 2010 Proc.IEEE 98 2095

    [16]Zhao Y,Wan Z,Xu X,Patil S R,Hetmaniuk U and Anantram M P 2015 Sci.Rep.5 10712

    [17]Brown E R 1991 Appl.Phys.Lett.58 2291

    [18]Broekaert T P E,Brar B,van der Wagt J P A,Seabaugh A C,Morris F J,Moise T S,Beam E A and Frazier G A 1998 IEEE J.Solid-State Circ.33 1342

    [19]Britnell L,Gorbachev R V,Jalil R,Belle B D,Schedin F,Mishchenko A,Georgiou T,Katsnelson M I,Eaves L,Morozov S V,Peres N M R, Leist J,Geim A K,Novoselov K S and Ponomarenko L A 2012 Science 335 947

    [20]Srivastava A and Fahad M S 2016 Solid-State Electron.126 96

    [21]Li M O,Esseni D,Nahas J J,Jena D and Xing H G 2015 IEEE J. Electron Devices Soc.3 200

    [22]Roy T,Tosun M,Cao X,Fang H,Lien D H,Zhao P,Chen Y Z,Chueh Y L,Guo J and Javey A 2015 ACS Nano 9 2071

    [23]Lu S C,Mohamed M and Zhu W 2016 2D Mater.3 011010

    [24]Zhang J L,Zhao S,Han C,Wang Z,Zhong S,Sun S,Guo R,Zhou X, Gu C D,Yuan K D,Li Z and Chen W 2016 Nano Lett.16 4903

    [25]Guan J,Zhu Z and Tománek D 2014 Phys.Rev.Lett.113 046804

    [26]Wu M,Fu H,Zhou L,Yao K and Zeng X C 2015 Nano Lett.15 3557

    [27]Fuchs M and Scheffler M 1999 Comput.Phys.Commun.119 67

    [28]Lake R,Klimeck G,Bowen R C and Jovanovic D 1997 J.Appl.Phys. 81 7845

    [29]Brandbyge M,Mozos J L,Ordejón P,Taylor J and Stokbro K 2002 Phys.Rev.B 65 165401

    [30]Taylor J,Guo H and Wang J 2001 Phys.Rev.B 63 245407

    [31]Perdew J P,Burke K and Ernzerhof M 1996 Phys.Rev.Lett.77 3865

    [32]Klime?s J,Bowler D R and Michaelides A 2011 Phys.Rev.B 83 195131

    [33]Büttiker M,Imry Y,Landauer R and Pinhas S 1985 Phys.Rev.B 31 6207

    [34]Datta S 1995 Electronic Transport in Mesoscopic Systems(Cambridge: Cambridge University Press)p.70

    [35]Li Y C,Zhang H M,Zhang Y M,Hu H Y,Wang B,Lou Y L and Zhou C Y 2013 Chin.Phys.B 22 038501

    [36]Fang H,Chuang S,Chang T C,Takei K,Takahashi T and Javey A 2012 Nano Lett.12 3788

    [37]Li Z,Zheng J,Ni Z,Quhe R,Wang Y,Gao Z and Lu J 2013 Nanoscale 5 6999

    [38]Ren H,Li Q X,Luo Y and Yang J 2009 Appl.Phys.Lett.94 173110

    [39]Nguyen V H,Bournel A and Dollfus P 2011 J.Appl.Phys.109 093706

    [40]Lee C H,Schiros T,Santos E J G,Kim B,Yager K G,Kang S J,Lee S,Yu J,Watanabe K,Taniguchi T,Hone J,Kaxiras E,Nuckolls C and Kim P 2014 Adv.Mater.26 2812

    [41]Lin Y C,Li J,de la Barrera S C,Eichfeld S M,Nie Y,Addou R, Mende P C,Wallace R M,Cho K,Feenstra R M and Robinson J A 2016 Nanoscale 8 8947

    [42]Doan M H,Jin Y,Adhikari S,Lee S,Zhao J,Lim S C and Lee Y H 2017 ACS Nano 11 3832

    [43]Friedrichs P,Kimoto T,Ley L and Pensl G 2011 Silicon Carbide (WILEY-VCH Verlag GmbHamp;Co.KGaA,Weinheim)

    [44]Tsen A W,Brown L,Levendorf M P,Ghahari F,Huang P Y,Havener R W,Ruiz-Vargas C S,Muller D A,Kim P and Park J 2012 Science 336 1143

    [45]Mesaros A,Papanikolaou S,Flipse C F J,Sadri D and Zaanen J 2010 Phys.Rev.B 82 205119

    [46]Peres N M R,Guinea F and Castro N A H 2006 Phys.Rev.B 73 125411

    [47]Hua T,Xu W W,Ji Z M,Guo D Y,Wang Q Y,Ma X R and Liang R Y 2016 Chin.Phys.B 25 067401

    7 April 2017;revised manuscript

    24 May 2017;published online 27 July 2017)

    10.1088/1674-1056/26/9/097401

    ?Project supported by the National Natural Science Foundation of China(Grant Nos.11604019,61574020,and 61376018),the Ministry of Science and Technology of China(Grant No.2016YFA0301300),the Fund of State Key Laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications),China,and the Fundamental Research Funds for the Central Universities,China(Grant No.2016RCGD22).

    ?Corresponding author.E-mail:mlei@bupt.edu.cn

    ?Corresponding author.E-mail:quheruge@bupt.edu.cn

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    猜你喜歡
    楊潔雷鳴
    雷鳴和細(xì)雨
    關(guān)于企業(yè)檔案管理體制改革的探討
    科學(xué)家(2022年5期)2022-05-13 21:42:18
    我的爺爺是村書記
    Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
    Measuring the flexibility matrix of an eagle's flight feather and a method to estimate the stiffness distribution?
    Humanistic Learning and Its Application in Community Language Learning
    強(qiáng)勁、震撼 Rythmik Audio(雷鳴)FV25HP
    Capital Market Analysis
    商情(2017年5期)2017-03-30 23:58:25
    雷鳴Thunder
    楊潔書法作品
    詩歌月刊(2016年10期)2016-12-16 00:51:50
    国产精品久久久久久精品电影小说| 午夜福利网站1000一区二区三区| 日本欧美视频一区| 内地一区二区视频在线| 99久久人妻综合| 午夜精品国产一区二区电影| 国产无遮挡羞羞视频在线观看| 久久精品夜色国产| 建设人人有责人人尽责人人享有的| 日韩 亚洲 欧美在线| 大片免费播放器 马上看| 国产成人免费观看mmmm| 欧美bdsm另类| 久久女婷五月综合色啪小说| 亚洲图色成人| 国产精品久久久久久精品电影小说| 99久久精品国产国产毛片| 久久韩国三级中文字幕| 青春草亚洲视频在线观看| 精品国产一区二区久久| 国产一区二区在线观看日韩| 精华霜和精华液先用哪个| 国产一区二区在线观看av| 99热网站在线观看| 日韩制服骚丝袜av| 视频区图区小说| 亚洲av.av天堂| 日日撸夜夜添| 国产精品三级大全| 人人妻人人澡人人看| www.色视频.com| 久久久久久久久大av| 九九久久精品国产亚洲av麻豆| 亚洲欧美成人综合另类久久久| 中国三级夫妇交换| av一本久久久久| 啦啦啦中文免费视频观看日本| 国产成人a∨麻豆精品| 美女cb高潮喷水在线观看| 51国产日韩欧美| 韩国高清视频一区二区三区| 欧美成人精品欧美一级黄| 高清在线视频一区二区三区| 亚洲国产精品成人久久小说| 在现免费观看毛片| 老司机影院成人| 国产片特级美女逼逼视频| 秋霞在线观看毛片| 亚洲欧美一区二区三区国产| 秋霞在线观看毛片| 18禁动态无遮挡网站| 三上悠亚av全集在线观看 | 免费看不卡的av| 久热这里只有精品99| 国产一区二区三区综合在线观看 | 欧美 亚洲 国产 日韩一| 国产精品熟女久久久久浪| 国产美女午夜福利| 晚上一个人看的免费电影| 欧美97在线视频| 成人午夜精彩视频在线观看| 80岁老熟妇乱子伦牲交| 中国美白少妇内射xxxbb| 少妇高潮的动态图| 波野结衣二区三区在线| 边亲边吃奶的免费视频| 2022亚洲国产成人精品| 日本av免费视频播放| 99久久精品热视频| 日韩中文字幕视频在线看片| 亚洲情色 制服丝袜| 9色porny在线观看| 男女边吃奶边做爰视频| 视频中文字幕在线观看| 精品久久久精品久久久| 国产在视频线精品| 一级黄片播放器| 晚上一个人看的免费电影| 一级爰片在线观看| 国产成人一区二区在线| 欧美老熟妇乱子伦牲交| 国产高清不卡午夜福利| 国产永久视频网站| 黄片无遮挡物在线观看| av国产精品久久久久影院| 日本与韩国留学比较| 免费播放大片免费观看视频在线观看| 爱豆传媒免费全集在线观看| 午夜激情久久久久久久| 九色成人免费人妻av| 9色porny在线观看| 午夜91福利影院| 99热全是精品| 亚洲人成网站在线播| 久久婷婷青草| 国产一区二区三区综合在线观看 | 一级二级三级毛片免费看| 日韩欧美精品免费久久| 51国产日韩欧美| 国产乱人偷精品视频| 99re6热这里在线精品视频| 色网站视频免费| 国产极品天堂在线| 一本色道久久久久久精品综合| 青青草视频在线视频观看| 亚洲av免费高清在线观看| 国产无遮挡羞羞视频在线观看| 亚洲三级黄色毛片| 国产精品人妻久久久久久| 国产av精品麻豆| 精华霜和精华液先用哪个| 男女国产视频网站| 午夜老司机福利剧场| 精品人妻熟女av久视频| 91精品国产九色| 丝袜喷水一区| 久久久精品免费免费高清| 久久久久久久久久久免费av| 夫妻性生交免费视频一级片| 免费人妻精品一区二区三区视频| 日本vs欧美在线观看视频 | 午夜影院在线不卡| 尾随美女入室| 黑丝袜美女国产一区| 男人舔奶头视频| 国产成人91sexporn| 日韩中文字幕视频在线看片| 嫩草影院新地址| 午夜激情福利司机影院| av黄色大香蕉| 在线精品无人区一区二区三| 国产精品一区二区性色av| 成人黄色视频免费在线看| 2018国产大陆天天弄谢| 久久精品久久精品一区二区三区| 人妻少妇偷人精品九色| 午夜精品国产一区二区电影| 两个人免费观看高清视频 | 一级毛片久久久久久久久女| 女性被躁到高潮视频| 亚洲成人一二三区av| 久久这里有精品视频免费| 亚洲经典国产精华液单| 日韩av在线免费看完整版不卡| 九九久久精品国产亚洲av麻豆| 亚洲精品国产成人久久av| 性色avwww在线观看| 国产亚洲精品久久久com| 久久精品久久久久久久性| 成人美女网站在线观看视频| 亚洲国产精品999| 亚洲人成网站在线观看播放| 国产成人精品一,二区| 亚洲精品乱码久久久v下载方式| 一级黄片播放器| a 毛片基地| 在现免费观看毛片| av卡一久久| 国产av国产精品国产| 日韩av免费高清视频| 99久久精品热视频| 最黄视频免费看| 国产精品偷伦视频观看了| 欧美精品一区二区大全| 黄色日韩在线| 日韩av在线免费看完整版不卡| 国内揄拍国产精品人妻在线| 男女边吃奶边做爰视频| 最后的刺客免费高清国语| 麻豆乱淫一区二区| 观看免费一级毛片| 岛国毛片在线播放| 男的添女的下面高潮视频| 美女国产视频在线观看| 视频中文字幕在线观看| 麻豆精品久久久久久蜜桃| 国产免费又黄又爽又色| .国产精品久久| 欧美日韩在线观看h| 2018国产大陆天天弄谢| 最后的刺客免费高清国语| 晚上一个人看的免费电影| 午夜福利,免费看| 亚洲av欧美aⅴ国产| av免费在线看不卡| 亚洲精品久久午夜乱码| 人妻少妇偷人精品九色| 久久久a久久爽久久v久久| 欧美日本中文国产一区发布| 久久99一区二区三区| 日韩不卡一区二区三区视频在线| 狂野欧美激情性xxxx在线观看| 男人和女人高潮做爰伦理| 伦理电影免费视频| 亚洲精品久久午夜乱码| 男人爽女人下面视频在线观看| 国产亚洲av片在线观看秒播厂| 国产探花极品一区二区| 一级,二级,三级黄色视频| 亚洲伊人久久精品综合| 成人漫画全彩无遮挡| 国产精品女同一区二区软件| 亚洲精品国产av成人精品| 纯流量卡能插随身wifi吗| a级片在线免费高清观看视频| 亚洲av二区三区四区| 熟女电影av网| 欧美区成人在线视频| 精品熟女少妇av免费看| 国产男女超爽视频在线观看| 精品酒店卫生间| 亚洲性久久影院| 18+在线观看网站| 久久狼人影院| 黄色欧美视频在线观看| 成年女人在线观看亚洲视频| 在线观看一区二区三区激情| 国产色爽女视频免费观看| 免费黄频网站在线观看国产| av在线app专区| 香蕉精品网在线| 亚洲精品中文字幕在线视频 | 国产精品久久久久成人av| 精品国产国语对白av| 欧美日韩国产mv在线观看视频| 亚洲成人手机| 视频中文字幕在线观看| 欧美另类一区| 亚洲精品日韩av片在线观看| 免费观看a级毛片全部| 久久久精品94久久精品| 老司机影院成人| 97在线人人人人妻| 国产成人freesex在线| av网站免费在线观看视频| 久久久久久久久大av| 能在线免费看毛片的网站| 老熟女久久久| 看免费成人av毛片| 亚洲真实伦在线观看| 久久人人爽人人爽人人片va| 国产成人a∨麻豆精品| 亚洲精品456在线播放app| 熟女av电影| 亚洲激情五月婷婷啪啪| 亚洲国产av新网站| 午夜免费鲁丝| 亚洲成人一二三区av| 国产又色又爽无遮挡免| a级毛片在线看网站| 高清av免费在线| 下体分泌物呈黄色| 美女中出高潮动态图| 边亲边吃奶的免费视频| 免费久久久久久久精品成人欧美视频 | 日本免费在线观看一区| 国产 一区精品| 日韩成人av中文字幕在线观看| 如何舔出高潮| 日韩,欧美,国产一区二区三区| 免费观看a级毛片全部| 免费观看性生交大片5| 成人二区视频| 久久亚洲国产成人精品v| 亚洲精品日韩在线中文字幕| av天堂久久9| 99热这里只有是精品在线观看| 日日摸夜夜添夜夜添av毛片| 日韩中字成人| 亚洲情色 制服丝袜| 国产精品一区www在线观看| 男人添女人高潮全过程视频| 国产女主播在线喷水免费视频网站| 国产亚洲91精品色在线| 精品一区二区三区视频在线| 精品久久久噜噜| 制服丝袜香蕉在线| 男女边吃奶边做爰视频| 秋霞在线观看毛片| 色5月婷婷丁香| 成人黄色视频免费在线看| 国产成人免费无遮挡视频| 国产在线一区二区三区精| 精品国产一区二区三区久久久樱花| 看非洲黑人一级黄片| 亚洲婷婷狠狠爱综合网| 免费少妇av软件| 男的添女的下面高潮视频| 国产精品一区二区在线不卡| 日本黄色片子视频| 人妻制服诱惑在线中文字幕| 国产熟女午夜一区二区三区 | 亚洲色图综合在线观看| 女的被弄到高潮叫床怎么办| 人人妻人人澡人人爽人人夜夜| 五月玫瑰六月丁香| 中文字幕精品免费在线观看视频 | 国产综合精华液| 国产爽快片一区二区三区| 精品酒店卫生间| 亚洲伊人久久精品综合| 最近手机中文字幕大全| 国产免费又黄又爽又色| av网站免费在线观看视频| 天堂8中文在线网| 男女无遮挡免费网站观看| 97超碰精品成人国产| 伦理电影大哥的女人| 国产成人精品久久久久久| 国产一区二区三区av在线| 中国三级夫妇交换| 丰满迷人的少妇在线观看| 亚洲精品国产av成人精品| 国产精品国产三级国产专区5o| 国产亚洲av片在线观看秒播厂| 欧美高清成人免费视频www| 国产白丝娇喘喷水9色精品| 国产永久视频网站| 一本—道久久a久久精品蜜桃钙片| 国产精品熟女久久久久浪| 日韩在线高清观看一区二区三区| 精品国产乱码久久久久久小说| 一区二区三区乱码不卡18| 男女无遮挡免费网站观看| 国产精品偷伦视频观看了| 午夜福利视频精品| 中文在线观看免费www的网站| 欧美三级亚洲精品| 精品一区在线观看国产| 丝袜在线中文字幕| 久久久国产精品麻豆| 亚州av有码| 国产中年淑女户外野战色| 国产毛片在线视频| 成人国产麻豆网| 亚洲av免费高清在线观看| 日韩欧美一区视频在线观看 | 国产精品一二三区在线看| 成人免费观看视频高清| 一本色道久久久久久精品综合| 免费在线观看成人毛片| 五月开心婷婷网| 极品人妻少妇av视频| av女优亚洲男人天堂| 久久鲁丝午夜福利片| 少妇人妻久久综合中文| 丝袜脚勾引网站| 不卡视频在线观看欧美| 最近最新中文字幕免费大全7| 最近的中文字幕免费完整| 大香蕉久久网| 99久久中文字幕三级久久日本| 日韩 亚洲 欧美在线| 欧美日本中文国产一区发布| 亚洲综合色惰| 秋霞在线观看毛片| 成人免费观看视频高清| 国产亚洲欧美精品永久| 日本黄色片子视频| 黑丝袜美女国产一区| 亚洲欧洲日产国产| 啦啦啦啦在线视频资源| 人体艺术视频欧美日本| 精品久久国产蜜桃| 特大巨黑吊av在线直播| 大陆偷拍与自拍| 久久久久视频综合| 一级黄片播放器| 夫妻性生交免费视频一级片| 成人影院久久| 99热这里只有精品一区| 人人妻人人澡人人爽人人夜夜| 国产亚洲欧美精品永久| 国产91av在线免费观看| 天天操日日干夜夜撸| 亚洲欧美日韩卡通动漫| 欧美精品高潮呻吟av久久| 久久免费观看电影| 嫩草影院入口| av视频免费观看在线观看| 国产黄频视频在线观看| 日韩欧美精品免费久久| 国产伦精品一区二区三区四那| 国产一区二区在线观看日韩| 免费观看的影片在线观看| 中国美白少妇内射xxxbb| 一本色道久久久久久精品综合| 国产老妇伦熟女老妇高清| 成年人免费黄色播放视频 | 丰满少妇做爰视频| 日日摸夜夜添夜夜添av毛片| 97超视频在线观看视频| 三级国产精品片| 欧美最新免费一区二区三区| 国产精品三级大全| 熟妇人妻不卡中文字幕| 日韩人妻高清精品专区| av在线播放精品| 男人添女人高潮全过程视频| 欧美日韩在线观看h| 春色校园在线视频观看| 在线精品无人区一区二区三| 桃花免费在线播放| 欧美丝袜亚洲另类| 寂寞人妻少妇视频99o| 啦啦啦视频在线资源免费观看| 成人午夜精彩视频在线观看| 视频区图区小说| 97精品久久久久久久久久精品| 国产白丝娇喘喷水9色精品| 夫妻午夜视频| 精品亚洲乱码少妇综合久久| 国产真实伦视频高清在线观看| 国产淫片久久久久久久久| 看十八女毛片水多多多| 久久午夜综合久久蜜桃| 丝袜喷水一区| 精品国产乱码久久久久久小说| a 毛片基地| 亚洲经典国产精华液单| 9色porny在线观看| 精品视频人人做人人爽| 久久久午夜欧美精品| 少妇猛男粗大的猛烈进出视频| 蜜桃在线观看..| 色吧在线观看| 中文字幕亚洲精品专区| 这个男人来自地球电影免费观看 | 少妇人妻久久综合中文| 亚洲欧美一区二区三区国产| 内射极品少妇av片p| 一本—道久久a久久精品蜜桃钙片| 另类精品久久| 亚洲激情五月婷婷啪啪| 成年人午夜在线观看视频| 免费观看在线日韩| 亚洲欧美日韩卡通动漫| av视频免费观看在线观看| 99久久精品热视频| 欧美成人精品欧美一级黄| 国产极品天堂在线| 乱系列少妇在线播放| 欧美精品一区二区大全| 人妻人人澡人人爽人人| 免费大片黄手机在线观看| 夫妻午夜视频| 亚洲av成人精品一区久久| 亚洲国产av新网站| 女的被弄到高潮叫床怎么办| 免费高清在线观看视频在线观看| 色婷婷久久久亚洲欧美| 国产男女内射视频| 人妻制服诱惑在线中文字幕| 一级毛片 在线播放| 91精品国产九色| 国产免费福利视频在线观看| 好男人视频免费观看在线| 国产成人freesex在线| 亚洲国产精品一区三区| 日韩一区二区视频免费看| 亚洲伊人久久精品综合| 久热久热在线精品观看| 天天躁夜夜躁狠狠久久av| 国内精品宾馆在线| 国产熟女欧美一区二区| 91精品伊人久久大香线蕉| 久久精品国产亚洲av涩爱| 国产高清国产精品国产三级| 99久久精品一区二区三区| 一本—道久久a久久精品蜜桃钙片| 成年av动漫网址| 少妇人妻一区二区三区视频| 亚洲欧美中文字幕日韩二区| 成人亚洲欧美一区二区av| 久久 成人 亚洲| 内射极品少妇av片p| 成人漫画全彩无遮挡| 国产午夜精品一二区理论片| 日韩av免费高清视频| 日韩视频在线欧美| 国产欧美另类精品又又久久亚洲欧美| 国产深夜福利视频在线观看| 国产 一区精品| 99热全是精品| 亚洲一区二区三区欧美精品| 人妻少妇偷人精品九色| 精品人妻熟女毛片av久久网站| 七月丁香在线播放| 色婷婷久久久亚洲欧美| 青春草视频在线免费观看| 欧美激情极品国产一区二区三区 | 日本黄色日本黄色录像| 免费大片黄手机在线观看| 91久久精品电影网| 有码 亚洲区| 日本黄色片子视频| 国产黄色免费在线视频| 国产精品久久久久久精品电影小说| 欧美三级亚洲精品| 午夜福利影视在线免费观看| 免费av不卡在线播放| 久久6这里有精品| 看免费成人av毛片| 观看美女的网站| 日本黄色日本黄色录像| 99九九线精品视频在线观看视频| 精品一品国产午夜福利视频| 免费不卡的大黄色大毛片视频在线观看| 国产精品蜜桃在线观看| 中文欧美无线码| 免费看日本二区| 中文欧美无线码| 性色av一级| 免费人妻精品一区二区三区视频| 少妇人妻精品综合一区二区| 国产免费福利视频在线观看| 99久国产av精品国产电影| 人妻夜夜爽99麻豆av| 黄色视频在线播放观看不卡| 国产免费福利视频在线观看| 国产精品久久久久成人av| 五月开心婷婷网| 91精品国产国语对白视频| 国产在线免费精品| 校园人妻丝袜中文字幕| 不卡视频在线观看欧美| 国产综合精华液| 中文资源天堂在线| 亚洲国产精品一区三区| a级片在线免费高清观看视频| 亚洲精品国产成人久久av| 亚洲欧美成人精品一区二区| 国产日韩一区二区三区精品不卡 | 亚洲精品456在线播放app| 亚洲欧美精品专区久久| 丰满饥渴人妻一区二区三| 在线观看免费日韩欧美大片 | 男人狂女人下面高潮的视频| 国产一区二区三区av在线| 亚洲精品456在线播放app| 哪个播放器可以免费观看大片| 天堂俺去俺来也www色官网| 亚洲真实伦在线观看| 久久精品国产亚洲网站| 这个男人来自地球电影免费观看 | 青春草亚洲视频在线观看| a级片在线免费高清观看视频| 偷拍熟女少妇极品色| 欧美+日韩+精品| 啦啦啦视频在线资源免费观看| 亚洲成色77777| 日韩免费高清中文字幕av| 美女脱内裤让男人舔精品视频| 热99国产精品久久久久久7| 三级国产精品欧美在线观看| a 毛片基地| 一区二区三区精品91| 国产精品久久久久久精品古装| av播播在线观看一区| 国产69精品久久久久777片| 一区二区三区精品91| 免费看av在线观看网站| 午夜av观看不卡| 精品99又大又爽又粗少妇毛片| 久久精品久久久久久噜噜老黄| 久久精品国产亚洲av天美| 极品人妻少妇av视频| 久久久a久久爽久久v久久| 久久久国产一区二区| kizo精华| 综合色丁香网| 国产成人freesex在线| 久久6这里有精品| 国产精品一区二区在线观看99| 一本久久精品| 人妻夜夜爽99麻豆av| 久久精品夜色国产| 国产精品福利在线免费观看| 男人狂女人下面高潮的视频| 亚洲美女视频黄频| 久久久国产欧美日韩av| 777米奇影视久久| 亚洲第一av免费看| 精品久久国产蜜桃| 人妻一区二区av| 毛片一级片免费看久久久久| 国产av精品麻豆| 简卡轻食公司| 国产精品国产三级专区第一集| 久久精品久久久久久久性| 久久精品久久久久久噜噜老黄| 91成人精品电影| 色哟哟·www| 国产精品99久久久久久久久| 久久 成人 亚洲| 日本黄大片高清| 国产视频内射| 国产一区二区在线观看日韩| 极品少妇高潮喷水抽搐| 国产成人精品婷婷| 人妻一区二区av| 国产成人a∨麻豆精品| 日本黄大片高清| a级毛色黄片| 国产伦精品一区二区三区视频9| 久久久久久久亚洲中文字幕| 91久久精品国产一区二区三区| 在线精品无人区一区二区三| 99久久综合免费| 亚洲av日韩在线播放| 99热全是精品| 26uuu在线亚洲综合色| 高清在线视频一区二区三区| 日韩av免费高清视频| 亚洲,欧美,日韩|