• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electron Correlations,Spin-Orbit Coupling,and Antiferromagnetic Anisotropy in Layered Perovskite Iridates Sr2IrO4?

    2018-07-09 06:46:42HaoZhou周浩YuanYuanXu徐園園andSenZhou周森1CASKeyLaboratoryofTheoreticalPhysicsInstituteofTheoreticalPhysicsChineseAcademyofSciencesBeijing100190China
    Communications in Theoretical Physics 2018年7期
    關(guān)鍵詞:周浩

    Hao Zhou(周浩),Yuan-Yuan Xu(徐園園),and Sen Zhou(周森),3,?1CAS Key Laboratory of Theoretical Physics,Institute of Theoretical Physics,Chinese Academy of Sciences,Beijing 100190,China

    2School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

    3CAS Center of Excellence in Topological Quantum Computation,University of Chinese Academy of Sciences,Beijing 100049,China

    1 Introduction

    Recently,the 5d transition metal oxides Sr2IrO4has been intensively studied because it exhibits several characteristics that are considered to be distinct and important for the high-temperature superconductivity.Sr2IrO4is isostructural to the cuprate La2CuO4,sharing the layered perovskite structure of K2NiF4.[1?2]Because of the interplay between spin-orbit coupling(SOC)and electron correlations,a novel Jeff=1/2 Mott insulating ground state[3?4]was proposed for the parent compound Sr2IrO4,which becomes a canted antiferromagnetic(AFM)insulator below a Néel temperature TN230 K.Carrier doping such an insulating AFM state is expected to achieve a 5d t2g-electron analog of the 3d eg-electron hightemperature cuprate superconductors.[5?10]Although no clear signature of superconductivity has been detected so far,angle-resolved photoemission[11?13]and scanning tunneling microscopy[14]have observed in electron-doped Sr2IrO4the Fermi arcs with a pseudogap behavior and V-shaped low-energy gap.Whether a superconducting state exists as in the cuprates requires detail understanding of the correlated spin-orbit entangled insulating canted AFM states of the parent Sr2IrO4.

    In the canted AFM state,the ordered in-plane magnetic moments track the θ11?staggered IrO6octahedra rotation about the z axis,[3?4,15?16]giving rise to a weak ferromagnetism(FM),which is believed to arise from the entanglement of structural distortion and SOC that introduces a strong anisotropy in the Jeff=1/2 isospin coupling.The nature of the canted AFM state in Sr2IrO4has been studied using the localized picture based on the Jeff= 1/2 pseudospin anisotropic Heisenberg model,[8,17?21]the three-orbital Hubbard model for the t2gelectrons with SOC,[22?25]and the microscopic correlated density functional theory such as the LDA+SOC+U and GGA+SOC+U.[3,26?27]Weather Sr2IrO4is an AFM Mott insulator or a Slater insulator is still under debate,[23,28?29]but it is now generally agreed that it is not deep in the Mott regime,where the localized picture is justified,since both characters have been observed experimentally.[22,30?31]This is partially the reason why the correlated density functional theory works so well in producing correctly the canted AFM as the ground state.Recent X-ray experiments[32?33]reveal that the nature of the magnetic moment deviates substantially from the ideal Jeff=1/2 picture,which cannot be accounted for by the redistribution of the orbital component within the t2gand points to the importance of egorbitals.[34]In addition,it is known that the rotation of IrO6octahedra induces a significant hybridization between the dxyof the t2gcomplex and the dx2?y2of the egcomplex.[24?26]Therefore,it is useful and desired to studythe canted AFM insulating Sr2IrO4based on microscopic model of the five 5d Ir orbitals,including both the t2gand egcomplex.

    In this paper,using a five-orbital Hubbard model proposed by Zhou et al.,[35]we study the electron correlations,the SOC,and their effects on the AFM anisotropy.We apply Hartree-Fock approximation to the electron correlations to obtain the ground state properties at various electron correlations and SOC,and demonstrate their effects on the AFM anisotropy.The rest of the paper is organized as follows.In Sec.2,we introduce the fiveorbital Hubbard model constructed for the five 5d Ir orbitals,consisting of the electron hopping,crystalline electric field(CEF),the SOC,and the on-site electron correlations.The inclusion of the egorbitals enables us to resolve both the in-plane and out-of-plane anisotropy.We describe briefly the Hartree-Fock approximation and numerical calculation method used to solve the five-orbital Hubbard model.The effects of electron correlations on the AFM anisotropy is presented in Sec.3 at a constant SOC of its physical value in Sr2IrO4.In the plane of U versus J/U,the five-orbital Hubbard model exhibits a rich magnetic phase structure consisting of paramagnetic(PM)phase,coplanar canted AFM phase,and collinear AFM phase with moments pointing along the z axis(hereafter referred to as z-AFM).A Variational calculation is introduced to study the in-plane and out-of-plane anisotropy.The effects of SOC is illustrated in Sec.4 by examining the behavior of the states as a function of SOC with fixed electron correlations.Though the values of anisotropy energies depends strongly on its strength,the SOC is shown to be ineffective in tuning the direction of the ordered AFM moment.Finally,we conclude our paper in Sec.5.

    2 Five-Orbital Hubbard Model

    We start with the two-dimensional five-orbital tightbinding model including SOC(TB+SOC)[35]of the five localized 5d Wannier orbitals centered at Ir site labeled by μ,ν =1(dYZ),2(dZX),3(dXY),4(d3Z2?R2),5(dX2?Y2),which captures faithfully the realistic low-energy electronic structure of Sr2IrO4obtained in the local-density approximation including SOC and the structural distortion.The TB+SOC Hamiltonian in the local coordinates that rotate with the IrO6octahedra has the form of

    wherecreates an electron with spin-σ in the μ-th orbital at site i,andis the hopping integrals between sites i and j of up to fifth nearest neighbors given in Ref.[35].Because of the staggered IrO6octahedral rotation along the z axis,the hopping integralsare complex and spin dependent,and the Ir sites are divided into two sublattices,IrAand IrBshown in the inset of Fig.1.The second term denotes the crystalline electric field(CEF)1,...,5=(0,0,202,3054,3831)meV,which produces correctly the hierarchy of CEF in the elongated octahedra IrO6.The separation between the t2gand egcomplexes due to the octahedral ligand field is?c≡10Dq3.4 eV.The last term in Eq.(1)describes the atomic SOC with the strength λSOC=357 meV.The matrix elements of the spin angular momentum in the spin spacewhere η =x,y,z and τηthe Pauli matrices,and the matrix elements of the orbital angular moment in the five d-orbital basis=?are given explicitly in Ref.[35].

    Fig.1 Magnetic phase diagram as a function of J/U and U for the five-orbital Hubbard model at n=5 with λSOC=357 meV.The grey-shaded regime corresponds to the PM phase,the green-shaded area denotes the collinear z-AFM phase,and the rest unshaded regime is for the in-plane canted AFM phase.The dashed line separating the light-green and dark-green shaded areas indicates a spin-state transition from low-spin state to high-spin state in the z-AFM phase,and the nearby dotted line corresponding to J=0.73 eV.The inset shows the schematics of the in-plane canted AFM moments on the Ir square lattice with a two-dimensional rendering of the staggered IrO6octahedral rotation.

    To study the interplay between electron correlations and SOC,and their effects on the magnetic anisotropy,we consider the five-orbital Hubbard model

    where the intra-atomic interaction HUis given by the standard multiorbital Hubbard model[36]

    which consists of the local Coulomb repulsion U(intraorbital)and U′(interorbital),and the Hund’s rule coupling J,with the relation U=U′+2J applied.Note that,in Eq.(3)for the complete set of five d orbitals,J should be understood as an average of the exchange interactions of the t2gand the egorbitals since the difference between them is usually small in cubic systems.[37?38]To investigate the ground state properties of the five-orbital Hubbard model,the Hartree-Fock approximation will be applied to the electron correlation in Eq.(3).In the presence of SOC,the Hartree and exchange self-energies induced by HUdepend on the full spin-orbital-dependent density matrixwhich are determined by minimizing the state energy via a numerical self-consistent iterative process.Local physical quantities in the ground state can be expressed in terms ofthe orbital occupation niμ= ∑,the spin density

    and the orbital angular momentum

    Here and after,we restrict the averaged density per site n=(1/N)∑iμniμ=5 for the undoped Sr2IrO4compound.

    In this paper,we focus on the anisotropy of the correlation-induced AFM moment in the presence of SOC.We thus restrict the local density matriceson lattice sites belongs to the same sublattice(A or B)to be identical,and perform a momentum-space calculation for the two-sublattice system.The ordered spin moment on each site thus can be expressed as Si=SFM+(?1)ix+iySAFM,and the(π,π)-ordered AFM and the(0,0)-ordered FM component are given by,respectively,

    where SA/Bdenotes the expectation values of the spin angular moment on sublattice A/B.Similarly,the orbit angular moment L and the total magnetic moment L+2S can be decomposed into AFM and FM components.In all numerical calculations presented in this paper,we discretize evenly the reduced Brillouin zone,corresponding to the enlarged unit cell containing one IrAand one IrBsites,into 400×400 k points.The criteria of convergence is set so that the sum of changes of all Hartree-Fock expectation values is less than 10?6.Under this criteria,the typical number of iterations needed for convergence is about 2000.At the end,calculations with different initials may converge to different states at one set of Hamiltonian parameters,and the one with the lowest energy should be chosen as the ground state.

    3 Effects of Electron Correlations

    3.1 Magnetic Phase Diagram

    We first fix the strength of SOC to be the physical value in Sr2IrO4,λ=357 meV,and study the effects of electron correlations,Hund’s rule coupling J and intraorbital repulsion U explicitly,on the anisotropy of the AFM moment.The main result is summarized in Fig.1,the Hartree-Fock phase diagram of the five-orbital Hubbard model shown in the plane of U versus J/U ratio,where U varying from 0 to 4 eV and J/U varying from 0 to 0.3 for the physical parameters relevant to 5d iridates.It shows clearly that,even at a constant SOC,the interplay between U and J leads to a very rich and interesting magnetic phase diagram.The phase diagram exhibits three phases,the PM,the in-plane canted AFM,and the collinear z-AFM phase.The inset shows the schematics of the canted AFM moments on the Ir square lattice with a two-dimensional rendering of the staggered IrO6octahedral rotation.In addition to an AFM component in the diagonal direction along the next-nearest-neighbor Ir-Ir bond(e.g.[1,1,0]),the ordered local moments on Ir sites in the canted AFM phase have an FM component perpendicular to the AFM component(e.g.[1,ˉ1,0]),originated from the staggered rotation of the IrO6octahedra.It is interesting to note that the critical intraorbital repulsion Umrequired for the emergence of AFM order is stronger for larger J/U ratio,in contrast to multiorbital systems without SOC.[39?41]This behavior is naturally understood since the Hund’s rule coupling competes with the SOC and works destructively for the formation of the quasiparticles of L+S character originated from SOC.[24,42]The AFM ordered phase is divided into three regimes in the phase diagram by two spin- flop transitions between the canted AFM and the z-AFM phases,Jsfin the small J/U regime beyond Um,and Usfin the regime with large J/U and large U.In the upper-right portion of the phase diagram,there is a spin-state transition from low-spin states to high-spin states in the z-AFM states.As we shall demonstrate later in this section,all phase transitions exhibited in the phase diagram are first-order.

    3.2 Antiferromagnetic Anisotropy

    In order to elaborate the anisotropy in the AFM ordered moment,we performed a variational calculation,which fixes the AFM moment into a specific direction.In practice,we restrict instead the direction of the AFM spin moment by adding a constraint term W(e0AFM?|SAFM|)to the Hamiltonian in Eq.(2),where e0is the unit vector along the desired direction and W is the corresponding Lagrange multiplier.Effectively,W acts as a staggered Zeeman field to pine SAFMalong the desired direction,and this term would not contribute to the state energy as long as the constraint is satisfied.Figure 2 plots the AFM state energy per Ir site as a function of the pinned direction of SAFMat six sets of electron correlations.For clarity,all energies are shown with respect to the[1,0,0]-ordered AFM state with SAFMalong the xaxis.Here and after,we use Ex,Exy,and Ezto denote the energy per site of the states with SAFMpointing along,respectively,[1,0,0],[1,1,0],and[0,0,1]direction.To describe the AFM anisotropy quantitatively,we introduce an out-of-plane anisotropy energy?Ez=Ez?Exand an in-plane anisotropy energy?Exy=Exy?Ex.

    Fig.2 The state energy per site as a function of the AFM moment direction at U=1.4 eV and U=3 eV with(a)J/U=0,(b)J/U=0.1,and(c)J/U=0.2.Insets focus on the in-plane magnetic anisotropy with the AFM moment rotating within the xy-plane.

    In the absence of the Hund’s rule coupling J=0,as shown in Fig.2(a)for both U=(1.4 and 3)eV,the state energy is independent of the AFM moment direction so long as it lies in the xy-plane,and it starts to decrease as the moment is tilted away from the plane,reaching a minimum at[0,0,1]direction.Quantitatively,?Exy=(0,0)and ?Ez=(?0.043,?0.035)meV at U=(1.4,3)eV,implying an easy-axis AFM along the z-axis with xy-plane rotational symmetry.The ground state is thus a z-AFM at both U=(1.4 and 3)eV.At J/U=0.1,one can see clearly from Fig.2(b)that the minimum at[0,0,1]becomes a maximum in the state energy,and a new shallow minimum is developed at[1,1,0].For U=(1.4,3)eV,the in-plane anisotropy energy?Exy=(?0.75,?0.91) μeV,and the out-of-plane anisotropy energy?Ez=(1.20,1.01)meV.It tells us that the system now prefers an easy-plane AFM moment and,in addition,the xy-plane rotational symmetry is broken into a C4symmetry,with the ground state of the lowest energy being the canted AFM along the[1,1,0]direction,giving rise to the canted AFM regime in the phase diagram shown in Fig.1.The C4symmetry of the xy-plane AFM moment is protected by the C4symmetry along principal z axis of the IrO6octahedra.When the J/U ratio reaches 0.2,the direction dependence of the state energy is pretty much unchanged at U=1.4 eV except for enlarged magnetic anisotropy with?Exy=?6.9μeV and?Ez=3.0 meV.On the other hand,its behavior is significantly different for U=3 eV.The state energy now has two minima located at[1,1,0]and[0,0,1],with?Exy=?213.4μeV and?Ez=?5.4 meV,leading to an easy-axis AFM along the z axis.

    In summary,the AFM moment has the xy-plane rotational symmetry in the absence of Hund’s rule coupling J,and the inclusion of J breaks the rotational symmetry to a C4symmetry with[1,1,0]being the preferred direction for in-plane AFM moment.In contrast,the out-of-plane anisotropy of the AFM moment is nonzero even in the absence of J,and the Hund’s rule coupling J has an interesting nonmonotonic effect on the out-ofplane anisotropy,allowing a reentrance behavior of the z-AFM state. In addition,the in-plane anisotropy is much weaker than the out-of-plane anisotropy,consistent with recent experiment.[43]It is important to note that a three-orbital Hubbard model of the t2gcomplex,with an effective orbital angular moment L=1,is invariant under continuous rotation along the z-axis and,as a result,they could not resolve the in-plane anisotropy.[22?25]Current localized picture based on the Jeff=1/2 pseudospin anisotropic Heisenberg model is derived from the three-orbital Hubbard model of t2gorbitals.[17]It would be interesting to investigate the changes in the exchange couplings,anisotropic ones in particular,if the exchange Hamiltonian is obtained from the five-orbital Hubbard model for all five 5d Ir orbitals.The magnetic ground state in the studied parameter regime is either the collinear z-AFM state or the coplanar canted AFM state with AFM ordered moment pointing along the[1,1,0]direction,we hence limit our discussion in the rest of the paper to these two states.

    3.3 Magnetic Moment and Phase Transitions

    To gain detail information of the phase transitions and the ordered moment,we next examine the behavior of the canted AFM and z-AFM states as a function of U(or J/U)while keeping the value of J/U(or U) fixed,and compare their energies to determine the ground state.In Fig.3,we fix J/U=0.25 and scan the intraorbital repulsion U.The energy difference between z-AFM and canted AFM,Ez?Exy,is plotted in Fig.3(a)as a function of U,with the evolutions of the local moments,spin moment|2S|and the total magnetic moment|L+2S|shown in Figs.3(b)and 3(c),respectively,for these two states.At small U,the electron correlation is not strong enough to induce any magnetic moment,and hence the ground state is a PM metal.With increasing U,the canted AFM moment develops at Um=1.2 eV.The magnetic transition from PM to canted AFM is weakly first order as evidenced by the discontinuity in the energy difference between the PM(the z-AFM is not developed yet,and thus Ezactually denotes the energy of the PM phase)and the canted AFM shown in Fig.3(a).

    Fig.3 (a)The intraorbital repulsion U dependence of the energy difference between the canted AFM and the z-AFM phase with fixed ratio J/U=0.25.The corresponding local spin moment|2S|and local magnetic moment|L+2S|are shown in(b)for the canted AFM phase and in(c)for the z-AFM phase.Insets in(c)show the schematics of the low-spin and high-spin states.The system undergoes a magnetic transition at Um=1.2 eV,a spin- flop transition at Usf=2.35 eV,and a spin-state transition at Usp=2.95 eV.The parameter regime is shaded with the color associated with the corresponding ground state,as used in Fig.1.

    The z-AFM moment emerges subsequently at a slightly stronger electron correlation with U=1.26 eV.But it is still higher in energy than the canted AFM,so the latter remains as the ground state.Further increasing U,the energy difference Ez?Exyfirst increases a little bit and then start to decrease,crossing zero at Usf=2.35 eV where the direction of the ordered AFM moments flops from[1,1,0]to[0,0,1].At this first-order spin- flop transition,the ground state changes from the coplanar canted AFM to the collinear z-AFM.It is interesting to notice the existence of another transition inside the z-AFM phase at Usp=2.95 eV,which we referred to as a spin-state transition.At this transition,the size of ordered local spin moment jumps from ~1.5μBto~ 5μBwhile keeping its direction along the z-axis unchanged.Below Usp,the spin S and orbital L are strongly coupled to each other due to SOC,and the quasiparticles carry an L+S character.As a result,the ordered magnetic moment has significant contributions from both S and L.In contrast,the spin S and orbital L are decoupled beyond Usp,as evidenced by the negligible L contribution to the total magnetic moment,and the system is in a high-spin S=5/2 state with one electron occupying each of the five orbitals,as depicted in the inset of Fig.3(c).

    The location of the spin-state transition can be roughly estimated by considering the atomic situation.Keeping the octahedral ligand field?cand ignoring the tetragonal crystal field for simplification,the energies of the low-spin S=1/2 and high-spin S=5/2 state are,respectively,E1/2=10(U?2J)and E5/2=10(U?3J)+2?c.When the difference E1/2?E5/2=2(5J??c)is larger than the SOC λSOC,i.e.J>(1/5)?c+(1/10)λSOC? 0.73 eV,the coupling between S and L is strongly suppressed and the system would rather stay in the high-spin state of pure S character.The dotted line in Fig.1 denotes J=0.73 eV and it is very close to the spin-state transition obtained for the itinerant electrons.

    The behaviors of these two AFM states are shown in Fig.4 as a function of J/U ratio with fixed U=3 eV.The intraorbital Coulomb repulsion U is so large that both the canted AFM and z-AFM are lower in energy than the PM phase in the whole J/U regime we investigated from 0 to 0.3.Zooming into the small J/U regime,the inset of Fig.4(a)shows that the energy difference between z-AFM and canted AFM(Ez?Exy)is negative at J/U=0 and crosses zero at Jsf/U=0.06,giving rise to the small z-AFM region in the bottom-right of the phase diagram in Fig.1 and a first-order spin- flop transition at Jsf.Further increasing J/U,Ez?Exyincreases and reaches a maximum value near J/U=0.14 and then starts to decrease,across zero again at J/U=0.173,i.e.Usf=3 eV at J/U=0.173.This leads to an interesting reentrance behavior of the z-AFM state through a second first-order spin- flop transition.At an even larger J/U=0.246,the system again undergoes a spin-state transition in the z-AFM phase.The competition between Hund’s rule coupling J and SOC is most pronounced in the canted AFM phase,as shown in Fig.4(b),where the local moments,both|2S|and|L+2S|,decrease with increasing J at small J,contradictory to the conventional behavior of moment in multiorbital systems without SOC.[39?41]At small J regime where SOC dominant,the latter couples the spin S and orbital L and imposes an L+S character to the quasiparticles,and thus the ordered moment have significant contributions from both S and L.At J=0,the ratio|L|/|S|to 3.6 in the canted AFM and 5 in the z-AFM state,which is close to the expected value 4 for the ideal Jeff=1/2 moment of a spin-orbit Mott insulator,but cannot be accounted for by the redistribution of orbital components within the t2gorbitals.[33]With the increasing of the Hund’s rule coupling,the coupling between S and L is suppressed and the S character of the quasiparticles is enhanced.As a result,the ratio|L|/|S|decreases as increasing J,and drops to negligible values after the spin-state transition.

    Fig.4 Same as Fig.3,but for the J/U ratio dependence with fixed U=3 eV.Inset in(a)zoom into the small J/U region,showing the spin- flop transition at Jsf.The system undergoes two spin- flop transitions at Jsf/U=0.06 and J/U=0.173(Usf=3 eV at this ratio),and a spinstate transition at J/U=0.246(Usp=3 eV at this ratio).

    In summary,due to the subtle interplay between the two electron correlations,intraorbital repulsion U and Hund’s rule coupling J,and the competition between J and SOC,the system undergoes multiple phase transitions as one varying one of the electron correlation parameters while keeping the other fixed.As a result,it leads to a very rich and interesting magnetic phase diagram for the five-orbital Hubbard model at constant SOC shown in Fig.1.

    4 Effects of Spin-Orbit Coupling

    For a better understanding of the effects of SOC,in this section,we fix the values of electron correlations(U and J),and study the state evolution as a function of λSOC.The behavior is relatively simple at U=3 eV and J/U=0.25(i.e.,J=0.75 eV),as shown in Fig.5.At λSOC=0,the spin S and orbital L are completely decoupled,and the moment has an SU(2)rotation symmetry in the absence of SOC.As a result,the z-AFM and canted AFM are degenerate with Ez?Exy=0 at λSOC=0.Because of the large value of J,the system is in the high-spin state with all moment coming from spin,|L+2S|=|2S|=4.68 μB.Switching on λSOC,the SOC tends to couple electrons with different spins from different orbitals,disfavoring the high-spin state with pure S character.Therefore,as λSOCincreasing,the spin moment and the total moment decrease and,at the same time,the contribution from orbital L increases.Note that the decreasing of moments here is very gradual and continuous,implying a crossover between the high-spin state and lowspin state as one increases SOC.It is very different from the situation when we fix λSOCand vary the electron correlations(the Hund’s rule coupling J in particular)presented in last section,where the ground state undergoes a first-order spin-state transition as it leaves the high-spin state.The energy difference Ez?Exydecreases with increasing λSOC,reaches a minimum at λSOC0.57 eV,and then starts to increase.But it never crosses zero up to the largest value we investigated,0.7 eV,which is twice of its physical value in Sr2IrO4,and the z-AFM is always the ground state.Therefore,the ordered AFM moment in the ground state never change its direction from the z axis as the SOC strength varying from 0 to 0.7 eV at(U,J)=(3,0.75)eV,though the anisotropy energy depends strongly on λSOC.

    In Fig.6,we scan λSOCwith fixed U=2 eV and J/U=0.1(i.e.,J=0.2 eV)where the ground state is in the canted AFM phase when the strength of SOC takes its physical value in Sr2IrO4,λSOC=357 meV.In the absence of SOC,λSOC=0,the magnetic moment has SU(2)rotation symmetry and all ordered moment comes from spin moment,|L+2S|=|2S|=1μB.The local moments in the canted AFM and z-AFM are plotted,respectively,in Figs.6(b)and 6(c).Switching on the SOC,the mixing of electrons with different spins suppresses the spin moment in both the canted AFM and z-AFM phase,but the behavior of the orbital L at a small but nonzero λSOCis quite different in these two AFM phases.In the z-AFM phase,the coupling between spin and orbit is very weak and the quasiparticles remains mostly S character,and thus the L contribution to the ordered moment is very small.On the other hand,the system in the canted AFM phase is found to be in a different state with lower energy,where the coupling between spin and orbital is already fully activated,despite at such a small λSOC.The orbital L contribution to the ordered moment is thus quite large.At the strongest SOC we studied,λSOC=0.7 eV,the ordered moment is 0.84 and 0.9μB,respectively,in the canted AFM and z-AFM phase,with a corresponding ratio|L|/|S|equal to 3.6 and 3.9,very close to the value of the ideal Jeff=1/2 moment.Reducing SOC from λSOC=0.7 eV,though the size of ordered moments changes very slowly in both AFM phases,it decreases in the canted AFM phase but increases in the z-AFM phase.Comparing the state energies of these two AFM phase,shown in Fig.6(a),one see clearly that the canted AFM is always lower in energy and thus being the ground state within the whole parameter regime of interest.

    Fig.5 The λSOCdependence of the energy difference between the canted AFM and the z-AFM phase with electron correlation U=3 eV and J/U=0.25.The corresponding local spin moment|2S|and local magnetic moment|L+2S|are shown in(b)for the canted AFM phase and in(c)for the z-AFM phase.

    From these two studies presented in Figs.5 and 6,we illustrate that the SOC,as the origin of magnetic anisotropy,is very ineffective in tuning the direction of the ordered AFM moment.This is very different from the situation in the strong coupling limit,[17]where the direction of the ordered AFM moment is sensitive to the strength of SOC relative to the tetragonal splitting of the t2gorbitals.

    Fig.6 Same as Fig.5,but for the λSOCdependence at U=2 eV and J/U=0.1.

    5 Conclusions

    Based on a five-orbital Hubbard model with SOC,in which the noninteracting part describes well the realistic band structure of Sr2IrO4,we study in this paper the electron correlations,the SOC,and their effects on the AFM anisotropy.The electron correlations are treated within the Hartree-Fock approximation to obtain the ground state properties of the multi-orbital Hubbard model,at various strengths of SOC and electron correlations.We demonstrate that,at a constant SOC,the interplay between Hund’s rule coupling J and intraorbital repulsion U leads to a rich magnetic phase diagram,including a canted AFM state with weak FM moment in a large area of the phase diagram,consistent with the ground state of Sr2IrO4identified in experiments.In contrast,the SOC is shown to be very ineffective in tuning the direction of the ordered AFM moment,despite the fact that it is the origin of magnetic anisotropy.While our result cannot be considered quantitatively accurate due to the intrinsic deficiencies of mean- field approximations,our weak-coupling study is still useful in understanding qualitatively the behaviors of spin-orbit coupled multi-orbital systems.The presence of magnetic anisotropy indicates the difference between the longitudinal(out-of-plane)and transverse(in-plane)spin susceptibilities,as expected for spin-orbit entangled systems where the spin SU(2)symmetry is broken.It would be very interesting to study the effects of such difference between spin susceptibilities on the spin fluctuation mediated superconductivity,which consists of both singlet and triplet pairing due to SOC.[5,44]

    Acknowledgments

    We thank Kun Jiang and Hua Chen for useful discussions.

    [1]G.Cao,J.Bolivar,S.McCall,et al.,Phys.Rev.B 57(1998)11039(R).

    [2]M.K.Crawford,et al.,Phys.Rev.B 49 9198(1994).

    [3]B.J.Kim,et al.,Phys.Rev.Lett.101(2008)076402.

    [4]B.J.Kim,et al.,323(2009)1329.

    [5]H.Watanabe,T.Shirakawa,and S.Yunoki,Phys.Rev.Lett.110(2013)027002.

    [6]Y.Yang,W.S.Wang,J.G.Liu,et al.,Phys.Rev.B 89(2014)094518.

    [7]Fa Wang and T.Senthil,Phys.Rev.Lett.106(2011)136402.

    [8]J.W.Kim,et al.,Phys.Rev.Lett.109(2012)037204.

    [9]Z.Y.Meng,Y.B.Kim,and H.Y.Kee,Phys.Rev.Lett.113(2014)177003.

    [10]S.Sumita,T.Nomoto,and Y.Yanase,Phys.Rev.Lett.119(2017)027001.

    [11]Y.K.Kim,et al.,Science 345(2014)187.

    [12]A.de la Torre,et al.,Phys.Rev.Lett.115(2015)176402.

    [13]Y.K.Kim,N.H.Sung,J.D.Denlinger,and B.J.Kim,Nat.Phys.12(2016)37.

    [14]Y.J.Yan,et al.,Phys.Rev.X 5(2015)041018.

    [15]Feng Ye,et al.,Phys.Rev.B 87(2013)140406(R).

    [16]Chetan Dhital,et al.,Phys.Rev.B 87(2013)144405.

    [17]G.Jackeli and G.Khaliullin,Phys.Rev.Lett.102(2009)017205.

    [18]S.Fujiyama,et al.,Phys.Rev.Lett.108(2012)247212.

    [19]N.B.Perkins,Y.Sizyuk,and P.W?lfle,Phys.Rev.B 89(2014)035143.

    [20]J.M.Carter,V.Shankar,and H.Y.Kee,Phys.Rev.B 88(2013)035111.

    [21]I.V.Solovyev,V.V.Mazurenko,and A.A.Katanin,Phys.Rev.B 92(2015)235109.

    [22]D.Hsieh,F.Mahmood,D.H.Torchinsky,et al.,Phys.Rev.B 86(2012)035128.

    [23]H.Watanabe,T.Shirakawa,and S.Yunoki,Phys.Rev.B 89(2014)165115.

    [24]H.Watanabe,T.Shirakawa,and S.Yunoki,Phys.Rev.Lett.105(2010)216410.

    [25]R.Arita,J.Kune? A.V.Kozhevnikov,et al.,Phys.Rev.Lett.108(2012)086403.

    [26]H.Jin,H.Jeong,T.Ozaki,and J.J.Yu,Phys.Rev.B 80(2009)075112.

    [27]P.T.Liu,et al.,Phys.Rev.B 92(2015)054428.

    [28]S.J.Moon,et al.,Phys.Rev.B 80(2009)195110.

    [29]Q.Li,et al.,Sci.Rep.3(2013)3073.

    [30]A.Yamasaki,et al.,Phys.Rev.B 89(2014)121111(R).

    [31]I.N.Bhatti and A.K.Pramanik,J.Magn.Magn.Mater.422(2017)141.

    [32]D.Haskel,G.Fabbris,M.Zhernenkov,et al.,Phys.Rev.Lett.109 027204(2012).

    [33]S.Fujiyama H.Ohsumi,K.Ohashi,et al.,Phys.Rev.Lett.112 016405(2014).

    [34]G.L.Stamokostas and G.A.Fiete,Phys.Rev.B 97(2018)085150.

    [35]S.Zhou,K.Jiang,H.Chen,and Z.Wang,Phys.Rev.X 7(2017)041018.

    [36]C.Castellani,C.R.Natoli,and J.Ranninger,Phys.Rev.B 18(1978)4945.

    [37]A.Georges,L.Medici,and J.Mravlje,Ann.Rev.Condens.Matter Phys.4(2013)137.

    [38]M.E.A.Coury,S.L.Dudarev,W.M.C.Foulkes,et al.,Phys.Rev.B 93(2016)075101.

    [39]S.Zhou and Z.Wang,Phys.Rev.Lett.105(2010)096401.

    [40]Y.M.Quan,L.J.Zou,D.Y.Liu,and H.Q.Lin,Eur.Phys.J.B 85(2012)55.

    [41]Q.Luo,K.Foyevtsova,G.D.Samolyuk,et al.,Phys.Rev.B 90 035128(2014).

    [42]A.J.Kim,H.O.Jeschke,P.Werner,and R.Valentí,Phys.Rev.Lett.118(2017)086401.

    [43]D.Pincini,et al.,Phys.Rev.B 96(2017)075162.

    [44]X.Wu,F.Yang,C.Le,et al.,Phys.Rev.B 92(2015)104511.

    猜你喜歡
    周浩
    大學(xué)生周浩:摩托騎行環(huán)游中國(guó)
    棄北大讀技校 自定別樣人生
    棄北大讀技校,自定別樣人生
    放棄北大讀技校
    認(rèn)真是成功的保證
    興趣是最好的老師
    放棄北大讀技校
    棄北大讀技校,自定別樣人生
    棄北大讀技校,這是鬧哪般?
    北大學(xué)生退學(xué)讀技校:專業(yè)沒興趣痛不欲生
    人生十六七(2015年6期)2015-01-11 03:19:01
    亚洲欧洲国产日韩| 国产精品精品国产色婷婷| 中文字幕av成人在线电影| 亚洲欧美成人精品一区二区| 干丝袜人妻中文字幕| 综合色丁香网| 亚洲av成人精品一二三区| 精品一区二区三卡| 久久99热6这里只有精品| 男男h啪啪无遮挡| 中国三级夫妇交换| 国产极品天堂在线| 日韩在线高清观看一区二区三区| 免费看日本二区| 亚洲国产最新在线播放| 国产精品欧美亚洲77777| 午夜福利高清视频| 99国产精品免费福利视频| 中文在线观看免费www的网站| 日韩 亚洲 欧美在线| 免费观看性生交大片5| 美女国产视频在线观看| 亚洲色图av天堂| 精品久久久噜噜| 99热这里只有是精品在线观看| 精品少妇久久久久久888优播| 久久久久久伊人网av| 日韩欧美 国产精品| 日日摸夜夜添夜夜添av毛片| 亚洲精品一区蜜桃| 国产成人aa在线观看| 国产av国产精品国产| xxx大片免费视频| 日本与韩国留学比较| 99精国产麻豆久久婷婷| 大话2 男鬼变身卡| 1000部很黄的大片| 久久精品国产亚洲av涩爱| 丝瓜视频免费看黄片| 午夜老司机福利剧场| 国产精品欧美亚洲77777| 少妇丰满av| 伊人久久精品亚洲午夜| 亚洲丝袜综合中文字幕| 18禁动态无遮挡网站| 在线 av 中文字幕| 国国产精品蜜臀av免费| 亚洲av成人精品一二三区| 亚洲一区二区三区欧美精品| 久久国产精品大桥未久av | 欧美xxxx黑人xx丫x性爽| 精品久久国产蜜桃| 国产精品秋霞免费鲁丝片| 22中文网久久字幕| 欧美最新免费一区二区三区| 日本黄色片子视频| 97热精品久久久久久| 2018国产大陆天天弄谢| av国产免费在线观看| 亚洲欧美精品自产自拍| 色5月婷婷丁香| 久久久久久久大尺度免费视频| 亚洲欧美中文字幕日韩二区| 最近中文字幕高清免费大全6| av又黄又爽大尺度在线免费看| 在线观看免费日韩欧美大片 | 2018国产大陆天天弄谢| 精品一区二区免费观看| 亚洲熟女精品中文字幕| 久久精品人妻少妇| 国产在线免费精品| 妹子高潮喷水视频| 成人无遮挡网站| 亚州av有码| 插逼视频在线观看| 人妻制服诱惑在线中文字幕| 中文字幕久久专区| 久久精品国产a三级三级三级| 国产视频内射| 亚洲国产色片| 能在线免费看毛片的网站| 毛片一级片免费看久久久久| 国产高清国产精品国产三级 | 久久久久久久大尺度免费视频| a 毛片基地| 最近中文字幕2019免费版| 国产精品国产三级国产专区5o| 国产片特级美女逼逼视频| av不卡在线播放| 欧美成人a在线观看| 亚洲国产欧美人成| 亚洲欧美成人综合另类久久久| 欧美日韩在线观看h| 久久国产精品男人的天堂亚洲 | 精品人妻熟女av久视频| 精品久久久久久久末码| 亚洲国产精品一区三区| 大码成人一级视频| 最黄视频免费看| 纵有疾风起免费观看全集完整版| 三级经典国产精品| 人人妻人人看人人澡| 免费黄频网站在线观看国产| 午夜精品国产一区二区电影| 少妇熟女欧美另类| 男人和女人高潮做爰伦理| 97热精品久久久久久| 91久久精品国产一区二区成人| 嫩草影院新地址| 伦理电影免费视频| 亚洲av福利一区| 一级毛片 在线播放| 国产精品国产三级国产av玫瑰| 搡女人真爽免费视频火全软件| 男的添女的下面高潮视频| 免费av不卡在线播放| www.av在线官网国产| av专区在线播放| 青春草视频在线免费观看| 中国美白少妇内射xxxbb| 大香蕉97超碰在线| 大片免费播放器 马上看| 毛片一级片免费看久久久久| 国产av国产精品国产| 青青草视频在线视频观看| 精品一区在线观看国产| 国产欧美另类精品又又久久亚洲欧美| 国产伦精品一区二区三区视频9| 亚洲真实伦在线观看| 纵有疾风起免费观看全集完整版| 欧美区成人在线视频| 亚洲欧美精品自产自拍| 大陆偷拍与自拍| 一个人看视频在线观看www免费| 人妻 亚洲 视频| 丝袜喷水一区| 国产91av在线免费观看| 人妻系列 视频| 丝袜脚勾引网站| 亚洲精品国产av成人精品| 久久久色成人| 亚洲国产欧美在线一区| 久久99精品国语久久久| 欧美精品一区二区大全| 我的老师免费观看完整版| 伦理电影大哥的女人| 尾随美女入室| 新久久久久国产一级毛片| 香蕉精品网在线| 久久精品夜色国产| 成年免费大片在线观看| 干丝袜人妻中文字幕| av不卡在线播放| 三级国产精品片| 亚洲精品成人av观看孕妇| 99久国产av精品国产电影| 男人和女人高潮做爰伦理| 美女cb高潮喷水在线观看| 高清欧美精品videossex| 99久久精品国产国产毛片| 国语对白做爰xxxⅹ性视频网站| 久久午夜福利片| 国产精品女同一区二区软件| 日韩强制内射视频| 狂野欧美激情性xxxx在线观看| 丰满乱子伦码专区| 亚洲国产欧美在线一区| 日韩强制内射视频| 舔av片在线| 亚洲国产精品一区三区| 偷拍熟女少妇极品色| 深爱激情五月婷婷| 最近中文字幕高清免费大全6| 亚洲欧美日韩卡通动漫| 国精品久久久久久国模美| 亚洲精品久久午夜乱码| 午夜免费鲁丝| 最近中文字幕高清免费大全6| 久久 成人 亚洲| 少妇猛男粗大的猛烈进出视频| 高清不卡的av网站| 青青草视频在线视频观看| 欧美性感艳星| 高清日韩中文字幕在线| 国产极品天堂在线| 最黄视频免费看| 精品一区二区免费观看| 七月丁香在线播放| 一本色道久久久久久精品综合| 丰满人妻一区二区三区视频av| 高清av免费在线| 成人特级av手机在线观看| 一级毛片久久久久久久久女| 综合色丁香网| 欧美成人a在线观看| 色婷婷久久久亚洲欧美| 国产精品久久久久久精品电影小说 | 日韩成人av中文字幕在线观看| 黄色怎么调成土黄色| 亚洲婷婷狠狠爱综合网| 一区二区三区免费毛片| 大香蕉97超碰在线| 水蜜桃什么品种好| 国产精品一二三区在线看| 国产v大片淫在线免费观看| 尤物成人国产欧美一区二区三区| tube8黄色片| 国产伦精品一区二区三区四那| 久久鲁丝午夜福利片| 99视频精品全部免费 在线| 免费观看在线日韩| 欧美精品人与动牲交sv欧美| 久久精品人妻少妇| 日本与韩国留学比较| www.色视频.com| 久久久国产一区二区| 国产精品爽爽va在线观看网站| 人妻少妇偷人精品九色| 亚洲欧美一区二区三区国产| 亚洲美女黄色视频免费看| 国产精品爽爽va在线观看网站| 日韩成人av中文字幕在线观看| 午夜精品国产一区二区电影| 黄色配什么色好看| 精品久久久久久久久亚洲| 亚洲国产精品一区三区| 久久精品夜色国产| 午夜免费观看性视频| 国产乱人视频| 欧美少妇被猛烈插入视频| 国产中年淑女户外野战色| 青春草视频在线免费观看| 欧美日韩综合久久久久久| 少妇被粗大猛烈的视频| 精品久久久久久久末码| 亚洲国产精品国产精品| 女人久久www免费人成看片| 精品人妻视频免费看| 狂野欧美激情性xxxx在线观看| 熟女人妻精品中文字幕| 青春草视频在线免费观看| 亚洲欧美精品自产自拍| 久久久久视频综合| 久久青草综合色| 在线 av 中文字幕| 国产色爽女视频免费观看| 国产男女内射视频| 国产精品熟女久久久久浪| 黄色欧美视频在线观看| 精品熟女少妇av免费看| 亚州av有码| 能在线免费看毛片的网站| 亚洲国产精品国产精品| h日本视频在线播放| 日本wwww免费看| 青青草视频在线视频观看| 韩国高清视频一区二区三区| 午夜免费观看性视频| 久久女婷五月综合色啪小说| 久久精品人妻少妇| 日本猛色少妇xxxxx猛交久久| 久久97久久精品| 蜜桃亚洲精品一区二区三区| 国产一区二区三区综合在线观看 | av福利片在线观看| 国产午夜精品久久久久久一区二区三区| av又黄又爽大尺度在线免费看| 最后的刺客免费高清国语| 欧美97在线视频| 亚洲欧美精品自产自拍| 视频区图区小说| 国产精品一区二区在线不卡| 午夜激情福利司机影院| 一个人免费看片子| 插逼视频在线观看| 少妇人妻 视频| 国产精品久久久久久av不卡| 少妇熟女欧美另类| 久久精品久久久久久久性| 在线观看人妻少妇| 国产毛片在线视频| 午夜福利高清视频| 日韩制服骚丝袜av| 天堂8中文在线网| 亚洲,一卡二卡三卡| 国产 精品1| 精品亚洲乱码少妇综合久久| 欧美日本视频| 欧美激情国产日韩精品一区| 欧美精品一区二区大全| 日本vs欧美在线观看视频 | 天堂中文最新版在线下载| 一区二区三区精品91| 精品久久久久久久久av| 美女内射精品一级片tv| 国产精品久久久久久久久免| 久久毛片免费看一区二区三区| 天天躁夜夜躁狠狠久久av| 丰满乱子伦码专区| 男人狂女人下面高潮的视频| 三级经典国产精品| av网站免费在线观看视频| 亚洲国产精品专区欧美| 啦啦啦中文免费视频观看日本| 一本一本综合久久| 国产av一区二区精品久久 | 久久ye,这里只有精品| 欧美xxxx性猛交bbbb| 日日啪夜夜爽| 午夜视频国产福利| 永久免费av网站大全| 亚洲av福利一区| 成年人午夜在线观看视频| 夜夜爽夜夜爽视频| 午夜日本视频在线| 91在线精品国自产拍蜜月| 99热这里只有精品一区| 日韩在线高清观看一区二区三区| 亚洲在久久综合| 亚洲av欧美aⅴ国产| 最近最新中文字幕免费大全7| 大片免费播放器 马上看| 国产久久久一区二区三区| 亚洲精华国产精华液的使用体验| 午夜福利在线观看免费完整高清在| 3wmmmm亚洲av在线观看| 成人特级av手机在线观看| 能在线免费看毛片的网站| 男男h啪啪无遮挡| 99热全是精品| 毛片女人毛片| 亚洲精品国产av蜜桃| 日日摸夜夜添夜夜添av毛片| 两个人的视频大全免费| 日本vs欧美在线观看视频 | 18禁在线播放成人免费| 春色校园在线视频观看| 亚洲国产成人一精品久久久| 91狼人影院| 亚洲精品视频女| 国产男女内射视频| 我要看黄色一级片免费的| 大又大粗又爽又黄少妇毛片口| 成人亚洲精品一区在线观看 | 亚洲国产欧美在线一区| 国产精品熟女久久久久浪| 久热这里只有精品99| 日本黄大片高清| 在线观看美女被高潮喷水网站| av在线app专区| 天天躁夜夜躁狠狠久久av| av卡一久久| 久久国产精品男人的天堂亚洲 | 波野结衣二区三区在线| 久久久久精品久久久久真实原创| 六月丁香七月| 国产淫语在线视频| 只有这里有精品99| 精品久久久久久久末码| 日本欧美视频一区| av在线蜜桃| 少妇的逼好多水| 在线播放无遮挡| av免费观看日本| 婷婷色综合www| 成人午夜精彩视频在线观看| 日韩精品有码人妻一区| 99热6这里只有精品| 性高湖久久久久久久久免费观看| 99热国产这里只有精品6| 99久国产av精品国产电影| 日韩国内少妇激情av| 亚洲av男天堂| 精品久久久精品久久久| 亚洲三级黄色毛片| 观看av在线不卡| 亚洲va在线va天堂va国产| 国产精品麻豆人妻色哟哟久久| 国产男女超爽视频在线观看| 成人国产麻豆网| 日韩亚洲欧美综合| 一个人看视频在线观看www免费| 中国三级夫妇交换| 韩国高清视频一区二区三区| 精品国产露脸久久av麻豆| 激情五月婷婷亚洲| 成人二区视频| 99re6热这里在线精品视频| 亚洲美女黄色视频免费看| 欧美一区二区亚洲| 久久久久性生活片| 久久久久久久久久成人| 黄片无遮挡物在线观看| 亚洲国产精品一区三区| 成年免费大片在线观看| 欧美+日韩+精品| 亚洲欧美日韩无卡精品| 天美传媒精品一区二区| 18禁动态无遮挡网站| 大香蕉久久网| 一区二区av电影网| 91精品伊人久久大香线蕉| 国产精品久久久久久久久免| 国产精品一区二区三区四区免费观看| 亚洲精品久久久久久婷婷小说| 九色成人免费人妻av| 亚洲精品第二区| 亚洲性久久影院| av国产免费在线观看| 国模一区二区三区四区视频| 日韩视频在线欧美| 天堂中文最新版在线下载| 狂野欧美激情性xxxx在线观看| 久久久久久久久久久丰满| 这个男人来自地球电影免费观看 | 国产亚洲一区二区精品| 91狼人影院| 美女主播在线视频| 丰满少妇做爰视频| 国产在线男女| 精品久久久久久电影网| 免费在线观看成人毛片| 全区人妻精品视频| 99九九线精品视频在线观看视频| 中文字幕制服av| 一级毛片黄色毛片免费观看视频| 午夜激情久久久久久久| 少妇人妻精品综合一区二区| 欧美+日韩+精品| 欧美精品国产亚洲| 亚洲图色成人| 日韩一本色道免费dvd| av卡一久久| 免费黄频网站在线观看国产| 日本免费在线观看一区| 一级毛片 在线播放| 下体分泌物呈黄色| 成人亚洲欧美一区二区av| 国产亚洲最大av| 蜜桃久久精品国产亚洲av| 肉色欧美久久久久久久蜜桃| 一级a做视频免费观看| 国产精品一二三区在线看| 黄色一级大片看看| 亚洲一级一片aⅴ在线观看| 国产人妻一区二区三区在| 麻豆成人av视频| 久久久久精品久久久久真实原创| 一级毛片我不卡| 黄色欧美视频在线观看| 男女啪啪激烈高潮av片| 亚洲欧美日韩卡通动漫| 国产大屁股一区二区在线视频| 高清黄色对白视频在线免费看 | 成人国产麻豆网| 99久国产av精品国产电影| 蜜桃在线观看..| 久久精品久久久久久噜噜老黄| 超碰av人人做人人爽久久| 亚洲精品国产av蜜桃| 天堂中文最新版在线下载| 国国产精品蜜臀av免费| 热re99久久精品国产66热6| 最近中文字幕2019免费版| 精品久久国产蜜桃| 嘟嘟电影网在线观看| 永久免费av网站大全| 91狼人影院| av免费在线看不卡| 香蕉精品网在线| 国产爱豆传媒在线观看| 精品久久久久久久末码| 亚洲性久久影院| 亚洲av.av天堂| 少妇熟女欧美另类| 欧美日韩综合久久久久久| av国产精品久久久久影院| 久久毛片免费看一区二区三区| 日韩av免费高清视频| 日本wwww免费看| 国产精品嫩草影院av在线观看| 麻豆成人av视频| 99久久中文字幕三级久久日本| 亚洲精品中文字幕在线视频 | 日韩电影二区| 国内揄拍国产精品人妻在线| 韩国av在线不卡| 熟女电影av网| 91久久精品国产一区二区三区| 香蕉精品网在线| 91久久精品电影网| 久久6这里有精品| 成人美女网站在线观看视频| 久久99蜜桃精品久久| 日韩欧美精品免费久久| 国产午夜精品一二区理论片| 26uuu在线亚洲综合色| 国产黄色视频一区二区在线观看| 伦理电影大哥的女人| 国国产精品蜜臀av免费| 亚洲精品乱码久久久v下载方式| 午夜福利高清视频| 91精品国产国语对白视频| 赤兔流量卡办理| 久久久成人免费电影| 99热全是精品| 全区人妻精品视频| 亚洲精品久久午夜乱码| 亚洲人成网站高清观看| 亚洲精品,欧美精品| 国产亚洲精品久久久com| 高清视频免费观看一区二区| 午夜激情久久久久久久| 国产91av在线免费观看| 久久久亚洲精品成人影院| 日日摸夜夜添夜夜爱| 18+在线观看网站| 美女国产视频在线观看| 成年免费大片在线观看| 精品熟女少妇av免费看| 国产高清有码在线观看视频| 夜夜爽夜夜爽视频| 亚洲天堂av无毛| videossex国产| 国产又色又爽无遮挡免| 中文精品一卡2卡3卡4更新| 中文字幕亚洲精品专区| 亚洲欧洲国产日韩| 欧美成人午夜免费资源| 亚洲熟女精品中文字幕| 欧美3d第一页| 亚洲av国产av综合av卡| 能在线免费看毛片的网站| 麻豆成人av视频| 九色成人免费人妻av| 新久久久久国产一级毛片| 少妇人妻 视频| 国产精品蜜桃在线观看| 这个男人来自地球电影免费观看 | 简卡轻食公司| 熟女电影av网| 18禁裸乳无遮挡免费网站照片| 亚洲国产高清在线一区二区三| 王馨瑶露胸无遮挡在线观看| 99精国产麻豆久久婷婷| 亚洲综合精品二区| 亚洲经典国产精华液单| 成人18禁高潮啪啪吃奶动态图 | 精品熟女少妇av免费看| 国产精品久久久久成人av| 我的老师免费观看完整版| 最近2019中文字幕mv第一页| 亚洲av国产av综合av卡| 国产v大片淫在线免费观看| 又大又黄又爽视频免费| 精品亚洲乱码少妇综合久久| 国产一区亚洲一区在线观看| 日韩视频在线欧美| 亚洲精品色激情综合| 极品少妇高潮喷水抽搐| 久久精品久久久久久噜噜老黄| 亚洲精品中文字幕在线视频 | av在线app专区| 亚洲欧美成人综合另类久久久| 如何舔出高潮| 亚洲欧美日韩无卡精品| 99热这里只有是精品在线观看| 中文字幕av成人在线电影| 国产片特级美女逼逼视频| 天堂中文最新版在线下载| 性色avwww在线观看| 五月开心婷婷网| 久久6这里有精品| 久久鲁丝午夜福利片| 人人妻人人添人人爽欧美一区卜 | 国产永久视频网站| 亚洲国产精品成人久久小说| 寂寞人妻少妇视频99o| 午夜福利视频精品| 看十八女毛片水多多多| 91久久精品国产一区二区成人| 91精品一卡2卡3卡4卡| 伦理电影免费视频| 99久久精品一区二区三区| 亚洲精品乱久久久久久| 免费黄频网站在线观看国产| 美女国产视频在线观看| 伊人久久国产一区二区| 日韩不卡一区二区三区视频在线| 高清毛片免费看| 黄片wwwwww| 精品人妻一区二区三区麻豆| 亚洲国产欧美人成| 另类亚洲欧美激情| 噜噜噜噜噜久久久久久91| 久久鲁丝午夜福利片| 久久午夜福利片| 亚洲电影在线观看av| 高清欧美精品videossex| 纵有疾风起免费观看全集完整版| 亚洲欧美中文字幕日韩二区| 中文字幕av成人在线电影| 国产亚洲一区二区精品| 日韩伦理黄色片| 毛片女人毛片| 久久久久久九九精品二区国产| 日韩亚洲欧美综合| 身体一侧抽搐| 亚洲国产色片| 在线观看av片永久免费下载| a 毛片基地| 国内少妇人妻偷人精品xxx网站| 国产美女午夜福利| 亚洲精品久久久久久婷婷小说| 纯流量卡能插随身wifi吗|