• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Numerical Investigation of 3D MHD Rotating Flow with Binary Chemical Reaction,Activation Energy and Non-Fourier Heat Flux?

    2018-07-09 06:46:44DianChenLuRamzanBilalJaeDongChungandUmerFarooq5DepartmentofMathematicsFacultyofScienceJiangsuUniversityZhenjiang220China
    Communications in Theoretical Physics 2018年7期

    Dian-Chen Lu,M.Ramzan,M.Bilal,Jae Dong Chung,and Umer Farooq,5Department of Mathematics,Faculty of Science,Jiangsu University,Zhenjiang 220,China

    2Department of Computer Science,Bahria University,Islamabad Campus,Islamabad 44000,Pakistan

    3Department of Mathematics,Faculty of Computing,Capital University of Science and Technology,Islamabad,Pakistan

    4Department of Mechanical Engineering,Sejong University,Seoul 143-747,Korea

    5Department of Mathematics,COMSATS Institute of Information Technology,Park road,Tarlai Kalan,Islamabad 45550,Pakistan

    1 Introduction

    The subject of non-Newtonian fluid mechanics has been an inspiring and defying area as it enfolds abundant vital problems from petroleum,biomedical food processing,chemical and polymer industries.Non-Newtonian fluid models are quite effective to illustrate the flow of commonly used various fluids available naturally or in processed form like motor oils,polymeric liquids,slurries,biological fluids and pastes etc.Elastico viscous fluid is a kind of non-Newtonian material in which the fluid’s deformity rate decreases once the shear stress is removed.This action is recognized as stress relaxation.In absence of sheer stress the time consumed by the fluid,to regain its equilibrium position due to its elastic characteristics,is named as relaxation time.Upper-convected Maxwell(UCM) fluid model is one of the commonly used elastico viscous fluid models.Maxwell fluid model has gained special attention of researchers in the recent past.Han et al.[1]studied analytical solution of UCM fluid flow past a stretched surface with Cattaneo-Christov heat flux and slip boundary condition.Mustafa[2]found numerical and analytical solution of non-Fourier heat flux in a rotating flow of Maxwell fluid.Ramzan et al.[3]discussed numerical solution of 3D UCM fluid flow with effects of nonlinear radiative heat flux and chemical reaction in attendance of double diffusion.Ramzan et al.[4]also examined three-dimensional UMC magnetohydrodynamic fluid flow with impact of homogeneous-heterogeneous reactions and non-Fourier heat flux with convective boundary conditions.Mustafa et al.[5]analytically investigated the flow of Upper-convected Maxwell fluid and temperature reliant thermal conductivity with Cattaneo-Christov heat flux.Khan et al.[6]found series solution of Maxwell fluid flow with homogeneous-heterogeneous reactions in attendance of heat generation/absorption and chemical reaction. Khan et al.[7]deliberated flow of Maxwell fluid with effects of mixed convection past an oscillating vertical plate using Laplace transform method.Hsiao[8]inspected Maxwell fluid flow past a high efficiency extrusion sheet with electrical MHD,mixed convection and thermal radiation.Hayat et al.[9])cogitated the 3D rotating flow of Maxwell nanofluid with using Optimal Homotopy analysis method.Jusoh et al.[10]found numerical solution of MHD 3D Maxwell fluid flow through a porous stretching/shrinking surface with convective boundary condition.Some more investigations highlighting flow of Maxwell fluid may be seen at Refs.[11–13].

    In many engineering processes,like thermal insulation,vaporization,food processing,diffusion of nutrients in tissues,distillation of alcohol,condensation in mixtures,im-portance of mass transfer can not be denied.A valuable contribution of mass transfer may also be found in livingmatter processes including sweating,respiration and nutrition etc.There have been studies in the past highlighting role of chemical reaction in mass transfer processes(see Refs.[14–16]and reference there in)and has a variety of applications like thermal oil recovery,chemical engineering,nuclear reactor cooling,and geothermal reservoirs.Study of binary chemical reaction in the flow of boundary layer was coined by Bestman.[17]He studied the flow of heat and mass transfer past a permeable medium with effects of binary reaction and arrhenius activation energy.Activation energy has a key role in all chemical reactions.It is the minimum amount of energy required for atoms and molecules to be in a position where a chemical reaction may trigger.The idea of activation energy is widely applicable in many fields including oil emulsions,oil reservoir,and mechanics of water.Makinde et al.[18]found numerical solution of time dependent flow with radiation,chemical reaction and Arrhenius activation energy effects past a permeable plate.Later,Maleque[19]talked about solution of time dependent fluid flow in attendance of heat generation/absorption,viscous dissipation,Arrhenius activation energy,and chemical reaction.Awad et al.[20]used the Spectral Relaxation Method(SRM)to find solution of a rotating viscous fluid with chemical reaction and Arrhenius activation energy.Some recent studies featuring both chemical reaction and activation energy are referred at Refs.[21–22].

    A reasonable number of applications emphasizing the role of steady and unsteady rotating flows may be found in chemical and geophysical fluid mechanics.These all of applied nature like in thermal power generating systems,in food processing,in the skins of high speed air crafts and in rotor stator systems.The pioneering work highlighting rotating flow was done by Wang.[23]This was followed by a study by Rajeswari and Nath[24]who explored the rotating time dependent flow.Takhar et al.[25]later discussed the effects of magnetohydrodynamic in a rotating flow.Kumari et al.[26]found numerical solution of rotating flow of Power law fluid model using Keller Box method.Zaimi et al.[27]also applied same numerical technique to examine the rotating flow of viscoelastic fluid.Javed et al.[28]investigated rotating fluid flow past an exponential stretched surface.Mustafa[29]deliberated rotating flow of UCM fluid with non-Fourier heat flux.Turkyilmazoglu[30]applied Spectral numerical integration method to find solution of a shrinking rotating disk with effect of magnetohydrodynamic.Recent attempts emphasizing rotating flow are referred at Refs.[31–33].

    It is observed that past investigations have not considered the onset of binary chemical reaction and energy activation on 3D rotating flow of Maxwell fluid accompanying non-Fourier heat flux.The present effort is to fill in such gap.Additionally, flow analysis is performed in the presence of magnetohydrodynamic and,heat and mass convective boundary conditions.Novelty of the existing exploration is through the subsequent characteristics.First,we have considered the three dimensional Maxwell rotating fluid flow with chemical reaction and activation energy.Second,the effect of magnetohydrodynamics is considered in the formulation of the problem.Third,we have analyzed the whole scenario in attendance of heat and mass boundary conditions.Fourth,the problem is studied in the presence of non-Fourier heat flux.Fifth,we have found the numerical solution[34?35]using bvp-4c function in MATLAB.Graphical illustrations accentuating effects of arising parameters on all involved fields are presented and well argued.A comparison to a previously published study is also added to validate our results.

    2 Mathematical Formulation

    Consider a 3D Maxwell rotating incompressible fluid flow(rotating with a constant angular velocity ?)past an elastic stretched surface placed in the xy-plane in which fluid is positioned at z≥0.The sheet is stretched with a linear velocity uw(x)=ax in x-direction.Let Twand Cwbe the temperature and concentration at the surface.However,T∞and C∞are the temperature and concentration far away from the surface as shown in Fig.1.

    Fig.1 Geometry of the Problem.

    A magnetic force of strength B0is applied normal to the plane of the stretched surface.Taking into account the binary chemical reaction with activation energy[20]and non-Fourier heat flux,[36]the governing equations of 3D Maxwell rotating fluid are given by:

    where ρ,p and ? = [0,0,?]are fluid density,pressure and the angular velocity.The quantity ? × (? ×r)= ??(?2r2/2)denotes the centrifugal force which is well-adjusted by the pressure gradient??p.The term(T/T∞)ne?Ea/κTrepresents the modified Arrhenius function.[20]Here,k=8.61 × 10?5eV/K,and n(?1

    and in Eq.(3),q is the heat flux satisfying the following relation

    where λ2and k represent the thermal relaxation time and fluid thermal conductivity.Considering the mass continuity equation?·V=0 and the steady laminar flow with?q/?t=0.Also in Eq.(5),λ1,A1=(?V)+(?V)tand D/Dt are the fluid relaxation time, first Rivilin-Ericksen tensor and the upper-convected time derivative.Introducing boundary layer approximations,Eqs.(1)–(4)take the form

    where D,kf,and λ2are the diffusion coefficient,thermal conductivity of the fluid,and relaxation time of heat flux.For λ2=0,Eq.(5)is reduced to classical Fourier’s law and Fick’s law.Also,ν,T,cp,v and(u,v,w)are the kinematic viscosity,temperature,specific heat, fluid density and velocities along(x,y,z)directions respectively.Equations(7)–(11)are supported by the boundary conditions are

    Employing transformation

    Equation(7)is satisfied automatically and Eqs.(8)–(12)take the form

    where λ,β,Pr,Sc,E,δ,σm,δt,M,and γ1and γ2are the rotation parameter,Deborah number(ratio of relaxation time to time of observation),Prandtl number(quotient of momentum to thermal diffusivity),Schmidt number(quotient of momentum to mass diffusivity),non-dimensional activation energy,temperature difference parameter,dimensionless reaction rate,thermal relaxation time(ratio of time required by a tissue to cool midway towards its original temperature),magnetic parameter and thermal and concentration Biot numbers(quotient of resistance to the internal heat flow to resistance to external heat flow)respectively and are defined as:

    Local Nusselt and Sherwood numbers in dimensional form are

    where

    Dimensionless forms of Local Nusselt and Sherwood numbers are

    3 Numerical Solutions

    The system of ODEs is solved with MATLAB built-in function bvp-4c.It is a finite difference code that implements the three-stage Lobatto IIIa formula.This is a collocation formula and the collocation polynomial provides a C1-continuous solution that is fourth order accurate uniformly in[a,b].Mesh selection and error control are based on the residual of the continuous solution.It has the following Matlab syntax:

    sol=(bvp4c(@odefun;@bcfun;solinit;options).To apply this method,the system of nonlinear ODEs(14)–(17)is converted to the subsequent system of first order ODEs:

    We denote f by y1,g by y4,θ by y6and ? by y8for converting the boundary value problem to the following initial value problem(IVP)

    along with following boundary conditions

    All the computations are made with the tolerance of ε=10?6,using a verified Matlab code.

    4 Results and Discussions

    In this section we have presented graphical illustrations depicting effects of varied prominent parameters on all involved profiles with requisite deliberations.

    Fig.2 Graph of f′versus β. λ =0.2,M=0.2,Pr=1.0,n=0.2,γ =0.1,δt=0.3,Sc=0.7,σm=0.5,δ=1.0,E=1.0.

    Fig.3 Graph of g versus β. λ =0.2,M =0.2,Pr=1.0,n=0.2,γ1= γ2=0.1,Sc=0.7,σm=0.5,δ=1.0,E=1.0,δt=0.3.

    Fig.4 Graph of f′versus λ. β =0.2,M=0.2,Pr=1.0,n=0.2,γ1= γ2=0.1,δt=0.3,Sc=0.7,σm=0.5,δ=1.0,E=1.0.

    Fig.5 Graph of g versus λ. β =0.2,M =0.2,Pr=1.0,n=0.2,γ1= γ2=0.1,δt=0.3,Sc=0.7,σm=0.5,δ=1.0,E=1.0.

    Fig.6 Graph of ? versus E. λ =0.2,β =0.2,Pr=1.0,n=0.2,γ1= γ2=0.1,δt=0.3,Sc=0.7,σm=0.5,δ=1.0.

    Fig.7 Graph of ? versus σm. λ =0.2,M=0.2,Pr=1.0,n=0.2,γ1= γ2=0.1,δt=0.3,Sc=0.7,β=0.2,δ=1.0,E=1.0.

    Figure 2 represents the behavior of Deborah number β on velocity field f′.From figure,it is witnessed that f′is decreasing function of β.This because of the fact that fluid’s motion in one direction is stymied by the viscoelastic effects.For smaller values of β,viscous effects are stronger than elastic and eventually fluid starts behaving like elastic solid material.However,for larger β,f′→ 0 near the sheet.

    Figure 3 is portrayed to visualize the influence of Deborah number β on g.From the graph,it is obvious that negative g values point out the fluid’s flow completely in y-direction.However,gradual increase in β shows that oscillations in g profile are more similar to that of f′.

    Fig.8 Graph of ? versus δ. λ =0.2,M =0.2,Pr=1.0,n=0.2,γ1= γ2=0.1,δt=0.3,Sc=0.7,σm=0.5,β =0.2,E=1.0.

    Fig.9 Graph of f′versus M. λ =0.2,β =0.2,Pr=1.0,n=0.2,γ1= γ2=0.1,δt=0.3,Sc=0.7,σm=0.5,δ=1.0,E=1.0.

    Fig.10 Graph of θ versus δt. λ =0.2,M=0.2,Pr=1.0,n=0.2,γ1= γ2=0.1,β =0.2,Sc=0.7,σm=0.5,δ=1.0,E=1.0.

    From Fig.4,it is noticed that velocity profile f′is decreasing function of rotation parameter λ.For λ =0,we have non-rotating frame.With gradual increment in λ,rotation rate will be stronger than the stretching rate and offer more resistance to the fluid’s motion.Eventually,a thinner boundary layer thickness with decrease in velocity distribution is observed.

    Figure 5 depicts the behavior of rotation parameter λ on velocity distribution g.It is noticed that an oscillatory pattern encountered for increasing values of λ which assist the flow in negative y-direction.

    Figure 6 is drawn to show the effects of dimensionless activation energy E on concentration distribution ?.Form figure,it is revealed that E is dwindling function of ?.Increasing values of E with low temperature results in smaller reaction rate constant and eventually slow chemical reaction is observed.This boosts the concentration’s solute.

    In Fig.7,impact of dimensionless constant rate σmon concentration field is portrayed. Higher values of σmweaken the concentration field that eventually supports the destructive chemical reaction.

    Fig.11 Graph of θ versus Pr. λ =0.2,M=0.2,β =0.2,n=0.2,γ1= γ2=0.1,δt=0.3,Sc=0.7,σm=1.0,δ=1.0,E=1.0.

    Fig.12 Graph of θ versus γ1. λ =0.2,M=0.2,Pr=1.0,n=0.2, γ2=0.1, δt=0.3,Sc=0.7,σm=0.5,δ=1.0,E=1.0.

    Figure 8 is illustrated to depict the influence of temperature difference parameter δ on concentration distribution.As the difference between the two temperatures(at the wall and far away from the wall)increases,a weaker concentration profile with thinner boundary layer thickness is witnessed.

    Fig.13 Graph of θ versus γ2. λ =0.2,M=0.2,Pr=1.0,n=0.2,β =0.2,δt=0.3,Sc=0.7,σm=0.5,δ=1.0,E=1.0.

    Table 1 Comparison of Local Nusselt number ?θ′(0)for varied values of λ, β and Pr obtained by Shafique et al.[22]in the absence of magnetohydrodynamic and Cattaneo-Christov heat flux.

    From Fig.9,it is perceived that velocity distribution is dwindling function of magnetic parameter M.The reason of deteriorating velocity is stronger Lorentz force(because of gradually improving values of M)which ultimately oppose the fluid’s motion and forces it to slow down.

    Figure 10 is portrayed to show the influence of thermal relaxation time δton temperature distribution θ.From Fig.10,it is seen that θ is declining function of δt.Comparatively more time is required by material particles to pass on heat to adjacent particles with increasing thermal relaxation time.This feature of material resembles to partially insulated materials and has become a reason to lower the temperature.

    In Fig.11,effect of Prandtl number Pr on temperature field θ is displayed.For growing values of Pr,a weaker thermal diffusivity is noticed that ultimately drops the fluid’s temperature.

    Table 2 Sherwood number for varied values of Pr,δt,Sc,σm,δ,E and n when γ1= γ2= β =M=0.2.

    Figures 12 and 13 reveal that temperature and concentration distributions with their associated boundary layer thicknesses are augmented with mounting values of respective Biot numbers γ1and γ2.As temperature and concentration have direct proportionate with heat and mass transfer coefficients h1and h2respectively.That is why both distributions demonstrate increasing behavior for higher values of respective Biot numbers.

    Table 1 is erected numerically to give comparison with a previous study by Shafique et al.[22]in limiting case and all values are found in an excellent agreement.Table 2 represents the trend of Sherwood number against varied values of Pr,δt,Sc,σm,δ,n,E and by fixing other parameters λ,β,M,γ1and γ2.It is noticed that Sherwood number showns a declining behavior for Pr,δt,E and increasing tendency for Sc,σm,δ,n.

    5 Final Remarks

    In this exploration,we have studied numerical solution of 3D magnetohydrodynamic rotating flow of Maxwell fluid with binary chemical reaction,activation energy and Cattaneo-Christov heat flux using bvp-4c MATLAB.The key observations of the present study are:

    ?Velocity is declining function of Deborah number and rotation parameter.

    ?Activation energy and temperature difference parameters have opposite effects on concentration distributions.

    ?With increase in thermal relaxation time and Prandtl number,decrease in temperature field is observed.

    ?Temperature and concentration distributions demonstrate increasing behavior for respective Biot numbers.

    ?Sherwood number shows a decreasing behavior for Prandtl number,thermal relaxation time,and nondimensional activation energy.

    Competing interests:The authors declare no competing interest.

    [1]S.Han,L.Zheng,C.Li,and X.Zhang,Appl.Math.Lett.38(2014)87.

    [2]M. Mustafa, AIP Adv. 5 (2015) 047109,http://dx.doi.org/10.1063/1.4917306.

    [3]M.Ramzan,M.Bilal,and J.D.Chung,Int.J.Chem.React.Eng.15(3)(2017)doi.org/10.1515/ijcre-2016-0136.

    [4]M.Ramzan,M.Bilal,and J.D.Chung,J.Mol.Liq.230(2017)4152.

    [5]M.Mustafa,T.Hayat,and A.Alsaedi,Int.J.Heat Mass Trans.106(2017)142.

    [6]M.I.Khan,T.Hayat,M.Waqas,et al.,J.Mol.Liq.233(2017)465.

    [7]I.Khan,N.A.Shah,and L.C.C.Dennis,Sci.Rep.7(2017),doi:10.1038/srep40147.

    [8]K.L.Hsiao,Appl.Therm.Engr.112(2017)1281.

    [9]T.Hayat,T.Muhammad,S.A.Shehzad,and A.Alsaedi,J.Mol.Liq.229(2017)495.

    [10]R.Jusoh,R.Nazar,and I.Pop,Int.J.Mech.Sci.124–125(2017)166.

    [11]J.Zhao,L.Zheng,X.Chen,et al.,Appl.Math.Modelling 44(2017)497.

    [12]A.Shahid,M.M.Bhatti,O.A.Bég,and A.Kadir,Neural Comput.Appl.(2017)1.

    [13]M.Ramzan,M.Bilal,J.D.Chung,and U.Farooq,Results Phys.6(2016)1072.

    [14]S.Bilal,K.U.Rehman,H.Jamil,and M.Y.Malik,AIP Adv.6(2016)125125.

    [15]F.Mabood,S.Shateyi,M.M.Rashidi,et al.,Adv.Powder Tech.27(2016)742.

    [16]S.Ahmed,J.Zueco,amd L.M.López-González,Int.J.Heat Mass Trans.104(2017)409.

    [17]A.R.Bestman,Int.J.Energy Res.14(1990)389.

    [18]O.D.Makinde,P.O.Olanrewaju,and W.M.Charles,Afrika Matematika 22(1)(2011)65.

    [19]K.A.Maleque,Thermodyn.2013(2013),Article ID 284637,9 pages.

    [20]F.G.Awad,S.Motsa,and M.Khumalo,PLoS ONE 9(2014)e107622.

    [21]M.Mustafa,J.A.Khan,T.Hayat,and A.Alsaedi,Int.J.Heat Mass Trans.108(2017)1340.

    [22]Z.Shafique,M.Mustafa,and A.Mushtaq,Results Phys.6(2016)627.

    [23]C.Y.Wang,Zeitschrift für angewandte Mathematik und Physik ZAMP 39(1988)177.

    [24]V.Rajeswari and G.Nath,Int.J.Engr.Sci.30(1992)747.

    [25]H.S.Takhar,A.J.Chamkha,and G.Nath,Int.J.Therm.Sci.42(2003)23.

    [26]M.Kumari,T.Grosan,and I.Pop,Technische Mechanik 1(2006)11.

    [27]K.Zaimi,A.Ishak,and I.Pop,Appl.Math.Mech.34(2013)945.

    [28]T.Javed,M.Sajid.Z.Abbas,and N.Ali,Int.J.Num.Meth.Heat&Fluid Flow 21(2011)903.

    [29]M.Mustafa,AIP Adv.5(2015)047109.

    [30]M.Turkyilmazoglu,Comput.&Fluids 90(2014)51.

    [31]T.Hayat,T.Muhammad,S.A.Shehzad,and A.Alsaedi,Comput.Meth.Appl.Mech.Eng.315(2017)467.

    [32]M.Mustafa,T.Hayat,and A.Alsaedi,Int.J.Heat Mass Trans.106(2017)142.

    [33]M.Ramzan,J.D.Chung,and N.Ullah,Results Phys.7(2017)3557.

    [34]M.Ramzan,M.Bilal,and J.D.Chung,J.Mol.Liq.225(2017)856.

    [35]M.E.Hakiem,M.Ramzan,and J.D.Chung,J.Comput.Theor.Nanosci.13(2017)8419.

    [36]J.B.J.Fourier,Theorie Analytique Da La Chaleur,Paris(1822).

    久久久久久久亚洲中文字幕| 国产白丝娇喘喷水9色精品| 欧美成人午夜免费资源| 人妻系列 视频| 两个人视频免费观看高清| 九九久久精品国产亚洲av麻豆| 2022亚洲国产成人精品| 欧美xxⅹ黑人| 亚洲欧美日韩东京热| 国产又色又爽无遮挡免| 亚洲精品一区蜜桃| 婷婷色av中文字幕| 少妇熟女欧美另类| 一本一本综合久久| 国产亚洲av嫩草精品影院| 成人漫画全彩无遮挡| 欧美另类一区| 丰满人妻一区二区三区视频av| 婷婷色综合大香蕉| 日韩人妻高清精品专区| 国产精品综合久久久久久久免费| 99视频精品全部免费 在线| 亚洲,欧美,日韩| 狂野欧美白嫩少妇大欣赏| 两个人视频免费观看高清| 69人妻影院| 一级二级三级毛片免费看| 爱豆传媒免费全集在线观看| 亚洲怡红院男人天堂| 精华霜和精华液先用哪个| 汤姆久久久久久久影院中文字幕 | 久久亚洲国产成人精品v| 国产又色又爽无遮挡免| 亚洲,欧美,日韩| 18+在线观看网站| 尤物成人国产欧美一区二区三区| 亚洲成人一二三区av| 99热全是精品| 能在线免费观看的黄片| 欧美成人一区二区免费高清观看| 搡老妇女老女人老熟妇| 噜噜噜噜噜久久久久久91| 午夜激情久久久久久久| 丰满人妻一区二区三区视频av| 精华霜和精华液先用哪个| 人人妻人人澡欧美一区二区| ponron亚洲| 亚洲电影在线观看av| 日韩国内少妇激情av| 尾随美女入室| 免费看不卡的av| 天堂网av新在线| 亚洲国产精品国产精品| 高清毛片免费看| 国产精品一二三区在线看| 少妇人妻精品综合一区二区| 国产精品嫩草影院av在线观看| 好男人视频免费观看在线| 国产成人a∨麻豆精品| 久久6这里有精品| 欧美成人a在线观看| 欧美一区二区亚洲| 床上黄色一级片| 97在线视频观看| 久久久久久久午夜电影| 日日撸夜夜添| 黑人高潮一二区| 一边亲一边摸免费视频| 亚洲精品色激情综合| 亚洲国产欧美在线一区| 在线免费观看的www视频| 亚洲国产精品专区欧美| 日本午夜av视频| 日韩av不卡免费在线播放| 麻豆久久精品国产亚洲av| 国产伦理片在线播放av一区| 人人妻人人看人人澡| 精品久久久久久久人妻蜜臀av| 欧美潮喷喷水| 国产探花在线观看一区二区| 亚洲精品一二三| 老女人水多毛片| 精品久久久久久久久久久久久| 国产久久久一区二区三区| 亚洲av电影不卡..在线观看| 久久精品国产亚洲av天美| 精品久久久久久久久久久久久| 直男gayav资源| 国产乱人偷精品视频| 国产乱人偷精品视频| 日韩电影二区| 91精品一卡2卡3卡4卡| 日日摸夜夜添夜夜添av毛片| 成人美女网站在线观看视频| 欧美潮喷喷水| 在线播放无遮挡| 91精品一卡2卡3卡4卡| 麻豆成人av视频| 女人久久www免费人成看片| 波野结衣二区三区在线| 国产有黄有色有爽视频| 国产成人精品久久久久久| 国产高潮美女av| 人妻夜夜爽99麻豆av| 男女边摸边吃奶| 亚洲精品日韩av片在线观看| 国产精品久久久久久精品电影| 国内揄拍国产精品人妻在线| 日韩不卡一区二区三区视频在线| 国产 亚洲一区二区三区 | av国产免费在线观看| 七月丁香在线播放| 一级a做视频免费观看| 嫩草影院精品99| 男女视频在线观看网站免费| 男人和女人高潮做爰伦理| 日韩 亚洲 欧美在线| 五月天丁香电影| 亚洲成人一二三区av| 亚洲图色成人| 免费人成在线观看视频色| 色5月婷婷丁香| 久久鲁丝午夜福利片| 你懂的网址亚洲精品在线观看| 亚洲欧美成人精品一区二区| 午夜免费男女啪啪视频观看| 大香蕉久久网| 精品国产露脸久久av麻豆 | 最近中文字幕2019免费版| 身体一侧抽搐| 黄片无遮挡物在线观看| 草草在线视频免费看| 久久久久久国产a免费观看| 久久精品久久精品一区二区三区| 美女cb高潮喷水在线观看| 成年人午夜在线观看视频 | 黄色欧美视频在线观看| 秋霞伦理黄片| 国产成人精品福利久久| 亚洲第一区二区三区不卡| av在线蜜桃| 欧美日韩精品成人综合77777| 国产成年人精品一区二区| 一级毛片电影观看| 久久久精品欧美日韩精品| 91在线精品国自产拍蜜月| 亚洲欧美清纯卡通| 欧美成人精品欧美一级黄| 国产日韩欧美在线精品| 欧美日本视频| 国产探花极品一区二区| 亚洲成色77777| 男女啪啪激烈高潮av片| 男人舔女人下体高潮全视频| 黑人高潮一二区| 欧美性感艳星| 亚洲va在线va天堂va国产| 久久人人爽人人片av| 熟妇人妻不卡中文字幕| 日韩电影二区| 成人高潮视频无遮挡免费网站| 九草在线视频观看| 天堂中文最新版在线下载 | 成人二区视频| 超碰97精品在线观看| 成人美女网站在线观看视频| 国产又色又爽无遮挡免| 日韩成人伦理影院| 白带黄色成豆腐渣| 三级国产精品欧美在线观看| 男女啪啪激烈高潮av片| 日本午夜av视频| 777米奇影视久久| av在线天堂中文字幕| 亚洲最大成人av| 日韩av在线大香蕉| 午夜激情福利司机影院| 国产一级毛片在线| 高清毛片免费看| 最近最新中文字幕大全电影3| av在线老鸭窝| 欧美变态另类bdsm刘玥| 亚洲,欧美,日韩| 日本熟妇午夜| 赤兔流量卡办理| 亚洲精品一二三| 看免费成人av毛片| 在线观看av片永久免费下载| 午夜日本视频在线| 亚洲成人中文字幕在线播放| 又大又黄又爽视频免费| 国产 亚洲一区二区三区 | 久久久久久久久大av| 亚洲熟妇中文字幕五十中出| 亚洲精品国产成人久久av| 免费观看无遮挡的男女| 中文乱码字字幕精品一区二区三区 | 最近最新中文字幕免费大全7| 久久久国产一区二区| 美女xxoo啪啪120秒动态图| 久久久久九九精品影院| 成年人午夜在线观看视频 | 国产在视频线在精品| 中文字幕av在线有码专区| 国产熟女欧美一区二区| av网站免费在线观看视频 | 日本爱情动作片www.在线观看| 两个人视频免费观看高清| 五月天丁香电影| 欧美日韩亚洲高清精品| 啦啦啦韩国在线观看视频| 日韩国内少妇激情av| 国产熟女欧美一区二区| 国产亚洲5aaaaa淫片| 搡女人真爽免费视频火全软件| 青春草亚洲视频在线观看| videossex国产| 精品久久久久久成人av| av在线亚洲专区| 亚洲精品视频女| 亚洲av成人精品一二三区| 精品一区在线观看国产| 国产黄色小视频在线观看| 毛片女人毛片| 国产69精品久久久久777片| 亚洲av不卡在线观看| 国产成人a区在线观看| 黄色配什么色好看| 国产黄色免费在线视频| 国产伦精品一区二区三区视频9| 免费高清在线观看视频在线观看| 一个人观看的视频www高清免费观看| 亚洲成人久久爱视频| 午夜久久久久精精品| 亚洲,欧美,日韩| 亚洲精品自拍成人| 中文精品一卡2卡3卡4更新| 美女内射精品一级片tv| 晚上一个人看的免费电影| 国产激情偷乱视频一区二区| 亚洲国产高清在线一区二区三| 日本午夜av视频| 激情五月婷婷亚洲| 国产片特级美女逼逼视频| 一级爰片在线观看| 亚洲经典国产精华液单| 久久99精品国语久久久| 一级a做视频免费观看| 午夜精品在线福利| 99热这里只有精品一区| 99re6热这里在线精品视频| 大话2 男鬼变身卡| 高清日韩中文字幕在线| 日韩av在线大香蕉| 深夜a级毛片| 久久久久久伊人网av| 色播亚洲综合网| 成年免费大片在线观看| 80岁老熟妇乱子伦牲交| 全区人妻精品视频| 国产 一区精品| 亚洲av成人av| 最后的刺客免费高清国语| 狠狠精品人妻久久久久久综合| 国产探花极品一区二区| 男人舔奶头视频| 黑人高潮一二区| 午夜福利视频1000在线观看| 日本三级黄在线观看| 亚洲色图av天堂| 国产一区二区在线观看日韩| 丰满乱子伦码专区| 亚洲人与动物交配视频| 国产精品麻豆人妻色哟哟久久 | 丰满乱子伦码专区| 简卡轻食公司| 日韩欧美一区视频在线观看 | 91久久精品电影网| 国产成人精品婷婷| 老司机影院成人| 天堂影院成人在线观看| 成人亚洲欧美一区二区av| 婷婷色综合大香蕉| 久久99热这里只频精品6学生| 久久精品久久久久久久性| 中文字幕av在线有码专区| 亚洲精品自拍成人| 久久综合国产亚洲精品| 晚上一个人看的免费电影| 十八禁网站网址无遮挡 | 免费播放大片免费观看视频在线观看| 观看美女的网站| 久久精品久久久久久久性| 欧美变态另类bdsm刘玥| 男人舔奶头视频| a级毛片免费高清观看在线播放| 乱系列少妇在线播放| a级一级毛片免费在线观看| 久久热精品热| 国产精品日韩av在线免费观看| 人妻少妇偷人精品九色| 亚洲人成网站高清观看| 亚洲电影在线观看av| 国产精品人妻久久久影院| 亚洲国产精品成人久久小说| 久久久精品免费免费高清| 国产精品综合久久久久久久免费| 日韩大片免费观看网站| 一级毛片我不卡| 日韩视频在线欧美| 久久精品人妻少妇| 青春草亚洲视频在线观看| 国产精品一二三区在线看| 久久精品国产亚洲av涩爱| 国产一区二区在线观看日韩| 嫩草影院入口| 精品一区二区三卡| 91午夜精品亚洲一区二区三区| 亚洲av成人av| 国产老妇伦熟女老妇高清| 国产色婷婷99| 久久久亚洲精品成人影院| 欧美性猛交╳xxx乱大交人| 秋霞在线观看毛片| 国产成人午夜福利电影在线观看| 午夜日本视频在线| 一级毛片久久久久久久久女| 亚洲国产成人一精品久久久| 99久久九九国产精品国产免费| 3wmmmm亚洲av在线观看| 女人十人毛片免费观看3o分钟| 中文字幕制服av| 三级男女做爰猛烈吃奶摸视频| 日韩欧美三级三区| 国产精品一区www在线观看| 国产亚洲精品av在线| av国产免费在线观看| videossex国产| av专区在线播放| 亚洲精品亚洲一区二区| 最近视频中文字幕2019在线8| 99热这里只有是精品在线观看| 日韩,欧美,国产一区二区三区| 又大又黄又爽视频免费| 午夜精品在线福利| 国产午夜精品一二区理论片| 亚洲自拍偷在线| 男女视频在线观看网站免费| 十八禁国产超污无遮挡网站| 成人毛片60女人毛片免费| 国产精品综合久久久久久久免费| 最近最新中文字幕大全电影3| 在线 av 中文字幕| 日韩中字成人| videos熟女内射| 午夜免费男女啪啪视频观看| 亚洲av中文av极速乱| 欧美日韩视频高清一区二区三区二| 99热这里只有是精品在线观看| 久久久久久久久久成人| 九九久久精品国产亚洲av麻豆| 97热精品久久久久久| 波多野结衣巨乳人妻| 国产精品福利在线免费观看| 亚洲aⅴ乱码一区二区在线播放| 国产久久久一区二区三区| 午夜福利网站1000一区二区三区| 男女国产视频网站| 99久国产av精品| av.在线天堂| 久久精品综合一区二区三区| 能在线免费观看的黄片| 亚洲,欧美,日韩| 久久久久久伊人网av| 精品一区二区三区视频在线| 国产精品人妻久久久久久| 亚洲熟女精品中文字幕| 卡戴珊不雅视频在线播放| 亚洲精品一区蜜桃| 久久久久精品性色| 一个人看视频在线观看www免费| 男女下面进入的视频免费午夜| 国产成人a∨麻豆精品| 嘟嘟电影网在线观看| 午夜免费男女啪啪视频观看| 亚洲成人中文字幕在线播放| 久久韩国三级中文字幕| 国产综合懂色| 久久热精品热| 免费看美女性在线毛片视频| 亚洲av电影不卡..在线观看| 亚洲欧美精品自产自拍| 我要看日韩黄色一级片| 九九爱精品视频在线观看| 国内精品美女久久久久久| 嫩草影院精品99| 色尼玛亚洲综合影院| 日韩一本色道免费dvd| 日本免费a在线| 又爽又黄a免费视频| 国产免费一级a男人的天堂| 最近视频中文字幕2019在线8| 国产久久久一区二区三区| 日韩人妻高清精品专区| 69人妻影院| 99热这里只有是精品50| 国产精品无大码| 一本一本综合久久| 一个人看视频在线观看www免费| 亚洲精品乱久久久久久| 国产乱来视频区| 免费无遮挡裸体视频| 国产精品三级大全| 九九爱精品视频在线观看| 男人舔奶头视频| 日韩欧美精品免费久久| 中文字幕av在线有码专区| 亚洲国产av新网站| 三级毛片av免费| 国产毛片a区久久久久| 夫妻午夜视频| 蜜桃久久精品国产亚洲av| 亚洲精品乱码久久久久久按摩| 国产精品久久视频播放| 人人妻人人看人人澡| 国内揄拍国产精品人妻在线| 国产精品一区www在线观看| 一个人看视频在线观看www免费| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产亚洲5aaaaa淫片| 亚洲精品影视一区二区三区av| 美女被艹到高潮喷水动态| 亚洲欧美成人综合另类久久久| 成人性生交大片免费视频hd| 欧美不卡视频在线免费观看| 日本猛色少妇xxxxx猛交久久| 晚上一个人看的免费电影| 91久久精品电影网| 一区二区三区免费毛片| 日韩在线高清观看一区二区三区| 国产精品一及| 亚洲成人一二三区av| 国产午夜福利久久久久久| 综合色丁香网| 免费少妇av软件| 国产一区二区在线观看日韩| 国产亚洲精品久久久com| 国产伦一二天堂av在线观看| 国产精品久久久久久av不卡| 国产精品日韩av在线免费观看| 亚洲精品国产av蜜桃| 国产男女超爽视频在线观看| 综合色av麻豆| 最近最新中文字幕大全电影3| 五月伊人婷婷丁香| 97精品久久久久久久久久精品| h日本视频在线播放| 一级a做视频免费观看| 别揉我奶头 嗯啊视频| freevideosex欧美| 午夜福利视频1000在线观看| 日韩国内少妇激情av| 久久精品综合一区二区三区| 亚洲天堂国产精品一区在线| 亚洲成人精品中文字幕电影| 国产亚洲av嫩草精品影院| 十八禁网站网址无遮挡 | 午夜激情久久久久久久| 国产v大片淫在线免费观看| 欧美精品一区二区大全| 91在线精品国自产拍蜜月| 黄色欧美视频在线观看| 亚洲欧美成人综合另类久久久| 国产精品美女特级片免费视频播放器| 国产精品1区2区在线观看.| 成人漫画全彩无遮挡| 成人综合一区亚洲| 国内揄拍国产精品人妻在线| 精品人妻熟女av久视频| 免费大片黄手机在线观看| 久久精品综合一区二区三区| 极品少妇高潮喷水抽搐| 亚洲精品日韩av片在线观看| 国产精品美女特级片免费视频播放器| 亚洲成人av在线免费| 青青草视频在线视频观看| 成年女人在线观看亚洲视频 | 国产精品久久久久久精品电影| 女的被弄到高潮叫床怎么办| 日日啪夜夜撸| 国产淫片久久久久久久久| 欧美日韩综合久久久久久| 国产黄色小视频在线观看| 少妇的逼水好多| 七月丁香在线播放| 亚洲精品国产av蜜桃| 汤姆久久久久久久影院中文字幕 | 亚洲精品第二区| 国产一级毛片七仙女欲春2| 69av精品久久久久久| 国产又色又爽无遮挡免| 国产欧美另类精品又又久久亚洲欧美| 欧美日韩亚洲高清精品| av播播在线观看一区| 亚洲人与动物交配视频| 亚洲色图av天堂| 日本av手机在线免费观看| 国产激情偷乱视频一区二区| 最近最新中文字幕免费大全7| 高清毛片免费看| 免费观看a级毛片全部| 成人鲁丝片一二三区免费| 九九在线视频观看精品| 国产高清国产精品国产三级 | 久久久精品94久久精品| 欧美一级a爱片免费观看看| 国产精品久久久久久精品电影| 中文字幕免费在线视频6| 黄片无遮挡物在线观看| 午夜激情欧美在线| 永久免费av网站大全| 午夜福利视频1000在线观看| 黄色日韩在线| 国产高清有码在线观看视频| 国产成人一区二区在线| 91久久精品国产一区二区三区| 国产免费又黄又爽又色| 丰满人妻一区二区三区视频av| 免费黄网站久久成人精品| 亚洲乱码一区二区免费版| 天堂俺去俺来也www色官网 | 91久久精品国产一区二区三区| av专区在线播放| 亚洲av成人av| 欧美97在线视频| 亚洲18禁久久av| 天堂网av新在线| 国产精品国产三级国产av玫瑰| 日日啪夜夜爽| 99久久精品热视频| 成年av动漫网址| 亚洲美女视频黄频| 九九爱精品视频在线观看| 在线观看一区二区三区| 极品教师在线视频| 国产 一区精品| 如何舔出高潮| 五月伊人婷婷丁香| 国产一级毛片在线| 国产真实伦视频高清在线观看| 最近2019中文字幕mv第一页| 男的添女的下面高潮视频| 成年人午夜在线观看视频 | 美女主播在线视频| 晚上一个人看的免费电影| 精品久久久久久久久亚洲| 成人二区视频| 黄片无遮挡物在线观看| 97精品久久久久久久久久精品| 久久久久久九九精品二区国产| 男人爽女人下面视频在线观看| 人妻夜夜爽99麻豆av| 久久久久精品性色| 日韩一本色道免费dvd| 午夜激情福利司机影院| 日日啪夜夜撸| 能在线免费观看的黄片| 亚洲av中文av极速乱| 久久人人爽人人片av| 久久久久久九九精品二区国产| 乱系列少妇在线播放| 边亲边吃奶的免费视频| 国产亚洲av嫩草精品影院| 夜夜看夜夜爽夜夜摸| 性色avwww在线观看| 免费观看在线日韩| 成人性生交大片免费视频hd| 亚洲精品乱码久久久久久按摩| 国产乱来视频区| 自拍偷自拍亚洲精品老妇| 亚洲一区高清亚洲精品| eeuss影院久久| 欧美成人精品欧美一级黄| 搡女人真爽免费视频火全软件| 国产大屁股一区二区在线视频| 久久这里只有精品中国| 久久精品久久久久久久性| 91久久精品电影网| 日韩 亚洲 欧美在线| 日韩av在线免费看完整版不卡| 韩国高清视频一区二区三区| 免费观看a级毛片全部| 精品久久久久久成人av| 美女国产视频在线观看| 成人美女网站在线观看视频| 九色成人免费人妻av| 看黄色毛片网站| 搡老乐熟女国产| 亚洲在久久综合| 在线观看免费高清a一片| 国产男女超爽视频在线观看| 亚洲最大成人手机在线| 国产免费一级a男人的天堂| 狂野欧美白嫩少妇大欣赏| 亚洲自拍偷在线| 亚洲精品乱码久久久v下载方式| 爱豆传媒免费全集在线观看| 精品国内亚洲2022精品成人| a级毛片免费高清观看在线播放| 国产午夜精品论理片| 美女内射精品一级片tv| 国产高清不卡午夜福利| 久久久色成人| 久久99精品国语久久久| 狠狠精品人妻久久久久久综合|