• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Three-Pion Decays of the a1(1260)?

    2018-07-09 06:46:36XuZhang張旭andJuJunXie謝聚軍
    Communications in Theoretical Physics 2018年7期
    關(guān)鍵詞:張旭

    Xu Zhang(張旭)and Ju-Jun Xie(謝聚軍)

    Institute of Modern Physics,Chinese Academy of Sciences,Lanzhou 730000,China

    University of Chinese Academy of Sciences,Beijing 101408,China

    1 Introduction

    In the naive quark model,mesons are composed of a quark-antiquark pair.This picture works extremely well for most of the known mesons.[1]However,there are a growing set of experimental observations of resonancelike structures,which cannot be explained by the quarkantiquark model.[1?3]Even among the seemingly well established and understood mesons,some of them may be more complicated than originally thought.[4?5]One such example is the lowest-lying axial-vector mesons.The a1(1260)is a ground state of axial-vector resonance with quantum numbers IG(JPC)=1?(1++).However,it was found that the a1(1260)could be dynamically generated from the interactions of K?ˉK and ρπ channels and the couplings of the a1(1260)to these channels can be also obtained at the same time.[6]Based on these results,the radiative decay of a1(1260)meson was studied in Refs.[7–8],where the theoretical calculations agree with the experimental values within uncertainties.In Ref.[9]the lattice result for the coupling constant of a1(1260)to the ρπ channel is also close to the value obtained in Ref.[6].Besides,the effects of the next-to-leading order chiral potential on the dynamically generated axial-vector mesons were studied in Ref.[10].It was found that the inclusion of the higher-order kernel does not change the results obtained with the leading-order kernel in any significant way,which gives more supports to the dynamical picture of the a1(1260)state.[6,10?11]

    On the other hand,it is suggested that the a1(1260)resonance is a candidate of the chiral partner of the ρ meson[12?14]described as a qˉq state.The nature of a1(1260)has been studied by calculating physical observables such as the τ decay spectrum into three pions[15?18]or the multipions decays of light vector mesons.[19?20]Recently,the production of a1(1260)resonance in the reaction of π?p →(1260)p within an effective Lagrangian approach was studied in Ref.[21]based on the results obtained in chiral unitary approach.Furthermore,a general method was developed in Ref.[22]to analyze the mixing structure of hadrons consisting of two components of quark and hadronic composites,and the nature of the a1(1260)was explored with the method,[22]where it was found that the a1(1260)resonance has comparable amounts of the elementary component qˉq to the ρπ.In Ref.[23],the Ncbehavior of a1(1260)was studied using the unitarized chiral approach,and it was found that the main component of a1(1260)is not qˉq.A probabilistic interpretation of the compositeness at the pole of a resonance was been derived in Ref.[24],where it was obtained that,for a1(1260),the compositeness and elementariness are similar.Furthermore,the a1(1260)can also appear as a gauge boson of the hidden local symmetry,[25?26]which is recently reconciled with the five-dimensional gauge field of the holographic QCD.[27?28]Yet,the nature of the a1(1260)state is still not well understood.The only way to understand its nature is to examine it from all possible perspectives,both experimentally and theoretically.

    On the experimental side,for the a1(1260)resonance,the experimental width Γa1(1260)=(250–600)MeV as-signed by the Particle Data Group(PDG)[1]has large uncertainty.While most experiments and phenomenological extractions agree on the mass of the a1(1260)leading to a PDG value of Ma1(1260)=(1230±40)MeV,which is more precisely than its width.A new COMPASS measurement in Ref.[29]provides a much smaller uncertainty of the width Γa1(1260)=367±MeV and mass Ma1(1260)=1255±6+7?17MeV.Therefore,study of the total decay width and the decay behaviors of a1(1260)is important both on experimental and theoretical sides,and can also provide beneficial information about the internal structure of it.

    The best knowledge about a1(1260)resonance decay channels and branching ratio comes from hadronic τ decay measurements,[30?32]while the ρπ decay mode in the three-pion decays,which the dominant decay channel of a1(1260),is the most important one.[1,33?34]In this work,we study the three-pion decays of the a1(1260)by considering only the dominant a1(1260)→ ρπ intermediate process and,in this calculation,we take the coupling constant of a1(1260)to ρπ channel in S-wave as that was obtained in Ref.[6].In this respect,our calculations are based on the dynamical picture of the a1(1260),which is a dynamically generated state from the interactions ofK?and ρπ coupled channels.We calculate the energy dependence of the partial decay width of Γa1(1260)→3πas a function of the mass of a1(1260),which could be tested by future experiments when the precise measurements for the mass and width of the a1(1260)resonance were done.

    This article is organized as follows.In Sec.2,formalism and ingredients used in the calculation are given.In Sec.3,the results are presented and discussed.Finally,a short summary is given in the last section.

    2 Formalism and Ingredients

    We study the decay of a1(1260)→ 3π with the assumption that the a1(1260)is dynamically generated from the interactions of ρπ andK?in coupled channel,thus this decay can proceed via a1(1260)→ ρπ → 3π as shown in Fig.1,where we take the(1260)→ π+π+π?and π+π0π0into account.It is easy to know that the two diagrams in Fig.1 give the same contributions to the a1(1260)→ 3π decay.Hence,we consider only the Fig.1(a)in the following calculation and we multiply by a factor two to the final result.

    Fig.1 The dominant diagrams for the decay of a1(1260)→ 3π.(a)(1260)→ π+π+π? and(b)(1260)→ π+π0π0.

    2.1 Decay Amplitude at Tree Level

    In order to evaluate the partial decay width of a1(1260)→ 3π,we need the decay amplitudes of the tree level diagrams shown in Fig.1,where the process is described as the a1(1260)decaying to ρπ and then the ρ decaying into ππ.As mentioned above,a1(1260)results as dynamically generated from the interactions of the ρπ andK?in coupled channels.We can write theρ0π+vertex as

    whereis the polarization vector of a1(1260)and εμthe polarization vector of the ρ.The ga1ρπis the coupling of the a1(1260)to the ρπ channel and can be obtained from the residue in the pole of the scattering amplitude in I=1.We take ga1ρπ=(?3795+i2330)MeV and ga1KˉK?=(1872?i1468)MeV as obtained in Ref.[6].We can see that the a1(1260)has large coupling to ρπ channel comparing to theK?channel.

    To compute the decay amplitude,we also need the structure of the ρππ vertices,which can be evaluated by means of hidden gauge symmetry Lagrangian describing the vector-pseudoscalar-pseudoscalar(VPP)interaction,[25,35?37]given by

    where the symbolstands for the trace in SU(3)and g=mV/2f,with mV=mρa(bǔ)nd f=93 MeV the pion decay constant.The matrices P and V contain the nonet of the pseudoscalar mesons and the one of the vectors respectively.

    From the Lagrangian of Eq.(2),the vertex of ρ0π+π?can be written as??Note that from the local hidden gauge approach is 5.89,while the equivalent quantity gρππ used in Ref.[38]is 6.05.They differ in 2.5%.

    where p1and p2are the momenta of π?and π+mesons,respectively.

    We can now straightforwardly construct the decay amplitude for(1260)→ π+π+π?decay corresponding to the tree diagram shown in Fig.1(a):

    where the two terms stand for the contributions with the ρ0in theand in thesubsystem,and q1=p1+p2and q2=p1+p3.

    We take the energy dependent decay width of Γρ.Because the dominant decay channel of ρ is ππ,we take

    with Γon=149.1 MeV,and

    withthe invariant mass square of the π+π?system corresponding the two terms shown in Eq.(4).We take mρ=775.26 MeV in this work.

    It is worthy to mention that the parametrization of the width of the ρ meson shown in Eq.(5)is common and it is meant to take into account the phase space of each decay mode as a function of the energy.[39?41]In the present work we take explicitly the phase space for the P-wave decay of the ρ into two pions.

    Besides,in Eq.(4),Fρππis the form factor of ρ0.In our present calculation we adopt the following form as used in previous works[41?45]

    where Λρis the cutoff parameter of ρ0.

    2.2 Decay Amplitude for the Triangular Loop

    In addition to the tree level diagrams shown in Fig.1,we study also the contributions of ππ→ππ and K→ππ final state interaction(FSI).For this purpose,we use the triangular mechanism contained in the diagrams shown in Fig.2,consisting in the rescatering of the ππ and Kpairs.The rescattering of ππ and Kin coupled channels dynamically generates the f0(500)and f0(980)resonances.

    Fig.2 Triangular loop contributions to the(1260)→ π+π?π+decay.

    We can write explicitly the decay amplitudes for the triangular diagrams shown in Fig.2 as(see also Ref.[46],where more details can be found)

    whereandare the meson-meson scattering amplitudes obtained in the chiral unitary approach in Ref.[47],which depend on the invariant mass of π+π?.The tππ→ππandin the first and second terms in Eqs.(9)and(10)depend onand,respectively.In addition,in Eq.(9)the quantities I1and I2are given by

    3 Numerical Results and Discussion

    With the decay amplitudes obtained above,we can easily get the total decay width of a1(1260)→ 3π which

    with q the four-momentum of the a1(1260).Here we give explicitly the results for the tree diagrams,as an example,

    With all the ingredients obtained above,one can easily get the total decay width of a1(1260)→ 3π by performing the integration of M12and cosθ?.The results for Γ as a function of Λρis shown in Fig.3 with Ma1=1230 MeV.From Fig.3 one can see that the results for Γ are not sensitive to the value of Λρ,therefore,we fix Λρ=1500 MeV in the next calculations.

    Fig.3 The total decay width of a1(1260)→ 3π as a function of the cutoff parameter Λρ.

    Fig.4 The π+π? invariant mass distribution for a1(1260)→ 3π as a function of the invariant mass of the π+π? system.The experimental data are taken from Ref.[50].

    However,since a1(1260)has large total decay width which should be taken into account.For this purpose we replace the dΓ in Eq.(15)by d:

    In Fig.4,we show the numerical results for π+π?invariant mass distributions.We compare also our theoretical calculations with the experimental results of Ref.[50]measured in the decay of τ→ π?π?π+ντ.In Fig.4 we see that the tree level alone can describe well the experimental data around the ρ peak.This is attributed to the effect of the ρ0off shell propagator.The implementation of the

    where the spectral function S(m2)is defined as contributions of the triangle loop diagrams is responsible for the enhancement of the invariant mass distribution at the lower invariant masses,where the f0(500)resonance appears.There is also a small peak around the Kmass threshold,where the f0(980)resonance appears.

    Fig.5 The total decay width of a1(1260)→ 3π as a function of Ma1.

    The numerical results in Fig.4 show how the most drastic change in the line shape of the the invariant π+π?mass distribution is caused by the tree diagram alone in Fig.1 and,as mentioned before,this is tied to the ρ0contribution,which appears at tree level because of the large coupling of a1(1260)to ρπ channel obtained in the chiral unitary approach.[6]

    Next, we calculate the total decay width of(1260) → π+π+π?as a function of the mass of a1(1260).The numerical result is shown in Fig.5.The width rises rapidly with increasing Ma1in the mass range Ma1<1300 MeV,while it goes to flat when Ma1>1400 MeV.Besides,we get Γ=166 MeV at Ma1=1230 MeV.There is still no precise measurement about the(1260)→π+π+π?decay,we cannot compare our result with experiment.Note that the width Γa1≡ Γa01→π+π?π0was studied in Ref.[19],and Γa1=860 MeV was obtained at Ma1=1230 MeV.One can see that the theoretical result in Ref.[19]is much different with us.On the other hand,there are two peaks in the solid curve in Fig.5,which are attributed to the effect of the ππ → ππ and K→ππ final state interactions.We hope that the future experiments could test the model calculations.

    So far we have assumed that the a1(1260)resonance is fully made from ρπ andK?interaction.The pole position(?/2)is identified from the zero of the denominator of the scattering amplitudes in the complex plane,and the effective couplings ga1ρπand ga1KˉK?are calculated from the residues of the scattering amplitudes at the complex pole.We know that the a1(1260)Breit-Wigner parameters,Ma1and Γa1,deviate from its pole parameters by a large amount and are reaction dependent.[1]On the other hand,we have no information on how the effective couplings obtained at the pole position change with varying Ma1,and therefore,we cannot include the uncertainties of these effective couplings without making further assumptions.Besides,there are hints that the a1(1260)resonance could have also other components as mention above,thus,there should be also contribution from a1(1260)→ f0(500)π → 3π[1]in the tree level.However,the information about this contribution is very scarce.We will leave such studies to a future work.

    4 Summary

    In this work,we evaluate the partial decay width of the(1260)→ π+π+π?with the assumption that the a1(1260)is dynamically generated from the coupled channel ρπ andK?interactions.The dominant tree level diagrams that proceed via(1260)→ ρ0π+→ π+π+π?are considered.Besides,we also take into account the final state interactions of ππ → ππ and K→ ππ.It is found that the contributions from ππ → ππ and K→ππ are small compared to the tree level diagram,but they change the π+π?invariant mass distributions of the a1(1260)→ 3π decay.

    The results that we obtained for the π+π?invariant mass distributions are in a fair agreement with the experimental measurements for the τ→ π?π?π+ντdecay.This provides new support for the molecular picture of a1(1260).Furthermore,we calculate also the total decay width as a function of the mass of a1(1260),it is found that our result is different with other model calculations.Thus,we hope that the further experimental observations of the π+π?and π+π+π?mass distributions would then test these model calculations and provide vary valuable information on the relevance of the ρπ component in the a1(1260)wave function.

    [1]C.Patrignani,et al.,[Particle Data Group],Chin.Phys.C 40(2016)100001.

    [2]E.Klempt and A.Zaitsev,Phys.Rep.454(2007)1.

    [3]N.Brambilla,et al.,Eur.Phys.J.C 74(2014)2981.

    [4]V.Baru,J.Haidenbauer,C.Hanhart,et al.,Phys.Lett.B 586(2004)53.

    [5]T.Hyodo,D.Jido,and A.Hosaka,Phys.Rev.C 78(2008)025203.

    [6]L.Roca,E.Oset,and J.Singh,Phys.Rev.D 72(2005)014002.

    [7]L.Roca,A.Hosaka,and E.Oset,Phys.Lett.B 658(2007)17.

    [8]H.Nagahiro,L.Roca,A.Hosaka,and E.Oset,Phys.Rev.D 79(2009)014015.

    [9]C.B.Lang,L.Leskovec,D.Mohler,and S.Prelovsek,J.High Energy Phys.1404(2014)162.

    [10]Y.Zhou,X.L.Ren,H.X.Chen,and L.S.Geng,Phys.Rev.D 90(2014)014020.

    [11]M.F.M.Lutz,and E.E.Kolomeitsev,Nucl.Phys.A 730(2004)392.

    [12]S.Weinberg,Phys.Rev.Lett.18(1967)507.

    [13]C.W.Bernard,A.Duncan,J.LoSecco,and S.Weinberg,Phys.Rev.D 12(1975)792.

    [14]G.Ecker,J.Gasser,A.Pich,and E.de Rafael,Nucl.Phys.B 321(1989)311.

    [15]D.Gomez Dumm,A.Pich,and J.Portoles,Phys.Rev.D 69(2004)073002.

    [16]M.Wagner and S.Leupold,Phys.Rev.D 78(2008)053001.

    [17]D.G.Dumm,P.Roig,A.Pich,and J.Portoles,Phys.Lett.B 685(2010)158158.

    [18]I.M.Nugent,T.Przedzinski,P.Roig,et al.,Phys.Rev.D 88(2013)093012.

    [19]N.N.Achasov and A.A.Kozhevnikov,Phys.Rev.D 71(2005)034015.

    [20]P.Lichard and J.Juran,Phys.Rev.D 76(2007)094030.

    [21]C.Cheng,J.J.Xie,and X.Cao,Commun.Theor.Phys.66(2016)675.

    [22]H.Nagahiro,K.Nawa,S.Ozaki,et al.,Phys.Rev.D 83(2011)111504.

    [23]L.S.Geng,E.Oset,J.R.Pelaez,and L.Roca,Eur.Phys.J.A 39(2009)81.

    [24]Z.H.Guo and J.A.Oller,Phys.Rev.D 93(2016)096001.

    [25]M.Bando,T.Kugo,and K.Yamawaki,Phys.Rep.164(1988)217.

    [26]N.Kaiser and U.G.Mei?ner,Nucl.Phys.A 519(1990)671.

    [27]T.Sakai and S.Sugimoto,Prog.Theor.Phys.113(2005)843.

    [28]T.Sakai and S.Sugimoto,Prog.Theor.Phys.114(2005)1083.

    [29]M.Alekseev,et al.,[COMPASS Collaboration],Phys.Rev.Lett.104(2010)241803.

    [30]D.M.Asner,et al.,[CLEO Collaboration],Phys.Rev.D 61(2000)012002.

    [31]R.A.Briere,et al.,[CLEO Collaboration],Phys.Rev.Lett.90(2003)181802.

    [32]T.E.Coan,et al.,[CLEO Collaboration],Phys.Rev.Lett.92(2004)232001.

    [33]R.R.Akhmetshin,et al.,[CMD-2 Collaboration],Phys.Lett.B 466(1999)392.

    [34]P.Salvini,et al.,[OBELIX Collaboration],Eur.Phys.J.C 35(2004)21.

    [35]M.Bando,T.Kugo,S.Uehara,et al.,Phys.Rev.Lett.54(1985)1215.

    [36]U.G.Mei?ner,Phys.Rep.161(1988)213.

    [37]M.Harada and K.Yamawaki,Phys.Rep.381(2003)1.

    [38]J.J.Xie,C.Wilkin,and B.S.Zou,Phys.Rev.C 77(2008)058202.

    [39]H.C.Chiang,E.Oset,and L.C.Liu,Phys.Rev.C 44(1991)738.

    [40]C.Hanhart,Y.S.Kalashnikova,and A.V.Nefediev,Phys.Rev.D 81(2010)094028.

    [41]J.J.Xie,B.S.Zou,and H.C.Chiang,Phys.Rev.C 77(2008)015206.

    [42]K.Tsushima,A.Sibirtsev,and A.W.Thomas,Phys.Rev.C 62(2000)064904.

    [43]A.M.Gasparyan,J.Haidenbauer,C.Hanhart,and J.Speth,Phys.Rev.C 68(2003)045207.

    [44]J.J.Xie and B.S.Zou,Phys.Lett.B 649(2007)405.

    [45]J.J.Xie,Phys.Rev.C 92(2015)065203.

    [46]F.Aceti,L.R.Dai,and E.Oset,Phys.Rev.D 94(2016)096015.

    [47]J.A.Oller and E.Oset,Nucl.Phys.A 620(1997)438,Erratum:[Nucl.Phys.A 652(1999)407].

    [48]F.Aceti,J.M.Dias,and E.Oset,Eur.Phys.J.A 51(2015)48.

    [49]F.Aceti,J.J.Xie,and E.Oset,Phys.Lett.B 750(2015)609.

    [50]H.Albrecht,et al.,[ARGUS Collaboration],Z.Phys.C 58(1993)61.

    猜你喜歡
    張旭
    THE TIME DECAY RATES OF THE CLASSICAL SOLUTION TO THE POISSON-NERNST-PLANCK-FOURIER EQUATIONS IN R3*
    張旭作品賞析
    《古詩(shī)四帖》與晚明鑒藏家的“張旭”概念
    書(shū)法家肚子痛
    Effects of Froude number and geometry on water entry of a 2-D ellipse *
    張旭典藏欣賞
    寶藏(2017年10期)2018-01-03 01:53:02
    『脫發(fā)』的大樹(shù)
    淺談氧化還原反應(yīng)的實(shí)際應(yīng)用
    許淇·中國(guó)畫(huà)《張旭》
    散文詩(shī)(2017年2期)2017-06-05 15:11:09
    打針
    日韩中字成人| 国产成人91sexporn| 汤姆久久久久久久影院中文字幕 | 少妇被粗大猛烈的视频| 在线观看一区二区三区| 精品国产三级普通话版| 日韩,欧美,国产一区二区三区| 国产高清三级在线| 亚洲成色77777| 精华霜和精华液先用哪个| 有码 亚洲区| 一级毛片我不卡| 蜜桃久久精品国产亚洲av| 91狼人影院| 亚洲精品自拍成人| a级毛片免费高清观看在线播放| 亚洲最大成人手机在线| 中文字幕人妻熟人妻熟丝袜美| 久久久久久久久久成人| 哪个播放器可以免费观看大片| 嫩草影院精品99| 精品人妻熟女av久视频| 少妇的逼水好多| av在线蜜桃| 一级毛片 在线播放| 18禁在线播放成人免费| 欧美丝袜亚洲另类| 伦精品一区二区三区| 午夜日本视频在线| 一级二级三级毛片免费看| 老司机影院成人| 老师上课跳d突然被开到最大视频| 白带黄色成豆腐渣| 最新中文字幕久久久久| 欧美xxxx黑人xx丫x性爽| 久久久久久久大尺度免费视频| 亚洲国产日韩欧美精品在线观看| 日韩av不卡免费在线播放| 一级片'在线观看视频| 美女cb高潮喷水在线观看| 高清在线视频一区二区三区| av天堂中文字幕网| 日韩制服骚丝袜av| 禁无遮挡网站| 真实男女啪啪啪动态图| 国产女主播在线喷水免费视频网站 | videos熟女内射| 网址你懂的国产日韩在线| eeuss影院久久| 91在线精品国自产拍蜜月| 久久精品久久久久久久性| 免费观看精品视频网站| 亚洲精品乱码久久久久久按摩| 有码 亚洲区| 男人爽女人下面视频在线观看| 久久久久久久亚洲中文字幕| 你懂的网址亚洲精品在线观看| 国产精品久久久久久精品电影| 一个人观看的视频www高清免费观看| 极品教师在线视频| 亚洲性久久影院| 2021天堂中文幕一二区在线观| 中国国产av一级| 午夜激情福利司机影院| 97超碰精品成人国产| 亚洲精品视频女| 一级a做视频免费观看| 国产淫片久久久久久久久| 免费观看精品视频网站| 午夜福利网站1000一区二区三区| 一边亲一边摸免费视频| 久久久色成人| 国产探花在线观看一区二区| 2022亚洲国产成人精品| 91在线精品国自产拍蜜月| 晚上一个人看的免费电影| 久久精品国产亚洲av涩爱| 亚洲欧美精品专区久久| 亚洲aⅴ乱码一区二区在线播放| 中文字幕亚洲精品专区| 欧美区成人在线视频| 国产精品一及| 乱系列少妇在线播放| 成人午夜精彩视频在线观看| 中文欧美无线码| 青青草视频在线视频观看| 日本黄色片子视频| h日本视频在线播放| 日本wwww免费看| 亚洲精品影视一区二区三区av| 国产在线一区二区三区精| 老司机影院毛片| 99热网站在线观看| 亚洲成人久久爱视频| 欧美97在线视频| ponron亚洲| 综合色av麻豆| 成人亚洲精品av一区二区| 成年版毛片免费区| av又黄又爽大尺度在线免费看| 精品欧美国产一区二区三| 欧美一级a爱片免费观看看| av在线蜜桃| 国国产精品蜜臀av免费| 国产精品久久久久久久久免| 人体艺术视频欧美日本| 久久久久久久午夜电影| 中文字幕亚洲精品专区| 身体一侧抽搐| 亚洲熟妇中文字幕五十中出| 日韩av在线大香蕉| 日本爱情动作片www.在线观看| 日韩av在线大香蕉| 亚洲最大成人手机在线| 极品教师在线视频| 免费看不卡的av| 可以在线观看毛片的网站| 国产老妇女一区| 黑人高潮一二区| 在线 av 中文字幕| 欧美人与善性xxx| 国产不卡一卡二| 午夜福利在线观看吧| 国产一区有黄有色的免费视频 | 国产av国产精品国产| 亚洲不卡免费看| 欧美区成人在线视频| 欧美精品国产亚洲| 麻豆av噜噜一区二区三区| 十八禁网站网址无遮挡 | 天堂影院成人在线观看| 国产免费福利视频在线观看| 亚洲国产欧美人成| 久久久久久久大尺度免费视频| 人人妻人人澡人人爽人人夜夜 | 成年av动漫网址| 国产老妇女一区| 亚洲熟妇中文字幕五十中出| 嘟嘟电影网在线观看| 国产黄片美女视频| 激情五月婷婷亚洲| 久久精品国产亚洲av天美| 全区人妻精品视频| 国产高清国产精品国产三级 | 三级毛片av免费| 欧美+日韩+精品| 亚洲欧美成人综合另类久久久| 国语对白做爰xxxⅹ性视频网站| 免费人成在线观看视频色| 汤姆久久久久久久影院中文字幕 | 国产成人午夜福利电影在线观看| 菩萨蛮人人尽说江南好唐韦庄| 99久久精品国产国产毛片| 午夜免费观看性视频| 国产黄频视频在线观看| 99久久精品国产国产毛片| 80岁老熟妇乱子伦牲交| 婷婷六月久久综合丁香| 99久久精品国产国产毛片| 亚洲av中文字字幕乱码综合| 亚洲精品成人久久久久久| 美女内射精品一级片tv| 免费av观看视频| 在线观看一区二区三区| 亚洲最大成人手机在线| 不卡视频在线观看欧美| 国产成人免费观看mmmm| 亚洲欧美中文字幕日韩二区| www.av在线官网国产| 国产精品国产三级国产av玫瑰| 国产精品一区www在线观看| 麻豆成人av视频| 婷婷六月久久综合丁香| 天堂俺去俺来也www色官网 | 亚洲高清免费不卡视频| 亚洲精华国产精华液的使用体验| 美女国产视频在线观看| 日本黄色片子视频| 三级国产精品欧美在线观看| 一级片'在线观看视频| 免费观看性生交大片5| 中文字幕人妻熟人妻熟丝袜美| av网站免费在线观看视频 | 久久久欧美国产精品| 免费观看a级毛片全部| 一区二区三区乱码不卡18| 日韩欧美一区视频在线观看 | 中文在线观看免费www的网站| 男的添女的下面高潮视频| 日日干狠狠操夜夜爽| 国产 一区 欧美 日韩| 亚洲精品自拍成人| 最近手机中文字幕大全| 看黄色毛片网站| 精品熟女少妇av免费看| a级毛片免费高清观看在线播放| 国产乱来视频区| 国产探花在线观看一区二区| 国产不卡一卡二| av女优亚洲男人天堂| 亚洲性久久影院| 久久久久久久久大av| 最近2019中文字幕mv第一页| 熟女电影av网| 国产黄片视频在线免费观看| 国产激情偷乱视频一区二区| 久久久久久久久大av| 99热6这里只有精品| 国产成人精品福利久久| 国产一区二区亚洲精品在线观看| 国产91av在线免费观看| 男女啪啪激烈高潮av片| 91精品伊人久久大香线蕉| 精品国内亚洲2022精品成人| 99久久精品热视频| 日本黄色片子视频| 男的添女的下面高潮视频| 国精品久久久久久国模美| 大又大粗又爽又黄少妇毛片口| 日本色播在线视频| 亚洲欧美一区二区三区国产| 人人妻人人澡人人爽人人夜夜 | 久久久久久久亚洲中文字幕| 久久精品夜夜夜夜夜久久蜜豆| 乱系列少妇在线播放| 欧美不卡视频在线免费观看| 狂野欧美激情性xxxx在线观看| 亚洲精品乱码久久久v下载方式| 久久久亚洲精品成人影院| 国产免费视频播放在线视频 | av在线播放精品| 午夜精品一区二区三区免费看| 亚洲国产精品sss在线观看| 亚洲四区av| 一个人看视频在线观看www免费| 国产精品一区二区三区四区久久| 丝瓜视频免费看黄片| 天天躁夜夜躁狠狠久久av| 成人午夜高清在线视频| 国产又色又爽无遮挡免| xxx大片免费视频| 99久国产av精品| 欧美精品一区二区大全| 一级毛片我不卡| 国产成人一区二区在线| 一级a做视频免费观看| 国产在线一区二区三区精| 亚洲精品aⅴ在线观看| 久久久精品94久久精品| 非洲黑人性xxxx精品又粗又长| 天堂影院成人在线观看| 国产伦理片在线播放av一区| 2022亚洲国产成人精品| 午夜精品在线福利| 最近中文字幕2019免费版| 日韩强制内射视频| 成人综合一区亚洲| 亚洲综合色惰| 精品久久久久久成人av| 蜜臀久久99精品久久宅男| 亚洲欧美清纯卡通| 人人妻人人澡人人爽人人夜夜 | 黄色欧美视频在线观看| eeuss影院久久| 国产精品美女特级片免费视频播放器| 夜夜看夜夜爽夜夜摸| 午夜亚洲福利在线播放| 久久亚洲国产成人精品v| 日韩大片免费观看网站| 亚洲久久久久久中文字幕| 男人舔奶头视频| 嫩草影院入口| 亚洲欧美日韩东京热| 国产精品三级大全| 免费少妇av软件| 热99在线观看视频| 国产精品蜜桃在线观看| 亚洲精品久久久久久婷婷小说| 天天躁日日操中文字幕| 老师上课跳d突然被开到最大视频| 精品欧美国产一区二区三| 亚洲精品日本国产第一区| 嘟嘟电影网在线观看| 亚洲在久久综合| 午夜福利高清视频| 少妇的逼好多水| 美女cb高潮喷水在线观看| av黄色大香蕉| 国产精品1区2区在线观看.| 色吧在线观看| 在线 av 中文字幕| 国产精品人妻久久久久久| 亚洲成人精品中文字幕电影| 国产av国产精品国产| 日日啪夜夜爽| 日本黄大片高清| 综合色av麻豆| 久久久久久久大尺度免费视频| 色网站视频免费| 777米奇影视久久| 建设人人有责人人尽责人人享有的 | 欧美人与善性xxx| 免费观看在线日韩| 成人特级av手机在线观看| 能在线免费观看的黄片| 婷婷色综合www| 夜夜爽夜夜爽视频| 亚洲成人精品中文字幕电影| 亚洲av电影在线观看一区二区三区 | 国产 亚洲一区二区三区 | 国产精品嫩草影院av在线观看| 欧美变态另类bdsm刘玥| 国产三级在线视频| 亚洲aⅴ乱码一区二区在线播放| 国产淫语在线视频| 国产一级毛片七仙女欲春2| 亚洲精品国产成人久久av| 欧美 日韩 精品 国产| 插逼视频在线观看| 又粗又硬又长又爽又黄的视频| 乱系列少妇在线播放| 一级a做视频免费观看| 干丝袜人妻中文字幕| 人人妻人人澡人人爽人人夜夜 | 国产成人aa在线观看| 久久久久久久久久成人| 99热网站在线观看| 亚洲欧美中文字幕日韩二区| 国产成人一区二区在线| 免费av毛片视频| 亚洲精品日本国产第一区| 伊人久久精品亚洲午夜| 校园人妻丝袜中文字幕| 国产午夜精品论理片| 国产视频首页在线观看| 人人妻人人看人人澡| 久久久国产一区二区| 国产综合懂色| 国产精品久久久久久精品电影| 99热这里只有精品一区| 国产精品av视频在线免费观看| 国产精品蜜桃在线观看| 亚洲熟女精品中文字幕| 99久国产av精品| 日韩欧美精品v在线| 亚洲精品成人av观看孕妇| 日韩欧美 国产精品| 婷婷色综合www| 成人亚洲欧美一区二区av| 一二三四中文在线观看免费高清| 99久久九九国产精品国产免费| 国产高清有码在线观看视频| 少妇高潮的动态图| 国产免费视频播放在线视频 | 亚洲va在线va天堂va国产| 国产精品.久久久| 嫩草影院新地址| 日日摸夜夜添夜夜添av毛片| 舔av片在线| 免费看不卡的av| 久久久久久久午夜电影| 18+在线观看网站| 色综合站精品国产| 日韩在线高清观看一区二区三区| 日韩强制内射视频| 日韩成人伦理影院| 美女xxoo啪啪120秒动态图| 看黄色毛片网站| 欧美另类一区| 成人午夜精彩视频在线观看| av一本久久久久| 美女被艹到高潮喷水动态| 亚洲自偷自拍三级| 一级毛片aaaaaa免费看小| 国产欧美另类精品又又久久亚洲欧美| 国产免费又黄又爽又色| 久久久国产一区二区| 欧美一级a爱片免费观看看| 我的女老师完整版在线观看| 真实男女啪啪啪动态图| 亚洲18禁久久av| 99热这里只有是精品50| 天堂√8在线中文| 一级毛片aaaaaa免费看小| xxx大片免费视频| 最近最新中文字幕大全电影3| 色吧在线观看| 国产日韩欧美在线精品| 国产成人精品婷婷| 成人综合一区亚洲| 色综合站精品国产| 免费看不卡的av| 久久久精品欧美日韩精品| 国产午夜精品一二区理论片| 最近视频中文字幕2019在线8| 亚洲国产日韩欧美精品在线观看| 亚洲精品久久午夜乱码| 国内精品一区二区在线观看| 毛片一级片免费看久久久久| 日本熟妇午夜| 色综合站精品国产| 中文字幕亚洲精品专区| 秋霞在线观看毛片| 中文资源天堂在线| 美女主播在线视频| 一区二区三区乱码不卡18| 尾随美女入室| 美女黄网站色视频| 国产一级毛片在线| 一区二区三区高清视频在线| 欧美另类一区| 国内揄拍国产精品人妻在线| 亚洲国产最新在线播放| 成人欧美大片| 日韩制服骚丝袜av| 51国产日韩欧美| 三级男女做爰猛烈吃奶摸视频| 国产亚洲最大av| 丝袜喷水一区| 久久精品国产自在天天线| 欧美xxxx性猛交bbbb| 国产熟女欧美一区二区| 嫩草影院新地址| 小蜜桃在线观看免费完整版高清| 精品一区二区免费观看| 日韩一区二区三区影片| 一级毛片黄色毛片免费观看视频| 国产黄片视频在线免费观看| 秋霞伦理黄片| 高清日韩中文字幕在线| 嘟嘟电影网在线观看| 汤姆久久久久久久影院中文字幕 | 国产伦一二天堂av在线观看| 成人午夜高清在线视频| 人体艺术视频欧美日本| 亚洲国产色片| 亚洲精品,欧美精品| 国产精品久久久久久久久免| 国产成人免费观看mmmm| 国产欧美日韩精品一区二区| 嫩草影院精品99| 精品少妇黑人巨大在线播放| 在线观看免费高清a一片| 亚洲成人av在线免费| 日本一二三区视频观看| 免费观看精品视频网站| 国产亚洲91精品色在线| a级一级毛片免费在线观看| 狂野欧美激情性xxxx在线观看| 亚洲,欧美,日韩| 欧美zozozo另类| 精品不卡国产一区二区三区| 老司机影院成人| 亚洲精品视频女| 男人狂女人下面高潮的视频| 婷婷六月久久综合丁香| 亚洲在线观看片| 97在线视频观看| 人妻一区二区av| 亚洲国产精品成人综合色| 国产av码专区亚洲av| 五月天丁香电影| 亚洲av国产av综合av卡| 亚洲av不卡在线观看| 精品久久久久久电影网| 大又大粗又爽又黄少妇毛片口| 国产高清国产精品国产三级 | 真实男女啪啪啪动态图| 草草在线视频免费看| 特大巨黑吊av在线直播| 麻豆av噜噜一区二区三区| 免费观看av网站的网址| 噜噜噜噜噜久久久久久91| 午夜久久久久精精品| 亚洲欧美成人综合另类久久久| 老女人水多毛片| 天堂√8在线中文| 日韩成人伦理影院| 国产精品久久久久久av不卡| 三级国产精品欧美在线观看| 国产精品一二三区在线看| 国产不卡一卡二| 国产 一区 欧美 日韩| 国国产精品蜜臀av免费| 少妇熟女aⅴ在线视频| 国语对白做爰xxxⅹ性视频网站| 久久久久久九九精品二区国产| 成人鲁丝片一二三区免费| 日韩制服骚丝袜av| 成人欧美大片| 免费观看性生交大片5| 国产有黄有色有爽视频| 在线免费观看不下载黄p国产| 3wmmmm亚洲av在线观看| 国产成人a区在线观看| 激情 狠狠 欧美| 国产精品女同一区二区软件| 国产成人freesex在线| av国产久精品久网站免费入址| 国产女主播在线喷水免费视频网站 | 免费看不卡的av| 日韩av在线大香蕉| 亚洲av日韩在线播放| 久久99热6这里只有精品| 国内揄拍国产精品人妻在线| 成人综合一区亚洲| 在线观看美女被高潮喷水网站| 国产男女超爽视频在线观看| 久99久视频精品免费| 亚洲成人中文字幕在线播放| 观看免费一级毛片| 舔av片在线| 国产精品一区二区在线观看99 | 欧美日韩综合久久久久久| 熟女人妻精品中文字幕| 婷婷色综合大香蕉| 国产一区有黄有色的免费视频 | 成年女人在线观看亚洲视频 | 成年av动漫网址| 一级片'在线观看视频| 搞女人的毛片| 日本欧美国产在线视频| 亚洲欧美日韩无卡精品| videos熟女内射| 国产高清国产精品国产三级 | 不卡视频在线观看欧美| 亚洲四区av| 欧美日韩在线观看h| 免费黄频网站在线观看国产| 激情 狠狠 欧美| 国产高清不卡午夜福利| 久久人人爽人人片av| 九九久久精品国产亚洲av麻豆| 日韩欧美一区视频在线观看 | 身体一侧抽搐| 久久草成人影院| av又黄又爽大尺度在线免费看| 高清视频免费观看一区二区 | 2022亚洲国产成人精品| 尤物成人国产欧美一区二区三区| 精品一区在线观看国产| 国产高清不卡午夜福利| 久久久久性生活片| av免费在线看不卡| 亚洲性久久影院| 亚洲欧美清纯卡通| 国产精品无大码| 亚洲在线自拍视频| 国产黄色小视频在线观看| 一级毛片黄色毛片免费观看视频| 国产精品一二三区在线看| 国产精品一及| 国产午夜精品论理片| 一区二区三区乱码不卡18| 日产精品乱码卡一卡2卡三| 久久精品国产鲁丝片午夜精品| 国产精品日韩av在线免费观看| 欧美不卡视频在线免费观看| 狂野欧美白嫩少妇大欣赏| 精品一区二区免费观看| 尾随美女入室| 国产精品熟女久久久久浪| 婷婷色综合大香蕉| 国产激情偷乱视频一区二区| 97热精品久久久久久| 国产精品国产三级专区第一集| 午夜久久久久精精品| 一级毛片久久久久久久久女| av在线蜜桃| 内地一区二区视频在线| 国产亚洲最大av| 一级毛片黄色毛片免费观看视频| 啦啦啦啦在线视频资源| 亚州av有码| 欧美激情久久久久久爽电影| 国产精品久久久久久精品电影小说 | 大香蕉久久网| 欧美xxxx性猛交bbbb| 亚洲av.av天堂| 精品少妇黑人巨大在线播放| 简卡轻食公司| 免费av毛片视频| 欧美人与善性xxx| av女优亚洲男人天堂| 美女主播在线视频| 久久久a久久爽久久v久久| 日韩av免费高清视频| 亚洲精品国产av蜜桃| 午夜视频国产福利| 亚洲国产欧美人成| 人妻一区二区av| 日韩成人av中文字幕在线观看| 岛国毛片在线播放| 亚洲精品影视一区二区三区av| 在线天堂最新版资源| 日韩亚洲欧美综合| 熟女电影av网| 日韩亚洲欧美综合| 亚洲国产精品sss在线观看| 免费人成在线观看视频色| 18禁在线无遮挡免费观看视频| av播播在线观看一区| 免费人成在线观看视频色| 97热精品久久久久久| 亚洲国产精品sss在线观看| 日韩欧美一区视频在线观看 | 黄色一级大片看看| 水蜜桃什么品种好| 搡女人真爽免费视频火全软件| 黄色欧美视频在线观看| 久久99热这里只频精品6学生| 午夜精品一区二区三区免费看| 欧美日韩视频高清一区二区三区二| av网站免费在线观看视频 | 永久网站在线|