• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Transverse Transport of Polymeric Nano fluid under Pure Internal Heating:Keller Box Algorithm

    2018-07-09 06:46:48MehmoodRanaandMaraj
    Communications in Theoretical Physics 2018年7期

    R.Mehmood,S.Rana,and E.N.Maraj

    Department of Mathematics,Faculty of Natural Sciences,HITEC University,Taxila Cantt,Pakistan

    Nomenclature

    1 Introduction

    Non-Newtonian fluids in recent times have achieved extensive position in numerous aspects of science,engineering and technology mostly in substantial dispensation,natural and atomic productions,geophysics,and bio-engineering. These fluids display a recipe of viscid and flexible conduct under strain.The characteristics of all these types of non-Newtonian fluids are described by highly non-linear constitutive equations.In fact,Navier-Stokes theory does not cover all rheological properties of complicated fluids like polymer solutions,blood,paints,certain oils,greases etc.Major difficulty of non-Newtonian fluids is the presence of non-linearity,which cannot be handled by traditional constitutive relation for all fluids.[1]The discussion of Non-Newtonian fluids is of substantial concentration in lubricant reservoir manufacturing.The role of viscosity in a linear stress strain equation leads to be a fluid as Newtonian/non-Newtonian.There are some non-Newtonian second order fluids,like a convected Maxwell fluid,and an Oldroyd A and B fluids.Numerous fluid models are suggested by many researchers in the history of fluid mechanics,which are mainly divided into three classes’rate type,differential type,and integral type.In modern ages,the Oldroyd-B fluid has learnt a distinct grade midst the countless fluids of the rate type.Oldroyd-B type fluid is one of the simplest constitutive models that describe the viscoelastic conduct under general flow circumstances.

    Mehmood et al.[2]gave theoretical study of micropolar second grade fluid heat transfer properties.Nadeem et al.[3?4]investigated flow of nanoparticle for third grade fluid with heat transfer characteristics and studied second grade nanofluid for thermophertic and Brownian motion effects.Rahman et al.[5]studied the properties of thermophertic parameter and Brownian motion parameter for oblique laminar flow of viscid nanofluid.The study of different physical features of stagnation point flows towards a stretched sheet has attracted numerous researchers.[6?8]Crane[9]considered flow over a linear stretched sheet.Cortell[10]discussed stretching flow along with heat transmission.

    Heat transfer phenomena are of vital importance in fluid mechanics now days.Pohlhausen[11]examined heat transfer problem with assuming uniform temperature at the plate.Aziz[12]and Magyari[13]studied similar type of problem with convective boundary condition.Ishak[14]used Aziz’s problem for suction/injection on levelled surface.Haddad et al.[15]studied analytically the nanofluid based on Rayleigh-Bernard problem,he made comparison for presence and no presence of Brownian motion and Thermopherotic effects.Nadeem et al.[16]numerically investigated the heat and nanofluid flow properties of Oldroyd-B type fluid on a stretched sheet.Sheikholeslami et al.[17]studied effects of MHD and natural convection of water based nanofluid with consideration of Brownian motion and Thermopherotic effects.Sheikholeslami et al.[18]significantly discussed the influence of Brownian motion and Thermopherotic constraints on nanofluid flows with aid of two phase model,also effects of thermal radiation and magneto hydrodynamics are taken into account.Seth et al.[19]studied the laminar flow of viscoelastic fluid under the influence of thermal and nanoparticle buoyancy forces,in which they used convective boundary conditions for heat transfer effects.Reddy et al.[20]investigated micropolar liquid for its Thermopherotic effects on heat and mass transfer with internal heat generation/absorptions effects.Rashad et al.[21]discussed fluid passing an upright rotating cone on preamble surface for its effects of thermophertic and thermal radiation with heat and mass transfer.Some recent studies on current topic may be found in Refs.[22–41].The present study is conducted to examine oblique stream of Oldroyd-B nano- fluid past a stretched sheet with internal heat generation.The governing physical problem is solved numerically using Keller box scheme.The core outcomes of the study at summarized in the concluding remarks.To the best of our knowledge,such kind of study has not been attempted prior.The obtained results are a novel contribution,which can be benchmark for further relevant academic research related to polymer industry.

    2 Formulation of the Physical Problem

    Considersteady 2D incompressible flows of an Oldroyd-B nanofluid over a stretched wall with internal heat generation.To maintain equilibrium,keeping origin fixed a force is applied in horizontal direction as in Fig.1.The planar surface is stretched linearly with velocity uw.It is assumed that the fluid strikes the surface obliquely at any arbitrary angle.Moreover,it is assumed that heat transfers through convection Tffrom stretched surface.Furthermore,Cwis the nanoparticles concentration at the surface and T∞and C∞are nanofluid temperature and concentration far away from the surface.

    Fig.1 Geometrical description of model.

    The governing equations for an Oldroyd-B nanofluid model are as follows:

    The consistent boundary conditions are[36]

    wherecomponents of velocity respectively,ν is known as kinematic viscosity,is termed as pressure,ρ is taken to be density,Tˉ is termed as temperature,λ1and λ2are relaxation and retardation times,α and k are taken to be thermal diffusivity and thermal conductivity,DBis known as Brownian dispersion constant,DTis taken as Thermopherotic dispersion constant,T∞is ambient fluid temperature,Cwis nanoparticle absorption on surface,C∞is defined to be free stream nanoparticle absorption,τ is proportion of heat capacity of nanoparticle and fluid,a,b1,b2are constants.

    Define following substitutions,known as scaling transformation[36]in Eqs.(1)–(7),we get

    where β1= λ1a and β2= λ2a are the Deborah numbers,Pr= ν/α is Prandtl number,Le= α/DB,is Lewis number,Nt= τDT(Tf? T∞)/T∞ν is thermophoretic constraint,Nb= τD√B(Cw? C∞)/ν is Brownian motion constraint,γ =Q0/(aρcp)is heat generation/absorption constraintis Biot number, γ1=b1/a is stretching ratio,γ2=b2/a is taken as obliqueness.

    Define new transformation known as stream function:[36]

    Using Eq.(16)in Eqs.(9)–(15)and eliminating the pressure term,we get the following set of equations:

    Redefining the stream function as:[36]

    Using Eq.(22)in(17)–(21),we get,after integrating once,

    and boundary conditions(20)–(21)take the form

    Applying the boundary conditions(28)at infinity in Eqs.(23)and(24),we get

    where A is boundary layer constant.

    Introducing

    Using Eqs.(29)and(30),in Eqs.(23)and(24)give

    along with boundary conditions

    where a prime denotes derivative with respect to y1.

    3 Physical Measures of Interest

    Concerned physical parameters are the local heat flux and the mass flux are defined in dimensional and nondimensional form as:

    4 Numerical Solution

    The system of equations(31)–(36)are reduced to system of nonlinear equations of order one by considering

    Such that Eqs.(31)–(36)become

    Using central difference scheme,averages centred at midpoints are

    Discretized form of Eqs.(39)–(45)is

    Equations(46)–(56)are nonlinear algebraic equations and can be linearized via using Newton iterations as follows:

    For(i+1)-th iterates,

    For all dependent variables,using these expressions in Eqs.(46)–(56)and neglecting higher order terms in,etc.,a linear tri-diagonal set of equations is obtained as follows:

    Linearized equations from Eqs.(57)–(67)can be written in vector form as:

    Here[I]is unit matrix and[αi],[?i]are square matrices of order 11 whose elements are determined by the following expressions:

    Incorporating Eq.(70)into Eq.(69),yields

    and[Wj]is a 11×1 column matrix.Elements of W are solved from following equations

    ?j,αjand Wjare calculated by forward sweep.Once the elements of W are computed,Equation(71)gives the solution δ whose elements are obtained from following relations:

    With tolerance level of 10?6calculations are carried out.

    5 Results and Discussion

    This section is constructed to discuss the flow of an oblique stream of Oldroyd-B nano- fluid past a stretched sheet with internal heat generation. Figures 2–23 are ploted for some fixed values of certain parameters to discuss fluid behaviour.

    Fig.2 Velocity profile f ′(y)for γ1.

    Fig.3 Velocity profile f′(y)for β1.

    Fig.4 Velocity profile f ′(y)for β2.

    We see that Fig.2 exhibits that when stretching ratio is increased then normal component of velocity also increases,further it is observed that flow has a formed boundary layer for γ1>1,moreover it is evident from this graph that flow has reversed structure for γ1<1.Physically we say that an increment in motion of liquid close to stagnated area become reason to rise in acceleration of fluid flow outside the boundary layer flow.Therefore,an increment in stretching ratio becomes reason of thinning boundary layer.Figure 3 displays behaviour of normal component of velocity as well as momentum boundary layer thickness for Deborah numbers β1.We observe that with the rise in Deborah number β1momentum boundary layer and normal velocity f′(y)declines.Normal velocity and momentum boundary layer is observed in Fig.4 for Deborah number β2which is increasing for increase in Deborah number β2.Deborah numbers β1and β2always depict the opposite reaction because of relaxation and retardation times.Physically,since Deborah number is defined as β1= λ1where λ1is relaxation time.The increment in the relaxation time leads to an increment in temperature and the thermal boundary layer thickness.Influence of β2on temperature and thermal boundary layer are opposite to that of β1,because retardation time delivers resistance which become reasons for decrease in temperature and the thermal boundary layer.

    Fig.5 Velocity profile h′(y)for γ1.

    Fig.6 Velocity profile h′(y)for β1.

    Fig.7 Velocity profile h′(y)for β2.

    Figures 5–7 are plotted to show behaviour of tangential velocity for stretching ratio γ1and Deborah numbers β1and β2.For increase in stretching ratio γ1the vertical velocity h′(y)rises close to wall but reverses its behaviour as move away from wall as shown in Fig.5.Figure 6 shows similar kind of behaviour for Deborah number β1,but Fig.7 shows opposite behaviour for Deborah number β2and for increase in Deborah number β2vertical velocity h′(y)decreases near the wall but reverses its behaviour away from the wall.

    Fig.8 Temperature profile θ(y)for β1.

    Fig.9 Temperature profile θ(y)for γ.

    Figures 8–13 are plotted to show the behaviour of temperature θ(y)for Deborah number β1and heating source and sink parameter γ,Biot and Prandtl number Bi and Pr,thermpheresis parameter Nt and Brownian motion parameter Nb.From Fig.8 we find that temperature and thermal boundary layer tend to rise with a rise in Deborah number β1.In Fig.9 we observe that temperature rises for increase in γ.Prandtl number is the ratio of momentum to thermal diffusivity.Larger values of Prandtl number have higher momentum thermal diffusivity.

    Fig.10 Temperature profile θ(y)for Pr.

    Fig.11 Temperature profile θ(y)for Bi.

    Fig.12 Temperature profile θ(y)for Nb.

    It is observed in Fig.10 that for an increment in Prandtl number Pr,temperature θ(y)and thermal boundary layer tends to decline.When Prandtl number rises it implies a decline in thermal diffusivity that lead to decrease of energy transfer ability and it results in reducing the thermal boundary layer thickness.Biot number represents the ratio of internal resistive force of body,to external resistive force to heat convection.Thus,small Biot number represents small resistance to heat conduction and thus small temperature gradient of body.But in Fig.11 temperature profile θ(y)and thermal boundary layer thickness increases with increase in Biot number Bi.

    Fig.13 Temperature profile θ(y)for Nt.

    Fig.14 Concentration profile ?(y)for β1.

    Fig.15 Concentration profile ?(y)for Nt.

    Figure 12 shows increasing behaviour for thermophoresis parameter Nt and same type of behaviour is detected in Fig.13 for Brownian motion parameter Nb.Increasing thermopherotic and Brownian motion parameter Nt and Nb,increases of temperature in boundary layer which subsequently lessens heat transfer rate at surface.There would be a significant reduction in concentration boundary layer thickness when Lewis number Le is enlarged.This spectacle happens,since Lewis number affects the concentration gradient at the surface.

    Fig.16 Concentration profile ?(y)for Le.

    Fig.17 Concentration profile ?(y)for Pr.

    Fig.18 Surface heat flux ?θ′(0)for β1.

    Figures 14–17 are plotted to examine the nature of concentration profile ?(y).Figure 14 shows increasing effect for increase in Deborah number β1and Fig.15 shows increasing effect for increase in thermophoresis parameter Nt,but Fig.16 shows decreasing behaviour for increase in Lewis number Le and similar kind of behaviour is observed in Fig.17 for Prandtl number Pr.It is fascinating to note that molecular Brownian motion of nanoparticles at nano scale levels is a significant nano scale mechanism that governs their thermal behavior.

    Fig.19 Surface mass flux ??′(0)for β2.

    Fig.20 Surface heat flux ?θ′(0)for Nb.

    Fig.21 Surface mass flux ??′(0)for Nb.

    Since the size of the nanoparticles is very tiny so Brownian motion revenues that can affect heat transfer properties.Since the size of particle tactics to nano-meter gage,Brownian motion of relative particle and its effects on the adjacent fluids become vital in heat transfer.It is also detected that both temperature and volume fraction of the nanofluid within boundary layer increase by increasing in thermophertic parameter Nt and hence the nanoparticles enhance heat and mass transfer.Nanoparticle volume fraction distributions slow down by an increment in Lewis number in whole area.Lewis number is proportion of thermal diffusivity to mass diffusivity.Growing the values of Lewis number results a higher value of while smallest value of mass diffusivity,which results in thinner boundary layer.Figures 18–21 are plotted to examine the local heat flux and mass flux for different emerging parameter.It is observed that local heat flux ?θ′(0)rises for Deborah number β2in Fig.18 and local mass flux ??′(0)tends to increase for Deborah number β2in Fig.19.Further local heat flux ?θ′(0)decreases as shown in Fig.20 while Fig.21 shows that local mass flux ??′(0)tends to increase with Brownian motion parameter Nb.Since rising values of Prandtl number has a great heat volume,and hence strengthens the heat transfer rate.Figure 22(a)depicts stream line patterns for positive obliqueness when β1=0.Figure 22(b)exhibits streamline patterns for β1=0.Stream line shows that obliqueness constraint γ2creates change in direction of flow.We see that streamlines are inclined to left when obliqueness of flow is taken to be positive.Actually increase in γ2results in obliqueness of flow on a stretched area.Similarly Fig.23(a)exhibits streamline patterns for negative values of γ2when β1=0 while Fig.23(b)exhibits streamline patterns for negative values of γ2when β1=4.The stream contour ψ=0 touches the partition y1=0,at stagnation point x1=x0and zero skin friction.For conventional purpose we use y instead of y1in graphs.

    Fig.22 (a)Stream lines pattern for Deborah numbers β1=4,with γ2=5.(b)Stream lines pattern for Deborah numbers β1=0,with γ2=5.

    Fig.23 (a)Stream lines pattern for Deborah numbers β1=0,with γ2= ?5.(b)Stream lines pattern for Deborah numbers β1=4,with γ2= ?5.

    6 Concluding Remarks

    Oblique flow of an Oldroyd-B type fluid over a stretched surface had been explored with existence of internal heating and thermophoresis and Brownian motion properties.Main findings of this article are summarised as:

    Deborah number β1becomes the reason for decrease in momentum boundary layer but it goes for increase in thermal boundary layer.Also,local heat and mass fluxes decrease for Deborah number β1.Brownian motion decreases the local heat flux while it enhances the local mass flux at the stretching surface.Streamlines patterns exhibit that the flow is more inclined in the presence of the Deborah number.

    [1]S.Nadeem and A.Hussain,Zeitschrift für Naturforschung A 65(2010)540.

    [2]R.Mehmood,S.Nadeem,and N.S.Akbar,J.Taiwan Inst.Chem.Eng.44(2013)586.

    [3]S.Nadeem,R.Mehmood,and N.S.Akbar,J.Comput.Theor.Nanosci.10(2013)2737.

    [4]S.Nadeem,R.Mehmood,and N.S.Akbar,Int.J.Heat Mass Transfer 57(2013)679.

    [5]M.Rahman,T.Grosan,and I.Pop,Int.J.Numer.Method H.26(2016)189.

    [6]L.Howarth,Lond.Edinb.Dubl.Phil.Mag.42(1951)239.

    [7]T.Chiam,J.Phys.Soc.Jpn.63(1994)2443.

    [8]Y.Lok,A.Ishak,and I.Pop,Int.J.Numer.Method H.21(2011)61.

    [9]L.J.Crane,Z.Angew.Math.Phys.21(1970)645.

    [10]R.Cortell,Int.J.Nonlinear Mech.41(2006)78.

    [11]E.Pohlhausen,Z.Angew.Math.Phys.1(1921)115

    [12]A.Aziz,Commun.Nonlinear Sci.Numer.Simul.14(2009)1064.

    [13]E.Magyari,Commun.Nonlinear Sci.Numer.Simul.16(2011)599.

    [14]A.Ishak,Appl.Math.Comput.217(2010)837.

    [15]Z.Haddad,et al.,Int.J.Therm.Sci.57(2012)152.

    [16]S.Nadeem,R.U.Haq,N.S.Akbar,et al.,PLoS ONE 8(2013)e69811.

    [17]M.Sheikholeslami,et al.,Comput.Fluids 94(2014)147.

    [18]M.Sheikholeslami,et al.,J.Magn.Magn.Mater.374(2015)36.

    [19]G.Seth,M.Mishra,and A.Chamkha,J.Nano fluids 5(2016)511.

    [20]P.Reddy and A.Chamkha,J.Appl.Fluid Mech.9(2016)2443.

    [21]A.M.Rashad,B.Mallikarjuna,A.J.Chamkha,et al.,Afrika Matematika(2016)1.

    [22]O.Makinde and A.Aziz,Int.J.Therm.Sci.49(2010)1813.

    [23]A.V.Kuznetsov and D.Nield,Int.J.Therm.Sci.49(2010)243.

    [24]G.Swapna,L.Kumar,P.Rana,and B.Singh,et al.,J.Taiwan Inst.Chem.Eng.47(2015)18.

    [25]W.Ibrahim and O.Makinde,J.Aerospace Eng.29(2015)04015037.

    [26]M.Rahman,A.V.Rosca,and I.Pop,Int.J.Numer.Method H.25(2015)299.

    [27]A.Malvandi,F.Hedayati,and D.Ganji,J.Appl.Fluid Mech.8(2015).

    [28]K.Das,P.R.Duari,and P.K.Kundu,J.Egyptian Math.Soc.23(2015)435.

    [29]R.Kandasamy,C.Jeyabalan,and K.S.Prabhu,Appl.Nanosci.6(2016)287.

    [30]V.Rajesh,Mallesh,and O.A.Bég,Procedia Mater.Sci.10(2015)80.

    [31]A.Rashad,Ismael,A.Muneer,et al.,J.Taiwan Inst.Chem.Eng.68(2016)173.

    [32]P.S.Reddy,P.Sreedevi,and A.J.Chamkha,Heat Transfer Asian Res.46(2016)815.

    [33]A.U.Rehman,R.Mehmood,and S.Nadeem,Appl.Therm.Eng.112(2017)832.

    [34]P.S.Reddy and A.J.Chamkha,Int.J.Numer.Method H.27(2017)1.

    [35]P.S.Reddy,A.J.Chamkha,and A.Al-Mudhaf,Powder Technol.28(2017)1008.

    [36]S.Rana,R.Mehmood,and N.S.Akbar,J.Mol.Liq.222(2016)1010.

    [37]P.S.Reddy and A.J.Chamkha,J.Porous Media 20(2017)1.

    [38]S.Rana,R.Mehmood,P.V.S.Narayana,and N.S.Akbar,Commun.Theor.Phys.66(2016)687.

    [39]R.Mehmood,S.Nadeem,S.Saleem,and N.S.Akbar,J.Taiwan Inst.Chem.Eng.74(2017)49.

    [40]R.Mehmood,S.Nadeem,and N.S.Akbar,J.Appl.Fluid Mech.9(2016)1359.

    [41]S.Nadeem,R.Mehmood,and N.S.Akbar,J.Magn.Magn.Mater.378(2015)457.

    久久午夜亚洲精品久久| 又黄又粗又硬又大视频| av福利片在线| 久久中文字幕人妻熟女| 最好的美女福利视频网| 日本在线视频免费播放| or卡值多少钱| 不卡一级毛片| 午夜久久久在线观看| 天堂动漫精品| 欧美乱色亚洲激情| 亚洲三区欧美一区| 国产色视频综合| 色哟哟哟哟哟哟| 夜夜夜夜夜久久久久| 久久久久久大精品| 久久精品91蜜桃| 精品午夜福利视频在线观看一区| 天天添夜夜摸| 国产99白浆流出| 中文字幕色久视频| 免费av毛片视频| 久久国产亚洲av麻豆专区| 日韩av在线大香蕉| 国产免费男女视频| 亚洲五月婷婷丁香| 欧美av亚洲av综合av国产av| 成人亚洲精品av一区二区| 18禁美女被吸乳视频| 成人三级黄色视频| 成人精品一区二区免费| 久久久久九九精品影院| 婷婷六月久久综合丁香| 精品国产乱子伦一区二区三区| 丝袜美腿诱惑在线| 9热在线视频观看99| 免费高清在线观看日韩| 美国免费a级毛片| 真人一进一出gif抽搐免费| 亚洲成人国产一区在线观看| 国产成+人综合+亚洲专区| 亚洲人成电影免费在线| 亚洲精品国产精品久久久不卡| 少妇粗大呻吟视频| 婷婷丁香在线五月| 黑丝袜美女国产一区| 午夜精品国产一区二区电影| 日本vs欧美在线观看视频| 日韩三级视频一区二区三区| 激情视频va一区二区三区| 非洲黑人性xxxx精品又粗又长| 岛国视频午夜一区免费看| 久热爱精品视频在线9| √禁漫天堂资源中文www| 男女下面插进去视频免费观看| 村上凉子中文字幕在线| 精品久久久久久久人妻蜜臀av | 19禁男女啪啪无遮挡网站| 亚洲成人免费电影在线观看| 国内久久婷婷六月综合欲色啪| 99精品欧美一区二区三区四区| 欧美日韩精品网址| 波多野结衣一区麻豆| 国产私拍福利视频在线观看| 欧美成人午夜精品| 97人妻天天添夜夜摸| 亚洲一区中文字幕在线| 精品久久久精品久久久| 看免费av毛片| 亚洲中文日韩欧美视频| 国产单亲对白刺激| 操美女的视频在线观看| av超薄肉色丝袜交足视频| 国产黄a三级三级三级人| 巨乳人妻的诱惑在线观看| 嫩草影视91久久| 少妇 在线观看| 好看av亚洲va欧美ⅴa在| 看黄色毛片网站| 丝袜美足系列| 亚洲自偷自拍图片 自拍| 久热爱精品视频在线9| 老熟妇乱子伦视频在线观看| 岛国在线观看网站| 欧美性长视频在线观看| 成人精品一区二区免费| 黑人欧美特级aaaaaa片| 成人18禁在线播放| 午夜福利成人在线免费观看| 女人精品久久久久毛片| 少妇的丰满在线观看| av视频在线观看入口| 啦啦啦 在线观看视频| 免费在线观看完整版高清| 免费看a级黄色片| 亚洲三区欧美一区| 老司机深夜福利视频在线观看| 日日夜夜操网爽| 色播在线永久视频| 真人做人爱边吃奶动态| 日韩大尺度精品在线看网址 | 亚洲一区二区三区色噜噜| 国产亚洲精品久久久久久毛片| 又紧又爽又黄一区二区| 亚洲精品一卡2卡三卡4卡5卡| 丝袜在线中文字幕| 日韩成人在线观看一区二区三区| 国产高清激情床上av| 国产私拍福利视频在线观看| 中文字幕人成人乱码亚洲影| 日韩免费av在线播放| 手机成人av网站| 国产成+人综合+亚洲专区| 看片在线看免费视频| av天堂久久9| 成人三级做爰电影| 国产精品秋霞免费鲁丝片| 色综合欧美亚洲国产小说| 精品欧美一区二区三区在线| 久久影院123| 欧美最黄视频在线播放免费| 国产亚洲精品av在线| 一级a爱视频在线免费观看| 亚洲精品一卡2卡三卡4卡5卡| 麻豆成人av在线观看| 纯流量卡能插随身wifi吗| 日韩精品免费视频一区二区三区| 他把我摸到了高潮在线观看| 亚洲成av片中文字幕在线观看| 91精品三级在线观看| 久久香蕉国产精品| 亚洲国产精品成人综合色| 欧美乱妇无乱码| 免费在线观看亚洲国产| 一卡2卡三卡四卡精品乱码亚洲| 久久久久精品国产欧美久久久| 精品国产乱子伦一区二区三区| 亚洲情色 制服丝袜| 日韩一卡2卡3卡4卡2021年| 国产精华一区二区三区| 十八禁人妻一区二区| 啪啪无遮挡十八禁网站| 搡老妇女老女人老熟妇| av有码第一页| 日本精品一区二区三区蜜桃| 久久精品国产亚洲av香蕉五月| 色综合亚洲欧美另类图片| 欧美在线黄色| 亚洲第一av免费看| av天堂在线播放| 999久久久国产精品视频| 777久久人妻少妇嫩草av网站| 超碰成人久久| 精品高清国产在线一区| 中文字幕最新亚洲高清| 国产成人啪精品午夜网站| 制服人妻中文乱码| 我的亚洲天堂| 高潮久久久久久久久久久不卡| 丁香六月欧美| 亚洲精品一卡2卡三卡4卡5卡| 亚洲 欧美 日韩 在线 免费| 97碰自拍视频| 久久国产精品男人的天堂亚洲| 他把我摸到了高潮在线观看| 男女床上黄色一级片免费看| 亚洲精品美女久久久久99蜜臀| 成人亚洲精品一区在线观看| 日本a在线网址| 麻豆av在线久日| 校园春色视频在线观看| 精品国产乱子伦一区二区三区| 久久 成人 亚洲| 欧美乱码精品一区二区三区| 一本综合久久免费| 欧美激情久久久久久爽电影 | 国产免费av片在线观看野外av| 日本精品一区二区三区蜜桃| 免费高清在线观看日韩| 99在线视频只有这里精品首页| 自拍欧美九色日韩亚洲蝌蚪91| 人人澡人人妻人| 中文字幕高清在线视频| 国产伦一二天堂av在线观看| 国产精品1区2区在线观看.| 免费看a级黄色片| 一进一出好大好爽视频| 长腿黑丝高跟| 亚洲性夜色夜夜综合| 国产成人精品无人区| 1024视频免费在线观看| 午夜老司机福利片| 悠悠久久av| 午夜福利18| 一a级毛片在线观看| 91麻豆精品激情在线观看国产| 99国产精品免费福利视频| 久久久久久国产a免费观看| 狠狠狠狠99中文字幕| 国产亚洲av嫩草精品影院| 国内精品久久久久久久电影| 国产激情久久老熟女| 91精品国产国语对白视频| 国产精品99久久99久久久不卡| 一进一出抽搐gif免费好疼| 欧美日韩精品网址| 黑人巨大精品欧美一区二区蜜桃| 美女免费视频网站| 美女高潮喷水抽搐中文字幕| 99国产综合亚洲精品| 一本久久中文字幕| 色av中文字幕| 最近最新中文字幕大全电影3 | 久久精品成人免费网站| 国产麻豆成人av免费视频| 一卡2卡三卡四卡精品乱码亚洲| 欧美一级毛片孕妇| 亚洲第一电影网av| 亚洲在线自拍视频| 精品高清国产在线一区| 在线十欧美十亚洲十日本专区| 老司机在亚洲福利影院| 精品国产超薄肉色丝袜足j| 亚洲专区中文字幕在线| 欧美在线黄色| 啦啦啦免费观看视频1| 国产免费av片在线观看野外av| 免费在线观看完整版高清| 久久久水蜜桃国产精品网| 嫩草影院精品99| 日日干狠狠操夜夜爽| 又大又爽又粗| 亚洲人成电影免费在线| 精品午夜福利视频在线观看一区| 老司机福利观看| 免费观看精品视频网站| 亚洲午夜理论影院| 色哟哟哟哟哟哟| 岛国视频午夜一区免费看| 国产av精品麻豆| 久9热在线精品视频| 日本三级黄在线观看| 激情在线观看视频在线高清| 日本五十路高清| 18禁国产床啪视频网站| 日韩欧美免费精品| 国产色视频综合| 99久久综合精品五月天人人| 久久午夜综合久久蜜桃| www日本在线高清视频| 女人高潮潮喷娇喘18禁视频| 国产一卡二卡三卡精品| 51午夜福利影视在线观看| 久久性视频一级片| 亚洲一区高清亚洲精品| 亚洲av片天天在线观看| 国产精品免费视频内射| 国产又爽黄色视频| 一a级毛片在线观看| 黄色视频不卡| 日日干狠狠操夜夜爽| 如日韩欧美国产精品一区二区三区| 老司机午夜十八禁免费视频| 亚洲国产中文字幕在线视频| 看免费av毛片| 日韩国内少妇激情av| 中文亚洲av片在线观看爽| 国产精品影院久久| 在线永久观看黄色视频| 女性生殖器流出的白浆| 亚洲欧美一区二区三区黑人| 亚洲人成电影免费在线| 精品一区二区三区av网在线观看| 国产视频一区二区在线看| 精品国产一区二区三区四区第35| 大陆偷拍与自拍| 别揉我奶头~嗯~啊~动态视频| 精品国产乱子伦一区二区三区| 12—13女人毛片做爰片一| 免费在线观看完整版高清| 欧美成人性av电影在线观看| 人人妻人人澡人人看| 成人18禁在线播放| 久久精品亚洲熟妇少妇任你| 老熟妇仑乱视频hdxx| 欧美午夜高清在线| 亚洲欧美一区二区三区黑人| 黄色片一级片一级黄色片| 久久影院123| 欧美日韩瑟瑟在线播放| 乱人伦中国视频| 51午夜福利影视在线观看| 欧美色欧美亚洲另类二区 | 欧美+亚洲+日韩+国产| 欧美激情 高清一区二区三区| 亚洲精品中文字幕一二三四区| 一级作爱视频免费观看| 久久精品国产综合久久久| 国产真人三级小视频在线观看| 亚洲男人天堂网一区| 久久久久久久久久久久大奶| 欧美成人免费av一区二区三区| 色播在线永久视频| 精品电影一区二区在线| 免费在线观看影片大全网站| 国产三级在线视频| 久久久久久国产a免费观看| 久久九九热精品免费| 亚洲精品国产色婷婷电影| 日韩国内少妇激情av| 人人妻,人人澡人人爽秒播| 亚洲精品美女久久av网站| 制服诱惑二区| 丰满人妻熟妇乱又伦精品不卡| 国产免费男女视频| 婷婷精品国产亚洲av在线| 久久精品影院6| 亚洲成av人片免费观看| 国内久久婷婷六月综合欲色啪| 久久久久国产精品人妻aⅴ院| 涩涩av久久男人的天堂| 国产一区二区激情短视频| 香蕉国产在线看| 国产日韩一区二区三区精品不卡| 少妇 在线观看| 两个人免费观看高清视频| 狠狠狠狠99中文字幕| 亚洲av电影不卡..在线观看| 无限看片的www在线观看| 91成人精品电影| 亚洲狠狠婷婷综合久久图片| 热99re8久久精品国产| 怎么达到女性高潮| 亚洲人成网站在线播放欧美日韩| 国产一区在线观看成人免费| 1024视频免费在线观看| 国产亚洲欧美精品永久| 国产精品国产高清国产av| 国产私拍福利视频在线观看| 久9热在线精品视频| 国产精品野战在线观看| 波多野结衣高清无吗| 免费女性裸体啪啪无遮挡网站| 人妻久久中文字幕网| 国产精品亚洲一级av第二区| 午夜福利,免费看| 嫁个100分男人电影在线观看| 精品一区二区三区av网在线观看| 欧美日韩黄片免| www.999成人在线观看| 波多野结衣一区麻豆| 免费一级毛片在线播放高清视频 | 搡老妇女老女人老熟妇| 操美女的视频在线观看| 91在线观看av| 国产又色又爽无遮挡免费看| 亚洲黑人精品在线| 久久影院123| 午夜视频精品福利| 国产精品av久久久久免费| 中出人妻视频一区二区| 免费无遮挡裸体视频| 国产成人系列免费观看| 黄频高清免费视频| 国产亚洲欧美精品永久| 日韩精品中文字幕看吧| 99re在线观看精品视频| 午夜福利视频1000在线观看 | 国产高清激情床上av| 久久午夜亚洲精品久久| 一级毛片女人18水好多| 乱人伦中国视频| 男女之事视频高清在线观看| 亚洲精品国产一区二区精华液| 侵犯人妻中文字幕一二三四区| 亚洲熟妇中文字幕五十中出| 校园春色视频在线观看| 亚洲中文字幕一区二区三区有码在线看 | 9色porny在线观看| 午夜两性在线视频| 亚洲精品美女久久久久99蜜臀| 精品熟女少妇八av免费久了| 看片在线看免费视频| 色在线成人网| 18美女黄网站色大片免费观看| 91大片在线观看| 午夜福利高清视频| 丝袜美腿诱惑在线| 亚洲av电影不卡..在线观看| 黄色成人免费大全| 亚洲av成人av| 亚洲欧美激情综合另类| 欧美不卡视频在线免费观看 | 午夜福利成人在线免费观看| 日韩精品中文字幕看吧| 亚洲精品久久成人aⅴ小说| 在线观看免费日韩欧美大片| 午夜免费鲁丝| 国产男靠女视频免费网站| 大型av网站在线播放| 午夜成年电影在线免费观看| 97碰自拍视频| 亚洲九九香蕉| 欧美一级a爱片免费观看看 | 免费不卡黄色视频| 亚洲欧美激情在线| 日韩欧美一区视频在线观看| 久久九九热精品免费| 99国产精品99久久久久| 大型黄色视频在线免费观看| 90打野战视频偷拍视频| x7x7x7水蜜桃| 成人永久免费在线观看视频| 国产成人系列免费观看| 国产精品久久久久久人妻精品电影| 色av中文字幕| 久久国产精品影院| 黄色视频,在线免费观看| 亚洲精品国产一区二区精华液| www.自偷自拍.com| 久久久久久大精品| 国产单亲对白刺激| 亚洲色图av天堂| 在线天堂中文资源库| 亚洲第一欧美日韩一区二区三区| 熟妇人妻久久中文字幕3abv| 精品国产一区二区三区四区第35| 久久精品成人免费网站| 亚洲午夜理论影院| 精品国产一区二区三区四区第35| 嫁个100分男人电影在线观看| 欧美绝顶高潮抽搐喷水| 国产精品久久久人人做人人爽| 波多野结衣一区麻豆| 国产精品亚洲一级av第二区| 丰满的人妻完整版| 国产麻豆成人av免费视频| 在线观看66精品国产| 免费高清在线观看日韩| 久久伊人香网站| 亚洲成人久久性| 性色av乱码一区二区三区2| 国产日韩一区二区三区精品不卡| 97碰自拍视频| 高清毛片免费观看视频网站| 亚洲专区字幕在线| 亚洲激情在线av| 在线av久久热| 亚洲电影在线观看av| 午夜亚洲福利在线播放| 精品久久久久久久久久免费视频| 午夜福利欧美成人| 亚洲欧美激情综合另类| 一区二区三区激情视频| 亚洲九九香蕉| 天堂影院成人在线观看| 韩国精品一区二区三区| 亚洲av第一区精品v没综合| 国产精品一区二区在线不卡| 亚洲五月婷婷丁香| 免费在线观看亚洲国产| 亚洲国产精品合色在线| 国产成年人精品一区二区| 久久久精品国产亚洲av高清涩受| www日本在线高清视频| 午夜福利,免费看| 国产区一区二久久| 国产成人欧美| 日韩欧美免费精品| 99精品在免费线老司机午夜| 国产高清激情床上av| 久久九九热精品免费| 久久人妻av系列| 老汉色∧v一级毛片| 国产三级黄色录像| 国产av又大| 亚洲色图av天堂| 免费高清在线观看日韩| 国内精品久久久久精免费| av在线播放免费不卡| 亚洲欧美激情综合另类| 午夜精品国产一区二区电影| 最近最新免费中文字幕在线| 国产亚洲精品av在线| 精品人妻在线不人妻| 久99久视频精品免费| 97人妻天天添夜夜摸| 满18在线观看网站| 不卡av一区二区三区| 亚洲人成77777在线视频| 黄色a级毛片大全视频| 美女午夜性视频免费| 青草久久国产| 亚洲一区中文字幕在线| 欧美日韩中文字幕国产精品一区二区三区 | 国产伦人伦偷精品视频| 黄色丝袜av网址大全| 日韩欧美国产一区二区入口| 午夜福利在线观看吧| 精品国产国语对白av| 18禁国产床啪视频网站| 亚洲免费av在线视频| 精品国产亚洲在线| 一夜夜www| 脱女人内裤的视频| 国产不卡一卡二| 一进一出抽搐动态| 变态另类成人亚洲欧美熟女 | 窝窝影院91人妻| 亚洲视频免费观看视频| www国产在线视频色| 波多野结衣高清无吗| 后天国语完整版免费观看| 国产亚洲精品久久久久久毛片| 日日干狠狠操夜夜爽| 亚洲午夜理论影院| 亚洲av日韩精品久久久久久密| 午夜久久久久精精品| 在线观看一区二区三区| 欧美色欧美亚洲另类二区 | 一级,二级,三级黄色视频| 色老头精品视频在线观看| 国产精品av久久久久免费| 一级毛片精品| 91精品三级在线观看| 亚洲欧洲精品一区二区精品久久久| 在线视频色国产色| bbb黄色大片| 国产高清视频在线播放一区| 91国产中文字幕| 亚洲人成网站在线播放欧美日韩| 人成视频在线观看免费观看| 国产精品野战在线观看| 中文字幕人妻丝袜一区二区| 国产日韩一区二区三区精品不卡| 国产高清激情床上av| 国产成人欧美在线观看| 无遮挡黄片免费观看| 夜夜夜夜夜久久久久| 午夜视频精品福利| 青草久久国产| 国产视频一区二区在线看| 99riav亚洲国产免费| 侵犯人妻中文字幕一二三四区| 久久久久久久精品吃奶| 女性被躁到高潮视频| 91av网站免费观看| 好看av亚洲va欧美ⅴa在| 90打野战视频偷拍视频| 热re99久久国产66热| 91成年电影在线观看| 国产精品电影一区二区三区| 国产成年人精品一区二区| 两个人看的免费小视频| www.999成人在线观看| 在线播放国产精品三级| 日韩欧美一区视频在线观看| 日本三级黄在线观看| 亚洲第一av免费看| 欧美成人免费av一区二区三区| 亚洲欧美日韩无卡精品| 免费不卡黄色视频| 婷婷精品国产亚洲av在线| 视频在线观看一区二区三区| 手机成人av网站| 亚洲七黄色美女视频| 搡老熟女国产l中国老女人| 国产三级黄色录像| 看免费av毛片| 91精品三级在线观看| 制服人妻中文乱码| 国产av一区二区精品久久| 一卡2卡三卡四卡精品乱码亚洲| 乱人伦中国视频| 亚洲人成电影免费在线| 久久婷婷成人综合色麻豆| 亚洲自偷自拍图片 自拍| 淫秽高清视频在线观看| 亚洲 欧美一区二区三区| 中文字幕人妻丝袜一区二区| 91大片在线观看| 88av欧美| 免费在线观看日本一区| 国产欧美日韩精品亚洲av| 窝窝影院91人妻| 亚洲精品国产精品久久久不卡| 亚洲午夜理论影院| av在线天堂中文字幕| 午夜福利影视在线免费观看| 性色av乱码一区二区三区2| 天天一区二区日本电影三级 | 黄色丝袜av网址大全| 91麻豆精品激情在线观看国产| xxx96com| 国产午夜精品久久久久久| 久久久久久久久中文| 成在线人永久免费视频| 午夜福利影视在线免费观看| 日本免费a在线| 欧美激情久久久久久爽电影 | 黑人操中国人逼视频| 精品免费久久久久久久清纯| 757午夜福利合集在线观看| 免费搜索国产男女视频| 国产视频一区二区在线看| 制服诱惑二区| 日本黄色视频三级网站网址| 国产av又大| 老熟妇仑乱视频hdxx| 国内精品久久久久久久电影| 涩涩av久久男人的天堂| av片东京热男人的天堂| 久久国产精品男人的天堂亚洲| 首页视频小说图片口味搜索| 美女免费视频网站|