• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Transverse Transport of Polymeric Nano fluid under Pure Internal Heating:Keller Box Algorithm

    2018-07-09 06:46:48MehmoodRanaandMaraj
    Communications in Theoretical Physics 2018年7期

    R.Mehmood,S.Rana,and E.N.Maraj

    Department of Mathematics,Faculty of Natural Sciences,HITEC University,Taxila Cantt,Pakistan

    Nomenclature

    1 Introduction

    Non-Newtonian fluids in recent times have achieved extensive position in numerous aspects of science,engineering and technology mostly in substantial dispensation,natural and atomic productions,geophysics,and bio-engineering. These fluids display a recipe of viscid and flexible conduct under strain.The characteristics of all these types of non-Newtonian fluids are described by highly non-linear constitutive equations.In fact,Navier-Stokes theory does not cover all rheological properties of complicated fluids like polymer solutions,blood,paints,certain oils,greases etc.Major difficulty of non-Newtonian fluids is the presence of non-linearity,which cannot be handled by traditional constitutive relation for all fluids.[1]The discussion of Non-Newtonian fluids is of substantial concentration in lubricant reservoir manufacturing.The role of viscosity in a linear stress strain equation leads to be a fluid as Newtonian/non-Newtonian.There are some non-Newtonian second order fluids,like a convected Maxwell fluid,and an Oldroyd A and B fluids.Numerous fluid models are suggested by many researchers in the history of fluid mechanics,which are mainly divided into three classes’rate type,differential type,and integral type.In modern ages,the Oldroyd-B fluid has learnt a distinct grade midst the countless fluids of the rate type.Oldroyd-B type fluid is one of the simplest constitutive models that describe the viscoelastic conduct under general flow circumstances.

    Mehmood et al.[2]gave theoretical study of micropolar second grade fluid heat transfer properties.Nadeem et al.[3?4]investigated flow of nanoparticle for third grade fluid with heat transfer characteristics and studied second grade nanofluid for thermophertic and Brownian motion effects.Rahman et al.[5]studied the properties of thermophertic parameter and Brownian motion parameter for oblique laminar flow of viscid nanofluid.The study of different physical features of stagnation point flows towards a stretched sheet has attracted numerous researchers.[6?8]Crane[9]considered flow over a linear stretched sheet.Cortell[10]discussed stretching flow along with heat transmission.

    Heat transfer phenomena are of vital importance in fluid mechanics now days.Pohlhausen[11]examined heat transfer problem with assuming uniform temperature at the plate.Aziz[12]and Magyari[13]studied similar type of problem with convective boundary condition.Ishak[14]used Aziz’s problem for suction/injection on levelled surface.Haddad et al.[15]studied analytically the nanofluid based on Rayleigh-Bernard problem,he made comparison for presence and no presence of Brownian motion and Thermopherotic effects.Nadeem et al.[16]numerically investigated the heat and nanofluid flow properties of Oldroyd-B type fluid on a stretched sheet.Sheikholeslami et al.[17]studied effects of MHD and natural convection of water based nanofluid with consideration of Brownian motion and Thermopherotic effects.Sheikholeslami et al.[18]significantly discussed the influence of Brownian motion and Thermopherotic constraints on nanofluid flows with aid of two phase model,also effects of thermal radiation and magneto hydrodynamics are taken into account.Seth et al.[19]studied the laminar flow of viscoelastic fluid under the influence of thermal and nanoparticle buoyancy forces,in which they used convective boundary conditions for heat transfer effects.Reddy et al.[20]investigated micropolar liquid for its Thermopherotic effects on heat and mass transfer with internal heat generation/absorptions effects.Rashad et al.[21]discussed fluid passing an upright rotating cone on preamble surface for its effects of thermophertic and thermal radiation with heat and mass transfer.Some recent studies on current topic may be found in Refs.[22–41].The present study is conducted to examine oblique stream of Oldroyd-B nano- fluid past a stretched sheet with internal heat generation.The governing physical problem is solved numerically using Keller box scheme.The core outcomes of the study at summarized in the concluding remarks.To the best of our knowledge,such kind of study has not been attempted prior.The obtained results are a novel contribution,which can be benchmark for further relevant academic research related to polymer industry.

    2 Formulation of the Physical Problem

    Considersteady 2D incompressible flows of an Oldroyd-B nanofluid over a stretched wall with internal heat generation.To maintain equilibrium,keeping origin fixed a force is applied in horizontal direction as in Fig.1.The planar surface is stretched linearly with velocity uw.It is assumed that the fluid strikes the surface obliquely at any arbitrary angle.Moreover,it is assumed that heat transfers through convection Tffrom stretched surface.Furthermore,Cwis the nanoparticles concentration at the surface and T∞and C∞are nanofluid temperature and concentration far away from the surface.

    Fig.1 Geometrical description of model.

    The governing equations for an Oldroyd-B nanofluid model are as follows:

    The consistent boundary conditions are[36]

    wherecomponents of velocity respectively,ν is known as kinematic viscosity,is termed as pressure,ρ is taken to be density,Tˉ is termed as temperature,λ1and λ2are relaxation and retardation times,α and k are taken to be thermal diffusivity and thermal conductivity,DBis known as Brownian dispersion constant,DTis taken as Thermopherotic dispersion constant,T∞is ambient fluid temperature,Cwis nanoparticle absorption on surface,C∞is defined to be free stream nanoparticle absorption,τ is proportion of heat capacity of nanoparticle and fluid,a,b1,b2are constants.

    Define following substitutions,known as scaling transformation[36]in Eqs.(1)–(7),we get

    where β1= λ1a and β2= λ2a are the Deborah numbers,Pr= ν/α is Prandtl number,Le= α/DB,is Lewis number,Nt= τDT(Tf? T∞)/T∞ν is thermophoretic constraint,Nb= τD√B(Cw? C∞)/ν is Brownian motion constraint,γ =Q0/(aρcp)is heat generation/absorption constraintis Biot number, γ1=b1/a is stretching ratio,γ2=b2/a is taken as obliqueness.

    Define new transformation known as stream function:[36]

    Using Eq.(16)in Eqs.(9)–(15)and eliminating the pressure term,we get the following set of equations:

    Redefining the stream function as:[36]

    Using Eq.(22)in(17)–(21),we get,after integrating once,

    and boundary conditions(20)–(21)take the form

    Applying the boundary conditions(28)at infinity in Eqs.(23)and(24),we get

    where A is boundary layer constant.

    Introducing

    Using Eqs.(29)and(30),in Eqs.(23)and(24)give

    along with boundary conditions

    where a prime denotes derivative with respect to y1.

    3 Physical Measures of Interest

    Concerned physical parameters are the local heat flux and the mass flux are defined in dimensional and nondimensional form as:

    4 Numerical Solution

    The system of equations(31)–(36)are reduced to system of nonlinear equations of order one by considering

    Such that Eqs.(31)–(36)become

    Using central difference scheme,averages centred at midpoints are

    Discretized form of Eqs.(39)–(45)is

    Equations(46)–(56)are nonlinear algebraic equations and can be linearized via using Newton iterations as follows:

    For(i+1)-th iterates,

    For all dependent variables,using these expressions in Eqs.(46)–(56)and neglecting higher order terms in,etc.,a linear tri-diagonal set of equations is obtained as follows:

    Linearized equations from Eqs.(57)–(67)can be written in vector form as:

    Here[I]is unit matrix and[αi],[?i]are square matrices of order 11 whose elements are determined by the following expressions:

    Incorporating Eq.(70)into Eq.(69),yields

    and[Wj]is a 11×1 column matrix.Elements of W are solved from following equations

    ?j,αjand Wjare calculated by forward sweep.Once the elements of W are computed,Equation(71)gives the solution δ whose elements are obtained from following relations:

    With tolerance level of 10?6calculations are carried out.

    5 Results and Discussion

    This section is constructed to discuss the flow of an oblique stream of Oldroyd-B nano- fluid past a stretched sheet with internal heat generation. Figures 2–23 are ploted for some fixed values of certain parameters to discuss fluid behaviour.

    Fig.2 Velocity profile f ′(y)for γ1.

    Fig.3 Velocity profile f′(y)for β1.

    Fig.4 Velocity profile f ′(y)for β2.

    We see that Fig.2 exhibits that when stretching ratio is increased then normal component of velocity also increases,further it is observed that flow has a formed boundary layer for γ1>1,moreover it is evident from this graph that flow has reversed structure for γ1<1.Physically we say that an increment in motion of liquid close to stagnated area become reason to rise in acceleration of fluid flow outside the boundary layer flow.Therefore,an increment in stretching ratio becomes reason of thinning boundary layer.Figure 3 displays behaviour of normal component of velocity as well as momentum boundary layer thickness for Deborah numbers β1.We observe that with the rise in Deborah number β1momentum boundary layer and normal velocity f′(y)declines.Normal velocity and momentum boundary layer is observed in Fig.4 for Deborah number β2which is increasing for increase in Deborah number β2.Deborah numbers β1and β2always depict the opposite reaction because of relaxation and retardation times.Physically,since Deborah number is defined as β1= λ1where λ1is relaxation time.The increment in the relaxation time leads to an increment in temperature and the thermal boundary layer thickness.Influence of β2on temperature and thermal boundary layer are opposite to that of β1,because retardation time delivers resistance which become reasons for decrease in temperature and the thermal boundary layer.

    Fig.5 Velocity profile h′(y)for γ1.

    Fig.6 Velocity profile h′(y)for β1.

    Fig.7 Velocity profile h′(y)for β2.

    Figures 5–7 are plotted to show behaviour of tangential velocity for stretching ratio γ1and Deborah numbers β1and β2.For increase in stretching ratio γ1the vertical velocity h′(y)rises close to wall but reverses its behaviour as move away from wall as shown in Fig.5.Figure 6 shows similar kind of behaviour for Deborah number β1,but Fig.7 shows opposite behaviour for Deborah number β2and for increase in Deborah number β2vertical velocity h′(y)decreases near the wall but reverses its behaviour away from the wall.

    Fig.8 Temperature profile θ(y)for β1.

    Fig.9 Temperature profile θ(y)for γ.

    Figures 8–13 are plotted to show the behaviour of temperature θ(y)for Deborah number β1and heating source and sink parameter γ,Biot and Prandtl number Bi and Pr,thermpheresis parameter Nt and Brownian motion parameter Nb.From Fig.8 we find that temperature and thermal boundary layer tend to rise with a rise in Deborah number β1.In Fig.9 we observe that temperature rises for increase in γ.Prandtl number is the ratio of momentum to thermal diffusivity.Larger values of Prandtl number have higher momentum thermal diffusivity.

    Fig.10 Temperature profile θ(y)for Pr.

    Fig.11 Temperature profile θ(y)for Bi.

    Fig.12 Temperature profile θ(y)for Nb.

    It is observed in Fig.10 that for an increment in Prandtl number Pr,temperature θ(y)and thermal boundary layer tends to decline.When Prandtl number rises it implies a decline in thermal diffusivity that lead to decrease of energy transfer ability and it results in reducing the thermal boundary layer thickness.Biot number represents the ratio of internal resistive force of body,to external resistive force to heat convection.Thus,small Biot number represents small resistance to heat conduction and thus small temperature gradient of body.But in Fig.11 temperature profile θ(y)and thermal boundary layer thickness increases with increase in Biot number Bi.

    Fig.13 Temperature profile θ(y)for Nt.

    Fig.14 Concentration profile ?(y)for β1.

    Fig.15 Concentration profile ?(y)for Nt.

    Figure 12 shows increasing behaviour for thermophoresis parameter Nt and same type of behaviour is detected in Fig.13 for Brownian motion parameter Nb.Increasing thermopherotic and Brownian motion parameter Nt and Nb,increases of temperature in boundary layer which subsequently lessens heat transfer rate at surface.There would be a significant reduction in concentration boundary layer thickness when Lewis number Le is enlarged.This spectacle happens,since Lewis number affects the concentration gradient at the surface.

    Fig.16 Concentration profile ?(y)for Le.

    Fig.17 Concentration profile ?(y)for Pr.

    Fig.18 Surface heat flux ?θ′(0)for β1.

    Figures 14–17 are plotted to examine the nature of concentration profile ?(y).Figure 14 shows increasing effect for increase in Deborah number β1and Fig.15 shows increasing effect for increase in thermophoresis parameter Nt,but Fig.16 shows decreasing behaviour for increase in Lewis number Le and similar kind of behaviour is observed in Fig.17 for Prandtl number Pr.It is fascinating to note that molecular Brownian motion of nanoparticles at nano scale levels is a significant nano scale mechanism that governs their thermal behavior.

    Fig.19 Surface mass flux ??′(0)for β2.

    Fig.20 Surface heat flux ?θ′(0)for Nb.

    Fig.21 Surface mass flux ??′(0)for Nb.

    Since the size of the nanoparticles is very tiny so Brownian motion revenues that can affect heat transfer properties.Since the size of particle tactics to nano-meter gage,Brownian motion of relative particle and its effects on the adjacent fluids become vital in heat transfer.It is also detected that both temperature and volume fraction of the nanofluid within boundary layer increase by increasing in thermophertic parameter Nt and hence the nanoparticles enhance heat and mass transfer.Nanoparticle volume fraction distributions slow down by an increment in Lewis number in whole area.Lewis number is proportion of thermal diffusivity to mass diffusivity.Growing the values of Lewis number results a higher value of while smallest value of mass diffusivity,which results in thinner boundary layer.Figures 18–21 are plotted to examine the local heat flux and mass flux for different emerging parameter.It is observed that local heat flux ?θ′(0)rises for Deborah number β2in Fig.18 and local mass flux ??′(0)tends to increase for Deborah number β2in Fig.19.Further local heat flux ?θ′(0)decreases as shown in Fig.20 while Fig.21 shows that local mass flux ??′(0)tends to increase with Brownian motion parameter Nb.Since rising values of Prandtl number has a great heat volume,and hence strengthens the heat transfer rate.Figure 22(a)depicts stream line patterns for positive obliqueness when β1=0.Figure 22(b)exhibits streamline patterns for β1=0.Stream line shows that obliqueness constraint γ2creates change in direction of flow.We see that streamlines are inclined to left when obliqueness of flow is taken to be positive.Actually increase in γ2results in obliqueness of flow on a stretched area.Similarly Fig.23(a)exhibits streamline patterns for negative values of γ2when β1=0 while Fig.23(b)exhibits streamline patterns for negative values of γ2when β1=4.The stream contour ψ=0 touches the partition y1=0,at stagnation point x1=x0and zero skin friction.For conventional purpose we use y instead of y1in graphs.

    Fig.22 (a)Stream lines pattern for Deborah numbers β1=4,with γ2=5.(b)Stream lines pattern for Deborah numbers β1=0,with γ2=5.

    Fig.23 (a)Stream lines pattern for Deborah numbers β1=0,with γ2= ?5.(b)Stream lines pattern for Deborah numbers β1=4,with γ2= ?5.

    6 Concluding Remarks

    Oblique flow of an Oldroyd-B type fluid over a stretched surface had been explored with existence of internal heating and thermophoresis and Brownian motion properties.Main findings of this article are summarised as:

    Deborah number β1becomes the reason for decrease in momentum boundary layer but it goes for increase in thermal boundary layer.Also,local heat and mass fluxes decrease for Deborah number β1.Brownian motion decreases the local heat flux while it enhances the local mass flux at the stretching surface.Streamlines patterns exhibit that the flow is more inclined in the presence of the Deborah number.

    [1]S.Nadeem and A.Hussain,Zeitschrift für Naturforschung A 65(2010)540.

    [2]R.Mehmood,S.Nadeem,and N.S.Akbar,J.Taiwan Inst.Chem.Eng.44(2013)586.

    [3]S.Nadeem,R.Mehmood,and N.S.Akbar,J.Comput.Theor.Nanosci.10(2013)2737.

    [4]S.Nadeem,R.Mehmood,and N.S.Akbar,Int.J.Heat Mass Transfer 57(2013)679.

    [5]M.Rahman,T.Grosan,and I.Pop,Int.J.Numer.Method H.26(2016)189.

    [6]L.Howarth,Lond.Edinb.Dubl.Phil.Mag.42(1951)239.

    [7]T.Chiam,J.Phys.Soc.Jpn.63(1994)2443.

    [8]Y.Lok,A.Ishak,and I.Pop,Int.J.Numer.Method H.21(2011)61.

    [9]L.J.Crane,Z.Angew.Math.Phys.21(1970)645.

    [10]R.Cortell,Int.J.Nonlinear Mech.41(2006)78.

    [11]E.Pohlhausen,Z.Angew.Math.Phys.1(1921)115

    [12]A.Aziz,Commun.Nonlinear Sci.Numer.Simul.14(2009)1064.

    [13]E.Magyari,Commun.Nonlinear Sci.Numer.Simul.16(2011)599.

    [14]A.Ishak,Appl.Math.Comput.217(2010)837.

    [15]Z.Haddad,et al.,Int.J.Therm.Sci.57(2012)152.

    [16]S.Nadeem,R.U.Haq,N.S.Akbar,et al.,PLoS ONE 8(2013)e69811.

    [17]M.Sheikholeslami,et al.,Comput.Fluids 94(2014)147.

    [18]M.Sheikholeslami,et al.,J.Magn.Magn.Mater.374(2015)36.

    [19]G.Seth,M.Mishra,and A.Chamkha,J.Nano fluids 5(2016)511.

    [20]P.Reddy and A.Chamkha,J.Appl.Fluid Mech.9(2016)2443.

    [21]A.M.Rashad,B.Mallikarjuna,A.J.Chamkha,et al.,Afrika Matematika(2016)1.

    [22]O.Makinde and A.Aziz,Int.J.Therm.Sci.49(2010)1813.

    [23]A.V.Kuznetsov and D.Nield,Int.J.Therm.Sci.49(2010)243.

    [24]G.Swapna,L.Kumar,P.Rana,and B.Singh,et al.,J.Taiwan Inst.Chem.Eng.47(2015)18.

    [25]W.Ibrahim and O.Makinde,J.Aerospace Eng.29(2015)04015037.

    [26]M.Rahman,A.V.Rosca,and I.Pop,Int.J.Numer.Method H.25(2015)299.

    [27]A.Malvandi,F.Hedayati,and D.Ganji,J.Appl.Fluid Mech.8(2015).

    [28]K.Das,P.R.Duari,and P.K.Kundu,J.Egyptian Math.Soc.23(2015)435.

    [29]R.Kandasamy,C.Jeyabalan,and K.S.Prabhu,Appl.Nanosci.6(2016)287.

    [30]V.Rajesh,Mallesh,and O.A.Bég,Procedia Mater.Sci.10(2015)80.

    [31]A.Rashad,Ismael,A.Muneer,et al.,J.Taiwan Inst.Chem.Eng.68(2016)173.

    [32]P.S.Reddy,P.Sreedevi,and A.J.Chamkha,Heat Transfer Asian Res.46(2016)815.

    [33]A.U.Rehman,R.Mehmood,and S.Nadeem,Appl.Therm.Eng.112(2017)832.

    [34]P.S.Reddy and A.J.Chamkha,Int.J.Numer.Method H.27(2017)1.

    [35]P.S.Reddy,A.J.Chamkha,and A.Al-Mudhaf,Powder Technol.28(2017)1008.

    [36]S.Rana,R.Mehmood,and N.S.Akbar,J.Mol.Liq.222(2016)1010.

    [37]P.S.Reddy and A.J.Chamkha,J.Porous Media 20(2017)1.

    [38]S.Rana,R.Mehmood,P.V.S.Narayana,and N.S.Akbar,Commun.Theor.Phys.66(2016)687.

    [39]R.Mehmood,S.Nadeem,S.Saleem,and N.S.Akbar,J.Taiwan Inst.Chem.Eng.74(2017)49.

    [40]R.Mehmood,S.Nadeem,and N.S.Akbar,J.Appl.Fluid Mech.9(2016)1359.

    [41]S.Nadeem,R.Mehmood,and N.S.Akbar,J.Magn.Magn.Mater.378(2015)457.

    最新美女视频免费是黄的| 变态另类成人亚洲欧美熟女 | 亚洲人成伊人成综合网2020| 国产成人精品久久二区二区91| 国产一区二区在线av高清观看| 免费观看人在逋| 99精品欧美一区二区三区四区| 宅男免费午夜| 99久久人妻综合| 久久人人97超碰香蕉20202| 亚洲国产精品sss在线观看 | 成年人免费黄色播放视频| videosex国产| 日韩三级视频一区二区三区| 日本黄色日本黄色录像| 久久精品人人爽人人爽视色| 精品免费久久久久久久清纯| 视频在线观看一区二区三区| 视频在线观看一区二区三区| 久久久久九九精品影院| 99精品久久久久人妻精品| 欧美人与性动交α欧美精品济南到| 国产成人一区二区三区免费视频网站| 欧美黄色淫秽网站| 成人亚洲精品av一区二区 | 欧美成人免费av一区二区三区| 午夜免费激情av| 一级,二级,三级黄色视频| 在线观看免费午夜福利视频| 久久久国产成人精品二区 | 日韩欧美一区二区三区在线观看| 国产av一区二区精品久久| 日韩 欧美 亚洲 中文字幕| 欧美日本中文国产一区发布| 最近最新中文字幕大全免费视频| 51午夜福利影视在线观看| 狠狠狠狠99中文字幕| 黄频高清免费视频| 视频在线观看一区二区三区| 午夜精品在线福利| 色综合欧美亚洲国产小说| 欧美另类亚洲清纯唯美| 国产av一区在线观看免费| 精品午夜福利视频在线观看一区| 可以在线观看毛片的网站| 伦理电影免费视频| 人人妻人人添人人爽欧美一区卜| 亚洲国产欧美网| 少妇 在线观看| 丁香欧美五月| 午夜影院日韩av| 精品国产一区二区三区四区第35| 18禁国产床啪视频网站| 欧美激情 高清一区二区三区| a级毛片在线看网站| 国产精品美女特级片免费视频播放器 | 1024视频免费在线观看| 嫁个100分男人电影在线观看| 性少妇av在线| 亚洲男人的天堂狠狠| 国产成人欧美在线观看| 多毛熟女@视频| 精品高清国产在线一区| 午夜两性在线视频| 99国产精品免费福利视频| 欧美色视频一区免费| 黄色怎么调成土黄色| 欧美日韩黄片免| 天堂动漫精品| 成人黄色视频免费在线看| 怎么达到女性高潮| 涩涩av久久男人的天堂| 亚洲aⅴ乱码一区二区在线播放 | 国产黄a三级三级三级人| 99在线视频只有这里精品首页| 看免费av毛片| 男女午夜视频在线观看| 人成视频在线观看免费观看| 精品第一国产精品| 国产欧美日韩一区二区三区在线| 国产精品av久久久久免费| 国产亚洲欧美98| 91在线观看av| 国产蜜桃级精品一区二区三区| 麻豆av在线久日| 91大片在线观看| 黄网站色视频无遮挡免费观看| 美女高潮喷水抽搐中文字幕| 精品国产一区二区久久| 怎么达到女性高潮| 成年版毛片免费区| 亚洲美女黄片视频| 久久久久久人人人人人| 中出人妻视频一区二区| 欧洲精品卡2卡3卡4卡5卡区| 无限看片的www在线观看| 不卡一级毛片| 在线观看免费视频网站a站| 日韩欧美三级三区| 这个男人来自地球电影免费观看| 久久草成人影院| av电影中文网址| 亚洲成人久久性| 亚洲,欧美精品.| 国产亚洲精品久久久久5区| 一级,二级,三级黄色视频| 日本vs欧美在线观看视频| 亚洲人成电影观看| 亚洲中文av在线| 国内毛片毛片毛片毛片毛片| 母亲3免费完整高清在线观看| 欧美精品一区二区免费开放| 亚洲成a人片在线一区二区| 欧美丝袜亚洲另类 | 欧美亚洲日本最大视频资源| 黑丝袜美女国产一区| 中出人妻视频一区二区| av免费在线观看网站| 亚洲第一青青草原| 日本vs欧美在线观看视频| 两性午夜刺激爽爽歪歪视频在线观看 | 这个男人来自地球电影免费观看| 热re99久久国产66热| 亚洲少妇的诱惑av| 久久精品成人免费网站| 一区二区三区国产精品乱码| 国产又爽黄色视频| 两性夫妻黄色片| 日日爽夜夜爽网站| 男人舔女人下体高潮全视频| 真人一进一出gif抽搐免费| 麻豆一二三区av精品| 国产三级黄色录像| 亚洲成国产人片在线观看| 水蜜桃什么品种好| 久久久久久久午夜电影 | 18禁国产床啪视频网站| 两人在一起打扑克的视频| 久久久久国产精品人妻aⅴ院| 他把我摸到了高潮在线观看| 精品一区二区三区四区五区乱码| 久热爱精品视频在线9| 99国产精品免费福利视频| 精品久久久久久电影网| 国产精品免费视频内射| 久久精品人人爽人人爽视色| 日本三级黄在线观看| 欧美激情久久久久久爽电影 | 精品少妇一区二区三区视频日本电影| 久久久久久人人人人人| 他把我摸到了高潮在线观看| 欧美日本中文国产一区发布| 日韩av在线大香蕉| 久久久国产成人免费| 久久伊人香网站| 免费一级毛片在线播放高清视频 | 国产三级在线视频| 嫁个100分男人电影在线观看| 麻豆一二三区av精品| 巨乳人妻的诱惑在线观看| 日韩高清综合在线| 无限看片的www在线观看| 他把我摸到了高潮在线观看| 免费不卡黄色视频| 久久精品91蜜桃| 成在线人永久免费视频| svipshipincom国产片| 黄色 视频免费看| 99国产综合亚洲精品| 日本三级黄在线观看| 成人av一区二区三区在线看| 一个人观看的视频www高清免费观看 | 欧美日韩亚洲国产一区二区在线观看| 午夜精品国产一区二区电影| 免费看十八禁软件| 黑人操中国人逼视频| av在线播放免费不卡| 成年人黄色毛片网站| 国产成人精品久久二区二区免费| 久久中文看片网| 性少妇av在线| 老汉色∧v一级毛片| 国产成人精品在线电影| 国产在线精品亚洲第一网站| 啦啦啦免费观看视频1| 高清毛片免费观看视频网站 | 亚洲熟妇中文字幕五十中出 | 成人国产一区最新在线观看| 国产欧美日韩一区二区三| 欧美中文综合在线视频| 九色亚洲精品在线播放| 国产av一区二区精品久久| 久久人妻福利社区极品人妻图片| 成熟少妇高潮喷水视频| 亚洲一区中文字幕在线| 日韩欧美一区视频在线观看| 亚洲性夜色夜夜综合| 国产97色在线日韩免费| 丝袜美足系列| 999精品在线视频| 欧美黑人精品巨大| 性色av乱码一区二区三区2| 91国产中文字幕| 免费av中文字幕在线| 在线十欧美十亚洲十日本专区| 国产高清视频在线播放一区| 国产精品一区二区三区四区久久 | 757午夜福利合集在线观看| 男女床上黄色一级片免费看| 成熟少妇高潮喷水视频| 日韩精品青青久久久久久| 亚洲黑人精品在线| 丁香六月欧美| 国产主播在线观看一区二区| 欧美黄色淫秽网站| 久久人人97超碰香蕉20202| a级毛片在线看网站| 色综合婷婷激情| 久久天堂一区二区三区四区| 久久久久国产一级毛片高清牌| 超碰97精品在线观看| а√天堂www在线а√下载| 高潮久久久久久久久久久不卡| 亚洲国产精品999在线| 在线观看免费日韩欧美大片| 在线观看免费高清a一片| 婷婷精品国产亚洲av在线| 精品福利永久在线观看| 高清在线国产一区| 色哟哟哟哟哟哟| a级片在线免费高清观看视频| a级毛片在线看网站| 国产激情久久老熟女| 高清欧美精品videossex| 亚洲自拍偷在线| 最近最新中文字幕大全免费视频| 最新在线观看一区二区三区| av视频免费观看在线观看| 国产精品 国内视频| 欧美另类亚洲清纯唯美| 一二三四在线观看免费中文在| 免费av毛片视频| 在线观看免费日韩欧美大片| 黄片播放在线免费| 天天躁夜夜躁狠狠躁躁| 香蕉丝袜av| 伦理电影免费视频| 日本免费一区二区三区高清不卡 | 午夜福利,免费看| 欧美日韩一级在线毛片| 91九色精品人成在线观看| 精品国产一区二区三区四区第35| 这个男人来自地球电影免费观看| 一级毛片女人18水好多| av天堂在线播放| 亚洲一码二码三码区别大吗| 久久久久精品国产欧美久久久| 亚洲精品国产区一区二| 国产午夜精品久久久久久| 免费不卡黄色视频| 手机成人av网站| 午夜福利,免费看| 午夜老司机福利片| 欧美精品一区二区免费开放| 91大片在线观看| ponron亚洲| 免费观看人在逋| 美女 人体艺术 gogo| 亚洲欧美一区二区三区久久| 一a级毛片在线观看| a在线观看视频网站| 中文字幕av电影在线播放| 村上凉子中文字幕在线| 亚洲七黄色美女视频| 天堂影院成人在线观看| 欧美亚洲日本最大视频资源| 亚洲av电影在线进入| 熟女少妇亚洲综合色aaa.| 亚洲熟女毛片儿| 90打野战视频偷拍视频| 色综合欧美亚洲国产小说| 久久久久久免费高清国产稀缺| 久久久久久大精品| 精品日产1卡2卡| 久久香蕉精品热| 国产三级黄色录像| 亚洲第一欧美日韩一区二区三区| 国产精品98久久久久久宅男小说| 日本黄色日本黄色录像| e午夜精品久久久久久久| 777久久人妻少妇嫩草av网站| 国产成年人精品一区二区 | 男女午夜视频在线观看| 一个人观看的视频www高清免费观看 | 国产欧美日韩一区二区三| 日韩有码中文字幕| 成人永久免费在线观看视频| 午夜免费观看网址| 很黄的视频免费| 变态另类成人亚洲欧美熟女 | 久久亚洲真实| 免费观看精品视频网站| 欧美av亚洲av综合av国产av| 国产黄色免费在线视频| 色综合婷婷激情| 国产av一区二区精品久久| 国产精品美女特级片免费视频播放器 | 老司机午夜十八禁免费视频| 亚洲欧美精品综合一区二区三区| 亚洲精品国产精品久久久不卡| 大码成人一级视频| 女同久久另类99精品国产91| 亚洲中文av在线| 久久久国产一区二区| 丝袜在线中文字幕| 狠狠狠狠99中文字幕| 人妻丰满熟妇av一区二区三区| 亚洲成人免费av在线播放| 这个男人来自地球电影免费观看| 亚洲国产欧美网| 午夜免费观看网址| 桃色一区二区三区在线观看| 亚洲成人免费电影在线观看| 丝袜美腿诱惑在线| 正在播放国产对白刺激| 国产精品影院久久| 在线观看午夜福利视频| 色综合婷婷激情| 欧美午夜高清在线| 免费在线观看亚洲国产| 国产乱人伦免费视频| 另类亚洲欧美激情| 精品久久久久久电影网| 色哟哟哟哟哟哟| 亚洲一码二码三码区别大吗| 99精品在免费线老司机午夜| 欧美+亚洲+日韩+国产| 日韩欧美三级三区| 97超级碰碰碰精品色视频在线观看| 在线观看免费视频日本深夜| av有码第一页| 欧美丝袜亚洲另类 | 99热国产这里只有精品6| 亚洲国产精品合色在线| 久久久水蜜桃国产精品网| 成人三级做爰电影| 天天躁夜夜躁狠狠躁躁| 久久精品91无色码中文字幕| 精品卡一卡二卡四卡免费| a级片在线免费高清观看视频| 亚洲一区高清亚洲精品| 身体一侧抽搐| 免费人成视频x8x8入口观看| 国产成人免费无遮挡视频| 黄色女人牲交| 国产区一区二久久| 久久婷婷成人综合色麻豆| 免费搜索国产男女视频| netflix在线观看网站| 宅男免费午夜| 亚洲欧美精品综合久久99| ponron亚洲| 免费看十八禁软件| 亚洲自偷自拍图片 自拍| 日本黄色日本黄色录像| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品一区av在线观看| 欧美精品一区二区免费开放| 日韩精品中文字幕看吧| 亚洲av日韩精品久久久久久密| av天堂久久9| 天天影视国产精品| 18禁黄网站禁片午夜丰满| 亚洲欧美激情在线| 免费女性裸体啪啪无遮挡网站| 人妻丰满熟妇av一区二区三区| 一区二区日韩欧美中文字幕| 操美女的视频在线观看| 老司机靠b影院| 一级,二级,三级黄色视频| 无限看片的www在线观看| 久久香蕉国产精品| 国产日韩一区二区三区精品不卡| 国产真人三级小视频在线观看| 国产精品美女特级片免费视频播放器 | 久久精品国产99精品国产亚洲性色 | 天堂影院成人在线观看| 搡老岳熟女国产| a在线观看视频网站| 国产成人av激情在线播放| 一区二区日韩欧美中文字幕| 欧美成狂野欧美在线观看| 亚洲 欧美一区二区三区| 久久天堂一区二区三区四区| 自拍欧美九色日韩亚洲蝌蚪91| 18禁观看日本| 国产色视频综合| 国产精品国产高清国产av| 成在线人永久免费视频| 日日夜夜操网爽| 午夜福利一区二区在线看| 国产xxxxx性猛交| 国产97色在线日韩免费| 日韩免费av在线播放| 日韩人妻精品一区2区三区| 热99国产精品久久久久久7| 欧美黑人欧美精品刺激| 夫妻午夜视频| 亚洲国产毛片av蜜桃av| 99香蕉大伊视频| 一区二区三区激情视频| 久久亚洲真实| 亚洲va日本ⅴa欧美va伊人久久| 一个人免费在线观看的高清视频| 免费观看精品视频网站| a级片在线免费高清观看视频| 欧美另类亚洲清纯唯美| 波多野结衣av一区二区av| 国产极品粉嫩免费观看在线| 国产无遮挡羞羞视频在线观看| av超薄肉色丝袜交足视频| 欧美 亚洲 国产 日韩一| 亚洲狠狠婷婷综合久久图片| 日日夜夜操网爽| 男女床上黄色一级片免费看| 级片在线观看| 一区二区日韩欧美中文字幕| 欧美成人免费av一区二区三区| 国产野战对白在线观看| 精品无人区乱码1区二区| 国产高清视频在线播放一区| 欧美乱妇无乱码| 亚洲五月色婷婷综合| 人人妻人人澡人人看| 国产精品免费视频内射| 久久99一区二区三区| 亚洲专区字幕在线| 免费高清在线观看日韩| 91精品国产国语对白视频| 欧美日本中文国产一区发布| 欧美久久黑人一区二区| 国产欧美日韩一区二区三| 多毛熟女@视频| 午夜a级毛片| av网站在线播放免费| 亚洲自拍偷在线| 国产区一区二久久| av中文乱码字幕在线| 国产成人一区二区三区免费视频网站| 欧美日韩亚洲高清精品| 一区在线观看完整版| 在线观看www视频免费| 免费看十八禁软件| 在线观看66精品国产| 久久久久久久久久久久大奶| 欧美国产精品va在线观看不卡| 香蕉丝袜av| 久久国产亚洲av麻豆专区| av欧美777| 夜夜夜夜夜久久久久| 好男人电影高清在线观看| 大陆偷拍与自拍| 午夜成年电影在线免费观看| 久久国产精品男人的天堂亚洲| 亚洲成a人片在线一区二区| 国产精品综合久久久久久久免费 | 久久香蕉国产精品| 怎么达到女性高潮| 国产精品一区二区三区四区久久 | 久久久水蜜桃国产精品网| 一级毛片女人18水好多| 国产欧美日韩精品亚洲av| 高潮久久久久久久久久久不卡| 中文字幕人妻丝袜一区二区| 久久久久久久久免费视频了| 欧美黑人欧美精品刺激| 亚洲在线自拍视频| 国产精品二区激情视频| 我的亚洲天堂| 亚洲精品美女久久久久99蜜臀| 精品国产乱子伦一区二区三区| 亚洲精品美女久久久久99蜜臀| 日韩大尺度精品在线看网址 | 亚洲精品中文字幕一二三四区| 亚洲va日本ⅴa欧美va伊人久久| 亚洲av第一区精品v没综合| 国产精品乱码一区二三区的特点 | 久久午夜亚洲精品久久| 不卡一级毛片| 久久香蕉激情| 亚洲 国产 在线| 国产麻豆69| 亚洲伊人色综图| 国产97色在线日韩免费| 美女大奶头视频| 成熟少妇高潮喷水视频| 日本 av在线| 黑人猛操日本美女一级片| 免费av毛片视频| 久久久久精品国产欧美久久久| 丰满的人妻完整版| 欧美久久黑人一区二区| 久久精品国产清高在天天线| 欧美大码av| 亚洲,欧美精品.| 久久热在线av| 久久精品影院6| 一区二区三区国产精品乱码| 国产精品自产拍在线观看55亚洲| 国产亚洲精品一区二区www| 91av网站免费观看| 色老头精品视频在线观看| 电影成人av| 夜夜看夜夜爽夜夜摸 | 91在线观看av| 国产伦人伦偷精品视频| www日本在线高清视频| 久久久久久久精品吃奶| 在线观看66精品国产| 久久精品亚洲av国产电影网| 身体一侧抽搐| 日本wwww免费看| 涩涩av久久男人的天堂| 欧美成人免费av一区二区三区| 国产主播在线观看一区二区| 91大片在线观看| 免费高清视频大片| 日日摸夜夜添夜夜添小说| 一个人免费在线观看的高清视频| 亚洲专区字幕在线| 一个人观看的视频www高清免费观看 | 色精品久久人妻99蜜桃| 丰满饥渴人妻一区二区三| 久久久国产成人免费| 亚洲av成人不卡在线观看播放网| 日本撒尿小便嘘嘘汇集6| 巨乳人妻的诱惑在线观看| 国产精品永久免费网站| 国产欧美日韩一区二区三| 看免费av毛片| 亚洲狠狠婷婷综合久久图片| 欧美国产精品va在线观看不卡| 久久天躁狠狠躁夜夜2o2o| 丰满饥渴人妻一区二区三| 在线观看免费午夜福利视频| 国产亚洲精品第一综合不卡| 校园春色视频在线观看| 亚洲,欧美精品.| 91精品国产国语对白视频| av在线天堂中文字幕 | 亚洲国产毛片av蜜桃av| 多毛熟女@视频| 亚洲av成人av| 看片在线看免费视频| 国产精品av久久久久免费| 欧美激情久久久久久爽电影 | 99久久国产精品久久久| 欧美av亚洲av综合av国产av| svipshipincom国产片| www.999成人在线观看| 欧美成狂野欧美在线观看| 韩国精品一区二区三区| 99久久精品国产亚洲精品| 美女大奶头视频| 高清在线国产一区| 国产一区二区三区综合在线观看| 我的亚洲天堂| 宅男免费午夜| 黑人猛操日本美女一级片| www.999成人在线观看| 精品国产国语对白av| 精品福利永久在线观看| 久久久久久免费高清国产稀缺| 久久久精品国产亚洲av高清涩受| 99国产极品粉嫩在线观看| 人人妻人人澡人人看| 亚洲全国av大片| 午夜老司机福利片| 伊人久久大香线蕉亚洲五| av福利片在线| 纯流量卡能插随身wifi吗| 成人手机av| 亚洲五月色婷婷综合| 中国美女看黄片| 在线观看免费视频日本深夜| 国产精品 国内视频| 国产精品1区2区在线观看.| 久久精品91无色码中文字幕| 水蜜桃什么品种好| av超薄肉色丝袜交足视频| 欧美亚洲日本最大视频资源| e午夜精品久久久久久久| 成人三级黄色视频| 伦理电影免费视频| 国产三级黄色录像| 欧美国产精品va在线观看不卡| 18美女黄网站色大片免费观看| 每晚都被弄得嗷嗷叫到高潮| 亚洲一区高清亚洲精品| 国产一卡二卡三卡精品| 中文字幕高清在线视频| 欧美成人性av电影在线观看| 热re99久久精品国产66热6| 两人在一起打扑克的视频| 少妇被粗大的猛进出69影院| 国产精品电影一区二区三区| 免费女性裸体啪啪无遮挡网站| 中文亚洲av片在线观看爽| aaaaa片日本免费| 国产高清激情床上av| 久久青草综合色| 午夜亚洲福利在线播放| 日本黄色视频三级网站网址| e午夜精品久久久久久久| 1024香蕉在线观看|