• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Upshot of Chemical Species and Nonlinear Thermal Radiation on Oldroyd-B Nano fluid Flow Past a Bi-directional Stretched Surface with Heat Generation/Absorption in a Porous Media?

    2018-07-09 06:46:38DianChenLuRamzanBilalJaeDongChungandUmerFarooq5DepartmentofMathematicsFacultyofScienceJiangsuUniversityZhenjiang220China
    Communications in Theoretical Physics 2018年7期

    Dian-Chen Lu,M.Ramzan,M.Bilal,Jae Dong Chung,and Umer Farooq5Department of Mathematics,Faculty of Science,Jiangsu University,Zhenjiang 220,China

    2Department of Computer Science,Bahria University,Islamabad Campus,Islamabad 44000,Pakistan

    3Department of Mathematics,Faculty of Computing,Capital University of Science and Technology,Islamabad 44000,Pakistan

    4Department of Mechanical Engineering,Sejong University,Seoul 143-747,Korea

    5Department of Mathematics,COMSATS Institute of Information Technology,Park road,Tarlai Kalan,Islamabad 45550,Pakistan

    Nomenclature

    1 Introduction

    Heat and mass transfer is the most studied subject in today’s research because of its abundant efficacy in science and industry.The processes of reheating and freezing have vast usage in industry.In manufacturing processes,it is necessary to keep heat transfer phenomenon live in manufacturing of final refined product.Due to such interesting applications,scientists and researchers are captivated to reassess the potential of heat transfer.Choi and Eastman[1]were the pioneer who introduced the concept of great nanofluids to meet requirements of the industry.Geothermal industry, floor heating,polymer industry and processes like lubrication,manufacturing,chemical are some applications of nanofluids.A nanofluid is an amalgamation of nano sized metallic particles(like Cu,TiO2,Ag,etc.)and base fluid(like water,kerosene,ethylene glycol,oils).Usually,thermal conductivity of nanoparticle is more than the base liquid.However,mixture of both has obviously enhanced thermal conductivity.The pioneering work of Choi and Eastman was followed a study by Wang and Mujumdar[2]who tried to improve the convective characteristics of base fluid by insertion of metallic and nonmetallic nanoparticles.Then Eastman et al.[3]examined that mixture of ethylene glycol and suspended copper nanoparticles augments the thermal conductivity of the base fluid by 40%.In continuation to previous study,[3]Eastman et al.[4]explored another important result that thermal conductivity of nanofluid is also affected by the nanoparticle’s shape and size.This concept was supported by an experiment by Murshed et al.[5]who investigated that an amalgamation of spherical shaped nanoparticles(with size more than 40 nm)and Titanium oxide(base fluid)produces 33%more thermal conductivity than that of ordinary base fluid.In very a recent exploration,Pryazhnikov et al.[6]studied that thermal conductivity of nanofluid is also affected by nanoparticle’s material and density.Sandeep and Reddy[7]discussed the heat transfer phenomenon of Cu-water nanofluid past two varied geometries accompanied by nonlinear radiation effects.Zaib et al.[8]discussed the flow of Carreau nanofluid with effects of nonlinear thermal radiation,activation energy and binary chemical reaction past a nonlinear stretched surface.Nayak et al.[9]reported numerical treatment of three-dimensional nanofluid free convective flow with thermal radiation and magnetohydro dynamic with shooting technique.Kasaeian et al.[10]described heat transfer of nanofluids flow in a porous medium.Some more studies highlighting different aspects of nanofluids may be found at Refs.[11–20]and many therein.

    Characteristics of viscoelasticity is key to many complex natured fluids like polymer melts,colloidal suspensions and polymer solutions.Applications like blow molding,inkjet printing and extrusion involve such fluids.Viscoelastic characteristics like energy dissipation,hydraulic resistance,transport efficiency etc.affect many flows.[21]Pioneering work of Maxwell[22]featured a rate type mathematical model to assess viscoelasticity in fluids.While doing so,he overlooked the incompressibility feature of the fluid.This gap is fulfilled by Oldroyd’s model[23]that portraits a factual depiction of nonlinear fluids.Amongst the proposed mathematical models by Oldroyd,Oldroyd-B model was much praised and admired model that interpret the both relaxation and retardation times’characteristics.This fluid model reduces to Maxwell fluid model in absence of retardation time term.Later,Lai[24]analyzed the stability of Oldroyd-B fluid down an inclined plane.This effort was followed by Thien[25]who discussed numerical and analytical solutions of Oldroyd-B fluid flow around a coaxial disk.Thien also highlighted stagnation point Oldroyd-B fluid flow[26]and instability of cone and plate.[27]Then Tan[28]extended Stokes’s first problem to Oldroyd-B fluid flow with semi permeable surface using sine transform to find exact solution.Exploring a new dimension,Fetecau et al.[29]found exact solutions of oscillating flows of Oldroyd-B fluid in oscillating circular cylinders.Pioneering work in three dimensional geometry was explored by Hayat et al.[30]who examined similar solution of three dimensional Oldroyd-B fluid flow past a bidirectional stretched surface.Boundary layer flow of an Oldroyd-B fluid over the continuously linearly stretching sheet is studied by Hayat et al.[31]They have examined the effects of mixed convection and stagnation point flow of thermally stratified fluid by using the homotopy analysis method.Waqar et al.[32]addressed analytically about the bidirectional flow of an Oldroyd-B nanofluid with heat generation/absorption over the stretching sheet.They concluded that local Nusselt number decreases for the higher values of heat generation parameter.Later on Hayat et al.[33]investigated about the electrically conducting Oldroyd-B nanofluid flow over the multidimensional stretching sheet with the zero nanoparticle mass flux condition employed on the boundary.They also applied normal magnetic field and found that velocity reduces for the higher magnetic strength.Zhang et al.[34]analyzed analytically the unsteady thin film flow of an Oldroyd-B nanofluid for the heat transfer over the stretching sheet.Poly vinyl alcohol-water is used as a base fluid with Ag and Cu as nanoparticles.Besides this,a good number of recent explorations highlighting various aspects involving three dimensional flows of Oldroyd-B fluid may be found in the literature.[35?38]However,after the invent of nanofluids,researchers started to explore new fronts with the amalgamation of Oldroyd-B fluid and nanofluids.First step in this direction was taken by Nadeem et al.[39]who studied flow of Oldroyd-B nanofluid flow past a linearly stretched surface numerically.Moving a step further,three dimensional nanofluid Oldroyd-B fluid past a stretched surface was deliberated by Khan et al.[39]Then Hayat et al.[40]studied three dimensional Oldroyd-B nanofluid with effects of magneto hydrodynamic and zero mass flux condition.Shehzad et al.[41]first time studied combination of linear thermal radiation with three dimensional Oldroyd-B nanofluid flow and magneto hydrodynamic.Last attempt in this regard is recently done by Hayat et al.[42]who found analytical solution of three dimensional Oldroyd-B nanofluid flow with heat generation/absorption.

    From the above literature survey,it is revealed that the problem of three-dimensional Oldroyd-B magneto nanofluid flow with impact of nonlinear thermal radiation and chemical reaction in a porous media is still a scarce.Additional effects of heat generation/absorption,temperature dependent thermal conductivity and convective heat and mass conditions are added features to the uniqueness of the present effort.No attempt so far has been made to solve such an important mathematical model.We being the pioneer have solved this problem using renowned Homotopy Analysis method.[43?48]Graphical illustrations are given to portray the impact of varied parameters versus velocity profile,heat and mass transfer rates.To authenticate our results,a comparison with previous study in limiting case is also given.

    2 Mathematical Formulation

    Consider the flow of three-dimensional Oldroyd-B nanofluid past a bidirectional stretched surface in the presence of nonlinear thermal radiation in a porous media.Flow analysis is performed in attendance of thermophoresis and Brownian motion.Additional effects of heat generation,chemical reaction and variable thermal conductivity are also taken into account.Fluid flow occupies the region z>0,however,stretched surface coincides with the plane z=0.Fluid is made electrically conducting in the presence of uniform magnetic field of strength B0.Here,induced magnetic field is ignored due to our assumption of small Reynolds number.The velocity components u=cx and υ=dy(with c and d are constants)are along x and y-directions.Also,Twis the constant surface temperature and T∞is the ambient temperature with Tw>T∞(see Fig.1).The pertinent boundary layer equations are[33,49]

    Fig.1 Geometry of the flow problem.

    with(u,v,w)are the velocities along(x,y,z)directions respectively.

    In view of Rosseland’s approximation,the value of heat flux is given by

    The model equations(1)–(5)are supported by the boundary conditions Taking into account the succeeding transformations

    Here,η is similarity variable.The variable thermal conductivity[50]is given by k=k∞(1+θ(η)),where=(kw?k∞)/k∞with k∞and kware the fluid free stream conductivity and the thermal conductivity at wall respectively.Also,using the relation T=T∞((θw? 1)θ(η)+1),θw=Tw/T∞with above transformations,requirement of Eq.(1)is fulfilled inevitably,however,Eqs.(2)–(5)and Eq.(7)take the form

    The values of above mentioned non-dimensionalized parameters are given below:

    The heat and mass transfer rates i.e.,local Nusselt and Sherwood numbers in dimensional form are given by

    where

    Dimensionless form of these numbers are

    3 Homotopic Solutions

    The initial guesses(f0,g0,θ0,?0)and linear operators(Lf,Lg,Lθ,L?)required for Homotopy Analysis method are defined as:

    with the following properties

    where Ci(i=1–10),the arbitrary constants,through the boundary conditions have the values

    3.1 Convergence Analysis

    To determine the region of convergence for series solutions,the importance of auxiliary parameters(}f,}g,}θ,}?)can not be denied.Figure 2 is illustrated to identify the same regions.Tolerable ranges of parameters}f,}g,}θ,and}?are?1.7≤ }f≤ ?0.7,?1.6≤ }g≤?0.4,?1.4≤ }θ≤ ?0.5,and?1.4≤ }?≤ ?0.5 respectively.The values of these parameters are in complete alignment to those numerical values found in Table 1.

    Fig.2 }-curve of f,g,θ,and ?.

    Table 1 Convergence of series solutions for different order of approximations when β1=0.2,β2=0.2,M=0.4,=0.3,λ =0.3,Nt=0.2,Nb=0.7,Rd=0.4,θw=1.3,Le=0.7,Pr=0.7,δ1=0.4,δ2=0.6,δ=0.2,Pm=0.1,Q=0.1.

    Table 1 Convergence of series solutions for different order of approximations when β1=0.2,β2=0.2,M=0.4,=0.3,λ =0.3,Nt=0.2,Nb=0.7,Rd=0.4,θw=1.3,Le=0.7,Pr=0.7,δ1=0.4,δ2=0.6,δ=0.2,Pm=0.1,Q=0.1.

    Order of approximations ?f′′(0) ?g′′(0) ?θ′(0) ??′(0)1.099 07 0.271 76 0.149 92 0.157 14 5 1.134 71 0.276 55 0.133 18 0.149 90 10 1.139 61 0.278 62 0.125 29 0.147 39 15 1.140 98 0.279 35 0.120 97 0.146 28 20 1.141 59 0.279 69 0.118 08 0.145 64 25 1.141 91 0.279 88 0.115 96 0.145 22 30 1.142 12 0.279 99 0.114 30 0.144 93 35 1.142 14 0.280 03 0.114 00 0.144 83 40 1.142 14 0.280 03 0.113 93 0.144 82 1

    4 Results and Discussion

    This section is outlined to examine the impact of varied involved parameters on all distributions via several graphs that arise in the mathematical model.Figures 3 and 4 are drawn to show the influence of relaxation and retardation times i.e.,β1and β2on velocity fields f′(η)and g′(η)respectively.It is witnessed that f′(η)and g′(η)are decreasing and increasing functions of β1and β2respectively.This is due to the fact that higher values of β1boosts the viscous force that hinders the movement of fluid’s motion and eventually decays in velocity profile is seen.An opposite trend in case of β2is seen where growth in velocity field is observed for large values of β2.Here,strength of viscous force is weakened because of higher values of β2and eventually an enhanced velocity distribution is perceived.Figures 5 and 6 epitomize the impact of Biot numbers δ1and δ2on temperature and concentration fields respectively.Both δ1and δ2have direct proportion to their respective heat and mass transfer coefficients.Augmented values of δ1and δ2are because of more heat and mass transfer resistance inside the body in comparison to the surface that results in enhanced temperature and concentration distributions.Figure 7 elucidates the impact of temperature dependent thermal conductivity parameteron temperature distribution.It is noticed that increasing values ofamplify the temperature field.As we know that higher temperature is because of increased values of thermal conductivity.In Fig.8,effect of heat generation/absorption parameter Q on temperature distribution is displayed.It is perceived that mounting values of Q lead to increase in the temperature profile.Higher values of Q means more heat is transferred to the fluid that ultimately results in higher temperature and sturdier boundary layer thickness.Figures 9 and 10 are portrayed to depict the effect of stretching ratio parameter λ on both velocities f′(η)and g′(η)respectively.It is seen that higher value of λ is in direct and indirect relation to stretched rates along y-and x-directions respectively.So,velocity field g′(η)along y-direction increases and velocity field f′(η)along x-direction decreases.

    Fig.3 Graph of β1versus f′(η).

    Fig.4 Graph of β2versus g′(η).

    Fig.5 Graph of δ1versus θ(η).

    Fig.6 Graph of δ2versus ?(η).

    Fig.7 Graph of versus θ(η).

    Fig.8 Graph of Q versus θ(η).

    Fig.9 Graph of λ versus f′(η).

    Fig.10 Graph of λ versus g′(η).

    In Fig.11,impact of radiation parameter Rd on temperature distribution is presented.It is examined that temperature field is mounted function of Rd.It is due to the fact that enhancement in thermal radiation parameter results in diminution in mean absorption coefficient that eventually boosts the divergence of the radiative heat flux and increase in fluid’s temperature is witnessed.Figure 12 is drawn to show the impact of Lewis number Le on concentration distribution.As we know that Lewis number is the quotient of thermal diffusivity to mass diffusivity.Increase in Le means high thermal diffusivity which is responsible for decrement in concentration distribution.Figures 13 and 14 are illustrated to depict the influence of Hartmann number M on velocities in both x-and y-directions respectively.It is seen that both velocities decrease with increase in values of M.This is because of the resistance offered by the Lorentz force.Hence,decrease in both velocities is experimented.Figure 15 is portrayed to depict the effect of temperature ratio parameter θwon temperature field.Augmented values of θwenhance the fluid’s thermal state,which is accountable for increased temperature.In Fig.16,effect of Brownian motion parameter Nb on temperature profile is portrayed.It is examined that temperature field is increasing function of Nb.Actually,rise in values of means Nb more collision of particles and eventually rise in temperature field is witnessed.Figure 17 is drawn to illustrate the impact of thermophoresis parameter Nt on concentration profile.Decrease in concentration profile is seen for increasing values of Nt.Nanoparticles are attracted towards the cold surface with increase in values of Nt that lowers the nanoparticle concentration.To check the influence of Prandtl number Pr on temperature and concentration distributions,Figs.18 and 19 are graphed.

    Fig.11 Graph of Rd versus θ(η).

    Fig.12 Graph of Le versus ?(η).

    Fig.13 Graph of M versus f′(η).

    Fig.14 Graph of M versus g′(η).

    Fig.15 Graph of θwversus θ(η).

    Fig.16 Graph of Nb versus θ(η).

    Fig.17 Graph of Nt versus ?(η).

    Fig.18 Graph of Pr versus θ(η).

    Fig.19 Graph of Pr versus ?(η).

    Fig.20 Graph of Pm versus g′(η).

    Fig.21 Graph of δ<0 versus ?(η).

    Fig.22 Graph of δ>0 versus ?(η).

    Fig.23 Influence of Nb and Nt on Nuz

    Fig.24 Influence of Pr and Rd on Nuz

    It is experimented that Prandtl number is the proportion of momentum diffusivity to thermal diffusivity.Higher values of momentum diffusivity correspond to feeble thermal diffusivity in case of Prandtl number and we encounter weaker boundary layer thicknesses in case of both temperature and concentration profiles.Figure 20 is drawn to exhibit the effects of permeability parameter Pm on velocity profile along y-axis.It is seen that porous medium offers resistance to the fluid flow and as a result velocity of the fluid is decreased.Effect of chemical reaction parameter in both cases generative(δ<0)and destructive(δ>0)on concentration profile is presented in Figs.21 and 22 respectively.Opposite behavior in both cases is witnessed.Disruption in chemical reaction for generative case(δ<0)does not create much disorder.However,in case of destructive(δ>0),disruption is higher due to comparatively substantial molecular motion.

    Table 2 Values of local Nusselt number ?θ′(0)in comparison to Hayat et al.[50]for different values of parameters β1, β2,Pr and γ in absence of nanofluid,nonlinear thermal radiation,variable thermal conductivity,porous medium,chemical reaction,convective mass condition.

    Fig.25 Influence of Pr and Le on Shz

    Figures 23 and 24 show that Nusselt number increase and decrease for gradual increasing values of Pr,Rd and Nt,Nb respectively.In Fig.25,we see that Sherwood number increase and decrease for Le and Pr respectively.

    Table 2 depicts an excellent agreement of numerically calculated local Nusselt number in limiting case(in absence of nanofluid,nonlinear thermal radiation,variable thermal conductivity,porous medium,chemical reaction,convective mass condition)to those values obtained Hayat et al.[50]

    5 Conclusions

    In this communication three-dimensional Oldroyd-B fluid flow in attendance of variable thermal conductivity and nonlinear thermal radiation is studied.Additional effects of chemical reaction,porous medium and magneto hydrodynamics are also taken into account.Flow analysis is performed in the presence Brownian motion and thermophoresis with convective heat and mass conditions.The salient characteristics of this investigation are appended below:

    ?Increasing values of radiation parameter boosts the temperature of fluid.

    ?Convective heat and mass transfer support the temperature and concentration profiles respectively.

    ?Higher values of variable thermal conductivity augments the fluid’s temperature.

    ?Sherwood number increases with higher values of Prandtl and Lewis numbers.

    ?Velocities along x-and y-axes decrease with increase in values of Hartmann number.

    ?Temperature is increased with higher values of Brownian motion.

    ?Opposite behavior in case of generative and destructive chemical reaction on concentration field is witnessed.

    ?Decrease in velocity of fluid flow is observed for increasing values of permeability parameter.

    [1]S.U.S.Choi and J.A.Eastman,ASME Inter.Mech.Eng.Cong.Expo.66(1995)99.

    [2]X.Q.Wang and A.S.Mujumdar,Int.J.Thermal Sci.46(2007)46.

    [3]J.A.Eastman,S.R.Phillpot,S.U.S.Choi,and P.Keblinski,Annual Review Mater.Res.34(2004)219.

    [4]J.A.Eastman,S.U.S.Choi,S.Li,W.Yu,and L.J.Thompson,Appl.Phys.Lett.78(2001)718.

    [5]S.M.S.Murshed,K.C.Leong,and C.Yang,Int.J.Thermal Sci.44(2005)367.

    [6]M.I.Pryazhnikov,A.V.Minakov,V.Y.Rudyak,and D.V.Guzei,Int.J.Heat Mass Tran.104(2017)1275.

    [7]N.Sandeep and M.G.Reddy,J.Mol.Liq.225(2017)87.

    [8]A.Zaib,M.M.Rashidi,A.J.Chamkha,and N.F.Mohammad,Proceedings of the Institution of Mechanical Engineers,Part C:J.Mech.Engr.Sci.(2017)doi.org/10.1177/0954406217695847.

    [9]M.K.Nayak,N.S.Akbar,V.S.Pandey,et al.,Powder Technol.315(2017)205.

    [10]A.Kasaeian,R.D.Azarian,O.Mahian,et al.,Int.J.Heat Mass Tran.107(2017)778.

    [11]M.Ramzan,J.D.Chung,and N.Ullah,Int.J.Mech.Sci.130(2017)31.

    [12]M.Ramzan,M.Bilal,and J.D.Chung,Chin.J.Phys.55(2017)1663.

    [13]M.Ramzan,M.Bilal,and J.D.Chung,PLoS ONE 12(2017)e0170790.

    [14]M.Ramzan,M.Bilal,J.D.Chung,and A.B.Mann,Neural Comput.Appl.(2017)doi.org/10.1007/s00521-017-2852-8.

    [15]M.Meraj,S.A.Shehzad,T.Hayat,et al.,Appl.Math.Mech.38(2017)557.

    [16]M.Ramzan,F.Yousaf,M.Farooq,and J.D.Chung,Commun.Theor.Phys.66(2016)133.

    [17]M.Ramzan,S.Inam,and S.A.Shehzad,Alexandria Engr.J.55(2016)311.

    [18]M.Ramzan and M.Bilal,J.Mol.Liq.215(2017)212.

    [19]M.A.El-Hakiem,M.Ramzan,and J.D.Chung,J.Comput.Theor.Nanosci.13(2016)8419.

    [20]S.Shaw,P.K.Kameswaran,and P.Sibanda,Bound.Value Prob.2016(2016)2.

    [21]R.Comminal,J.H.Hattel,M.A.Alves,and J.Spangenberg,J.Non-Newtonian Fluid Mech.237(2016)1.

    [22]J.C.Maxwell,Philosophical Transactions of the Royal Society B:Biological Sciences 157(1867)49.

    [23]J.G.Oldroyd,P.Roy.Soc.Lond.A:Math.Phys.Sci.200(1950)523.

    [24]W.Lai,Phys.Fluids 10(1967)844.

    [25]N.P.Thien,J.Non-Newtonian Fluid Mech.13(1983)325-340.

    [26]N.P.Thien,Rheologica Acta 23(1984)172.

    [27]N.P.Thien,J.Non-Newtonian Fluid Mech.17(1985)37.

    [28]W.Tan,Phys.Fluids 17(2005)023101.

    [29]T.Hayat,A.M.Siddiqui,and S.Asghar,Int.J.Eng.Sci.39(2001)135.

    [30]T.Hayat,S.Nadeem,and S.Asghar,Int.J.Eng.Sci.42(2004)65.

    [31]T.Hayat,Z.Hussain,M.Farooq,et al.,Int.J.Nonlinear Sci.Numer.Simul.15(2014)77.

    [32]W.A.Khan,M.Khan,and R.Malik,PLoS ONE 9(2014)e105107.

    [33]T.Hayat,T.Muhammad,S.A.Shehzad,et al.,J.Mol.Liquids 212(2015)272.

    [34]Y Zhang,M.Zhang,and Y.Bai,J.Mol.Liquids 220(2016)665.

    [35]S.Hina,M.Munira,and M.Mustafa,Int.J.Mech.Sci.131(2017)146.

    [36]T.Hayat,S.Farooq,A.Alsaedi,and B.Ahmad,Int.J.Thermal Sci.112(2017)68.

    [37]M.S.Hashmi,N.Khan,T.Mahmood,and S.A.Shehzad,Int.J.Thermal Sci.111(2017)463.

    [38]N.Sandeep and M.G.Reddy,Eur.Phys.J.Plus 132(2017)147.

    [39]W.A.Khan,M.Khan,and R.Malik,PLoS ONE 9(2014)e105107.

    [40]T.Hayat,T.Muhammad,S.A.Shehzad,et al.,J.Mol.Liq.212(2015)272.

    [41]S.A.Shehzad,Z.Abdullah,F.M.Abbasi,et al.,J.Magn.Magn.Mater.399(2016)97.

    [42]T.Hayat,T.Muhammad,S.A.Shehzad,and A.Alsaedi,Int.J.Thermal Sci.111(2017)274.

    [43]M.Ramzan,M.Bilal,and J.D.Chung,Int.J.Chem.Reactor Eng.15(2017)doi.org/10.1515/ijcre-2016-0136.

    [44]M.Ramzan,M.Bilal,and J.D.Chung,J.Mol.Liq.230(2017)415.

    [45]M.Ramzan,M.Bilal,and J.D.Chung,J.Mol.Liq.223(2016)1284.

    [46]T.Hayat,M.Waqas,S.A.Shehzad,and A.Alsaedi,Euro.Phys.J.Plus 131(2016)253.

    [47]T.Hayat,M.Zubair,M.Ayub,et al.,Euro.Phys.J.Plus 131(2016)355.

    [48]T.Hayat,M.I.Khan,M.Waqas,and A.Alsaedi,Nucl.Eng.Tech.49(2017)1645.

    [49]T.Hayat,S.A.Shehzad,A.Alsaedi,and M.S.Alhothuali,Appl.Math.Mech.34(2013)489.

    [50]H.Zargartalebi,M.Ghalambaz,A.Noghrehabadi,and A.Chamkha,Adv.Powder Technol.26(2015)819.

    亚洲欧美日韩另类电影网站| 国产精品 国内视频| 国产亚洲精品第一综合不卡 | 18禁在线播放成人免费| 性高湖久久久久久久久免费观看| 美女国产高潮福利片在线看| 亚洲怡红院男人天堂| 成人免费观看视频高清| 午夜精品国产一区二区电影| 久久韩国三级中文字幕| 婷婷色综合大香蕉| 又黄又爽又刺激的免费视频.| 黑人猛操日本美女一级片| 满18在线观看网站| 国产亚洲精品第一综合不卡 | 国产精品一区二区在线观看99| 成年av动漫网址| 亚洲成人手机| 国产一区亚洲一区在线观看| 欧美精品人与动牲交sv欧美| 日韩成人伦理影院| 亚洲av免费高清在线观看| 国产国拍精品亚洲av在线观看| 日产精品乱码卡一卡2卡三| 人妻 亚洲 视频| 一级黄片播放器| 黑人猛操日本美女一级片| 国产成人精品久久久久久| 久久久久久久亚洲中文字幕| 亚洲高清免费不卡视频| 亚洲美女视频黄频| 热99久久久久精品小说推荐| 最近的中文字幕免费完整| 久久ye,这里只有精品| 亚洲欧美一区二区三区黑人 | 亚洲精品aⅴ在线观看| 91精品国产九色| 亚洲,一卡二卡三卡| 国产视频首页在线观看| 街头女战士在线观看网站| 亚洲精品美女久久av网站| 欧美亚洲日本最大视频资源| 日韩成人av中文字幕在线观看| av免费观看日本| 国产又色又爽无遮挡免| 久久精品久久久久久久性| 18禁在线播放成人免费| 新久久久久国产一级毛片| 色视频在线一区二区三区| 草草在线视频免费看| 97超碰精品成人国产| 水蜜桃什么品种好| 国产精品一国产av| 看十八女毛片水多多多| 晚上一个人看的免费电影| 成人手机av| 大又大粗又爽又黄少妇毛片口| 一区二区三区乱码不卡18| 中文欧美无线码| 成人综合一区亚洲| 一本大道久久a久久精品| 亚洲欧洲日产国产| 91国产中文字幕| 伦理电影大哥的女人| 久久久久久久久久成人| 99久久精品一区二区三区| h视频一区二区三区| 国产成人精品一,二区| 高清在线视频一区二区三区| 99热这里只有精品一区| 18禁动态无遮挡网站| 亚洲精品中文字幕在线视频| 国产69精品久久久久777片| 最近的中文字幕免费完整| 老司机影院成人| 亚洲欧美清纯卡通| 午夜福利视频精品| 亚洲精品久久午夜乱码| 人人妻人人添人人爽欧美一区卜| 久久影院123| 男女高潮啪啪啪动态图| 精品久久国产蜜桃| 日本wwww免费看| 有码 亚洲区| 一区在线观看完整版| 久久久a久久爽久久v久久| 在现免费观看毛片| 成人18禁高潮啪啪吃奶动态图 | av.在线天堂| 久久毛片免费看一区二区三区| 尾随美女入室| 免费少妇av软件| 国产深夜福利视频在线观看| av不卡在线播放| 国产精品99久久99久久久不卡 | 精品人妻一区二区三区麻豆| 51国产日韩欧美| 狂野欧美激情性bbbbbb| 国语对白做爰xxxⅹ性视频网站| 久久 成人 亚洲| 午夜久久久在线观看| www.色视频.com| 最新的欧美精品一区二区| 国产精品.久久久| 日本91视频免费播放| 亚洲美女搞黄在线观看| 男人爽女人下面视频在线观看| 天堂8中文在线网| 成人国产av品久久久| 97在线人人人人妻| 精品久久久精品久久久| 久久 成人 亚洲| 国产欧美另类精品又又久久亚洲欧美| 两个人的视频大全免费| 91精品三级在线观看| 欧美97在线视频| 飞空精品影院首页| 少妇熟女欧美另类| 熟女人妻精品中文字幕| av国产久精品久网站免费入址| 大码成人一级视频| 国产精品秋霞免费鲁丝片| 最新的欧美精品一区二区| 高清午夜精品一区二区三区| 国产不卡av网站在线观看| av在线app专区| 伊人久久国产一区二区| 妹子高潮喷水视频| a级毛片黄视频| 草草在线视频免费看| 精品国产一区二区三区久久久樱花| 一级爰片在线观看| 飞空精品影院首页| 曰老女人黄片| 久久午夜福利片| 一区二区三区四区激情视频| 欧美日韩视频高清一区二区三区二| 十分钟在线观看高清视频www| 国产精品无大码| 亚洲av日韩在线播放| 欧美日本中文国产一区发布| av在线app专区| 欧美成人午夜免费资源| 天堂俺去俺来也www色官网| 精品久久久精品久久久| 激情五月婷婷亚洲| 国产成人91sexporn| xxx大片免费视频| 亚洲欧洲精品一区二区精品久久久 | 好男人视频免费观看在线| 国产精品国产三级国产av玫瑰| 亚洲精品,欧美精品| 寂寞人妻少妇视频99o| 成人亚洲精品一区在线观看| 亚洲,欧美,日韩| 欧美+日韩+精品| 亚洲人成77777在线视频| 大陆偷拍与自拍| 免费观看av网站的网址| 日韩不卡一区二区三区视频在线| 精品久久久久久久久av| 国产高清国产精品国产三级| 亚洲av免费高清在线观看| 午夜福利视频精品| 黄色怎么调成土黄色| 国产精品女同一区二区软件| 久久久国产一区二区| 亚洲av男天堂| 美女国产视频在线观看| 22中文网久久字幕| 精品国产一区二区三区久久久樱花| 黄色一级大片看看| 免费看光身美女| 尾随美女入室| 婷婷色av中文字幕| 日韩 亚洲 欧美在线| 中国国产av一级| 精品国产一区二区久久| 国产免费一级a男人的天堂| 国产又色又爽无遮挡免| 涩涩av久久男人的天堂| 丝袜脚勾引网站| 国产成人免费无遮挡视频| 十分钟在线观看高清视频www| 91午夜精品亚洲一区二区三区| 精品人妻熟女毛片av久久网站| 热99久久久久精品小说推荐| 亚洲国产精品国产精品| av女优亚洲男人天堂| 国产综合精华液| 成人国产av品久久久| 五月开心婷婷网| 在线观看一区二区三区激情| 中文字幕人妻熟人妻熟丝袜美| 麻豆乱淫一区二区| 日韩 亚洲 欧美在线| 纯流量卡能插随身wifi吗| 国产精品麻豆人妻色哟哟久久| 国产伦理片在线播放av一区| 久久久久久久久久人人人人人人| 久久热精品热| 亚洲无线观看免费| 久久久久久久久久久免费av| 97在线视频观看| 91aial.com中文字幕在线观看| 如日韩欧美国产精品一区二区三区 | 在线观看三级黄色| 国产男女内射视频| 欧美日韩视频高清一区二区三区二| 国产成人av激情在线播放 | 国产 一区精品| 亚洲精品,欧美精品| 国产极品天堂在线| 国产成人91sexporn| 国产成人免费观看mmmm| 亚洲av.av天堂| 国产精品免费大片| 大片电影免费在线观看免费| 天美传媒精品一区二区| 久久精品久久精品一区二区三区| 美女xxoo啪啪120秒动态图| 国模一区二区三区四区视频| 久久久久国产精品人妻一区二区| 精品人妻熟女av久视频| 18禁动态无遮挡网站| 一级爰片在线观看| 久久鲁丝午夜福利片| 22中文网久久字幕| 亚洲欧美一区二区三区黑人 | 男女啪啪激烈高潮av片| 男女啪啪激烈高潮av片| 亚洲精品自拍成人| 久久人妻熟女aⅴ| 日韩成人伦理影院| 亚洲人成77777在线视频| 亚洲在久久综合| 十八禁网站网址无遮挡| 亚洲,欧美,日韩| 国产成人freesex在线| 色94色欧美一区二区| 人人妻人人爽人人添夜夜欢视频| kizo精华| 久久女婷五月综合色啪小说| 国产有黄有色有爽视频| 美女脱内裤让男人舔精品视频| 黄色配什么色好看| 免费观看在线日韩| 日韩人妻高清精品专区| 三级国产精品欧美在线观看| 天天躁夜夜躁狠狠久久av| av有码第一页| 欧美激情极品国产一区二区三区 | 在线观看免费日韩欧美大片 | 精品一区在线观看国产| 少妇人妻久久综合中文| 一本色道久久久久久精品综合| 一区二区av电影网| 一级片'在线观看视频| 一级毛片电影观看| 美女xxoo啪啪120秒动态图| 极品人妻少妇av视频| 高清av免费在线| 亚洲精品国产色婷婷电影| a级毛片免费高清观看在线播放| 久久综合国产亚洲精品| 18禁在线播放成人免费| 99久久精品国产国产毛片| 国产精品久久久久久精品电影小说| 最近2019中文字幕mv第一页| 三级国产精品片| 在线观看www视频免费| 51国产日韩欧美| 青春草国产在线视频| 国产无遮挡羞羞视频在线观看| 欧美 日韩 精品 国产| 丁香六月天网| 人妻 亚洲 视频| 最近中文字幕2019免费版| 人妻夜夜爽99麻豆av| 最新的欧美精品一区二区| 亚洲精品久久久久久婷婷小说| 日韩大片免费观看网站| 亚州av有码| 搡老乐熟女国产| 黄色毛片三级朝国网站| 搡老乐熟女国产| av不卡在线播放| 秋霞在线观看毛片| 女的被弄到高潮叫床怎么办| 国产淫语在线视频| 国产探花极品一区二区| 成人亚洲欧美一区二区av| 精品国产一区二区三区久久久樱花| 亚洲av成人精品一二三区| 草草在线视频免费看| 久久久久久久久大av| 中国三级夫妇交换| 成人国语在线视频| 日韩视频在线欧美| 美女视频免费永久观看网站| 飞空精品影院首页| 亚洲人成网站在线播| 久久精品国产鲁丝片午夜精品| 国产淫语在线视频| 人妻 亚洲 视频| 97超碰精品成人国产| 国产伦理片在线播放av一区| 看免费成人av毛片| 亚洲精品一区蜜桃| 国产一区有黄有色的免费视频| 免费人成在线观看视频色| 在线观看一区二区三区激情| 一区二区日韩欧美中文字幕 | 菩萨蛮人人尽说江南好唐韦庄| 自拍欧美九色日韩亚洲蝌蚪91| 一级毛片电影观看| 91久久精品国产一区二区成人| 欧美xxxx性猛交bbbb| 亚洲欧美日韩另类电影网站| 国产欧美日韩一区二区三区在线 | 午夜视频国产福利| 久久鲁丝午夜福利片| 中文欧美无线码| 国产成人精品婷婷| 国产亚洲午夜精品一区二区久久| av在线播放精品| 久久精品国产亚洲网站| 99久久精品一区二区三区| 大香蕉久久网| 欧美精品一区二区免费开放| 亚洲国产精品专区欧美| 日本猛色少妇xxxxx猛交久久| 亚洲欧美清纯卡通| 亚洲av不卡在线观看| 男人添女人高潮全过程视频| 国产欧美亚洲国产| 插逼视频在线观看| 婷婷色麻豆天堂久久| 亚洲美女视频黄频| 久久ye,这里只有精品| 国语对白做爰xxxⅹ性视频网站| 九九爱精品视频在线观看| 成人午夜精彩视频在线观看| 你懂的网址亚洲精品在线观看| 国产精品偷伦视频观看了| 汤姆久久久久久久影院中文字幕| 亚洲精品国产色婷婷电影| 欧美日韩av久久| 中文字幕免费在线视频6| 一个人免费看片子| 99re6热这里在线精品视频| 天天躁夜夜躁狠狠久久av| 国产国拍精品亚洲av在线观看| 丝袜脚勾引网站| 在线观看人妻少妇| 97超碰精品成人国产| 日日摸夜夜添夜夜添av毛片| 精品人妻偷拍中文字幕| 亚洲国产精品专区欧美| 国产日韩一区二区三区精品不卡 | 精品熟女少妇av免费看| 久久久久国产网址| 欧美精品一区二区大全| 视频区图区小说| 久久久久人妻精品一区果冻| 一二三四中文在线观看免费高清| 亚洲成人一二三区av| 免费少妇av软件| 免费大片黄手机在线观看| 日韩av不卡免费在线播放| 亚洲一区二区三区欧美精品| 色哟哟·www| 亚洲成人手机| 婷婷色综合www| 欧美 日韩 精品 国产| 精品人妻在线不人妻| 狠狠婷婷综合久久久久久88av| 观看av在线不卡| 中文字幕av电影在线播放| 99热全是精品| 精品一区二区三卡| 亚洲国产日韩一区二区| av免费观看日本| 制服人妻中文乱码| 日本av免费视频播放| 成人国产麻豆网| 伦理电影免费视频| 一本久久精品| 欧美日韩av久久| 国产精品国产av在线观看| 制服丝袜香蕉在线| 日韩三级伦理在线观看| 99久国产av精品国产电影| 亚洲人成网站在线播| 伊人久久精品亚洲午夜| 久久99精品国语久久久| 日本av手机在线免费观看| 亚洲精品第二区| 青春草视频在线免费观看| 99视频精品全部免费 在线| 亚洲色图 男人天堂 中文字幕 | 赤兔流量卡办理| 日本免费在线观看一区| 一本—道久久a久久精品蜜桃钙片| 日本av手机在线免费观看| 亚洲五月色婷婷综合| 一级爰片在线观看| 精品一区二区免费观看| 一区二区三区四区激情视频| 亚洲不卡免费看| 国产成人freesex在线| 日产精品乱码卡一卡2卡三| 十分钟在线观看高清视频www| av在线播放精品| 亚洲精品456在线播放app| 夜夜爽夜夜爽视频| 精品视频人人做人人爽| 亚洲,一卡二卡三卡| 久久午夜福利片| 水蜜桃什么品种好| av视频免费观看在线观看| 欧美日韩一区二区视频在线观看视频在线| 国产 一区精品| 成人国产麻豆网| 亚洲成人手机| 欧美3d第一页| 少妇的逼水好多| 成人毛片60女人毛片免费| 一边亲一边摸免费视频| 日韩欧美精品免费久久| 青春草国产在线视频| 日韩电影二区| 永久网站在线| 亚洲精品,欧美精品| 亚洲av福利一区| 亚洲国产色片| av视频免费观看在线观看| 五月伊人婷婷丁香| 亚洲婷婷狠狠爱综合网| 极品少妇高潮喷水抽搐| 一级,二级,三级黄色视频| 日本猛色少妇xxxxx猛交久久| 色婷婷久久久亚洲欧美| 亚洲国产欧美日韩在线播放| 精品国产一区二区三区久久久樱花| 国产一区二区在线观看av| 最后的刺客免费高清国语| 人妻 亚洲 视频| 视频在线观看一区二区三区| av天堂久久9| 久久久精品区二区三区| 老司机影院毛片| 日日撸夜夜添| av电影中文网址| 在线观看人妻少妇| freevideosex欧美| 成人漫画全彩无遮挡| 国产视频内射| 日日摸夜夜添夜夜添av毛片| av免费观看日本| 一本一本综合久久| 久久久久视频综合| 午夜老司机福利剧场| 久久精品国产鲁丝片午夜精品| 午夜福利在线观看免费完整高清在| 亚洲av.av天堂| 久久久久视频综合| 久久精品国产亚洲网站| 亚洲国产精品999| 一级毛片 在线播放| 国产亚洲精品久久久com| 啦啦啦啦在线视频资源| 成人综合一区亚洲| 国产精品无大码| 黄色怎么调成土黄色| 在线亚洲精品国产二区图片欧美 | 99国产综合亚洲精品| 亚洲av男天堂| 亚洲av免费高清在线观看| 中文字幕久久专区| a级毛片在线看网站| 欧美国产精品一级二级三级| 久久人人爽人人片av| 丁香六月天网| 我的老师免费观看完整版| 国国产精品蜜臀av免费| 51国产日韩欧美| 国产成人午夜福利电影在线观看| 亚洲伊人久久精品综合| 亚洲综合精品二区| 99久久精品一区二区三区| 五月开心婷婷网| 久久精品国产亚洲av涩爱| 国产伦精品一区二区三区视频9| 久久久久国产精品人妻一区二区| 熟女av电影| 日本av免费视频播放| 插阴视频在线观看视频| 男女无遮挡免费网站观看| freevideosex欧美| 国产成人av激情在线播放 | 久久久国产一区二区| 性色avwww在线观看| 男女无遮挡免费网站观看| 国产成人精品久久久久久| 久久综合国产亚洲精品| 成年av动漫网址| 成年美女黄网站色视频大全免费 | 欧美精品国产亚洲| 少妇猛男粗大的猛烈进出视频| 久久久久久人妻| 久久女婷五月综合色啪小说| 免费av中文字幕在线| a级毛色黄片| 五月开心婷婷网| 亚洲国产精品专区欧美| 99久久精品国产国产毛片| 黄色欧美视频在线观看| 91午夜精品亚洲一区二区三区| 亚洲美女视频黄频| 久久精品夜色国产| 亚洲人成网站在线观看播放| 只有这里有精品99| 国产精品免费大片| 黑人巨大精品欧美一区二区蜜桃 | 日韩大片免费观看网站| 国产精品久久久久成人av| 国产精品麻豆人妻色哟哟久久| 日产精品乱码卡一卡2卡三| 少妇猛男粗大的猛烈进出视频| 日本欧美视频一区| 久久久午夜欧美精品| 免费大片18禁| 一个人免费看片子| 最新的欧美精品一区二区| 国产黄片视频在线免费观看| 亚洲美女搞黄在线观看| 最新的欧美精品一区二区| 国产成人a∨麻豆精品| 日韩视频在线欧美| 大香蕉久久成人网| 国产老妇伦熟女老妇高清| 国产伦理片在线播放av一区| 菩萨蛮人人尽说江南好唐韦庄| 高清不卡的av网站| 91精品一卡2卡3卡4卡| 亚洲怡红院男人天堂| 人妻少妇偷人精品九色| 国产亚洲精品第一综合不卡 | 久久久精品区二区三区| 夫妻性生交免费视频一级片| 午夜久久久在线观看| 嘟嘟电影网在线观看| 免费大片黄手机在线观看| 伦理电影免费视频| 伊人久久国产一区二区| 最新的欧美精品一区二区| av女优亚洲男人天堂| 一个人看视频在线观看www免费| 七月丁香在线播放| 丝袜脚勾引网站| 中文字幕人妻丝袜制服| 欧美性感艳星| 80岁老熟妇乱子伦牲交| 色哟哟·www| 欧美亚洲日本最大视频资源| 高清午夜精品一区二区三区| 精品国产一区二区久久| 丰满饥渴人妻一区二区三| 插逼视频在线观看| 9色porny在线观看| 黑人巨大精品欧美一区二区蜜桃 | 免费观看av网站的网址| 99久久精品国产国产毛片| 亚洲第一区二区三区不卡| av不卡在线播放| 久久久久国产网址| 免费观看性生交大片5| 亚洲人成网站在线观看播放| 69精品国产乱码久久久| 国产精品久久久久久精品电影小说| 老司机影院毛片| 久久精品久久精品一区二区三区| 国产精品国产av在线观看| 一本—道久久a久久精品蜜桃钙片| 伊人久久国产一区二区| 免费人妻精品一区二区三区视频| 亚洲四区av| 熟女电影av网| 黄色怎么调成土黄色| 亚洲国产精品国产精品| 极品人妻少妇av视频| 久久精品久久久久久久性| 狠狠婷婷综合久久久久久88av| av国产久精品久网站免费入址| 亚洲国产精品999| 国产精品三级大全| 国产精品久久久久久久久免| 我的老师免费观看完整版| av卡一久久| 一区二区日韩欧美中文字幕 | 日韩 亚洲 欧美在线| 在线天堂最新版资源| 美女cb高潮喷水在线观看| 国产欧美亚洲国产| 国产片内射在线| 欧美激情 高清一区二区三区| 一本色道久久久久久精品综合| 熟妇人妻不卡中文字幕| 精品国产一区二区久久| 欧美丝袜亚洲另类| 男女边摸边吃奶| 秋霞在线观看毛片| 国产免费一级a男人的天堂| 在线观看免费高清a一片|