• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Upshot of Chemical Species and Nonlinear Thermal Radiation on Oldroyd-B Nano fluid Flow Past a Bi-directional Stretched Surface with Heat Generation/Absorption in a Porous Media?

    2018-07-09 06:46:38DianChenLuRamzanBilalJaeDongChungandUmerFarooq5DepartmentofMathematicsFacultyofScienceJiangsuUniversityZhenjiang220China
    Communications in Theoretical Physics 2018年7期

    Dian-Chen Lu,M.Ramzan,M.Bilal,Jae Dong Chung,and Umer Farooq5Department of Mathematics,Faculty of Science,Jiangsu University,Zhenjiang 220,China

    2Department of Computer Science,Bahria University,Islamabad Campus,Islamabad 44000,Pakistan

    3Department of Mathematics,Faculty of Computing,Capital University of Science and Technology,Islamabad 44000,Pakistan

    4Department of Mechanical Engineering,Sejong University,Seoul 143-747,Korea

    5Department of Mathematics,COMSATS Institute of Information Technology,Park road,Tarlai Kalan,Islamabad 45550,Pakistan

    Nomenclature

    1 Introduction

    Heat and mass transfer is the most studied subject in today’s research because of its abundant efficacy in science and industry.The processes of reheating and freezing have vast usage in industry.In manufacturing processes,it is necessary to keep heat transfer phenomenon live in manufacturing of final refined product.Due to such interesting applications,scientists and researchers are captivated to reassess the potential of heat transfer.Choi and Eastman[1]were the pioneer who introduced the concept of great nanofluids to meet requirements of the industry.Geothermal industry, floor heating,polymer industry and processes like lubrication,manufacturing,chemical are some applications of nanofluids.A nanofluid is an amalgamation of nano sized metallic particles(like Cu,TiO2,Ag,etc.)and base fluid(like water,kerosene,ethylene glycol,oils).Usually,thermal conductivity of nanoparticle is more than the base liquid.However,mixture of both has obviously enhanced thermal conductivity.The pioneering work of Choi and Eastman was followed a study by Wang and Mujumdar[2]who tried to improve the convective characteristics of base fluid by insertion of metallic and nonmetallic nanoparticles.Then Eastman et al.[3]examined that mixture of ethylene glycol and suspended copper nanoparticles augments the thermal conductivity of the base fluid by 40%.In continuation to previous study,[3]Eastman et al.[4]explored another important result that thermal conductivity of nanofluid is also affected by the nanoparticle’s shape and size.This concept was supported by an experiment by Murshed et al.[5]who investigated that an amalgamation of spherical shaped nanoparticles(with size more than 40 nm)and Titanium oxide(base fluid)produces 33%more thermal conductivity than that of ordinary base fluid.In very a recent exploration,Pryazhnikov et al.[6]studied that thermal conductivity of nanofluid is also affected by nanoparticle’s material and density.Sandeep and Reddy[7]discussed the heat transfer phenomenon of Cu-water nanofluid past two varied geometries accompanied by nonlinear radiation effects.Zaib et al.[8]discussed the flow of Carreau nanofluid with effects of nonlinear thermal radiation,activation energy and binary chemical reaction past a nonlinear stretched surface.Nayak et al.[9]reported numerical treatment of three-dimensional nanofluid free convective flow with thermal radiation and magnetohydro dynamic with shooting technique.Kasaeian et al.[10]described heat transfer of nanofluids flow in a porous medium.Some more studies highlighting different aspects of nanofluids may be found at Refs.[11–20]and many therein.

    Characteristics of viscoelasticity is key to many complex natured fluids like polymer melts,colloidal suspensions and polymer solutions.Applications like blow molding,inkjet printing and extrusion involve such fluids.Viscoelastic characteristics like energy dissipation,hydraulic resistance,transport efficiency etc.affect many flows.[21]Pioneering work of Maxwell[22]featured a rate type mathematical model to assess viscoelasticity in fluids.While doing so,he overlooked the incompressibility feature of the fluid.This gap is fulfilled by Oldroyd’s model[23]that portraits a factual depiction of nonlinear fluids.Amongst the proposed mathematical models by Oldroyd,Oldroyd-B model was much praised and admired model that interpret the both relaxation and retardation times’characteristics.This fluid model reduces to Maxwell fluid model in absence of retardation time term.Later,Lai[24]analyzed the stability of Oldroyd-B fluid down an inclined plane.This effort was followed by Thien[25]who discussed numerical and analytical solutions of Oldroyd-B fluid flow around a coaxial disk.Thien also highlighted stagnation point Oldroyd-B fluid flow[26]and instability of cone and plate.[27]Then Tan[28]extended Stokes’s first problem to Oldroyd-B fluid flow with semi permeable surface using sine transform to find exact solution.Exploring a new dimension,Fetecau et al.[29]found exact solutions of oscillating flows of Oldroyd-B fluid in oscillating circular cylinders.Pioneering work in three dimensional geometry was explored by Hayat et al.[30]who examined similar solution of three dimensional Oldroyd-B fluid flow past a bidirectional stretched surface.Boundary layer flow of an Oldroyd-B fluid over the continuously linearly stretching sheet is studied by Hayat et al.[31]They have examined the effects of mixed convection and stagnation point flow of thermally stratified fluid by using the homotopy analysis method.Waqar et al.[32]addressed analytically about the bidirectional flow of an Oldroyd-B nanofluid with heat generation/absorption over the stretching sheet.They concluded that local Nusselt number decreases for the higher values of heat generation parameter.Later on Hayat et al.[33]investigated about the electrically conducting Oldroyd-B nanofluid flow over the multidimensional stretching sheet with the zero nanoparticle mass flux condition employed on the boundary.They also applied normal magnetic field and found that velocity reduces for the higher magnetic strength.Zhang et al.[34]analyzed analytically the unsteady thin film flow of an Oldroyd-B nanofluid for the heat transfer over the stretching sheet.Poly vinyl alcohol-water is used as a base fluid with Ag and Cu as nanoparticles.Besides this,a good number of recent explorations highlighting various aspects involving three dimensional flows of Oldroyd-B fluid may be found in the literature.[35?38]However,after the invent of nanofluids,researchers started to explore new fronts with the amalgamation of Oldroyd-B fluid and nanofluids.First step in this direction was taken by Nadeem et al.[39]who studied flow of Oldroyd-B nanofluid flow past a linearly stretched surface numerically.Moving a step further,three dimensional nanofluid Oldroyd-B fluid past a stretched surface was deliberated by Khan et al.[39]Then Hayat et al.[40]studied three dimensional Oldroyd-B nanofluid with effects of magneto hydrodynamic and zero mass flux condition.Shehzad et al.[41]first time studied combination of linear thermal radiation with three dimensional Oldroyd-B nanofluid flow and magneto hydrodynamic.Last attempt in this regard is recently done by Hayat et al.[42]who found analytical solution of three dimensional Oldroyd-B nanofluid flow with heat generation/absorption.

    From the above literature survey,it is revealed that the problem of three-dimensional Oldroyd-B magneto nanofluid flow with impact of nonlinear thermal radiation and chemical reaction in a porous media is still a scarce.Additional effects of heat generation/absorption,temperature dependent thermal conductivity and convective heat and mass conditions are added features to the uniqueness of the present effort.No attempt so far has been made to solve such an important mathematical model.We being the pioneer have solved this problem using renowned Homotopy Analysis method.[43?48]Graphical illustrations are given to portray the impact of varied parameters versus velocity profile,heat and mass transfer rates.To authenticate our results,a comparison with previous study in limiting case is also given.

    2 Mathematical Formulation

    Consider the flow of three-dimensional Oldroyd-B nanofluid past a bidirectional stretched surface in the presence of nonlinear thermal radiation in a porous media.Flow analysis is performed in attendance of thermophoresis and Brownian motion.Additional effects of heat generation,chemical reaction and variable thermal conductivity are also taken into account.Fluid flow occupies the region z>0,however,stretched surface coincides with the plane z=0.Fluid is made electrically conducting in the presence of uniform magnetic field of strength B0.Here,induced magnetic field is ignored due to our assumption of small Reynolds number.The velocity components u=cx and υ=dy(with c and d are constants)are along x and y-directions.Also,Twis the constant surface temperature and T∞is the ambient temperature with Tw>T∞(see Fig.1).The pertinent boundary layer equations are[33,49]

    Fig.1 Geometry of the flow problem.

    with(u,v,w)are the velocities along(x,y,z)directions respectively.

    In view of Rosseland’s approximation,the value of heat flux is given by

    The model equations(1)–(5)are supported by the boundary conditions Taking into account the succeeding transformations

    Here,η is similarity variable.The variable thermal conductivity[50]is given by k=k∞(1+θ(η)),where=(kw?k∞)/k∞with k∞and kware the fluid free stream conductivity and the thermal conductivity at wall respectively.Also,using the relation T=T∞((θw? 1)θ(η)+1),θw=Tw/T∞with above transformations,requirement of Eq.(1)is fulfilled inevitably,however,Eqs.(2)–(5)and Eq.(7)take the form

    The values of above mentioned non-dimensionalized parameters are given below:

    The heat and mass transfer rates i.e.,local Nusselt and Sherwood numbers in dimensional form are given by

    where

    Dimensionless form of these numbers are

    3 Homotopic Solutions

    The initial guesses(f0,g0,θ0,?0)and linear operators(Lf,Lg,Lθ,L?)required for Homotopy Analysis method are defined as:

    with the following properties

    where Ci(i=1–10),the arbitrary constants,through the boundary conditions have the values

    3.1 Convergence Analysis

    To determine the region of convergence for series solutions,the importance of auxiliary parameters(}f,}g,}θ,}?)can not be denied.Figure 2 is illustrated to identify the same regions.Tolerable ranges of parameters}f,}g,}θ,and}?are?1.7≤ }f≤ ?0.7,?1.6≤ }g≤?0.4,?1.4≤ }θ≤ ?0.5,and?1.4≤ }?≤ ?0.5 respectively.The values of these parameters are in complete alignment to those numerical values found in Table 1.

    Fig.2 }-curve of f,g,θ,and ?.

    Table 1 Convergence of series solutions for different order of approximations when β1=0.2,β2=0.2,M=0.4,=0.3,λ =0.3,Nt=0.2,Nb=0.7,Rd=0.4,θw=1.3,Le=0.7,Pr=0.7,δ1=0.4,δ2=0.6,δ=0.2,Pm=0.1,Q=0.1.

    Table 1 Convergence of series solutions for different order of approximations when β1=0.2,β2=0.2,M=0.4,=0.3,λ =0.3,Nt=0.2,Nb=0.7,Rd=0.4,θw=1.3,Le=0.7,Pr=0.7,δ1=0.4,δ2=0.6,δ=0.2,Pm=0.1,Q=0.1.

    Order of approximations ?f′′(0) ?g′′(0) ?θ′(0) ??′(0)1.099 07 0.271 76 0.149 92 0.157 14 5 1.134 71 0.276 55 0.133 18 0.149 90 10 1.139 61 0.278 62 0.125 29 0.147 39 15 1.140 98 0.279 35 0.120 97 0.146 28 20 1.141 59 0.279 69 0.118 08 0.145 64 25 1.141 91 0.279 88 0.115 96 0.145 22 30 1.142 12 0.279 99 0.114 30 0.144 93 35 1.142 14 0.280 03 0.114 00 0.144 83 40 1.142 14 0.280 03 0.113 93 0.144 82 1

    4 Results and Discussion

    This section is outlined to examine the impact of varied involved parameters on all distributions via several graphs that arise in the mathematical model.Figures 3 and 4 are drawn to show the influence of relaxation and retardation times i.e.,β1and β2on velocity fields f′(η)and g′(η)respectively.It is witnessed that f′(η)and g′(η)are decreasing and increasing functions of β1and β2respectively.This is due to the fact that higher values of β1boosts the viscous force that hinders the movement of fluid’s motion and eventually decays in velocity profile is seen.An opposite trend in case of β2is seen where growth in velocity field is observed for large values of β2.Here,strength of viscous force is weakened because of higher values of β2and eventually an enhanced velocity distribution is perceived.Figures 5 and 6 epitomize the impact of Biot numbers δ1and δ2on temperature and concentration fields respectively.Both δ1and δ2have direct proportion to their respective heat and mass transfer coefficients.Augmented values of δ1and δ2are because of more heat and mass transfer resistance inside the body in comparison to the surface that results in enhanced temperature and concentration distributions.Figure 7 elucidates the impact of temperature dependent thermal conductivity parameteron temperature distribution.It is noticed that increasing values ofamplify the temperature field.As we know that higher temperature is because of increased values of thermal conductivity.In Fig.8,effect of heat generation/absorption parameter Q on temperature distribution is displayed.It is perceived that mounting values of Q lead to increase in the temperature profile.Higher values of Q means more heat is transferred to the fluid that ultimately results in higher temperature and sturdier boundary layer thickness.Figures 9 and 10 are portrayed to depict the effect of stretching ratio parameter λ on both velocities f′(η)and g′(η)respectively.It is seen that higher value of λ is in direct and indirect relation to stretched rates along y-and x-directions respectively.So,velocity field g′(η)along y-direction increases and velocity field f′(η)along x-direction decreases.

    Fig.3 Graph of β1versus f′(η).

    Fig.4 Graph of β2versus g′(η).

    Fig.5 Graph of δ1versus θ(η).

    Fig.6 Graph of δ2versus ?(η).

    Fig.7 Graph of versus θ(η).

    Fig.8 Graph of Q versus θ(η).

    Fig.9 Graph of λ versus f′(η).

    Fig.10 Graph of λ versus g′(η).

    In Fig.11,impact of radiation parameter Rd on temperature distribution is presented.It is examined that temperature field is mounted function of Rd.It is due to the fact that enhancement in thermal radiation parameter results in diminution in mean absorption coefficient that eventually boosts the divergence of the radiative heat flux and increase in fluid’s temperature is witnessed.Figure 12 is drawn to show the impact of Lewis number Le on concentration distribution.As we know that Lewis number is the quotient of thermal diffusivity to mass diffusivity.Increase in Le means high thermal diffusivity which is responsible for decrement in concentration distribution.Figures 13 and 14 are illustrated to depict the influence of Hartmann number M on velocities in both x-and y-directions respectively.It is seen that both velocities decrease with increase in values of M.This is because of the resistance offered by the Lorentz force.Hence,decrease in both velocities is experimented.Figure 15 is portrayed to depict the effect of temperature ratio parameter θwon temperature field.Augmented values of θwenhance the fluid’s thermal state,which is accountable for increased temperature.In Fig.16,effect of Brownian motion parameter Nb on temperature profile is portrayed.It is examined that temperature field is increasing function of Nb.Actually,rise in values of means Nb more collision of particles and eventually rise in temperature field is witnessed.Figure 17 is drawn to illustrate the impact of thermophoresis parameter Nt on concentration profile.Decrease in concentration profile is seen for increasing values of Nt.Nanoparticles are attracted towards the cold surface with increase in values of Nt that lowers the nanoparticle concentration.To check the influence of Prandtl number Pr on temperature and concentration distributions,Figs.18 and 19 are graphed.

    Fig.11 Graph of Rd versus θ(η).

    Fig.12 Graph of Le versus ?(η).

    Fig.13 Graph of M versus f′(η).

    Fig.14 Graph of M versus g′(η).

    Fig.15 Graph of θwversus θ(η).

    Fig.16 Graph of Nb versus θ(η).

    Fig.17 Graph of Nt versus ?(η).

    Fig.18 Graph of Pr versus θ(η).

    Fig.19 Graph of Pr versus ?(η).

    Fig.20 Graph of Pm versus g′(η).

    Fig.21 Graph of δ<0 versus ?(η).

    Fig.22 Graph of δ>0 versus ?(η).

    Fig.23 Influence of Nb and Nt on Nuz

    Fig.24 Influence of Pr and Rd on Nuz

    It is experimented that Prandtl number is the proportion of momentum diffusivity to thermal diffusivity.Higher values of momentum diffusivity correspond to feeble thermal diffusivity in case of Prandtl number and we encounter weaker boundary layer thicknesses in case of both temperature and concentration profiles.Figure 20 is drawn to exhibit the effects of permeability parameter Pm on velocity profile along y-axis.It is seen that porous medium offers resistance to the fluid flow and as a result velocity of the fluid is decreased.Effect of chemical reaction parameter in both cases generative(δ<0)and destructive(δ>0)on concentration profile is presented in Figs.21 and 22 respectively.Opposite behavior in both cases is witnessed.Disruption in chemical reaction for generative case(δ<0)does not create much disorder.However,in case of destructive(δ>0),disruption is higher due to comparatively substantial molecular motion.

    Table 2 Values of local Nusselt number ?θ′(0)in comparison to Hayat et al.[50]for different values of parameters β1, β2,Pr and γ in absence of nanofluid,nonlinear thermal radiation,variable thermal conductivity,porous medium,chemical reaction,convective mass condition.

    Fig.25 Influence of Pr and Le on Shz

    Figures 23 and 24 show that Nusselt number increase and decrease for gradual increasing values of Pr,Rd and Nt,Nb respectively.In Fig.25,we see that Sherwood number increase and decrease for Le and Pr respectively.

    Table 2 depicts an excellent agreement of numerically calculated local Nusselt number in limiting case(in absence of nanofluid,nonlinear thermal radiation,variable thermal conductivity,porous medium,chemical reaction,convective mass condition)to those values obtained Hayat et al.[50]

    5 Conclusions

    In this communication three-dimensional Oldroyd-B fluid flow in attendance of variable thermal conductivity and nonlinear thermal radiation is studied.Additional effects of chemical reaction,porous medium and magneto hydrodynamics are also taken into account.Flow analysis is performed in the presence Brownian motion and thermophoresis with convective heat and mass conditions.The salient characteristics of this investigation are appended below:

    ?Increasing values of radiation parameter boosts the temperature of fluid.

    ?Convective heat and mass transfer support the temperature and concentration profiles respectively.

    ?Higher values of variable thermal conductivity augments the fluid’s temperature.

    ?Sherwood number increases with higher values of Prandtl and Lewis numbers.

    ?Velocities along x-and y-axes decrease with increase in values of Hartmann number.

    ?Temperature is increased with higher values of Brownian motion.

    ?Opposite behavior in case of generative and destructive chemical reaction on concentration field is witnessed.

    ?Decrease in velocity of fluid flow is observed for increasing values of permeability parameter.

    [1]S.U.S.Choi and J.A.Eastman,ASME Inter.Mech.Eng.Cong.Expo.66(1995)99.

    [2]X.Q.Wang and A.S.Mujumdar,Int.J.Thermal Sci.46(2007)46.

    [3]J.A.Eastman,S.R.Phillpot,S.U.S.Choi,and P.Keblinski,Annual Review Mater.Res.34(2004)219.

    [4]J.A.Eastman,S.U.S.Choi,S.Li,W.Yu,and L.J.Thompson,Appl.Phys.Lett.78(2001)718.

    [5]S.M.S.Murshed,K.C.Leong,and C.Yang,Int.J.Thermal Sci.44(2005)367.

    [6]M.I.Pryazhnikov,A.V.Minakov,V.Y.Rudyak,and D.V.Guzei,Int.J.Heat Mass Tran.104(2017)1275.

    [7]N.Sandeep and M.G.Reddy,J.Mol.Liq.225(2017)87.

    [8]A.Zaib,M.M.Rashidi,A.J.Chamkha,and N.F.Mohammad,Proceedings of the Institution of Mechanical Engineers,Part C:J.Mech.Engr.Sci.(2017)doi.org/10.1177/0954406217695847.

    [9]M.K.Nayak,N.S.Akbar,V.S.Pandey,et al.,Powder Technol.315(2017)205.

    [10]A.Kasaeian,R.D.Azarian,O.Mahian,et al.,Int.J.Heat Mass Tran.107(2017)778.

    [11]M.Ramzan,J.D.Chung,and N.Ullah,Int.J.Mech.Sci.130(2017)31.

    [12]M.Ramzan,M.Bilal,and J.D.Chung,Chin.J.Phys.55(2017)1663.

    [13]M.Ramzan,M.Bilal,and J.D.Chung,PLoS ONE 12(2017)e0170790.

    [14]M.Ramzan,M.Bilal,J.D.Chung,and A.B.Mann,Neural Comput.Appl.(2017)doi.org/10.1007/s00521-017-2852-8.

    [15]M.Meraj,S.A.Shehzad,T.Hayat,et al.,Appl.Math.Mech.38(2017)557.

    [16]M.Ramzan,F.Yousaf,M.Farooq,and J.D.Chung,Commun.Theor.Phys.66(2016)133.

    [17]M.Ramzan,S.Inam,and S.A.Shehzad,Alexandria Engr.J.55(2016)311.

    [18]M.Ramzan and M.Bilal,J.Mol.Liq.215(2017)212.

    [19]M.A.El-Hakiem,M.Ramzan,and J.D.Chung,J.Comput.Theor.Nanosci.13(2016)8419.

    [20]S.Shaw,P.K.Kameswaran,and P.Sibanda,Bound.Value Prob.2016(2016)2.

    [21]R.Comminal,J.H.Hattel,M.A.Alves,and J.Spangenberg,J.Non-Newtonian Fluid Mech.237(2016)1.

    [22]J.C.Maxwell,Philosophical Transactions of the Royal Society B:Biological Sciences 157(1867)49.

    [23]J.G.Oldroyd,P.Roy.Soc.Lond.A:Math.Phys.Sci.200(1950)523.

    [24]W.Lai,Phys.Fluids 10(1967)844.

    [25]N.P.Thien,J.Non-Newtonian Fluid Mech.13(1983)325-340.

    [26]N.P.Thien,Rheologica Acta 23(1984)172.

    [27]N.P.Thien,J.Non-Newtonian Fluid Mech.17(1985)37.

    [28]W.Tan,Phys.Fluids 17(2005)023101.

    [29]T.Hayat,A.M.Siddiqui,and S.Asghar,Int.J.Eng.Sci.39(2001)135.

    [30]T.Hayat,S.Nadeem,and S.Asghar,Int.J.Eng.Sci.42(2004)65.

    [31]T.Hayat,Z.Hussain,M.Farooq,et al.,Int.J.Nonlinear Sci.Numer.Simul.15(2014)77.

    [32]W.A.Khan,M.Khan,and R.Malik,PLoS ONE 9(2014)e105107.

    [33]T.Hayat,T.Muhammad,S.A.Shehzad,et al.,J.Mol.Liquids 212(2015)272.

    [34]Y Zhang,M.Zhang,and Y.Bai,J.Mol.Liquids 220(2016)665.

    [35]S.Hina,M.Munira,and M.Mustafa,Int.J.Mech.Sci.131(2017)146.

    [36]T.Hayat,S.Farooq,A.Alsaedi,and B.Ahmad,Int.J.Thermal Sci.112(2017)68.

    [37]M.S.Hashmi,N.Khan,T.Mahmood,and S.A.Shehzad,Int.J.Thermal Sci.111(2017)463.

    [38]N.Sandeep and M.G.Reddy,Eur.Phys.J.Plus 132(2017)147.

    [39]W.A.Khan,M.Khan,and R.Malik,PLoS ONE 9(2014)e105107.

    [40]T.Hayat,T.Muhammad,S.A.Shehzad,et al.,J.Mol.Liq.212(2015)272.

    [41]S.A.Shehzad,Z.Abdullah,F.M.Abbasi,et al.,J.Magn.Magn.Mater.399(2016)97.

    [42]T.Hayat,T.Muhammad,S.A.Shehzad,and A.Alsaedi,Int.J.Thermal Sci.111(2017)274.

    [43]M.Ramzan,M.Bilal,and J.D.Chung,Int.J.Chem.Reactor Eng.15(2017)doi.org/10.1515/ijcre-2016-0136.

    [44]M.Ramzan,M.Bilal,and J.D.Chung,J.Mol.Liq.230(2017)415.

    [45]M.Ramzan,M.Bilal,and J.D.Chung,J.Mol.Liq.223(2016)1284.

    [46]T.Hayat,M.Waqas,S.A.Shehzad,and A.Alsaedi,Euro.Phys.J.Plus 131(2016)253.

    [47]T.Hayat,M.Zubair,M.Ayub,et al.,Euro.Phys.J.Plus 131(2016)355.

    [48]T.Hayat,M.I.Khan,M.Waqas,and A.Alsaedi,Nucl.Eng.Tech.49(2017)1645.

    [49]T.Hayat,S.A.Shehzad,A.Alsaedi,and M.S.Alhothuali,Appl.Math.Mech.34(2013)489.

    [50]H.Zargartalebi,M.Ghalambaz,A.Noghrehabadi,and A.Chamkha,Adv.Powder Technol.26(2015)819.

    悠悠久久av| 丝袜人妻中文字幕| 精品人妻1区二区| 欧美日韩av久久| 丰满迷人的少妇在线观看| 精品久久久久久电影网| 国产成人av教育| av网站免费在线观看视频| 99re6热这里在线精品视频| 国产91精品成人一区二区三区 | 丰满人妻熟妇乱又伦精品不卡| 美女大奶头黄色视频| 免费在线观看完整版高清| 精品亚洲成a人片在线观看| 国产精品久久久久久精品电影小说| 久久久久久久久免费视频了| 视频区图区小说| 精品福利永久在线观看| 精品乱码久久久久久99久播| 国产成人欧美| 午夜激情av网站| 国产免费视频播放在线视频| 欧美中文综合在线视频| 久久香蕉激情| 亚洲国产看品久久| 国产欧美日韩一区二区三区在线| 国产精品久久久久久精品电影小说| 中文字幕高清在线视频| 成人三级做爰电影| 婷婷丁香在线五月| 国产av又大| 欧美日韩福利视频一区二区| 俄罗斯特黄特色一大片| 欧美激情高清一区二区三区| 日韩三级视频一区二区三区| 精品一品国产午夜福利视频| 欧美+亚洲+日韩+国产| 亚洲中文字幕日韩| 亚洲五月色婷婷综合| 99久久综合免费| 久久国产精品人妻蜜桃| 欧美中文综合在线视频| svipshipincom国产片| 久久久久视频综合| 亚洲第一av免费看| 国产精品99久久99久久久不卡| av在线播放精品| 黑人欧美特级aaaaaa片| 日韩大片免费观看网站| 国产区一区二久久| 国产色视频综合| 精品国产乱码久久久久久男人| 国产亚洲欧美在线一区二区| 国产又色又爽无遮挡免| 脱女人内裤的视频| 国产男女超爽视频在线观看| 日本av免费视频播放| 午夜福利一区二区在线看| 黄网站色视频无遮挡免费观看| 久久 成人 亚洲| 午夜成年电影在线免费观看| 色视频在线一区二区三区| 一本大道久久a久久精品| 亚洲 欧美一区二区三区| www.精华液| 日本一区二区免费在线视频| 亚洲精华国产精华精| 99国产综合亚洲精品| 美女脱内裤让男人舔精品视频| 国产亚洲欧美在线一区二区| 国产亚洲欧美在线一区二区| 亚洲国产日韩一区二区| 日韩,欧美,国产一区二区三区| 十八禁网站网址无遮挡| 另类亚洲欧美激情| 欧美老熟妇乱子伦牲交| 国产xxxxx性猛交| av线在线观看网站| videos熟女内射| 在线观看免费日韩欧美大片| 交换朋友夫妻互换小说| 国产欧美日韩精品亚洲av| avwww免费| 亚洲av成人不卡在线观看播放网 | 69av精品久久久久久 | 深夜精品福利| 天天躁狠狠躁夜夜躁狠狠躁| 成人av一区二区三区在线看 | 日韩三级视频一区二区三区| 人人妻人人爽人人添夜夜欢视频| 午夜福利,免费看| 日韩电影二区| 无遮挡黄片免费观看| 麻豆乱淫一区二区| 亚洲av片天天在线观看| 午夜老司机福利片| 桃红色精品国产亚洲av| 欧美精品人与动牲交sv欧美| 久久人妻福利社区极品人妻图片| 女人久久www免费人成看片| 亚洲av美国av| 亚洲 国产 在线| 国产精品一区二区精品视频观看| 91精品伊人久久大香线蕉| svipshipincom国产片| 婷婷丁香在线五月| √禁漫天堂资源中文www| 国产精品欧美亚洲77777| 免费av中文字幕在线| 精品欧美一区二区三区在线| 一本色道久久久久久精品综合| 国产区一区二久久| 亚洲一区二区三区欧美精品| 人成视频在线观看免费观看| 99国产精品一区二区蜜桃av | 夫妻午夜视频| svipshipincom国产片| 亚洲成国产人片在线观看| 成年人黄色毛片网站| 久久人妻熟女aⅴ| 久久久国产精品麻豆| 91成年电影在线观看| 可以免费在线观看a视频的电影网站| 国产精品一区二区免费欧美 | 国产福利在线免费观看视频| 亚洲欧美成人综合另类久久久| 中文精品一卡2卡3卡4更新| 国产精品免费大片| av一本久久久久| 青春草亚洲视频在线观看| √禁漫天堂资源中文www| 国产av国产精品国产| 高潮久久久久久久久久久不卡| 桃花免费在线播放| 国产欧美日韩综合在线一区二区| 亚洲国产av影院在线观看| 国产97色在线日韩免费| 亚洲综合色网址| 午夜免费鲁丝| 岛国在线观看网站| 久热爱精品视频在线9| 亚洲专区国产一区二区| a级毛片黄视频| 欧美人与性动交α欧美软件| 91九色精品人成在线观看| 亚洲色图综合在线观看| 丁香六月欧美| 黄色毛片三级朝国网站| 高潮久久久久久久久久久不卡| 欧美大码av| 午夜日韩欧美国产| 亚洲国产精品成人久久小说| 亚洲国产成人一精品久久久| 伊人久久大香线蕉亚洲五| 亚洲专区中文字幕在线| 国产亚洲av片在线观看秒播厂| 人妻 亚洲 视频| 深夜精品福利| 亚洲性夜色夜夜综合| 亚洲熟女精品中文字幕| 99精品久久久久人妻精品| 亚洲美女黄色视频免费看| 1024视频免费在线观看| 桃红色精品国产亚洲av| 青草久久国产| 国产国语露脸激情在线看| 久久久久久亚洲精品国产蜜桃av| 男女国产视频网站| 人人妻人人添人人爽欧美一区卜| 天天躁日日躁夜夜躁夜夜| 妹子高潮喷水视频| 男女午夜视频在线观看| 欧美97在线视频| 国产又色又爽无遮挡免| 两个人免费观看高清视频| 另类亚洲欧美激情| 免费在线观看完整版高清| 国产一区二区三区综合在线观看| 高清视频免费观看一区二区| 亚洲精品粉嫩美女一区| 人人妻人人澡人人爽人人夜夜| 国产有黄有色有爽视频| 视频在线观看一区二区三区| 久久精品久久久久久噜噜老黄| 国产极品粉嫩免费观看在线| 十分钟在线观看高清视频www| 亚洲国产中文字幕在线视频| 精品少妇久久久久久888优播| 欧美性长视频在线观看| 亚洲国产成人一精品久久久| 午夜影院在线不卡| 午夜福利,免费看| 亚洲av电影在线进入| 电影成人av| 日韩有码中文字幕| 最新在线观看一区二区三区| 青春草亚洲视频在线观看| 一本久久精品| 中文字幕制服av| 国产av一区二区精品久久| 黄色视频不卡| av网站免费在线观看视频| 欧美xxⅹ黑人| 18禁裸乳无遮挡动漫免费视频| 日韩中文字幕视频在线看片| 欧美一级毛片孕妇| 91老司机精品| 亚洲国产欧美网| 老司机福利观看| 制服人妻中文乱码| 午夜日韩欧美国产| 老汉色∧v一级毛片| 国产真人三级小视频在线观看| 精品人妻熟女毛片av久久网站| 国产精品 国内视频| 国产av又大| 久久久久视频综合| 搡老乐熟女国产| 国产免费视频播放在线视频| 中文字幕精品免费在线观看视频| 97人妻天天添夜夜摸| 亚洲国产成人一精品久久久| 考比视频在线观看| 女人久久www免费人成看片| 如日韩欧美国产精品一区二区三区| 国产男人的电影天堂91| 啦啦啦在线免费观看视频4| 五月天丁香电影| 99精品欧美一区二区三区四区| 国产精品久久久久成人av| 狠狠精品人妻久久久久久综合| 91麻豆精品激情在线观看国产 | 精品国产国语对白av| 亚洲精品国产av成人精品| av线在线观看网站| 亚洲视频免费观看视频| 亚洲av日韩精品久久久久久密| 大香蕉久久成人网| 91麻豆av在线| 老司机深夜福利视频在线观看 | 十八禁人妻一区二区| 国产成人免费观看mmmm| 中国国产av一级| av电影中文网址| 国产精品一二三区在线看| 精品亚洲乱码少妇综合久久| 欧美午夜高清在线| 久久女婷五月综合色啪小说| 中亚洲国语对白在线视频| 久9热在线精品视频| 成人国产av品久久久| 欧美精品一区二区大全| 免费在线观看黄色视频的| 国产高清国产精品国产三级| 精品久久久精品久久久| 好男人电影高清在线观看| 99精品欧美一区二区三区四区| 国产免费福利视频在线观看| 免费不卡黄色视频| 热re99久久国产66热| 激情视频va一区二区三区| 搡老岳熟女国产| 亚洲精品粉嫩美女一区| 青草久久国产| 国产精品欧美亚洲77777| 在线十欧美十亚洲十日本专区| 女人被躁到高潮嗷嗷叫费观| 亚洲视频免费观看视频| 男女免费视频国产| 精品一区二区三区四区五区乱码| 高清在线国产一区| av电影中文网址| 免费在线观看影片大全网站| 蜜桃在线观看..| 黄频高清免费视频| 欧美人与性动交α欧美精品济南到| 日本猛色少妇xxxxx猛交久久| 亚洲精品国产av成人精品| 亚洲精品国产av蜜桃| 美女高潮喷水抽搐中文字幕| 如日韩欧美国产精品一区二区三区| 久久久精品国产亚洲av高清涩受| 国产精品一区二区在线不卡| 女人爽到高潮嗷嗷叫在线视频| 麻豆乱淫一区二区| avwww免费| 91成年电影在线观看| 99国产精品一区二区蜜桃av | 一本综合久久免费| 天天躁夜夜躁狠狠躁躁| 91精品三级在线观看| 日韩有码中文字幕| 青春草亚洲视频在线观看| 国产精品熟女久久久久浪| 新久久久久国产一级毛片| 老汉色av国产亚洲站长工具| 亚洲激情五月婷婷啪啪| 亚洲国产欧美在线一区| 一本大道久久a久久精品| 女人高潮潮喷娇喘18禁视频| 精品国产一区二区三区久久久樱花| 免费在线观看黄色视频的| 美女福利国产在线| 男人舔女人的私密视频| 久久精品人人爽人人爽视色| 日本撒尿小便嘘嘘汇集6| 精品国内亚洲2022精品成人 | 国产亚洲一区二区精品| videos熟女内射| 国产成人精品在线电影| 99精品久久久久人妻精品| 高潮久久久久久久久久久不卡| 性色av一级| 宅男免费午夜| 国产熟女午夜一区二区三区| 伦理电影免费视频| www日本在线高清视频| 亚洲欧美激情在线| 两个人免费观看高清视频| 男女之事视频高清在线观看| 少妇人妻久久综合中文| 一区二区三区乱码不卡18| 精品亚洲乱码少妇综合久久| 在线天堂中文资源库| 欧美日韩成人在线一区二区| 黑人猛操日本美女一级片| 欧美成人午夜精品| av视频免费观看在线观看| 中文字幕另类日韩欧美亚洲嫩草| av福利片在线| 91精品国产国语对白视频| 午夜精品国产一区二区电影| 19禁男女啪啪无遮挡网站| 精品熟女少妇八av免费久了| 黑人操中国人逼视频| 人人妻,人人澡人人爽秒播| 中亚洲国语对白在线视频| av国产精品久久久久影院| 国产日韩欧美在线精品| 欧美精品一区二区免费开放| 亚洲精品国产av成人精品| 日韩欧美一区二区三区在线观看 | h视频一区二区三区| 91av网站免费观看| 法律面前人人平等表现在哪些方面 | 国产精品欧美亚洲77777| 一级黄色大片毛片| 捣出白浆h1v1| 国产av又大| 黄片播放在线免费| 飞空精品影院首页| 视频区欧美日本亚洲| 日韩一卡2卡3卡4卡2021年| 久久 成人 亚洲| 亚洲全国av大片| 性高湖久久久久久久久免费观看| 99热国产这里只有精品6| 午夜91福利影院| 无遮挡黄片免费观看| 精品免费久久久久久久清纯 | 97在线人人人人妻| 免费女性裸体啪啪无遮挡网站| 国产精品亚洲av一区麻豆| 日韩免费高清中文字幕av| 一个人免费看片子| 99国产综合亚洲精品| √禁漫天堂资源中文www| 国产日韩欧美视频二区| 久久久水蜜桃国产精品网| 69精品国产乱码久久久| 啦啦啦视频在线资源免费观看| 在线亚洲精品国产二区图片欧美| 日本a在线网址| 欧美一级毛片孕妇| 黄色视频在线播放观看不卡| 久久精品国产亚洲av香蕉五月 | 国产精品99久久99久久久不卡| 亚洲视频免费观看视频| 亚洲五月婷婷丁香| 精品国产乱子伦一区二区三区 | 午夜精品久久久久久毛片777| av国产精品久久久久影院| 999久久久国产精品视频| 亚洲av欧美aⅴ国产| 男女国产视频网站| 激情视频va一区二区三区| 午夜福利免费观看在线| 极品人妻少妇av视频| 美国免费a级毛片| 免费少妇av软件| 亚洲国产欧美一区二区综合| 久久国产精品人妻蜜桃| 丝瓜视频免费看黄片| 国产av精品麻豆| 桃花免费在线播放| 下体分泌物呈黄色| 美女高潮喷水抽搐中文字幕| 国产成人免费观看mmmm| 成年人午夜在线观看视频| 亚洲国产毛片av蜜桃av| 天天操日日干夜夜撸| 国产高清国产精品国产三级| 老汉色∧v一级毛片| 91av网站免费观看| 国产精品欧美亚洲77777| 亚洲全国av大片| 免费女性裸体啪啪无遮挡网站| 午夜激情久久久久久久| 精品少妇一区二区三区视频日本电影| 欧美黑人欧美精品刺激| tocl精华| 久久精品国产综合久久久| 国产真人三级小视频在线观看| 国产黄色免费在线视频| 黄色怎么调成土黄色| 国产亚洲av片在线观看秒播厂| 欧美在线一区亚洲| 天堂8中文在线网| 韩国精品一区二区三区| 国产免费福利视频在线观看| 黑人猛操日本美女一级片| 国产高清视频在线播放一区 | 免费一级毛片在线播放高清视频 | 国产男女内射视频| 亚洲五月色婷婷综合| 国产欧美日韩精品亚洲av| 国产一区二区在线观看av| 欧美精品啪啪一区二区三区 | av网站免费在线观看视频| 亚洲欧洲精品一区二区精品久久久| 亚洲全国av大片| av网站免费在线观看视频| 精品少妇久久久久久888优播| 欧美黑人精品巨大| 男人操女人黄网站| 欧美性长视频在线观看| 精品乱码久久久久久99久播| 人人妻人人澡人人看| 老司机亚洲免费影院| 19禁男女啪啪无遮挡网站| www.精华液| 婷婷成人精品国产| 黄频高清免费视频| 久久影院123| 午夜免费成人在线视频| 久久免费观看电影| 91九色精品人成在线观看| 国产淫语在线视频| 69精品国产乱码久久久| 色婷婷久久久亚洲欧美| 日本精品一区二区三区蜜桃| 高清av免费在线| 精品国内亚洲2022精品成人 | 久久久久久免费高清国产稀缺| 天堂中文最新版在线下载| 精品少妇内射三级| 99精品欧美一区二区三区四区| 国产男女内射视频| 午夜免费成人在线视频| 一区二区三区精品91| 亚洲专区字幕在线| 在线精品无人区一区二区三| 高清av免费在线| 精品人妻一区二区三区麻豆| 在线观看免费日韩欧美大片| 美女国产高潮福利片在线看| 91成年电影在线观看| 久久国产精品人妻蜜桃| 国产又爽黄色视频| 日韩制服骚丝袜av| 蜜桃国产av成人99| 亚洲一码二码三码区别大吗| 欧美乱码精品一区二区三区| 午夜福利视频在线观看免费| 中文欧美无线码| 黄色视频在线播放观看不卡| 黄频高清免费视频| 亚洲av成人一区二区三| 日韩,欧美,国产一区二区三区| www.精华液| 丁香六月天网| 两性夫妻黄色片| 黑人巨大精品欧美一区二区mp4| 大型av网站在线播放| 亚洲中文日韩欧美视频| 深夜精品福利| 中文字幕最新亚洲高清| 国产精品久久久av美女十八| 老司机午夜十八禁免费视频| 黑人巨大精品欧美一区二区蜜桃| 黄片大片在线免费观看| 女性被躁到高潮视频| 欧美日韩亚洲综合一区二区三区_| xxxhd国产人妻xxx| 精品乱码久久久久久99久播| 午夜成年电影在线免费观看| 亚洲第一av免费看| 免费不卡黄色视频| 欧美+亚洲+日韩+国产| 麻豆国产av国片精品| 9热在线视频观看99| 免费观看av网站的网址| 91精品国产国语对白视频| 十八禁网站免费在线| 久久国产精品人妻蜜桃| 一本一本久久a久久精品综合妖精| 久久午夜综合久久蜜桃| 考比视频在线观看| 欧美日韩亚洲国产一区二区在线观看 | 性色av一级| 男女免费视频国产| 天天躁日日躁夜夜躁夜夜| 亚洲成人国产一区在线观看| 亚洲精品国产一区二区精华液| 久久国产精品男人的天堂亚洲| 国产精品亚洲av一区麻豆| 人人妻,人人澡人人爽秒播| 三级毛片av免费| 97精品久久久久久久久久精品| 狠狠婷婷综合久久久久久88av| 热re99久久国产66热| 两个人免费观看高清视频| 日韩中文字幕视频在线看片| 韩国高清视频一区二区三区| 一级片免费观看大全| 水蜜桃什么品种好| 肉色欧美久久久久久久蜜桃| 亚洲av成人一区二区三| 日本黄色日本黄色录像| 国产高清videossex| 热99久久久久精品小说推荐| 夫妻午夜视频| 精品人妻在线不人妻| 国产精品免费大片| 欧美黑人精品巨大| 夫妻午夜视频| 日韩精品免费视频一区二区三区| 国产精品亚洲av一区麻豆| 搡老岳熟女国产| av网站在线播放免费| 久久精品熟女亚洲av麻豆精品| 亚洲国产中文字幕在线视频| 日韩精品免费视频一区二区三区| 亚洲欧洲日产国产| 国产主播在线观看一区二区| 大片电影免费在线观看免费| 免费黄频网站在线观看国产| 成人黄色视频免费在线看| 97人妻天天添夜夜摸| cao死你这个sao货| 五月天丁香电影| 香蕉丝袜av| 久久精品国产综合久久久| av有码第一页| 国产免费视频播放在线视频| 久久久国产精品麻豆| 亚洲成人手机| 黄色视频不卡| 国精品久久久久久国模美| 美女高潮到喷水免费观看| 中文字幕高清在线视频| 国产精品.久久久| 啦啦啦在线免费观看视频4| 日韩,欧美,国产一区二区三区| 美女福利国产在线| 国产亚洲欧美在线一区二区| 国产av国产精品国产| 日韩,欧美,国产一区二区三区| 亚洲情色 制服丝袜| 欧美老熟妇乱子伦牲交| 丰满迷人的少妇在线观看| 精品人妻熟女毛片av久久网站| 50天的宝宝边吃奶边哭怎么回事| 午夜福利,免费看| 久久久久久久久免费视频了| 久久久水蜜桃国产精品网| 一区二区三区四区激情视频| 成年人免费黄色播放视频| 国产99久久九九免费精品| 在线精品无人区一区二区三| 制服人妻中文乱码| 免费在线观看完整版高清| 青春草亚洲视频在线观看| 欧美黑人欧美精品刺激| 脱女人内裤的视频| 国产精品自产拍在线观看55亚洲 | 国产亚洲欧美在线一区二区| 精品高清国产在线一区| 免费高清在线观看日韩| 一本大道久久a久久精品| 精品免费久久久久久久清纯 | 男女边摸边吃奶| 又紧又爽又黄一区二区| 91国产中文字幕| 亚洲 国产 在线| 日本撒尿小便嘘嘘汇集6| 少妇精品久久久久久久| 2018国产大陆天天弄谢| 人妻 亚洲 视频| 久久99热这里只频精品6学生| 老汉色av国产亚洲站长工具| 国精品久久久久久国模美| 99精国产麻豆久久婷婷| 亚洲欧美一区二区三区久久| 90打野战视频偷拍视频| 人妻人人澡人人爽人人| 亚洲欧美一区二区三区黑人| 一二三四在线观看免费中文在| 亚洲精品自拍成人| 国产无遮挡羞羞视频在线观看| 免费观看a级毛片全部| 亚洲全国av大片| 狂野欧美激情性xxxx| 在线永久观看黄色视频| 国产日韩一区二区三区精品不卡|