• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    THE TIME DECAY RATES OF THE CLASSICAL SOLUTION TO THE POISSON-NERNST-PLANCK-FOURIER EQUATIONS IN R3*

    2022-06-25 02:12:52LeileiTONG童雷雷
    關鍵詞:張旭

    Leilei TONG (童雷雷)

    School of Science,Chongqing University of Posts and Telecommunications,Chongqing 400065,China

    E-mail:tongleileitll@163.com

    Zhong TAN (譚忠)

    School of Mathematical Sciences and Fujian Provincial Key Laboratory on Mathematical Modeling&High Performance Scientific Computing,Xiamen University,Xiamen 361005,China

    E-mail:ztan85@163.com

    Xu ZHANG (張旭)?

    School of Mathematics and Statistics,Zhengzhou University,Zhengzhou 450001,China

    E-mail:xuzhang889@zzu.edu.cn

    Abstract In this work,the Poisson-Nernst-Planck-Fourier system in three dimensions is considered.For when the initial data regards a small perturbation around the constant equilibrium state in a H3∩˙H-s(0≤s≤1/2) norm,we obtain the time convergence rate of the global solution by a regularity interpolation trick and an energy method.

    Key words Poisson-Nernst-Planck-Fourier system;decay rates;energy method

    1 Introduction

    The Poisson-Nernst-Planck (PNP) system is a very important mathematical model describing the movement of charges under a concentration gradient and a electrostatic potential generated by themselves.The system has many applications such as in semiconductor technology,chemical science and biology (see[4,8,9,18,19,29,31,34,38–40]and the references therein).In the usual PNP model,the temperature is assumed to be homogeneous and independent of time.However,the heating effect plays a very important role in many applications.For example,in biological science (see[5,35]),the charge transport is found to be sensitive to changes in temperature.The ion-channels which are gated by the temperature will adjust the internal homeostasis and disease-related processes when the temperature changes.This suggests that it is necessary to take the influence of the temperature into consideration to fully understand the behavior of the electrothermal motion.In order to model the dynamic process with temperature,the mechanical equation should be coupled with the thermal equation.By an energetic variation method,the authors in[17,25]deduced the following Poisson-Nernst-Planck-Fourier (PNPF) equations:

    Hereu0is the velocity of the solvent and satisfies

    while,ρ+andz+are the density and the valence of cations,respectively.ρ-andz-are the density and valence of anions.ν+andν-are the diffusion coefficients.eis the elementary charge.kBis the Boltzmann constant.Tis the temperature.∈is related to the dielectric constant and the Debye length.u±denotes the flow map of cations and anions.C±andC0are the heat capacities of cations and anions of the solvent.kis the thermal conductivity.u0is the velocity of the solvent.λ0is the solvent viscosity.This system is inferred by employing the given free energy function and entropy production where the conservative forces are deduced by least action principle and the dissipative forces are inferred by the maximum dissipation principle.More details on the process of deducing this system can be found in[25].

    WhileT=1 andu0is equal to some constant,the PNPF system will be reduced to the original PNP equations.One can check[23]and its references for a detailed derivation process of the PNP system.There have been a variety of studies on the well-posedness and the properties of the classical PNP equations and some modified versions.Gagneux and Millet[13]studied the well-posedness of the Nernst-Planck-Poisson system in both one dimension and higher dimensions,and obtained the global existence of the solution by using the Schauder-Tikhonov fixed-point method;they also established the properties (energy and entropy laws,influence of an external electrical field,Boltzmann distribution) of the global solution.By employing Schauder’s fixed-point theorem,Hsieh[15]obtained the global existence of the weak solution for a modified Poisson-Nernst-Planck system with steric effects in a bounded domain of Rd(d≤3).Ogawa and Shimizu[32]studied the well-posedness for a normalized Poisson-Nernst-Planck system in a 2Dcritical Hardy space H1(R2),then Deng and Li[6]considered the well-posedness and ill-posedness of this system in a 2DBesov space.One can check[3,12,27]for the well-posedness theories for some other modified systems.There are lots of works on the stability and the small parameter (as∈tends to zero) problems where the boundary layer may be involved;see[2,11,16,22]and the references therein.The steady problems were investigated in[1,10,24,33]and the singularly perturbed problems are discussed in[20,26].The authors in[17]consider the global existence of classic solutions to the PNPF system without a solvent equation.

    The well-posedness theory and the problem of the time decay rate are important topics in the theory of partial differential equations.The continuity and continuous dependence on initial data of the unique solution are particularly important for problems arising from physical applications.In addition to this,the asymptotic behavior of the solution also attracts a lot of attention.In these cases,the primary mathematical tasks are to characterize the solution of the partial differential equations and show the explicit rate of convergence.While the initial data is near the constant equilibrium state in three dimensions,based on the energy method and the interpolation estimates,we want to investigate the global existence and the algebraic decay rate of the solution.As mentioned before,the purpose of the PNPF system is that it models the influence of the temperature on the movement of the charges.In particular,the system includes the solvent equation,which is much more physically accurate.From the point view of mathematics,the PNPF system couples the drift-diffusion equations with the nonlinear elliptic equation (1.2);the PNPF system (1.1) cannot be simply seen as the PNP equation and a temperature equation.This elliptic equation (1.2) brings difficulty to the proof.Indeed,by the properties of the elliptic operator,we cannot directly get theL2estimates ofu0.During the process of obtaining the a priori estimates,we need to avoid the presence of theL2norm ofu0.We will explain these things clearly after stating our main result.

    According to[25],the PNPF system is deduced by energy varaiation methods.The free energy and entropy dissipation can form a closed inequality.When we try to do the estimates inL2space,theirL2estimates cannot be closed,but this system can be closed in theH3norm.The densityρ0of the solvent is equal to some positive constant.We propose the initial condition Before stating the main result,we introduce some notations.‖f‖L2denotes theL2norm of the functionf.In a similar way,we can define the usual Sobolev norm ‖f‖H3.The notation ‖(f,g)‖H3means that ‖f‖H3+‖g‖H3.The normwiths≤0 is defined by,where F-1is the inverse Fourier transform.We denoteif there exists some constant~C,independent ofaandb,but dependent on the coefficients in (1.1),such thata≤b.In addition,in this work,the viscous coefficientsν±are equal and the valencesz+andz-are opposite.The main result of this work is as follows:

    Theorem 1.1For some constant>0 small enough,which is only dependent on the coefficients in equations (1.1),if we have the initial data (ρ+(0),ρ-(0),T(0))∈HNwithN≥3,?φ(0)∈L2and

    then system (1.1) admits a unique global classical solution which satisfies the following estimates for anyt>0:

    Moreover,if we have the initial data (ρ+(0),ρ-(0),T(0))∈-swith 0≤s≤1/2,the solution has the following time decay rates fort≥0:

    In the process of getting a priori estimates of the classical solution,the first step is to deduce the linear equations (A.2).Except for the Poisson equation,the solvent equation (1.2) is a nonlinear elliptic equation.This brings new difficulty in terms of the linearization and deducing the energy estimates.Noticing that the solvent equation is a type of steady Stokes equation,with the help of the Leray projector (see[37]),we can representu0by the density function and the electric field.As in[14,41,42],while the initial data is small enough,one can establish a priori estimates like

    where Ek(t) and Dkare defined in (5.2).Based on (1.7),we can prove that

    Then,with the help of the interpolation between positive and negative Sobolev norms (see Lemma A.4),one can infer that

    and obtain the time decay rates of the solution.

    The nonlinear terms containingu0in the right hand side of (2.1) cannot be absorbed by the dissipation Dk,since the dissipation Dkdoes not containu0.To obtain (1.7) and (1.8),we must make full use of the structure of equations (2.1).With the help of (1.2) and (1.1)2and the Helmholtz projection,we can bound theL2estimates of?u0by the electic field,which is the key point for closing the energy estimates.In the whole space,however,by the properties of elliptic operator,we cannot get theL2estimates ofu0.This is whysis less than one half.

    Remark 1.2This theorem shows that the constant equilibrium state (1/2,1/2,1) is stable inH3space.Our result can be generalized to theNions case and to general constant equilibrium (see[21]for the existence of the general case).

    Remark 1.3This work mainly studies the well-posedness and the time decay rates of the global solution around the constant equilibrium in R3.When the equilibrium state is no longer constant and with a strictly positive lower bound,one can obtain similar results,but the computation is very complicated and long.We will study this problem in a forthcoming paper.

    The next sections are devoted to proving Theorem (1.1).The uniform estimates are deduced by the energy method in Section 2.We will construct the local classical solution and then extend the local solution to a global one in Section 3.The negative Sobolev estimates will be derived in Section 4.In addition,by a regularity interpolation trick,we get the time decay rates of the classical solution in Section 5.

    2 The Energy Estimates of the Nonlinear Equations in L2 Norm

    In this section,we will try to deduce the linearized equations and then infer the uniform estimates of the solution to the nonlinear equations (1.1).Motivated by[16],we can set

    The linearized equations will become

    A detailed calculation is included in Appendix A.For convenience,we introduce some notations,i.e.,defining

    In order to derive the uniform estimates for the nonlinear system (2.1),we should assume the following a priori estimates for some sufficiently small~c0:

    Since E3(t) is sufficiently small,it is enough to make sure that 1+pand 1+θhave the positive lower and upper bounds.

    The main task in this section is to establish the following lemma:

    Lemma 2.1Whilefor someT>0,there exists some constantcd>0 independent ofTsuch that

    ProofWe apply the operator?lwithl≥0 to equations (2.1) and multiply Equations (2.1)1,(2.1)2and (2.1)4by?lm,?lpand?lθ,respectively,then integrate over R3,to obtain

    Noticing that

    Letcdbe the most minor amongIt follows that

    Before estimating the nonlinear terms on the right hand side of (2.4),we get the estimates ofu0.By virtue of (1.2) and (1.1)2,we have that

    We can conclude that

    In fact,we can multiply (2.5) byu0and employ integration by parts and Young’s inequality to get

    By[37],let Phbe the Helmholtz projection fromL2(R) to(R),where(R) is a subspace ofL2(R) with a divergence free vector in the distribution sense.Noticing thatu0is a divergence free vector,we then get

    In virtue of (2.8),and with the help of the electric field equation,we can get that

    Now,we turn to estimate the nonlinear terms on the right hand side of (2.4).By employing Hlder’s inequality,the product estimates (A.4) of Lemma A.2,and Gagliardo-Nirenberg’s inequality (A.3),we can deduce that

    We derive,by using integration by parts,Hlder’s inequality and the product estimates (A.4) of Lemma A.2,that

    With the help of (2.6) and (2.9),we can deduce that

    It follows from (2.10)-(2.12) that

    Since the dissipation DN(t) does not contain?lp,the term div (pu0) ing2cannot be estimated the same in (2.12).We must deal with this term carefully.Whenl=0,by the fact that divu0=0 and (2.6),we can infer that

    Whenl≥1,by integration by parts,Hlder’s inequality,the product estimates (A.4) of Lemma A.2 and Gagliardo-Nirenberg’s inequality (A.3),we get

    By virtue of (2.6) and (2.9) withl=1,we can deduce that

    Plugging (2.16) into (2.15),together with (2.14),we get forl≥0 that

    The other two terms ing2can be estimated by an argument similar to that of (2.10) and (2.11).Thus,we have

    Forgi,i≥3,since the denominator containsd0+d+p+d-m,the strict positive lowerL∞bound ofd0+d+p+d-mis needed.Under the assumption of the a priori estimates (2.2),there existssuch that

    In what follows,we deal withgi(i≥3).Whenl=0,it holds that

    Whenl≥1,we can use integration by parts,Hlder’s inequality,the product estimates (A.4) of Lemma A.2 and Gagliardo-Nirenberg’s inequality (A.3) to give that

    The second term ing3can be estimated by the same argument as that in (2.21).Thus,forl≥0,we finally have

    For the termg4,whenl=0,by the facts (2.19) and (2.6),we have that

    For whenl≥1,we will estimate each term ofg4.By Hlder’s inequality,we get that

    By the product estimates (A.4) of Lemma A.2 and Gagliardo-Nirenberg’s inequality (A.3),we have that

    We can estimate the rest of the terms ofg4by arguments similar to those in (2.26)–(2.27) and (2.15)–(2.17).Thus,we have

    In what follows,we will estimate the termg5.The termg5will be divided into four terms.First of all,we want to get the estimates of the first term ofg5.By employing integration by parts and Hlder’s inequality,it follows that

    From (2.29),forl=0,it is clear that

    Forl≥1,by employing the product estimates (A.4) of Lemma A.2 and Gagliardo-Nirenberg’s inequality (A.3),we can deduce that

    The estimates (2.31)–(2.32),together with (2.30),finally give that

    Second,for the second term ofg5,with the help of (2.19),it is clear that forl=0,

    Whilel≥1,we can use Hlder’s inequality,the product estimates (A.4) of Lemma A.2 and Gagliardo-Nirenberg’s inequality (A.3) to obtain that

    From (2.34) and (2.35),it holds forl≥0 that

    Next,we estimate the third term ofg5.It holds,by employing integration by parts,that

    For whenl=0,it is clear that

    Forl≥1,by using Hlder’s inequality,the product estimates (A.4) of Lemma A.2 and Gagliardo-Nirenberg’s inequality (A.3),we get that

    The other two terms in (2.37) can be dealt with by the routine of using Hlder’s inequality and Gagliardo-Nirenberg’s inequality (A.3).We can employ an argument similar to that of (2.39) to deduce that

    Plugging (2.39)-(2.41) into (2.37),together with (2.38),it holds forl≥0 that

    Finally,we deal with the last term ofg5.Forl=0,we have that

    Whenl≥1,by employing Hlder’s inequality,the product estimates (A.4) of Lemma A.2 and Gagliardo-Nirenberg’s inequality (A.3),we have that

    Thus,forl≥0,we finally get that

    In terms of (2.33),(2.36),(2.42) and (2.43),we get that

    By an argument similar to that for estimates (2.40),we can get that

    In light of (2.13),(2.18),(2.22),(2.28),(2.44) and (2.45),we obtain that

    Unfortunately,we note that the term?l?φappearing on the right hand side of (2.46) can not be absorbed by the left hand side;that is,the energy estimates cannot be closed.Therefore,we must obtain the estimates of?φ,since this is necessary to close the energy estimates.Plugging (2.1)3into equation (2.1)1,we get that

    We can apply the operator?lwithl≥0 to equations (2.47) and multiply by?lφto deduce that

    Integration by parts,together with Hlder’s inequality,implies that

    A similar argument to that of (2.49) gives rise to

    It follows from (2.48)–(2.51) that

    Summing up (2.52) and (2.46),we can obtain (2.3). □

    From Lemma 2.1,we directly obtain the uniform estimates as follows:

    Proposition 2.2If there is some sufficiently small~c>0 and someT>0 such that

    then it holds forN≥3 that

    which proves (1.4) of Theorem 1.1.By a standard continuity argument,the a priori estimates (2.2) can be closed when we takeN=3.

    3 Approximate Solutions and Global in Time Solution

    3.1 Local in time solution

    In this section,we will try to construct the local in time solution to (1.1) under the assumptions of Theorem 1.1.We shall sketch the idea of constructing the approximate solutions by an iteration method.These processes are routine.The approximate system is as follows:

    Heregn-1,i(1≤i≤7) are likegi,in which the unknownsp,m,θ,φ,u0are replaced bypn-1,mn-1,θn-1,φn-1,u0,n-1.In particular,

    Letp0=0,m0=0,θ0=0,u0,0=0,and

    For eachn∈N+,system (3.1) is reduced to the linear parabolic one with source terms.By the parabolic theorem,the existence of aH3solution to system (3.1) can be established while the source terms belong to theH2space.In what follows,we will show how to deduce theH2bound of the source terms for eachn∈N+.

    Whenn=1,the source terms vanish.In a manner similar to that used to deduce (2.4),we obtain that

    By arguments similar to (2.13),(2.18),(2.22),(2.28),(2.44) and (2.45),and according to (2.54),we can deduce that

    By induction,we can infer that,for anyn∈N+andt>0,

    Recalling that there exists the denominatord0+d+p+d-min eachgn,i(3≤i≤7,we have that the denominator must be positive with a strict lower bound.This also requires that the initial data should be small in theH3sense.With the help of (2.13),(2.18),(2.22),(2.28),(2.44),(2.45) and (2.54),by employing the Picard iteration method and the induction method,we can deduce the uniform upper bound of theH3bound of approximate solutions with respect ton∈N+for small enoughT>0;by the Sobolev embedding inequality,theirH3norm can be obtained.Then for small enough time,we can prove that (pn,mn,θn) is a Cauchy sequence in theH3norm and the uniqueness of the local in time solution can be obtained.

    3.2 Global solution

    By combining the local in time existence and the uniform estimates (2.54),we can get the global classical solution in the framework of[28].

    4 The Estimates in˙H-s Norms

    In this section,we are trying to deduce some useful estimates of the solution in the negative Sobolev norms.These estimates will be very helpful in the process of deducing the time decay estimates of the solution.

    Lemma 4.1It holds fors∈[0,1/2]that

    ProofWe apply the operator Λ-sto equations (2.1)1,(2.1)2and (2.1)4,and multiply by Λ-sm,Λ-spand Λ-sθ,respectively,then integrate over R3,to deduce that

    It follows that

    Now,we estimate the nonlinear terms on the right-hand side of (4.3).Employing estimates (A.5) in Lemma A.3 and Gagliardo-Nirenberg’s inequality (A.3),we can get that

    An argument similar to that of (4.4) gives that

    Because divu0=0,we can obtain that

    The rest of the terms ingican be estimated in a manner similar to (4.4)–(4.7).Then,we get that

    By (4.8) and (4.3),we can deduce (4.1).

    We denote E-s(t) to be equivalent to.From (2.54),we can takeN=3 to get that

    With this fact,we can integrate (4.1) in time to obtain that

    This implies (4.2) fors∈[0,1/2]. □

    5 Time Decay Rates of the Global Solution

    In this section,we will prove the decay rates.First,we use (A.6) of Lemma A.4 and (4.2) to obtain,fors∈[0,1/2]andk+s>0,that

    We take

    By (5.1),we obtain that

    By (2.3) and (5.3),we deduce that

    By solving the inequality above,we obtain that

    Then we prove (1.5).With the help of the electric field equation,we can easily get (1.6) from (1.5).The proof of Theorem 1.1 is completed.

    Appendix

    In this appendix,we give the main steps for deducing the linearized equations (2.1).

    and then,by (A.1) and (1.1)2,we have that

    It is likely that we can get that

    which imply that

    From the solvent equation (1.2),we have thatBy virtue of the Leray project operator,no linear term can be split fromu0.Whenb-=0,we can get the closedL2estimates for any∈.

    In what follows,we list some useful inequalities which are frequently used for obtaining the energy estimates of the solution.

    Lemma A.1(Gagliardo-Nirenberg’sinequality) The parameters satisfy that 0≤k,m≤land 2≤p≤∞,so we have that

    where 0≤?≤1 andmsatisfies

    Notice that ifp=∞,we require that 0<?<1.

    ProofThe detailed proof can be seen in[30],p.125. □

    Lemma A.2(Product estimates) For the integerl≥0,we have that

    The parametersp,p1,p2andp3∈[1,+∞]satisfy 1/p=1/p0+1/p1=1/p2+1/p3.

    ProofWe can prove this lemma in the same way as Lemma A.1 in[7]. □

    Lemma A.3(Sobolev embeding inequality) If 0≤s<3/2,it holds that

    where 1<p≤2 and 1/2+s/3=1/p.

    ProofSee[36]p.119,Theorem 1. □

    Lemma A.4Suppose thats,?≥0.Then we have

    ProofOne can see Lemma A.4 in[14]for the detailed proof. □

    猜你喜歡
    張旭
    張旭晨為全體黨員干部宣講黨的十九屆六中全會精神
    張旭作品賞析
    藝術品鑒(2021年30期)2021-11-26 00:04:44
    書法家肚子痛
    Effects of Froude number and geometry on water entry of a 2-D ellipse *
    The Three-Pion Decays of the a1(1260)?
    張旭典藏欣賞
    寶藏(2017年10期)2018-01-03 01:53:02
    『脫發(fā)』的大樹
    淺談氧化還原反應的實際應用
    許淇·中國畫《張旭》
    散文詩(2017年2期)2017-06-05 15:11:09
    打針
    一级黄色大片毛片| 亚洲三区欧美一区| 日韩视频在线欧美| 久久中文字幕一级| 久久久精品国产亚洲av高清涩受| 91老司机精品| 亚洲五月色婷婷综合| 国产精品麻豆人妻色哟哟久久| 大香蕉久久网| 99香蕉大伊视频| 黑人猛操日本美女一级片| 91九色精品人成在线观看| 国产一级毛片在线| 欧美变态另类bdsm刘玥| 免费观看av网站的网址| 狂野欧美激情性xxxx| 一级毛片女人18水好多| 国产精品久久久久久精品古装| 少妇被粗大的猛进出69影院| 免费看十八禁软件| 欧美大码av| 免费在线观看视频国产中文字幕亚洲 | 久久精品国产亚洲av香蕉五月 | 日韩三级视频一区二区三区| 国产精品偷伦视频观看了| 亚洲精品乱久久久久久| 亚洲成人手机| 好男人电影高清在线观看| 十八禁网站网址无遮挡| 三级毛片av免费| 午夜免费鲁丝| 欧美日韩亚洲高清精品| 国产精品二区激情视频| 别揉我奶头~嗯~啊~动态视频 | 国产免费现黄频在线看| 欧美日韩视频精品一区| 啦啦啦在线免费观看视频4| 手机成人av网站| 免费在线观看影片大全网站| 国产一区二区激情短视频 | 99久久国产精品久久久| 精品一区二区三区四区五区乱码| 亚洲第一欧美日韩一区二区三区 | 国产欧美日韩综合在线一区二区| 久久香蕉激情| 一级毛片精品| 无限看片的www在线观看| 建设人人有责人人尽责人人享有的| 色老头精品视频在线观看| 亚洲国产欧美日韩在线播放| 国产精品香港三级国产av潘金莲| 在线天堂中文资源库| 19禁男女啪啪无遮挡网站| 啦啦啦 在线观看视频| 久久久精品免费免费高清| 亚洲精品美女久久久久99蜜臀| 性色av乱码一区二区三区2| 十八禁人妻一区二区| 老司机午夜十八禁免费视频| 欧美人与性动交α欧美精品济南到| 国产精品欧美亚洲77777| 黄色a级毛片大全视频| 国产免费视频播放在线视频| av不卡在线播放| 精品少妇久久久久久888优播| 大片免费播放器 马上看| 色播在线永久视频| 中文字幕精品免费在线观看视频| 亚洲中文字幕日韩| 搡老岳熟女国产| 精品人妻熟女毛片av久久网站| 亚洲av电影在线进入| 最近最新免费中文字幕在线| 51午夜福利影视在线观看| 日本一区二区免费在线视频| 热99re8久久精品国产| 亚洲成国产人片在线观看| 亚洲av男天堂| bbb黄色大片| 国产成人免费观看mmmm| 亚洲国产中文字幕在线视频| 午夜福利视频精品| 青青草视频在线视频观看| 久久久久视频综合| 搡老乐熟女国产| 日日摸夜夜添夜夜添小说| 国产老妇伦熟女老妇高清| 三上悠亚av全集在线观看| 妹子高潮喷水视频| 精品亚洲乱码少妇综合久久| 在线观看免费视频网站a站| a级片在线免费高清观看视频| 视频在线观看一区二区三区| 国产精品自产拍在线观看55亚洲 | 老司机靠b影院| 一二三四在线观看免费中文在| 日韩视频在线欧美| 超色免费av| 欧美少妇被猛烈插入视频| 黄色视频在线播放观看不卡| 高清视频免费观看一区二区| 黄色片一级片一级黄色片| 国产成人精品久久二区二区免费| 国产日韩欧美亚洲二区| 电影成人av| 色综合欧美亚洲国产小说| 男人爽女人下面视频在线观看| 一区二区日韩欧美中文字幕| av网站免费在线观看视频| 国产精品 欧美亚洲| 九色亚洲精品在线播放| 深夜精品福利| 欧美日韩一级在线毛片| 亚洲专区字幕在线| 国产不卡av网站在线观看| a在线观看视频网站| 两个人看的免费小视频| 少妇粗大呻吟视频| 免费观看人在逋| av又黄又爽大尺度在线免费看| 美女国产高潮福利片在线看| 欧美黑人欧美精品刺激| 99热网站在线观看| 久久久久网色| 国产欧美日韩精品亚洲av| 99热国产这里只有精品6| 大片免费播放器 马上看| 亚洲欧美色中文字幕在线| 国产福利在线免费观看视频| 国产高清videossex| 一二三四在线观看免费中文在| 18禁国产床啪视频网站| 视频区图区小说| 夜夜骑夜夜射夜夜干| 久久国产精品男人的天堂亚洲| 国产成人精品久久二区二区91| 多毛熟女@视频| 啦啦啦啦在线视频资源| 国产精品自产拍在线观看55亚洲 | 成人黄色视频免费在线看| 亚洲色图综合在线观看| 天天影视国产精品| 视频在线观看一区二区三区| netflix在线观看网站| 久久久国产欧美日韩av| 国产精品久久久久久人妻精品电影 | 99久久精品国产亚洲精品| 国精品久久久久久国模美| 精品亚洲成国产av| 午夜福利在线观看吧| 亚洲精品久久午夜乱码| 免费黄频网站在线观看国产| 超色免费av| 91精品伊人久久大香线蕉| 免费黄频网站在线观看国产| 国产精品成人在线| 国产精品久久久久成人av| 午夜影院在线不卡| 免费人妻精品一区二区三区视频| 9191精品国产免费久久| 亚洲,欧美精品.| 日本av免费视频播放| 国产免费视频播放在线视频| 午夜免费观看性视频| 亚洲人成电影观看| netflix在线观看网站| 精品视频人人做人人爽| 精品国产乱码久久久久久小说| 国产亚洲精品一区二区www | 一个人免费看片子| 国产一区二区三区av在线| 亚洲av成人一区二区三| 久久天堂一区二区三区四区| 久久香蕉激情| 欧美日韩精品网址| 国产在线免费精品| 夫妻午夜视频| 欧美日韩亚洲高清精品| 精品福利永久在线观看| 久久精品国产综合久久久| avwww免费| 十八禁人妻一区二区| 窝窝影院91人妻| 亚洲第一av免费看| 国产精品成人在线| 99久久99久久久精品蜜桃| 亚洲国产看品久久| 中文字幕人妻熟女乱码| 秋霞在线观看毛片| 亚洲精品粉嫩美女一区| 免费av中文字幕在线| 亚洲精品国产区一区二| 欧美精品人与动牲交sv欧美| 免费一级毛片在线播放高清视频 | 99精国产麻豆久久婷婷| 两个人看的免费小视频| 美女中出高潮动态图| 超色免费av| 丝袜美足系列| 久9热在线精品视频| 久久国产亚洲av麻豆专区| 免费少妇av软件| 欧美日韩成人在线一区二区| 亚洲欧美清纯卡通| 亚洲久久久国产精品| 一本色道久久久久久精品综合| 精品福利观看| 国产免费现黄频在线看| 91大片在线观看| 国产欧美日韩一区二区三区在线| 1024视频免费在线观看| 国产在视频线精品| 欧美日本中文国产一区发布| 国产精品免费大片| videos熟女内射| 中亚洲国语对白在线视频| 亚洲精品av麻豆狂野| 国产一区有黄有色的免费视频| 久久天躁狠狠躁夜夜2o2o| 日日摸夜夜添夜夜添小说| 欧美在线黄色| 久久精品久久久久久噜噜老黄| 在线 av 中文字幕| 国产精品一区二区在线观看99| 大片电影免费在线观看免费| av线在线观看网站| 国产精品偷伦视频观看了| 夜夜骑夜夜射夜夜干| a级片在线免费高清观看视频| 国产一区二区在线观看av| 日韩 亚洲 欧美在线| 视频区欧美日本亚洲| 老司机福利观看| 啦啦啦啦在线视频资源| 美女大奶头黄色视频| 一级毛片精品| 一本一本久久a久久精品综合妖精| 99热网站在线观看| 亚洲国产欧美日韩在线播放| 亚洲人成电影观看| www日本在线高清视频| 91精品三级在线观看| 一本—道久久a久久精品蜜桃钙片| 亚洲中文字幕日韩| 天天操日日干夜夜撸| 精品国内亚洲2022精品成人 | 色老头精品视频在线观看| 国产欧美日韩精品亚洲av| 777米奇影视久久| 亚洲精品国产区一区二| 久久天躁狠狠躁夜夜2o2o| 王馨瑶露胸无遮挡在线观看| 十八禁网站网址无遮挡| 青春草亚洲视频在线观看| av天堂在线播放| 欧美日韩成人在线一区二区| 欧美精品亚洲一区二区| 黄频高清免费视频| 大片免费播放器 马上看| 亚洲国产精品999| 国产成人免费观看mmmm| 999久久久国产精品视频| 中亚洲国语对白在线视频| 午夜福利影视在线免费观看| 国产精品.久久久| 欧美少妇被猛烈插入视频| 人人妻,人人澡人人爽秒播| 18在线观看网站| 丰满少妇做爰视频| 日韩,欧美,国产一区二区三区| av网站在线播放免费| 自线自在国产av| 18在线观看网站| 国产精品久久久久成人av| 日韩三级视频一区二区三区| 两个人看的免费小视频| 少妇被粗大的猛进出69影院| 少妇的丰满在线观看| 999久久久国产精品视频| 男女边摸边吃奶| 人妻人人澡人人爽人人| 国产一区二区三区在线臀色熟女 | 日韩熟女老妇一区二区性免费视频| 国产片内射在线| 午夜影院在线不卡| 在线av久久热| 黄色 视频免费看| 欧美精品一区二区大全| 国产在视频线精品| 精品国产一区二区三区久久久樱花| 一级毛片电影观看| 国产xxxxx性猛交| 婷婷色av中文字幕| cao死你这个sao货| 99国产精品一区二区三区| 大香蕉久久网| 精品国产乱子伦一区二区三区 | xxxhd国产人妻xxx| 精品乱码久久久久久99久播| 制服人妻中文乱码| 午夜福利乱码中文字幕| 91麻豆av在线| 巨乳人妻的诱惑在线观看| 热99re8久久精品国产| 亚洲中文字幕日韩| 一区二区三区精品91| www日本在线高清视频| 91成年电影在线观看| 精品一区二区三区av网在线观看 | 国产三级黄色录像| 国产成人av激情在线播放| 久热这里只有精品99| 99久久精品国产亚洲精品| 亚洲精品国产av蜜桃| 18在线观看网站| 男人爽女人下面视频在线观看| 一个人免费在线观看的高清视频 | 午夜福利一区二区在线看| 成人国语在线视频| 亚洲伊人色综图| 日本av免费视频播放| 黑人巨大精品欧美一区二区mp4| 狠狠婷婷综合久久久久久88av| 人人澡人人妻人| 80岁老熟妇乱子伦牲交| 丰满人妻熟妇乱又伦精品不卡| 午夜免费成人在线视频| 精品国产一区二区久久| 久久久久久久国产电影| 亚洲欧美清纯卡通| www.av在线官网国产| 国产日韩一区二区三区精品不卡| 久久精品国产亚洲av香蕉五月 | 人人妻人人澡人人看| 建设人人有责人人尽责人人享有的| 欧美精品人与动牲交sv欧美| 曰老女人黄片| 亚洲黑人精品在线| 日韩 亚洲 欧美在线| 亚洲国产精品一区二区三区在线| 99国产精品一区二区三区| 国产男女超爽视频在线观看| 亚洲av片天天在线观看| 国产精品一区二区在线观看99| 一级毛片女人18水好多| 国产在线免费精品| 丁香六月欧美| 国产三级黄色录像| 亚洲成人手机| 久久久国产精品麻豆| 精品国内亚洲2022精品成人 | 久久久精品区二区三区| 这个男人来自地球电影免费观看| 久久国产精品影院| 亚洲精品日韩在线中文字幕| 亚洲精品一卡2卡三卡4卡5卡 | netflix在线观看网站| 国产精品九九99| 黄色a级毛片大全视频| 18禁国产床啪视频网站| 亚洲国产精品一区三区| www.999成人在线观看| 亚洲国产精品一区三区| 美女高潮喷水抽搐中文字幕| 一级毛片女人18水好多| 成年人免费黄色播放视频| 国产成人av激情在线播放| 国产伦理片在线播放av一区| 亚洲av电影在线观看一区二区三区| kizo精华| 两个人看的免费小视频| 在线精品无人区一区二区三| 久久热在线av| 99精品欧美一区二区三区四区| 成人影院久久| 欧美黄色片欧美黄色片| 精品国内亚洲2022精品成人 | 12—13女人毛片做爰片一| 国产色视频综合| 日韩中文字幕欧美一区二区| 免费人妻精品一区二区三区视频| 婷婷成人精品国产| 99香蕉大伊视频| 悠悠久久av| 中文字幕人妻熟女乱码| 成人国产一区最新在线观看| 国产麻豆69| 亚洲少妇的诱惑av| 亚洲成国产人片在线观看| 亚洲成人免费av在线播放| 两人在一起打扑克的视频| 精品人妻1区二区| 99热网站在线观看| 国产xxxxx性猛交| 婷婷丁香在线五月| 一区二区日韩欧美中文字幕| 精品第一国产精品| 久久久久精品人妻al黑| 丁香六月欧美| 久久中文字幕一级| 高清欧美精品videossex| 中文字幕人妻丝袜制服| 手机成人av网站| 欧美精品人与动牲交sv欧美| 国产视频一区二区在线看| 超色免费av| 动漫黄色视频在线观看| 99香蕉大伊视频| 日韩制服丝袜自拍偷拍| 视频区图区小说| 丝瓜视频免费看黄片| 国产成人免费观看mmmm| 久久国产精品男人的天堂亚洲| 91麻豆av在线| 久久天堂一区二区三区四区| 久久人人爽av亚洲精品天堂| 黄片小视频在线播放| 精品国产乱子伦一区二区三区 | 亚洲va日本ⅴa欧美va伊人久久 | 一本综合久久免费| 亚洲一码二码三码区别大吗| 国产日韩欧美视频二区| 欧美精品一区二区免费开放| 丝袜在线中文字幕| 日本撒尿小便嘘嘘汇集6| 人人妻,人人澡人人爽秒播| 女人精品久久久久毛片| 午夜福利乱码中文字幕| 亚洲国产精品一区三区| 啦啦啦 在线观看视频| 午夜日韩欧美国产| 成年美女黄网站色视频大全免费| 下体分泌物呈黄色| 午夜福利在线观看吧| 亚洲中文字幕日韩| 欧美日韩福利视频一区二区| 久久久国产欧美日韩av| 午夜久久久在线观看| 久久中文看片网| 人人澡人人妻人| 亚洲国产日韩一区二区| 99九九在线精品视频| 中文字幕另类日韩欧美亚洲嫩草| 欧美日韩av久久| 桃红色精品国产亚洲av| 亚洲国产欧美日韩在线播放| 日韩一卡2卡3卡4卡2021年| 搡老岳熟女国产| 午夜成年电影在线免费观看| 国产又爽黄色视频| 老司机午夜福利在线观看视频 | 久久久久精品人妻al黑| 精品卡一卡二卡四卡免费| 免费观看人在逋| 欧美激情久久久久久爽电影 | 久久国产精品人妻蜜桃| 欧美激情高清一区二区三区| av免费在线观看网站| 欧美成狂野欧美在线观看| 久久久久久人人人人人| 各种免费的搞黄视频| 成年动漫av网址| 中国国产av一级| 欧美日本中文国产一区发布| 丰满少妇做爰视频| 精品福利永久在线观看| 欧美亚洲日本最大视频资源| 亚洲国产av影院在线观看| 国产精品久久久av美女十八| 制服人妻中文乱码| 性高湖久久久久久久久免费观看| 午夜福利影视在线免费观看| 亚洲精品日韩在线中文字幕| 久久久久久久大尺度免费视频| 性少妇av在线| 一区福利在线观看| 丰满迷人的少妇在线观看| 岛国毛片在线播放| 不卡av一区二区三区| 色精品久久人妻99蜜桃| 每晚都被弄得嗷嗷叫到高潮| e午夜精品久久久久久久| 日韩视频在线欧美| 久久人人爽av亚洲精品天堂| 黄色视频,在线免费观看| a级毛片黄视频| 免费人妻精品一区二区三区视频| 国产在线一区二区三区精| 各种免费的搞黄视频| 国产精品久久久人人做人人爽| 精品国产乱子伦一区二区三区 | 国产精品一区二区精品视频观看| 日本av免费视频播放| 乱人伦中国视频| 精品久久蜜臀av无| 美女高潮喷水抽搐中文字幕| 精品国产国语对白av| cao死你这个sao货| 999精品在线视频| 十分钟在线观看高清视频www| 久久精品aⅴ一区二区三区四区| 9色porny在线观看| 久久国产精品大桥未久av| www日本在线高清视频| 欧美日韩成人在线一区二区| 97在线人人人人妻| 一级毛片电影观看| av有码第一页| 成年人午夜在线观看视频| 嫁个100分男人电影在线观看| 999久久久国产精品视频| 人妻久久中文字幕网| 精品乱码久久久久久99久播| 9191精品国产免费久久| 亚洲av国产av综合av卡| 日韩制服丝袜自拍偷拍| 国产激情久久老熟女| 19禁男女啪啪无遮挡网站| 老司机深夜福利视频在线观看 | 久久精品国产a三级三级三级| 久久久国产一区二区| 国产在线视频一区二区| 我要看黄色一级片免费的| 久久天躁狠狠躁夜夜2o2o| 成年av动漫网址| 色综合欧美亚洲国产小说| 人妻一区二区av| 亚洲精品国产av成人精品| 丝袜人妻中文字幕| av线在线观看网站| 亚洲欧洲精品一区二区精品久久久| 国产亚洲欧美在线一区二区| 97人妻天天添夜夜摸| 成人黄色视频免费在线看| 午夜福利视频在线观看免费| 久久久久久久久免费视频了| 老司机影院毛片| 国产精品免费视频内射| 亚洲国产av影院在线观看| 日韩欧美一区视频在线观看| 啦啦啦视频在线资源免费观看| 欧美精品一区二区大全| 久久久久久人人人人人| 2018国产大陆天天弄谢| 亚洲中文av在线| 丝袜脚勾引网站| 亚洲人成电影免费在线| 国产又爽黄色视频| 看免费av毛片| 啪啪无遮挡十八禁网站| 中文字幕制服av| 久久久国产一区二区| 国产精品九九99| 丝袜脚勾引网站| 免费在线观看黄色视频的| 一区二区日韩欧美中文字幕| 91精品伊人久久大香线蕉| 麻豆av在线久日| 国产精品影院久久| 伦理电影免费视频| 中文字幕另类日韩欧美亚洲嫩草| 性色av一级| 亚洲精品乱久久久久久| 日本精品一区二区三区蜜桃| 久久国产亚洲av麻豆专区| 国产精品av久久久久免费| 老司机亚洲免费影院| 亚洲天堂av无毛| 波多野结衣av一区二区av| 亚洲国产中文字幕在线视频| 国产91精品成人一区二区三区 | 亚洲精品一区蜜桃| 久久久精品94久久精品| 老司机影院毛片| 国产视频一区二区在线看| 菩萨蛮人人尽说江南好唐韦庄| 蜜桃在线观看..| 人妻人人澡人人爽人人| 波多野结衣一区麻豆| 男人添女人高潮全过程视频| 中文字幕av电影在线播放| 亚洲激情五月婷婷啪啪| av天堂在线播放| 亚洲av电影在线观看一区二区三区| 天堂中文最新版在线下载| 免费在线观看影片大全网站| 午夜成年电影在线免费观看| 国产成人精品在线电影| 欧美成人午夜精品| 亚洲成国产人片在线观看| 十八禁网站网址无遮挡| 九色亚洲精品在线播放| 日本vs欧美在线观看视频| 午夜福利,免费看| 欧美性长视频在线观看| 别揉我奶头~嗯~啊~动态视频 | 真人做人爱边吃奶动态| 视频在线观看一区二区三区| tube8黄色片| av国产精品久久久久影院| 亚洲激情五月婷婷啪啪| 涩涩av久久男人的天堂| 国产一区二区 视频在线| 狠狠狠狠99中文字幕| 国产欧美日韩一区二区三区在线| 欧美精品av麻豆av| 肉色欧美久久久久久久蜜桃| 欧美亚洲日本最大视频资源| 免费av中文字幕在线| 俄罗斯特黄特色一大片| 欧美 日韩 精品 国产| 国产精品 欧美亚洲| 少妇裸体淫交视频免费看高清 | 国产成人影院久久av| 欧美精品高潮呻吟av久久|