• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    BOUNDS FOR MULTILINEAR OPERATORS UNDER AN INTEGRAL TYPE CONDITION ON MORREY SPACES*

    2022-06-25 02:13:24QianjunHE何騫君
    關(guān)鍵詞:新峰

    Qianjun HE (何騫君)

    School of Applied Science,Beijing Information Science and Technology University,Beijing 100192,China

    E-mail:heqianjun16@mails.ucas.ac.cn

    Xinfeng WU (吳新峰)?

    Department of Mathematics,China University Mining&Technology (Beijing),Beijing 100083,China

    E-mail:wuxf@cumtb.edu.cn

    Dunyan YAN (燕敦驗(yàn))

    School of Mathematical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

    E-mail:ydunyan@ucas.ac.cn

    Abstract In this paper,we study a boundedness property of the Adams type for multilinear fractional integral operators with the multilinear Lr′,α-Hrmander condition and their commutators with vector valued BMO functions on a Morrey space and a predual Morrey space.Moreover,we give an endpoint estimate for multilinear fractional integral operators.As an application,we obtain the boundedness of multilinear Fourier multipliers with limited Sobolev regularity on a Morrey space.

    Key words Multilinear fractional integral;Lr′,α-Hrmander condition;commutators;BMO spaces;Morrey spaces;multilinear Fourier multiplier

    1 Introduction

    It is well-known that the Morrey spaceLp,λ(Rn)(see the definition below),introduced by Morrey in 1938,is connected to certain problems in elliptic PDE[39].After their inception it was found that Morrey spaces have many important applications to the Navier-Stokes equations (see[34,37,48]),the Schrdinger equations (see[42–45]),elliptic equations with discontinuous coefficients (see[8,10,13,14,26,41]) and to potential analysis (see[1,3]).The Morrey space associated with a heat kernel was studied in[12,20,52].Recently,in[4,6],the authors set up several functional analyses and a potential theory for the Morrey space in harmonic analysis.

    For 0<p<∞and 0<λ≤n,the Morrey spaceLp,λ(Rn)(Lp,λfor short) is defined by the (quasi-) norm

    where the supremum is taken over all cubesQ?Rnwith sides parallel to the coordinate axes and where|Q|denotes the volume ofQ.The Morrey space is Banach if 1≤p<∞,and is quasi-Banach if 0<p<1.Ifλ=n,the Morrey spaceLp,n(Rn) coincides with the spaceLp(Rn) with equality of (quasi-) norms.

    In 1975,Adams[1]first studied the boundedness of the Riesz potential in Morrey space.In 1987,Chiarenza and Frasca[9]proved the Morrey space boundedness of the Hardy-Littlewood maximal operator,the Riesz potential and singular integral operators.In 1993,Nakai[40]studied the bounds of the above operators in generalized Morrey space.In 1997,Ding[16]gave a characterization of the boundedness of the commutators of singular integral operators and a Riesz potential in generalized Morrey space.

    For 0<α<mn,x∈Rn,m∈N,the multilinear fractional integral operator=(f1,...,fm) was introduced by Kenig-Stein[35],and the bounds on products of Lebesgue spaces were established.Recently,the bounds for multilinear operators in Morrey space have been investigated by many authors.Tang studied,in[47],the boundedness ofIα,mon products of Morrey space.Wang,Jiang and Li[51]studied the boundedness of multilinear Fourier multipliers with limited Sobolev regularity in the Morrey space in the Banach space setting (p>1),but they left open the quasi-Banachcase 1/2<p<1.Ding and Mei established,in[17],theLp1,λ1×Lp2,λ2→Lp,λboundedness and compactness for commutators of bilinear Calder′on-Zygmund operators and bilinear fractional integrals with BMO functions in the Banach space setting.Note that the kernel of bilinear Fourier multipliersTαmay not have the pointwise size and smoothness conditions,so that their bounds on Morrey space cannot be covered by the results in[17].

    Bui and Duong[7]introduced and studied multilinear singular integral operators with certain integral conditions,which include the multilinear Fourier multipliers with limited smoothness.Chaffee-Torres and the second author[11]further introduced multilinear operators with kernels satisfying a new integral type condition,which is simpler and more general,but still covers the multilinear Fourier multipliers with limited smoothness.It would be interesting to establish the Morrey space boundedness for such a class of multilinear operators and their commutators,especially in the quasi-Banach setting 0<p<1.

    In this paper,we consider the boundedness of multilinear singular integrals under integral type conditions in Morrey space.For 0<α<mn,the multilinear operatorsTαare initially defined on them-fold product of Schwartz spaces and by taking values into the space of tempered distributions

    Assume that for a certain kernel functionK,

    as an absolutely convergent integral wheneversuppfi.The kernel functionKof the operatorTαsatisfies the multilinearLr′,α-Hrmander condition:for 1<r<∞,

    Forr=1,the above condition is understood as

    Our first main result can be stated as follows:

    Theorem 1.1Let 0<λ≤n,0≤α<mn,0<p≤q<∞,1<p1,...,pm≤∞ with 1/p=1/p1+···+1/pm.Suppose that→f=(f1,...,fm) is a collection ofmlocally integrable functions on Rn,1/q=1/p-α/λ,1≤r<min (p1,...,pm,mn/α,mp) and 1/r*=m/r-α/n.If we have

    which satisfies the multilinearLr′,α-Hrmander condition,then there exists a constantC>0 such that

    Remark 1.2The right hand side of the above inequality is called a multi-Morrey norm of f=(f1,f2,...,fm);this was introduced by Iida-Sato-Sawano-Tanakain[31].The multi-Morrey norm of f is smaller than the product ofmMorrey norms:

    The authors of[31]proved similar results for the multilinear fractional integralsIm,αwith smooth kernels.Ifα>0,our result in Theorem 1.1 covers the corresponding result in[31].

    We shall now present a variant of Theorem 1.1.

    Theorem 1.3Let 0<λ≤n,0≤α<mn,and letkbe an integer with 1≤k<m,1<p1,...,pk≤∞,0<p<q<∞with 1/p=1/p1+···+1/pk.Decomposeα=α1+α2withα1>0 andα2≥0.Suppose thatis a collection ofmlocally integrable functions on Rnand 1/q=1/p-α1/λ.IfTαsatisfies two conditions in Theorem 1.1,then there exists a constantC>0 such that

    Adams and Xiao[5]provided a new proof of the boundedness of the classical commutator[b,Iα]on Morrey spacesLp,λ,p>1,and introduced a new formulation of the predual to a Morrey space withλ∈(0,n);namely,

    Moreover,Adams and Xiao also obtained the boundedness of commutator[b,Iα]on aHp,λspace.In the above and below,for 0<λ<n,the symbolis the Hansdorffcapacity of ordern-λ,as a set function on Rn.

    Our next result extends the result of Adams-Xiao in[5]to the multilinear setting.

    Theorem 1.4Under the hypotheses of Theorem 1.1,if we have,in addition,that 1<r<q,then there exists a constantC>0 such that,forj=1,...,m,

    The following result provides an endpoint estimate forTα:

    Theorem 1.5Let 0<λ≤n,1<p1,...,pm<∞,1/p=1/p1+···+1/pm,1/p=α/λ,1≤r<min (p1,...,pm,mn/α,mp),nmax (m/r-1,0)<α<mnand 1/r*=m/r-α/n.IfTαsatisfies two conditions in Theorem 1.1,then

    Remark 1.6The multlinear fractional integral operatorsIα,msatisfy the assumptions of Theorem 1.1 withr=1,and thus Theorem 1.5 covers the endpoint estimates obtained in[47,Theorem 1.1].Our result,however,is more general,and it can be applied to multilinear fractional Fourier multipliers with limited Sobolev regularity.

    As a corollary,we obtain Moser-Trudinger type inequality,which extends a result of Adams and Xiao[3]to the multilinear case.The original Moser-Trudinger inequality was established by Trudinger[49],Strichartz[46],Moser[38],and Adams[2],and it plays an important role in the study of PDEs.

    Corollary 1.7Let 0<λ≤n,0<q≤1,1<p1,...,pm<∞,p=λ/αand 1/p=1/p1+···+1/pm.IfTαsatisfies two conditions in Theorem 1.1 andnmax (m/r-1,0)<α<mn,then there exists a constantc>0 such that

    Now let us consider the commutator of a multilinear operator with a vector-valued BMO function.Recall that a locally integrable functionbis in BMO (Rn) if

    wherebQdenotes the average ofboverQ?Rn.Given a locally integrable vector function=(b1,...,bm),define them-linear commutator of am-linear operatorTαwithby

    Theorem 1.8Under the hypotheses of Theorem 1.1,if we have,in addition,that∈BMOm,then there exists a constantC>0 such that

    Theorem 1.9Under the hypotheses of Theorem 1.3,if we have,in addition,that∈BMOm,then there exists a constantC>0 such that

    Theorem 1.10Under the hypotheses of Theorem 1.1,if we have,in addition,that 1<r<qand∈BMOm,then there exists a constantC>0 such that,forj=1,...,m,

    Theorem 1.11Let 0<λ≤n,1<p1,...,pm<∞,1/p=1/p1+···+1/pm,1/p=α/λ,1≤r<min (p1,...,pm,mn/α,mp),nmax (m/r-1,0)<α<mnand 1/r*=m/r-α/n.IfTαsatisfies two conditions in Theorem 1.1 and→b∈BMOm,then

    Corollary 1.12Let 0<λ≤n,0<q≤1,1<p1,...,pm<∞,p=λ/α,1/p=1/p1+···+1/pmand∈BMOm.IfTαsatifies two conditions in Theorem 1.1 andnmax (m/r-1,0)<α<mn,then there exists a constantc>0 such that

    Corollary 1.13Let 0<λ≤n,=(f1,...,fm) be vector valued locally integrable functions on Rn,1<p1,...,pm<∞,1/p=1/p1+···+1/pmandp=λ/α>1.Letfj∈Lpj,λbe supported inB(0,1) with ‖fj‖Lpj,λ≤1,and letbj∈L∞(j=1,...,m) with

    Ifnmax (m/r-1,0)<α<mnand 0<q≤1,then

    wherecis a non-negative constant.

    The rest of the present paper is organized as follows:in Section 2,we will give some definitions and lemmas.The proof of Theorems 1.1,1.4,1.8 and 1.10 are presented in Section 3.In Section 4,we will give the proof of Theorems 1.5 and 1.11.A tacit understanding in the present paper is that all cubes in Rnare assumed to have their sides parallel to the coordinate axes,and we use?(Q) to denote the side-length ofQ.ForQ∈Rn,we usecQto denote the cube with the same center asQ,but with side-lengthc?(Q).We denote by|E|the Lebesgue measure ofE?Rn.ByA?Bwe mean thatA≤cBwith some positive constantcindependent of the appropriate quantities.The positive constantCvaries from one occurrence to another.For a real numberp,1<p<∞,p′is the conjugate number ofp;that is,1/p+1/p′=1.

    2 Preliminary Definitions and Lemmas

    To prove our main results,we need the following definitions and lemmas:

    Definition 2.1For any,the Hardy-Littlewood maximal function and sharp maximal function are defined by

    Forδ>0,we also define

    The space of bounded mean oscillation (BMO) consists of all locally integrable functionsfwith

    The next inequality is due to[15],and it can be viewed as a variant of the Fefferman-Stein inequality in Morrey space.The original result in[15]was stated under the restriction 1<p<∞,but their proof actually works for all 0<p<∞.

    Lemma 2.2([15]) If 0<p,δ<∞and 0<λ<n,then there exists a constantC>0 such that

    In the sequel,we will use the following simple Kolmogorov inequality[18]:

    Lemma 2.3Letting 0<p<q<∞,there is a constantC=Cp,qsuch that,for any measurable functionfand any cubeQ∈Rn,

    Lemma 2.4([6]) Let 1<p<∞,and 0<λ<n.Then

    where the supremum is over allg∈Hp′,λsuch that ‖g‖Hp′,λ≤1.

    Lemma 2.5([5]) Ifw∈A1,then there exists aδ>0 such thatwt∈A1whenever 0<t<1+δ.In particular,this holds for alltclose to 1.Moreover,ifc1denotes the“A1constant forw”,i.e.,

    then,withctthe“A1constant forwt”,we have

    wherecRHstands for the reverse Hlder constant.

    Letting 0<α<mnand=(f1,···,fm) be a collection ofmlocally integrable functions on Rn,the multi-(sub) linear fractional maximal operatoris defined by

    By the definition of Mα,it is easy to see that

    Anm-linear operatorT:S (Rn)×···×S (Rn)→S′(Rn) hasmformal transposes.Thej-th transposeT*jofTis defined as the unique operator that satisfies the identity

    for allf1,...,fm,h∈S (Rn).

    For a vector→f=(f1,...,fm) of locally integrable functions and 0≤α<mnand 1≤s<define

    The advantage of multi-Morrey norms is that they can control this multilinear maximal operator.

    Lemma 2.6([29]) Let 0<λ≤n,0≤α<mn,0<s<min (p1,...,pm)≤∞,0<p<∞,1/p=1/p1+···+1/pmand 0<q<∞with 1/q=1/p-α/λ.Then there exists some constantC>0 such that

    The following pointwise estimate was proven in[11]:

    Lemma 2.7LetTαsatisfy the hypothesis of Theorem 1.1.If 0<δ<min (1,),then there exists some constantC>0 such that,for allfi∈Lpiwithr<pi<∞(i=1,...,m),

    We also need the following estimate,which can be viewed as an“off-diagonal”variant of Lemma 2.7:

    Lemma 2.8Let 0<λ≤n,0<q<∞,0<p<∞and 0<α<mn.Decomposeα=α1+α2withα1>0 andα2≥0.Assume thatTαsatisfies the hypothesis of Theorem 1.1 and 1/q=1/p-α1/λ.Then

    ProofIfλ=n,the Morrey spaceLp,λcoincides withLpwith comparable norms,and so the desired result follows directly from Lemma 2.7.

    Now let us assume that 0<α<n.We shall borrow some ideas from[11]and[29]to prove the desired estimate.We may assume that the right hand side is finite.Without loss of generality we may assume thatf1,...,fmare nonnegative and that

    Let 0<δ<min (1,),and letQbe a cube in Rnthat containsx.It suffices to prove that

    for some constantcQ,where the implicit constant is independent ofQ.In fact,once (2.5) is established,we take the supremum overQ?Rnto get

    This,together with Lemma 2.2,yields that

    which concludes the proof.

    Let us now prove (2.5).DenoteIn the proof of Lemma 4.1 in[11],it was shown that,for an appropriate constantcQ,

    By the multilinearLr′,α-Hrmander condition ofK,we see that the right-hand side is majorized by

    It thus remains to prove that,for anyQ∈Rnandx∈Q,

    Denote

    Notice that,forx∈Q,

    It follows that

    establishing (2.6). □

    The following lemma is the key to our main results:

    Lemma 2.9LetTαsatisfy the hypothesis of Theorem 1.1.If∈BMOm,0<δ<∈<min (1) and=(f1,...,fm) are a collection ofmlocally integrable functions on Rn,then there exists some constantC>0 such that,for anys>rand for allfi∈Lpi(i=1,...,m) with

    ProofBy linearity,it suffices to consider the case of=(b,0,...,0)∈BMOm.Fixb∈BMO and consider the operator

    Fixx∈Rn.For any cubeQcentered atx,setThen we have

    It suffices to show that

    for somec.Since 0<δ<1,we have

    ForP1,choosing 1<t<∈/δand applying the Hlder and John-Nirenberg inequalities,we get that

    whereIis the collection of allm-tuplesa=(a1,...,am) with eachaj=0 or∞and at least oneaj=∞.Letting,we have that

    To estimate,we first note that,for anys>r,by the Hlder and John-Nirenberg inequalities,

    It then follows from Lemma 2.3,the weak-type estimate onTα,and Hlder’s inequality,that

    which implies that

    This concludes the proof of Lemma 2.9. □

    3 Bounds for Multilinear Operators:Proofs of Theorems 1.1–1.10

    Proof of Theorem 1.1Applying Lemma 2.8 withα2=0 and then Lemma 2.6,we obtain that

    This proves Theorem 1.1. □

    Proof of Theorem 1.3It follows by applying Lemma 2.8 that

    Using the definition of a multilinear fractional maximal operator,we see that,for anyx∈Rn,

    This,together with Lemma 2.6,yields the desired inequality. □

    Proof of Theorem 1.4Without loss of generality,we may assume thatf1,...,fmare nonnegative.

    First,we will establish the following inequality:

    Using inequality (2.2),we only need to show that

    Forj=2,...,m,we can deal with things using a similar method.Using the dual identity (2.3) and Lemma 2.4,

    where the supremum is taken over nonnegative functionsg∈Hq′,λwith norm 1,and the last inequality follows from the estimate|x-y1|/m+|x-yi|≥|y1-yi|/m(i=2,...,m).

    Using (3.3) and Theorem 1.1,we have that

    which gives (3.2).

    By the definition ofHq,λ,it is enough to show that

    Sincew∈A1,by the property ofA1weight,we havew1-q∈Aq?A∞.Then,by Lemmas 2.2 and 2.7,we obtain that

    Next,we look at

    Now,we use Lemma 2.5 as follows:we write

    since the mapw→wtis bijective onA1.Thus,we have

    thanks to (3.1).Using Lemma 2.5 again,we deduce that

    thereby reaching

    This estimate,along with (3.5),yields (3.4).Hence,the proof of Theorem 1.4 is finished. □

    Proof of Theorem 1.5It suffices to show that,for any fixedQ?Rn,

    wherecQdenotes some constant whose value will be determined later.Denote the left hand side asK.Using the same decomposition as in (2.9) and selectingwe have that

    We first estimateK1.Since max (m/r,0)n<α<mn,there existsr*>1 such that 1/r*=m/r-α.Then,using Lemma 2.3,Hlder inequality,and the fact thatp=λ/α,we have that

    Next,we treatK2.By arguments similar to those in the proof of Lemma 2.9,we have that

    This completes the proof of Theorem 1.5. □

    4 Bounds for Commutators:Proofs of Theorems 1.8–1.11

    Proofs of Theorems 1.8 and 1.9By Lemmas 2.2 and 2.9,it suffices to bound theLq,λ(quasi-norm offorr<s<min (p1,...,pm) and 0<∈<min (1,).Using Lemmas 2.2 and 2.7,we get that

    The desired bound then follows from Lemma 2.6.This finishes the proof of Theorem 1.8.

    Theorem 1.9 can be proven in the same manner,so we omit the details here. □

    Proof of Theorem 1.10Choosesin Lemma 2.9 such thatr<s<q.Then,by using Lemmas 2.2 and 2.9,it suffices to prove the following inequality:

    ForX1,using Lemmas 2.2 and 2.7,we have that

    whereXis defined as in proof of Theorem 1.4.Then,we have that

    X2can be treated in the same way and the same bound can be obtained.This completes the proof of Theorem 1.10. □

    Proof of Theorem 1.11By arguments similar to these in the proof of Lemma 2.9 and Theorem 1.5,we have that

    Using Theorem 1.5 and (2.1),we get that

    This concludes the proof of Theorem 1.11. □

    Proof of Corollary 1.13Sinceb∈L∞?BMO,we have that

    Using (4.1) and Theorem 1.12,we conclude that

    The proof of Corollary 1.13 is completed. □

    5 Application to Multilinear Fourier Multipliers

    Whenα=0,it is easy to see that the multilinearLr-Hrmander’s condition is weaker than that in[7].Moreover,our results also extend to the caseα>0.In particular,we give some applications to multilinear Foureir multipliers in this last case,extending the results in[50].For more information about Fourier multipliers on Morrey spaces,we refer the reader to[19,27,32,36].

    Fors∈R,the Sobolev spaceWs(Rnm) consists of allF∈S′(Rnm) such that

    whereξ=(ξ1,...,ξm)∈Rn×···×Rn.

    In this section,we consider the multilinear Fourier multiplierTmgiven by

    forf1,...,fm∈S (Rn),wheremsatisfies minimal Sobolev regularity.

    Let Ψ∈S (Rnm) be such that supp Ψ?{ξ∈Rnm:1/2≤|ξ|≤2}andfor allξ∈Rnm{0}.For a functionm,α>0 andk∈Z,we set

    Then the limited Sobolev regularity condition reads as follows:

    The caseα=0 corresponds to the multilinear singular integral case studied in[22,24,25,50],where theLp1×···×Lpn→Lpbounds were established for appropriate 1/2<p<∞,1<p1,...,pm<∞,under (5.1).The regularity conditions>nm/2 in (5.1) is minimal in the sense thatnm/2 cannot be replaced by any smaller constant.TheLp1,λ×Lp2,λ×···×Lpm,λ→Lp,λboundedness was obtained in[51]forp>1,and was left open for 1/2<p≤1.

    The caseα>0 corresponds to the fractional integrals case considered in[11,25],where the mapping properties in Lebesgue space were studied.The Morrey space bounds for smooth multilinear fractional integrals were obtained by[51],but the case of multilinear fractional Fourier multipliers with minimal Sobolev regularity was left open.

    Applying Theorem 1.1,we are able to treat both cases in a unified manner,and obtain Morrey space boundedness for a full range of indices,which answers the above mentioned questions.

    Theorem 5.1Let 1<p1,...,pm<∞,1/p=1/p1+···+1/pm,0<α<n/p,1/q=1/p-α/n,s>nm/2 andr=max (1,nm/(s+α))<p1,...,pm,mp.Suppose thatmsatisfies (5.1).Then,

    ProofLetsatisfyr<<p1,...,pm,mp.In order to prove Theorem 5.1,it suffices to verify the hypothesis of Theorem 1.1 withrreplaced.Thus,however,was done in the proof of Theorem 5.1 in[11]. □

    Remark 5.2In a manner similar to Theorem 5.1,Theorems 1.3,1.4,1.8,1.9 and 1.10 can be applied to multilinear Fourier multipliersTmwith minimal Sobolev regularity,and similar results can be derived.We leave the details to the interested reader.

    猜你喜歡
    新峰
    Donor-acceptor conjugated copolymer with high thermoelectric performance: A case study of the oxidation process within chemical doping
    Paul??s Family
    Different Weather in Different Places
    The Homework Club
    流失或永恒
    天津詩人(2019年4期)2019-11-14 06:29:31
    《喀納斯湖的秋天》
    富豪家族來了個(gè)“杠精”妹夫:請(qǐng)神容易送神難
    Photographers Show New Ideas
    文化交流(2016年2期)2016-03-18 06:27:06
    崛起的曹妃甸
    龍泉股份:5億元謀購新峰管業(yè)
    黑人巨大精品欧美一区二区mp4| 美女黄网站色视频| 久久久久久大精品| 给我免费播放毛片高清在线观看| 国产区一区二久久| 国产精品电影一区二区三区| 曰老女人黄片| 人人妻,人人澡人人爽秒播| 国产精品香港三级国产av潘金莲| 欧美黄色片欧美黄色片| 精品免费久久久久久久清纯| 99国产精品一区二区蜜桃av| 1024手机看黄色片| 国产激情久久老熟女| 日日摸夜夜添夜夜添小说| 国产亚洲精品综合一区在线观看 | 久久精品aⅴ一区二区三区四区| 天堂动漫精品| 又大又爽又粗| 欧美黄色淫秽网站| 午夜老司机福利片| 久久亚洲真实| 国产欧美日韩精品亚洲av| 男人舔女人下体高潮全视频| 午夜福利欧美成人| 亚洲 国产 在线| 每晚都被弄得嗷嗷叫到高潮| 亚洲一区中文字幕在线| 看黄色毛片网站| 50天的宝宝边吃奶边哭怎么回事| 亚洲免费av在线视频| 精品一区二区三区四区五区乱码| 亚洲人与动物交配视频| www.熟女人妻精品国产| 国产亚洲精品一区二区www| 亚洲va日本ⅴa欧美va伊人久久| 久久婷婷成人综合色麻豆| 午夜福利欧美成人| or卡值多少钱| 最新在线观看一区二区三区| 91九色精品人成在线观看| 中文亚洲av片在线观看爽| 免费看a级黄色片| 岛国视频午夜一区免费看| 国产高清有码在线观看视频 | 欧美一级a爱片免费观看看 | 国产男靠女视频免费网站| 黄片小视频在线播放| 90打野战视频偷拍视频| www.www免费av| 国产日本99.免费观看| 精品一区二区三区av网在线观看| 欧美 亚洲 国产 日韩一| 在线观看舔阴道视频| 99精品在免费线老司机午夜| 久久热在线av| 精品久久久久久成人av| 成年免费大片在线观看| 99久久国产精品久久久| 日本一二三区视频观看| 亚洲av第一区精品v没综合| 丝袜美腿诱惑在线| 国产午夜精品久久久久久| 国产欧美日韩精品亚洲av| 午夜免费观看网址| 黄色女人牲交| 母亲3免费完整高清在线观看| 女警被强在线播放| 亚洲在线自拍视频| 中文亚洲av片在线观看爽| 午夜两性在线视频| 国产av一区二区精品久久| 亚洲av电影在线进入| 香蕉国产在线看| 欧洲精品卡2卡3卡4卡5卡区| 99国产精品99久久久久| 午夜精品一区二区三区免费看| 亚洲精品美女久久久久99蜜臀| 美女午夜性视频免费| 在线永久观看黄色视频| 两个人免费观看高清视频| 国产精品久久久人人做人人爽| 国产av不卡久久| 国产av不卡久久| 宅男免费午夜| 欧美在线黄色| 久久这里只有精品中国| 香蕉av资源在线| 国产午夜精品久久久久久| 欧美在线黄色| 欧美午夜高清在线| 亚洲无线在线观看| 国产精品久久久久久人妻精品电影| 十八禁人妻一区二区| 亚洲欧美一区二区三区黑人| 岛国在线免费视频观看| 最近最新免费中文字幕在线| 亚洲av电影在线进入| 国产一区二区三区在线臀色熟女| 国产高清有码在线观看视频 | 亚洲一区中文字幕在线| 欧美激情久久久久久爽电影| 日日爽夜夜爽网站| 男女那种视频在线观看| 亚洲精品国产一区二区精华液| 国产人伦9x9x在线观看| 亚洲第一欧美日韩一区二区三区| 欧美在线一区亚洲| 男女床上黄色一级片免费看| 精品不卡国产一区二区三区| 国产亚洲欧美在线一区二区| 香蕉av资源在线| 熟女电影av网| 国产片内射在线| 国产日本99.免费观看| 国产伦人伦偷精品视频| 亚洲国产高清在线一区二区三| 亚洲 欧美一区二区三区| 毛片女人毛片| 一个人观看的视频www高清免费观看 | 天天躁狠狠躁夜夜躁狠狠躁| 在线观看www视频免费| 亚洲国产欧美网| 亚洲国产精品合色在线| 亚洲精品一区av在线观看| 色综合站精品国产| 精品无人区乱码1区二区| 天堂av国产一区二区熟女人妻 | 亚洲精品美女久久av网站| 1024视频免费在线观看| 亚洲一区高清亚洲精品| 99热这里只有是精品50| 国产精品免费视频内射| 啦啦啦免费观看视频1| 久久中文字幕一级| 精品国产美女av久久久久小说| 免费电影在线观看免费观看| 十八禁网站免费在线| 19禁男女啪啪无遮挡网站| 少妇裸体淫交视频免费看高清 | 国产av一区二区精品久久| 丰满的人妻完整版| 亚洲男人天堂网一区| 88av欧美| videosex国产| 变态另类丝袜制服| 波多野结衣高清作品| 一个人免费在线观看的高清视频| 久久中文字幕人妻熟女| 亚洲av熟女| 欧美乱妇无乱码| 国产熟女午夜一区二区三区| 国产v大片淫在线免费观看| 欧美国产日韩亚洲一区| 人妻丰满熟妇av一区二区三区| 91九色精品人成在线观看| 亚洲专区国产一区二区| 国产精品国产高清国产av| 亚洲人成电影免费在线| 一个人免费在线观看电影 | www国产在线视频色| 国产精品久久电影中文字幕| 久久久久精品国产欧美久久久| 伦理电影免费视频| 国产av麻豆久久久久久久| 亚洲欧美精品综合一区二区三区| 12—13女人毛片做爰片一| 日韩欧美一区二区三区在线观看| 白带黄色成豆腐渣| 婷婷亚洲欧美| 男人舔奶头视频| 免费电影在线观看免费观看| 岛国在线免费视频观看| 久久久久性生活片| 91老司机精品| 白带黄色成豆腐渣| 国产三级在线视频| 97人妻精品一区二区三区麻豆| 深夜精品福利| 国产成年人精品一区二区| 麻豆国产97在线/欧美 | 国产1区2区3区精品| 免费一级毛片在线播放高清视频| 国产99久久九九免费精品| 最近最新中文字幕大全电影3| 久久久精品大字幕| 久久 成人 亚洲| 精品无人区乱码1区二区| 久久久久久久久免费视频了| 天堂av国产一区二区熟女人妻 | 国产69精品久久久久777片 | 校园春色视频在线观看| 美女扒开内裤让男人捅视频| 欧美成人一区二区免费高清观看 | 午夜免费成人在线视频| 中文字幕高清在线视频| 亚洲国产中文字幕在线视频| 亚洲成av人片免费观看| 女人高潮潮喷娇喘18禁视频| 亚洲熟女毛片儿| 欧美最黄视频在线播放免费| 国产又黄又爽又无遮挡在线| 久久久久性生活片| 亚洲五月婷婷丁香| 九九热线精品视视频播放| 久久精品国产清高在天天线| 99精品在免费线老司机午夜| 免费在线观看视频国产中文字幕亚洲| 看片在线看免费视频| 免费在线观看日本一区| 天堂影院成人在线观看| 欧美久久黑人一区二区| 可以在线观看毛片的网站| 国产午夜精品论理片| 成年版毛片免费区| 久久香蕉精品热| 国产一区二区三区视频了| ponron亚洲| 一区二区三区高清视频在线| 人人妻人人澡欧美一区二区| 人人妻人人澡欧美一区二区| 国产av在哪里看| 精华霜和精华液先用哪个| 国产精品香港三级国产av潘金莲| 亚洲中文av在线| 嫁个100分男人电影在线观看| 亚洲欧美激情综合另类| 99久久精品国产亚洲精品| 性欧美人与动物交配| 熟女少妇亚洲综合色aaa.| 欧美大码av| 国产一区在线观看成人免费| 久久精品人妻少妇| 久久久久亚洲av毛片大全| 五月伊人婷婷丁香| 国产91精品成人一区二区三区| 国产黄a三级三级三级人| 国产成人精品无人区| 在线观看免费日韩欧美大片| 在线观看日韩欧美| 国产成人一区二区三区免费视频网站| 最新在线观看一区二区三区| 欧美3d第一页| 亚洲精品国产一区二区精华液| 久久人妻av系列| 一本综合久久免费| 欧美不卡视频在线免费观看 | 国产av不卡久久| 九色成人免费人妻av| 欧美性猛交黑人性爽| 国内毛片毛片毛片毛片毛片| 一个人观看的视频www高清免费观看 | 国产精品久久视频播放| 久久久久久久精品吃奶| 国产成人精品久久二区二区91| 国产精品 国内视频| 桃红色精品国产亚洲av| av福利片在线| 亚洲免费av在线视频| 成人18禁高潮啪啪吃奶动态图| 久久久久久久久免费视频了| 99精品在免费线老司机午夜| 一本综合久久免费| 黄色成人免费大全| 欧美成人午夜精品| 日本免费一区二区三区高清不卡| 国产在线观看jvid| 亚洲国产欧洲综合997久久,| 最近视频中文字幕2019在线8| 久久亚洲真实| 给我免费播放毛片高清在线观看| 国产成人aa在线观看| 少妇的丰满在线观看| 法律面前人人平等表现在哪些方面| 日本在线视频免费播放| 人人妻人人看人人澡| 两性午夜刺激爽爽歪歪视频在线观看 | www日本在线高清视频| 日本黄色视频三级网站网址| 亚洲电影在线观看av| 在线观看66精品国产| 一进一出抽搐gif免费好疼| 日本五十路高清| 少妇被粗大的猛进出69影院| 亚洲av成人av| 日本a在线网址| 俄罗斯特黄特色一大片| 一边摸一边抽搐一进一小说| 丝袜人妻中文字幕| 精品无人区乱码1区二区| 精品一区二区三区av网在线观看| 欧美一级毛片孕妇| 久久香蕉激情| 操出白浆在线播放| x7x7x7水蜜桃| 国内久久婷婷六月综合欲色啪| 久久 成人 亚洲| 成人国产综合亚洲| 亚洲 国产 在线| 国产精品香港三级国产av潘金莲| 亚洲国产欧洲综合997久久,| 国内毛片毛片毛片毛片毛片| 一个人观看的视频www高清免费观看 | 级片在线观看| 丰满人妻熟妇乱又伦精品不卡| 国产成人啪精品午夜网站| 成年女人毛片免费观看观看9| 久久久国产成人精品二区| 欧美成人免费av一区二区三区| 亚洲av电影不卡..在线观看| 免费观看精品视频网站| 国产亚洲精品一区二区www| 色老头精品视频在线观看| 国产爱豆传媒在线观看 | 国产精品久久电影中文字幕| 波多野结衣巨乳人妻| 夜夜看夜夜爽夜夜摸| 99久久久亚洲精品蜜臀av| 99国产精品一区二区三区| 老司机在亚洲福利影院| 黄色丝袜av网址大全| 大型av网站在线播放| 久久中文字幕人妻熟女| 在线观看66精品国产| 久久久久久国产a免费观看| 国产精品自产拍在线观看55亚洲| 午夜福利在线在线| 国产亚洲精品久久久久久毛片| 精品国内亚洲2022精品成人| 亚洲人成电影免费在线| 久久久久久亚洲精品国产蜜桃av| 久久草成人影院| 久久热在线av| 国产精品98久久久久久宅男小说| 亚洲成人久久性| 国产精品久久久久久亚洲av鲁大| 欧美+亚洲+日韩+国产| 午夜福利高清视频| 两个人的视频大全免费| 每晚都被弄得嗷嗷叫到高潮| 大型黄色视频在线免费观看| 欧美黑人精品巨大| 国产不卡一卡二| 久久婷婷人人爽人人干人人爱| 欧美一区二区国产精品久久精品 | 欧美日韩中文字幕国产精品一区二区三区| 男女下面进入的视频免费午夜| 在线免费观看的www视频| 日韩欧美免费精品| 99精品久久久久人妻精品| 麻豆av在线久日| av片东京热男人的天堂| 很黄的视频免费| 日韩欧美国产在线观看| 久久香蕉激情| 非洲黑人性xxxx精品又粗又长| 精品欧美一区二区三区在线| 日韩欧美国产在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲一码二码三码区别大吗| а√天堂www在线а√下载| 两个人视频免费观看高清| 好男人在线观看高清免费视频| 真人一进一出gif抽搐免费| 色综合欧美亚洲国产小说| 亚洲精品国产一区二区精华液| 制服人妻中文乱码| 亚洲在线自拍视频| 又黄又爽又免费观看的视频| 黄色成人免费大全| 欧美日本亚洲视频在线播放| 亚洲成人中文字幕在线播放| 亚洲精品粉嫩美女一区| 色综合站精品国产| 日韩av在线大香蕉| 亚洲乱码一区二区免费版| 欧美av亚洲av综合av国产av| 亚洲精品粉嫩美女一区| 九九热线精品视视频播放| 欧美成人一区二区免费高清观看 | 久久亚洲精品不卡| 日韩三级视频一区二区三区| av超薄肉色丝袜交足视频| 亚洲一卡2卡3卡4卡5卡精品中文| 97超级碰碰碰精品色视频在线观看| 丰满人妻熟妇乱又伦精品不卡| 不卡av一区二区三区| 女同久久另类99精品国产91| 悠悠久久av| 一个人免费在线观看电影 | 国产久久久一区二区三区| 久久国产精品影院| 欧美黄色片欧美黄色片| 麻豆成人午夜福利视频| 中文资源天堂在线| 天天躁狠狠躁夜夜躁狠狠躁| av超薄肉色丝袜交足视频| 男女那种视频在线观看| 身体一侧抽搐| 变态另类丝袜制服| 欧美中文日本在线观看视频| 国产精品国产高清国产av| 精品国产美女av久久久久小说| 麻豆av在线久日| 欧美一级a爱片免费观看看 | 99riav亚洲国产免费| 天堂av国产一区二区熟女人妻 | 国产精品av久久久久免费| 一本精品99久久精品77| 国产一区二区三区视频了| 亚洲av熟女| 久久人妻av系列| 日韩成人在线观看一区二区三区| 色播亚洲综合网| 真人做人爱边吃奶动态| av在线播放免费不卡| 毛片女人毛片| 国产精品乱码一区二三区的特点| 日韩欧美一区二区三区在线观看| 久久久久九九精品影院| 久久久久免费精品人妻一区二区| 18禁国产床啪视频网站| 在线看三级毛片| 国产精品亚洲一级av第二区| 制服丝袜大香蕉在线| 91麻豆av在线| 日韩精品青青久久久久久| 免费看美女性在线毛片视频| 亚洲欧美日韩高清在线视频| 村上凉子中文字幕在线| 99riav亚洲国产免费| 搞女人的毛片| 国产高清视频在线观看网站| 欧美中文综合在线视频| 免费看十八禁软件| 久久久久国内视频| 最近最新中文字幕大全电影3| 国产精品98久久久久久宅男小说| 天堂√8在线中文| 亚洲人成电影免费在线| 亚洲专区字幕在线| 99re在线观看精品视频| 亚洲国产欧美一区二区综合| 欧美大码av| 少妇粗大呻吟视频| 国产精品精品国产色婷婷| 中出人妻视频一区二区| 国产精品久久久久久久电影 | 久久草成人影院| 999精品在线视频| 亚洲aⅴ乱码一区二区在线播放 | 国产精品,欧美在线| 十八禁人妻一区二区| 亚洲专区字幕在线| 久久精品国产清高在天天线| 一进一出抽搐动态| 亚洲欧美日韩高清在线视频| 日本黄色视频三级网站网址| 丝袜美腿诱惑在线| 91老司机精品| 日韩成人在线观看一区二区三区| 亚洲国产精品成人综合色| 欧美久久黑人一区二区| 男人舔女人下体高潮全视频| 亚洲成av人片免费观看| 两性午夜刺激爽爽歪歪视频在线观看 | 国产真人三级小视频在线观看| 日韩高清综合在线| 亚洲欧美日韩东京热| 欧美午夜高清在线| 国产69精品久久久久777片 | 国产三级中文精品| 免费在线观看黄色视频的| 国产视频一区二区在线看| 在线观看美女被高潮喷水网站 | 亚洲一区中文字幕在线| 人妻夜夜爽99麻豆av| 亚洲性夜色夜夜综合| 国产人伦9x9x在线观看| 国产爱豆传媒在线观看 | 国产亚洲精品av在线| 深夜精品福利| 免费在线观看成人毛片| 女同久久另类99精品国产91| 18禁美女被吸乳视频| 日韩大尺度精品在线看网址| 成人av一区二区三区在线看| av超薄肉色丝袜交足视频| 天堂av国产一区二区熟女人妻 | 日本免费a在线| 亚洲国产欧美网| 国产91精品成人一区二区三区| 成熟少妇高潮喷水视频| 嫩草影视91久久| 亚洲欧美日韩高清专用| 成人特级黄色片久久久久久久| 俄罗斯特黄特色一大片| 亚洲av中文字字幕乱码综合| 黄色视频不卡| 久久久久久久久中文| 九九热线精品视视频播放| 啦啦啦韩国在线观看视频| 九色国产91popny在线| 日本 欧美在线| 搞女人的毛片| 欧美日韩亚洲综合一区二区三区_| 国产精品电影一区二区三区| 色在线成人网| 桃色一区二区三区在线观看| 国产精品影院久久| 两性夫妻黄色片| 757午夜福利合集在线观看| 国内毛片毛片毛片毛片毛片| 欧美日本视频| 精品久久久久久久毛片微露脸| 中文字幕高清在线视频| 一进一出好大好爽视频| 狂野欧美激情性xxxx| 久久人人精品亚洲av| 欧美乱妇无乱码| 国内精品一区二区在线观看| 久久香蕉国产精品| 久久久精品大字幕| 亚洲av美国av| 成熟少妇高潮喷水视频| 欧美在线黄色| 亚洲色图 男人天堂 中文字幕| 两性午夜刺激爽爽歪歪视频在线观看 | 天天添夜夜摸| 国产精品电影一区二区三区| 国产精品久久久久久精品电影| 女人被狂操c到高潮| 欧美又色又爽又黄视频| 99在线视频只有这里精品首页| 国产亚洲精品久久久久久毛片| 亚洲七黄色美女视频| 真人做人爱边吃奶动态| 国产精品九九99| 50天的宝宝边吃奶边哭怎么回事| 日本 av在线| 少妇的丰满在线观看| 久久人人精品亚洲av| 精品久久蜜臀av无| 国产爱豆传媒在线观看 | 妹子高潮喷水视频| 给我免费播放毛片高清在线观看| 麻豆久久精品国产亚洲av| 禁无遮挡网站| 精品国产亚洲在线| 青草久久国产| 又紧又爽又黄一区二区| 国模一区二区三区四区视频 | 日韩精品中文字幕看吧| 听说在线观看完整版免费高清| 不卡av一区二区三区| 欧美zozozo另类| 又紧又爽又黄一区二区| 日本一二三区视频观看| 国产亚洲av高清不卡| 国产成人影院久久av| 色老头精品视频在线观看| 国产黄色小视频在线观看| 久久精品亚洲精品国产色婷小说| 日韩欧美免费精品| 欧美乱码精品一区二区三区| 变态另类丝袜制服| 亚洲国产欧美网| 久久久精品欧美日韩精品| 波多野结衣巨乳人妻| 深夜精品福利| 精品高清国产在线一区| 香蕉丝袜av| 亚洲av五月六月丁香网| 一个人观看的视频www高清免费观看 | 免费搜索国产男女视频| 日韩国内少妇激情av| 欧美zozozo另类| 小说图片视频综合网站| 一本久久中文字幕| 精品国产亚洲在线| 热99re8久久精品国产| 国产男靠女视频免费网站| 精品日产1卡2卡| 午夜福利欧美成人| 国产精品久久电影中文字幕| 久久婷婷人人爽人人干人人爱| 精品第一国产精品| 久久久国产精品麻豆| 亚洲自偷自拍图片 自拍| 一级片免费观看大全| 麻豆成人av在线观看| 中亚洲国语对白在线视频| 777久久人妻少妇嫩草av网站| 午夜免费激情av| 国产99白浆流出| 欧美色视频一区免费| 国产爱豆传媒在线观看 | 一进一出抽搐gif免费好疼| 国内精品久久久久久久电影| 日本五十路高清| 国产v大片淫在线免费观看| 国产精品av视频在线免费观看| 久久午夜综合久久蜜桃| 亚洲激情在线av| 国产99久久九九免费精品| 国产一区二区激情短视频| 国产精品野战在线观看| 欧美性猛交╳xxx乱大交人| 在线十欧美十亚洲十日本专区| 99国产精品一区二区蜜桃av| 国产精品亚洲一级av第二区| 在线观看免费日韩欧美大片| 欧美三级亚洲精品| 亚洲色图 男人天堂 中文字幕| 欧美一区二区精品小视频在线|