• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    EXISTENCE RESULTS FOR SINGULAR FRACTIONAL p-KIRCHHOFF PROBLEMS*

    2022-06-25 02:13:30MingqiXIANG向明啟
    關(guān)鍵詞:張彬

    Mingqi XIANG (向明啟)

    College of Science,Civil Aviation University of China,Tianjin 300300,China

    E-mail:xiangmingqi_hit@163.com

    Vicen?iu D.R?DULESCU

    Faculty of Applied Mathematics,AGH University of Science and Technology,al.Mickiewicza 30,30-059 Krak′ow,Poland Department of Mathematics,University of Craiova,Street A.I.Cuza No.13,200585 Craiova,Romania Institute of Mathematics,Physics and Mechanics,Jadranska 19,1000 Ljubljana,Slovenia

    E-mail:radulescu@inf.ucv.ro

    Binlin ZHANG (張彬林)?

    College of Mathematics and Systems Science,Shandong University of Science and Technology,Qingdao 266590,China

    E-mail:zhangbinlin2012@163.com

    Abstract This paper is concerned with the existence and multiplicity of solutions for singular Kirchhoff-type problems involving the fractional p-Laplacian operator.More precisely,we study the following nonlocal problem: whereis the generalized fractional p-Laplacian operator,N≥1,s∈(0,1),α1,α2,β∈R,Ω?RN is a bounded domain with Lipschitz boundary,and M:,f:Ω→R are continuous functions.Firstly,we introduce a variational framework for the above problem.Then,the existence of least energy solutions is obtained by using variational methods,provided that the nonlinear term f has (θp-1)-sublinear growth at infinity.Moreover,the existence of in finitely many solutions is obtained by using Krasnoselskii’s genus theory.Finally,we obtain the existence and multiplicity of solutions if f has (θp-1)-superlinear growthat infinity.The main features of our paper are that the Kirchhofffunction may vanish at zero and the nonlinearity may be singular.

    Key words Fractional Kirchhoffequation;singular problems;variational and topological methods

    1 Introduction and Main Results

    LetN≥1,p≥1,q≥1,τ>0,0≤a≤1,α,β,γ∈R be such that

    In the casea>0,we assume in addition that,withγ=aσ+(1-a)β,0≤α-σ≤1 if

    Caffarelli,Kohn and Nirenberg[5]proved the following well-known Caffarelli-Kohn-Nirenberg inequality:

    In particular,ifa=1,this inequality becomes

    After that,existence and multiplicity of solutions for singular elliptic problems have been investigated by using the Caffarelli-Kohn-Nirenberg inequality.Indeed,due to the Caffarelli-Kohn-Nirenberg inequality,one can study the existence and multiplicity of solutions for some singular elliptic equations like

    wherea(x) is a nonnegative function satisfyingandbis a function satisfying.For instance,F(xiàn)elli and Schneider in[17]considered the equation

    The authors obtained the existence of positive solutions and non-radial solutions asεsmall enough.Ghergu and Rdulescu[16]studied the singular elliptic equation:

    Under suitable assumptions onK,the authors obtained two distinct solutions asλsmall enough by using Ekeland’s variational principle and the mountain pass theorem.In[10],Chu et al.studied the existence and the qualitative properties of solutions for the singularp-Laplacian type problem

    where the operator div (|x|-βa(x,?u)) is a general form of the singularp-Laplacian div (|x|αp|?u|p-2?u) andfsatisfies (p-1)-sublinear growth at infinity.The authors obtained two nontrivial solutions by using variational methods.In[9],Caristi et al.discussed the following nonlocal degenerate problem:

    whereM:R+→R+is a continuous functionn satisfying thatm0otα-1≤M(t)≤m1tα-1for allt∈R+,wherem1>m0and 1<α<minand the nonlinear termfsatisfies the following conditions:

    (A1) there exists a constantsuch that 0<νF(t)≤tf(t) for allt∈R{0};

    (H1)=0.

    Under the above conditions,the authors obtained the existence and multiplicity of solutions.However,it seems that assumptions (A1) and (H1) can not hold simultaneously.The paper[21]extended the Caffarelli-Kohn-Nirenberg inequality to the case of variable exponent Sobolev spaces and obtained the existence of solutions for a class of singularp(x)-Laplacian equations by using variational methods.

    The issue of the Caffarelli-Kohn-Nirenberg inequalities in fractional Sobolev spaces is quite delicate.Very recently,Nguyen and Squasssina in[28]proved that the following fractional Caffarelli-Kohn-Nirenberg inequality (see also[1]for a special case):Lets∈(0,1),α1,α2,α∈R withα1+α2=α,andN≥1,p>1,q≥1,τ>0,0<a≤1,β,γ∈R be such that

    In the casea>0,assume in addition that,withγ=aσ+(1-a)β,0≤α-σandα-σ≤1 ifUnder the above assumptions,Nguyen and Squassina in[28]proved that if,then

    Inspired by the above works,in this paper,we study the following singular fractional Kirchhofftype problem:

    whereN≥1,s∈(0,1),α1,α2∈R,Ω?RNis a bounded domain with Lipschitz boundary containing zero,M:[0,∞)→[0,∞) is a continuous function,f:Ω→R is a continuous function,andis the generalized fractionalp-Laplacian operator which,up to a normalization constant,is defined as follows:

    for allu,.Especially,asα1=α2=0 andp=2,the above operator reduces to the well-known fractional Laplace operator (-Δ)s.Furthermore,ifs→1-,then (-Δ)sbecomes the classic Laplace operator-Δ(see[14,Proposition 4.4]).

    Since the pioneering work of Caffarelli and Silvestre in[7],a lot of attention has been attracted to investigate problems involving fractional Laplace operator.Especially,much effort has been focused on the subcritical and critical growth of the nonlinearities,which lead us to study various variational problems using the critical point theory.Problems like (1.2) appeared in many fields of real world,for example,continuum mechanics,phase transition phenomena,population dynamics,minimal surfaces and anomalous diffusion.In fact,fractional Laplace operator can be viewed as the typical outcome of stochastically stabilization of Lévy processes;we refer to[2,6,14,20]for more details.

    Problem (1.2) also involves the study of Kirchhoff-type problems.In fact,such problems arise in various models of physical and biological systems.In particular,the existence results concerning Kirchhoff-type problems are more and more abundant in recent years.More precisely,Kirchhoffin[19]established a model governed by the equation

    whereu=u(x,t) denotes the lateral displacement,Eis the Young modulus,ρis the mass density,his the cross-section area,Lis the length andp0is the initial axial tension.In fact,Equation (1.3) extends the classical D’Alembert wave equation based on a physical consideration;that is,enclosing the effects of the changes in the length of the strings during the vibrations.In particular,F(xiàn)iscella and Valdinoci in[18]proposed a stationary Kirchhoffmodel involving the fractional Laplacian by investigating the nonlocal aspect of the tension;see[18,Appendix A]for further details.

    Throughout the paper,without explicit mention,we assume thatM:is a continuous function and verifies (M0) or (M1) and (M2) as below.

    (M0) There existm0>0 andθ>1 such thatM(t)≥m0tθ-1for allt≥0;

    (M1) For anyd>0 there existsκ:=κ(d)>0 such thatM(t)≥κfor allt≥d;

    (M2) There existsθ∈(1,N/N-sp) such that

    A simple example ofMis given byM(t)=a0+b0θtθ-1for allt≥0 and someθ>1,wherea0,b0≥0 anda0+b0>0.WhenMis of this type,problem (1.2) is called to be degenerate ifa=0,while it is named non-degenerate ifa>0.In recent years,Kirchhoff-type fractional problems have triggered more and more attention.Existence results for nondegenerate Kirchhoff-type fractional Laplacian problems were given,for example,in[30,32].While some recent existence results concerning the degenerate case of Kirchhoff-type fractional Laplacian equations were obtained;see[4,8,12,22–25,31,33,34]and references therein.It is worth pointing out that the degenerate case is rather interesting and is treated in some famous works concerning Kirchhofftheory;see for instance[13].From a physical point of view,it seems rational to describe a realistic model byM(0)=0,which means that the base tension of the string vanishes.

    Throughout the paper,we assume thatf:Ω→R is a continuous function.In the following,we enumerate the assumptions concerning the nonlinear termf,but keep in mind that they will not be fulfilled simultaneously:

    (f0)fis odd,that is,f(-t)=-f(t) for allt∈R;

    (f1)

    (f2) there existsq∈(1,p) such thatF(t)≥|t|q,where

    (f3) there existq>θpandC>0 such that

    (f4) there existμ>θpandT>0 such thatfsatisfies the Ambrosetti-Rabinowtiz type condition,i.e.,

    A simple example of functionfsatisfying (f1)-(f2) is given by

    where 1:=Np/(N-sp).

    Remark 1.1From (f1) one can deduce thatfis (θp-1)-sublinear at infinity,while from (f4) one can deduce thatfis (θp-1)-superlinear at infinity.

    Definition 1.2We say thatuis a (weak) solution of problem (1.2),if it holds that

    We always assume thats∈(0,1),α1,α2∈R,α=α1+α2,N≥1,and Ω?RNis a bounded domain with Lipschitz boundary and 0∈Ω.Now we are in a position to introduce two existence results involving the case that the nonlinearityfis (θp-1)-sublinear at infinity.

    Theorem 1.3Assume thatMfulfills (M0) andfsatisfies (f1)–(f2).Ifβ>(α-s)θp+N(θ-1),then problem (1.2) has a least energy solution inwith negative energy.

    Moreover,we get the existence of in finitely many solutions of problem (1.2).

    Theorem 1.4Assume thatMfulfills (M0) andfsatisfies (f0),(f1) and (f2).Ifβ>(α-s)θp+N(θ-1),then problem (1.2) has in finitely many solutions inwith negative energy.

    We also obtain the existence and multiplicity of solutions for problem (1.2) when the nonlinearityfis (θp-1)-superlinear at infinity.

    Theorem 1.5Assume thatMfulfills (M1)–(M2) andfsatisfies (f3)–(f4). Ifβ>(α-s)q+N(q/p-1),then problem (1.2) admits a nontrivial mountain pass solution in

    Theorem 1.6Assume thatMfulfills (M1)–(M2) andfsatisfies (f0) and (f3)–(f4).Ifβ>(α-s)q+N(q/p-1),then problem (1.2) has in finitely many solutions in

    Remark 1.7Ifα1=α2=α,then we can defineas follows:for anyx∈RN

    along anyu∈(RN).

    To the best of our knowledge,Theorems 1.3–1.6 are the first existence and multiplicity results for singular Kirchhoff-type problems in the fractional setting.

    The rest of the paper is organized as follows:in Section 2,we introduce a variational framework of problem (1.2) and give some necessary properties for the functional setting.In Section 3,we obtain the existence of least energy solution for problem (1.2).In Section 4,the existence of in finitely many solutions is obtained by using genus theory.In Section 5,a mountain pass solution and in finitely many solutions for problem (1.2) are obtained by using the mountain pass theorem and the symmetric mountain pass theorem,respectively.

    2 Variational Framework and Preliminary Results

    We first provide some basic functional setting that will be used in the next sections.Let 1<p<∞and defineas the completion of(Ω) with respect to the norm

    Using a similar discussion as in[32],the spaceis a reflexive Banach space.Let 1<q<∞andβ∈R.Define the weighted Lebesgue space

    The next fractional Caffarelli-Kohn-Nirenberg inequality will be used later,which was obtained in[28].In fact,by takinga=1 in (1.1),we have

    Theorem 2.1Lets∈(0,1),1<p<N/s,α>-(N-sp)/pandα-s≤γ≤α.Set.Then there existsC(N,α,s)>0 such that

    Using Theorem 2.1,we have the following embedding theorem:

    Theorem 2.2Lets∈(0,1),1<p<N/sandα>-(N-sp)/p.Thenis continuously embedded inLq(Ω,|x|β),ifandβ≥(α-s)q+N(q/p-1);the embedding is compact ifandβ>(α-s)q+N(q/p-1).

    ProofIf,then by takingγ=αin Theorem 2.1,the embeddingis continuous.If,then we takeα-s<γ<αsuch that

    Letu∈.Then by the Hlder inequality,we have

    Sinceβ>(α-s)q+N(q/p-1),we get

    Thus,it follows that

    It follows from (2.1) and Theorem 2.1 that

    which yields that the embeddingis continuous.

    Next we show that the embeddingis compact.To this aim,let{un}be a bounded sequence inFor anyR>0 withBR(0)?Ω is a ball centered at 0 with radiusR.Then{un}is a bounded sequence inBy Theorem 7.1 in[14],we obtain that there is a convergent subsequence of{un}inLq(ΩBR(0)).By choosing a diagonal sequence,without loss of generality,we assume that{un}converges inLq(ΩBR(0)) for anyR>0.

    Since the embedding is continuous,we obtain that{un}is bounded in

    whereC>0 denotes various constants independent ofn,m.Asβ>q(α-s)+N(q/p-q),it follows thatThus,for anyε>0 there existsR>0 such that

    Then we can choosen0∈N such that

    whereCβ=Rβifβ<0 andCβ=(diam (Ω))βifβ>0.Therefore,we conclude

    This means that{un}is a Cauchy sequence inLq(Ω,|x|β). □

    To study solutions of problem (1.2),we define the associated functionalI:(Ω,|x|αp)→R as follows:

    By assumption (f2),for anyε>0 there existsTε>0 such that

    Using (2.3),β>(α-s)θp+N(θ-1) and Theorem 2.2,one can verify thatIis well defined,of class,R) and

    for allu,v∈(Ω,|x|αp).Clearly,the critical points ofIλare exactly the weak solutions of problem (1.2).

    3 Proof of Theorem 1.3

    In this section,we always assume thatMsatisfies (M0) andfsatisfies (f1) and (f2).

    Let us now recall that the functionalIsatisfies the (PS)ccondition in,if any (PS)csequence,namely a sequence such thatI(un)→candI′(un)→0 asn→∞,admits a strongly convergent subsequence in

    In order to study the existence of least energy solutions for problem (1.2) in the sublinear case,we will use the following direct method in the calculus of variations:

    Theorem 3.1LetXbe a reflexive Banach space with norm ‖·‖X.Assume that the functionalJ:X→R is

    (i) coercive onX,that is,J(u)→∞as ‖u‖X→∞;

    (ii) weakly lower semi-continuous onX,that is,for anyu∈Xand any sequence{un}?Xsuch thatun?uweakly inX,

    ThenJis bounded from below onXand attains its infimum inX.

    Lemma 3.2The functionalIis weakly lower semi-continuous on

    ProofWe first show that Φ is weakly lower semi-continuous on.To this aim,we define a functionalH:(Ω,|x|αp)→R as

    Chooset0-δ<t1<t0<t2<t0+δ.By the assumption onM,we know that M is a increasing function.It follows that

    Next we prove that Ψ is weakly continuous on.By (f2),there existsC>0 such that|f(t)|≤C(1+|t|θp-1) for allt∈R.It follows from Theorem 2.2 thatLθp(Ω,|x|β) is compact forβ>θp(α-s)+N(θ-1).Using a standard argument,one can deduce that Ψ is weakly continuous on

    In conclusion,we obtain thatI(u)=Φ(u)-Ψ(u) is a weakly lower semi-continuous functional on(Ω,|x|αp). □

    Lemma 3.3The functionalIis coercive and satisfies the (PS)ccondition.

    ProofFor anyε>0,by (M1) and (2.3),we obtain that for allu∈(Ω,|x|αp) with ‖u‖≥1,

    By Theorem 2.2 andβ>(α-s)θp+N(θ-1),there existsC>0 such that

    for allu∈with ‖u‖≥1.Now chooseε=m0/(2C),we obtain

    which together withθp>1 implies thatI(u)→∞as ‖u‖→∞.Thus we have proved thatIis coercive.

    Next we show thatIsatisfies the (PS)ccondition.To this aim,we assume that{un}?is (PS)csequence;that is,I(un)→candI′(un)→0 inSinceIis coercive,{un}is bounded inThus,up to a subsequence,we have

    Moreover,by

    we deduce

    It follows that

    By (2.2),we have

    which converges to zero by Theorem 2.2.It follows from (3.1) that

    which,together with the fact that〈(u),un-u〉=0,yields that

    Then using a similar discussion as in[32,Lemma 3.6],we can obtain thatun→uin(Ω,|x|αp).Ifthen up to a subsequence we obtain thatun→0 in□

    Proof of Theorem 1.3By Theorem 3.1,Lemmas 3.2 and 3.3,the functionalIhas a global minimizeru∈(Ω,|x|αp),which is a least energy solution of problem (1.2).Now we prove thatuis nontrivial.Choose a nonnegative functionwith ‖v‖=1 and.Then it follows from the definition ofIand (f2) that

    thanks top>q.Thus,we can choose somet>0 such thatI(tv)<0.Then by the minimality ofu,we have

    which yields thatuis nontrivial. □

    4 Proof of Theorem 1.4

    In this section we study the existence of in finitely many solutions of problem (1.2).To this end,we mainly use a classical result due to Clark (see[11]).Before stating our result,we first recall some basic notions on Krasnoselskii’s genus and its properties.

    Denote byXa real Banach space.Set

    Definition 4.1LetA∈Γ andX=Rk.The genusγ(A) ofAis defined by

    If there does not exist such a mapping for anyk≥1,we setγ(A)=∞.Note that ifAis a subset which consists of finitely many pairs of points,thenγ(A)=1.Moreover,γ(?)=0.

    Now,we list some necessary results of Krasnoselskii’s genus.

    Lemma 4.2(1) LetX=Rkand?Ω be the boundary of an open,symmetric and bounded subset Ω?Rkwith 0∈Ω.Thenγ(?Ω)=k.In particular,let Sk-1be ak-1-dimensional sphere in Rk,thenγ(Sk-1)=k.

    (2) LetA?X,Ω be a bounded neighborhood of 0 in Rk,and assume that there exists an odd mappingh∈C(A,?Ω) withha homeomorphism.Thenγ(A)=k.

    Theorem 4.3(Clark’s theorem[11]) LetJ∈C1(X,R) be a functional satisfying the (PS)ccondition.Furthermore,let us suppose that

    (i)Jis even,i.e.,J(-u)=J(u) for allu∈X,andJis bounded from below;

    (ii) there is a compact setA?Γ such thatγ(A)=kand

    ThenJpossesses at leastkpairs of distinct critical points,and their corresponding critical values are less thanJ(0).

    Proof of Theorem 1.4Set

    then it follows from Lemma 3.3 that

    SinceAkis finite dimensional,all norms on it are equivalent.Thus there exists a positive constantC>0 such that

    By (f2),we get

    for allu∈Skand 0<t≤1 small enough,whereSk={u∈Ak:‖u‖=1}.Thus,we can findt*=t(k)∈(0,1) andε*=ε*(k)>0 such thatI(t*u)≤-ε*<0 for allu∈Sk.Set.Clearly,is homeomorphic to Sk-1.Thenand so

    Sincefis odd,the functionalIis even.In view of Lemma 3.3,we know that all assumptions of Theorem 4.3 are satisfied.Then the functionalIadmits at leastkpairs of distinct critical points.Due to the arbitrary ofk,we obtain the existence of in finitely many critical points ofI.Thus,the proof is complete. □

    5 Proofs of Theorems 1.5–1.6

    In this section we consider the superlinear case of problem (1.2).Without special mentioning,we always assume thatMsatisfies (M1)–(M2),andfsatisfies (f3)–(f4).

    In the sequel,we shall make use of the following general mountain pass theorem (see[3]):

    Theorem 5.1LetXbe a real Banach space andJ∈C1(X,R) withJ(0)=0.Suppose that

    (i) there existρ,r>0 such thatJ(u)≥ρfor allu∈X,with ‖u‖X=r;

    (ii) there existse∈Xsatisfying ‖e‖X>ρsuch thatJ(e)<0.

    Define H={h∈C1([0,1];X):h(0)=1,h(1)=e}.Then

    and there exists a (PS)csequence{un}?X.

    Now we check that the functionalIsatisfies the mountain geometry properties (i) and (ii).

    Lemma 5.2There existr,ρ>0 such thatI(u)≥ρif ‖u‖=r.

    ProofBy (M2),one can deduce

    By (5.1) and (f3),we obtain

    for allu∈(Ω,|x|αp) with ‖u‖≤1.Here we have used the fact that the embedding from(Ω,|x|αp) toLq(Ω,|x|β) is continuous by Theorem 2.2,sinceq∈() andβ>(α-s)θp+N(θ-1).Sinceq>θp,we can chooser∈(0,1) small enough such thatThen it follows from (5.2) thatI(u)≥for allu∈(Ω,|x|αp),with ‖u‖=r. □

    Lemma 5.3There existse∈(Ω,|x|αp) with ‖e‖>rsuch thatI(e)<0,whereris given by Lemma 5.2.

    ProofBy (M2),we have

    Choose a nonnegative functionφ∈(Ω) such that ‖φ‖=1.Then by (f4) and (5.3),for allτ,withτ>1,we have

    Sinceq>θp,fixingτ>0 even large so that we have thatI(e)<0,wheree=τφ.□

    Lemma 5.4The functionalIsatisfies the (PS)ccondition.

    ProofLet{un}?(Ω,|x|αp) be such that

    asn→∞.We first show that{un}is bounded.Arguing by contradiction,we assume that up to a subsequence,

    Using (f4) and (M2),we deduce

    Dividing the above inequality by ‖un‖pand lettingngo to infinity,we obtain

    which together withμ>θpyields a contradiction.Thus,{un}is bounded inWs,p0(Ω,|x|αp).

    Then there exist a subsequence of{un},still denoted by{un},andusuch that

    We first show that

    Indeed,by (f3) and the Hlder inequality,we have Using Theorem 2.2,we obtainThen it follows from (5.5) that (5.4) holds true.

    Due to the fact that{un}is a (PS)csequence,we have

    Then by using a similar discussion as in Lemma 3.3,we conclude that ‖un-u‖→0 asn→∞.In conclusion,the proof is complete. □

    Proof of Theorem 1.5By Lemmas 5.2–5.3 and Theorem 5.1,there exists a (PS)csequence{un}such thatI(un)→c,I′(un)→0,whereand H={h∈C1([0,1];(Ω,|x|αp)):h(0)=1,h(1)=e}.Furthermore,by Lemma 5.4,there exist a subsequence of{un}(still denoted by{un}) andu∈(Ω,|x|αp) such thatun→u.Moreover,uis a nonnegative solution of problem (1.2). □

    We shall use the following symmetric mountain pass theorem to get the existence of in finitely many solutions of problem (1.2) in the superlinear case:

    Theorem 5.5LetXbe a real in finite dimensional Banach space andJ∈C1(X,R) a functional satisfying the (PS)ccondition.Assume thatJsatisfies the following:

    (1)J(0)=0 and there existρ,r>0 such thatJ(u)≥ρfor all ‖u‖X=r;

    (2)Jis even;

    (3) for all finite dimensional subspace?X,there existsR=R()>0 such thatJ(u)<0 for allu∈BR().

    ThenJpossesses an unbounded sequence of critical values characterized by a minimax argument.

    Proof of Theorem 1.6By (f4),we have

    LetEbe a fixed finite dimensional subspace of(Ω,|x|αp).For anyu∈Ewith ‖u‖=1,and for allt≥1 we have by (5.3) and (5.6) that

    asR→∞.Hence there existsR0>0 so large such thatI(u)<0 for allu∈E,with ‖u‖=RandR>R0.Clearly,I(0)=0 andIis even.In view of Lemma 5.2,we know that all assumptions of Theorem 5.5 are satisfied.Thus,problem (1.2) admits an unbounded sequence of solutions. □

    AcknowledgementsThe third author of this paper would like to thank Professor Giovanni Molica Bisci for helpful discussions during the preparation of manuscript.

    猜你喜歡
    張彬
    Simulation of space heavy-ion induced primary knock-on atoms in bipolar devices
    Compared discharge characteristics and film modifications of atmospheric pressure plasma jets with two different electrode geometries
    復(fù)雜光照環(huán)境的車道線檢測方法
    女醫(yī)生喚醒沉睡愛人:攀山渡河筑一座愛城
    電力拖動(dòng)實(shí)訓(xùn)接線板的設(shè)計(jì)與研究
    一種相控陣天線波束指向角計(jì)算方法
    GEANT4 simulation study of over-response phenomenon of fiber x-ray sensor?
    酒鬼報(bào)警
    患癌一瞞到底:我們笑著我們含淚炮制深情
    孤獨(dú)舞者情殤7年,“天邊的愛”就在盈盈眉眼處
    欧美绝顶高潮抽搐喷水| 两人在一起打扑克的视频| 亚洲人成电影免费在线| 国内精品久久久久久久电影| 免费在线观看成人毛片| 操出白浆在线播放| 久9热在线精品视频| e午夜精品久久久久久久| 少妇熟女aⅴ在线视频| 成人欧美大片| 动漫黄色视频在线观看| 国产探花极品一区二区| 欧美色视频一区免费| eeuss影院久久| 亚洲成人精品中文字幕电影| 国产野战对白在线观看| 国产一区二区在线观看日韩 | 一进一出抽搐gif免费好疼| 黄色成人免费大全| 亚洲 欧美 日韩 在线 免费| 好男人电影高清在线观看| 男人舔奶头视频| 在线视频色国产色| 亚洲av美国av| 岛国视频午夜一区免费看| 日韩欧美三级三区| 亚洲av电影在线进入| 成人特级av手机在线观看| 51午夜福利影视在线观看| 亚洲av熟女| av女优亚洲男人天堂| 国产视频内射| 99热这里只有精品一区| 成人欧美大片| 国产精品99久久久久久久久| 亚洲va日本ⅴa欧美va伊人久久| 亚洲专区国产一区二区| 久久久久久人人人人人| 2021天堂中文幕一二区在线观| 久久久久久久午夜电影| 精品熟女少妇八av免费久了| 亚洲成av人片在线播放无| 国产一级毛片七仙女欲春2| 国产精品,欧美在线| 日韩av在线大香蕉| 国产精品久久久久久久久免 | 男女那种视频在线观看| 成年女人看的毛片在线观看| 国产精品久久久久久精品电影| 99久久无色码亚洲精品果冻| 黑人欧美特级aaaaaa片| 亚洲国产高清在线一区二区三| 香蕉av资源在线| 成人无遮挡网站| 亚洲avbb在线观看| 欧美日韩精品网址| 亚洲专区中文字幕在线| 啦啦啦免费观看视频1| 听说在线观看完整版免费高清| 美女 人体艺术 gogo| 日日夜夜操网爽| 日韩欧美 国产精品| 亚洲精品美女久久久久99蜜臀| 毛片女人毛片| 午夜日韩欧美国产| 波多野结衣高清无吗| 亚洲av日韩精品久久久久久密| 三级毛片av免费| 小蜜桃在线观看免费完整版高清| 国产乱人视频| 香蕉丝袜av| 国产精品亚洲av一区麻豆| 欧美乱色亚洲激情| 婷婷六月久久综合丁香| 日本 欧美在线| 日本三级黄在线观看| 国产乱人伦免费视频| 草草在线视频免费看| 99久久无色码亚洲精品果冻| 天堂网av新在线| 韩国av一区二区三区四区| 国产精品野战在线观看| 一级毛片高清免费大全| a级一级毛片免费在线观看| 久久伊人香网站| 国产综合懂色| 亚洲男人的天堂狠狠| 国产激情欧美一区二区| 亚洲专区中文字幕在线| 2021天堂中文幕一二区在线观| 国产精品免费一区二区三区在线| 天天添夜夜摸| 中国美女看黄片| 国产中年淑女户外野战色| 九色国产91popny在线| 不卡一级毛片| 国产av不卡久久| 亚洲人成电影免费在线| 亚洲va日本ⅴa欧美va伊人久久| 3wmmmm亚洲av在线观看| 啪啪无遮挡十八禁网站| 精品人妻一区二区三区麻豆 | 日本免费a在线| 亚洲精品456在线播放app | 国产亚洲精品综合一区在线观看| 国产av在哪里看| 欧美日韩乱码在线| 午夜久久久久精精品| 熟女电影av网| 一二三四社区在线视频社区8| 亚洲成人久久爱视频| 99久久99久久久精品蜜桃| 色在线成人网| 最近最新中文字幕大全免费视频| 国产综合懂色| 中文字幕av成人在线电影| 99国产综合亚洲精品| 成年女人毛片免费观看观看9| 国产精品国产高清国产av| 久久精品国产亚洲av香蕉五月| 在线观看午夜福利视频| 色综合婷婷激情| 波多野结衣高清无吗| 日本免费a在线| 亚洲人成网站在线播| 亚洲专区国产一区二区| 90打野战视频偷拍视频| 国产成人啪精品午夜网站| 欧美日韩精品网址| 日韩欧美精品v在线| 五月玫瑰六月丁香| 51午夜福利影视在线观看| 在线观看免费午夜福利视频| 精品人妻一区二区三区麻豆 | www日本在线高清视频| 精品电影一区二区在线| 久久久成人免费电影| 少妇裸体淫交视频免费看高清| 国产淫片久久久久久久久 | 好男人在线观看高清免费视频| 亚洲男人的天堂狠狠| 国产激情偷乱视频一区二区| 欧美日本亚洲视频在线播放| 亚洲精华国产精华精| 亚洲欧美日韩高清在线视频| 午夜福利在线在线| 免费人成视频x8x8入口观看| 怎么达到女性高潮| 人人妻人人澡欧美一区二区| 天天躁日日操中文字幕| 天堂影院成人在线观看| 最好的美女福利视频网| 欧美在线一区亚洲| 精品国内亚洲2022精品成人| 欧美bdsm另类| 久久6这里有精品| e午夜精品久久久久久久| 亚洲av成人精品一区久久| 国产熟女xx| 在线观看免费视频日本深夜| 18禁黄网站禁片免费观看直播| 欧美性猛交黑人性爽| 亚洲成av人片免费观看| 在线播放国产精品三级| 欧美日韩瑟瑟在线播放| 午夜免费成人在线视频| 亚洲国产欧美人成| 久久午夜亚洲精品久久| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 欧美日韩亚洲国产一区二区在线观看| 国产精品野战在线观看| 欧美一区二区精品小视频在线| 精品国产美女av久久久久小说| 女人十人毛片免费观看3o分钟| 最新美女视频免费是黄的| 午夜福利高清视频| 免费看十八禁软件| 在线观看舔阴道视频| 国产精品av视频在线免费观看| 国产精华一区二区三区| 亚洲欧美日韩东京热| 国产私拍福利视频在线观看| 久9热在线精品视频| 99久久99久久久精品蜜桃| 999久久久精品免费观看国产| АⅤ资源中文在线天堂| 欧洲精品卡2卡3卡4卡5卡区| 欧美日本亚洲视频在线播放| 亚洲国产色片| 日韩国内少妇激情av| 免费电影在线观看免费观看| 狂野欧美激情性xxxx| 在线天堂最新版资源| 欧美日韩中文字幕国产精品一区二区三区| 欧美极品一区二区三区四区| 精品国产超薄肉色丝袜足j| 亚洲美女视频黄频| 嫁个100分男人电影在线观看| 真实男女啪啪啪动态图| 九九在线视频观看精品| 男人舔女人下体高潮全视频| 免费看美女性在线毛片视频| 51国产日韩欧美| 久久久精品大字幕| 国内精品美女久久久久久| 国产高清视频在线观看网站| 国产成人影院久久av| 天堂影院成人在线观看| 又紧又爽又黄一区二区| 3wmmmm亚洲av在线观看| 岛国在线免费视频观看| 一卡2卡三卡四卡精品乱码亚洲| 内射极品少妇av片p| 五月伊人婷婷丁香| 91在线精品国自产拍蜜月 | 又粗又爽又猛毛片免费看| 琪琪午夜伦伦电影理论片6080| 黄色片一级片一级黄色片| 亚洲国产欧美网| 在线视频色国产色| 亚洲aⅴ乱码一区二区在线播放| 国产aⅴ精品一区二区三区波| 999久久久精品免费观看国产| 国产精品精品国产色婷婷| 国产v大片淫在线免费观看| 国产乱人伦免费视频| 国产免费av片在线观看野外av| 一进一出抽搐动态| 日本黄色视频三级网站网址| 免费搜索国产男女视频| 亚洲午夜理论影院| 国产国拍精品亚洲av在线观看 | 免费看a级黄色片| 免费人成视频x8x8入口观看| 又黄又粗又硬又大视频| 亚洲无线在线观看| 国内精品久久久久精免费| 一区二区三区激情视频| 嫩草影院入口| www日本在线高清视频| 哪里可以看免费的av片| 欧美大码av| 成人三级黄色视频| 午夜激情福利司机影院| 午夜两性在线视频| 欧美激情在线99| 亚洲av中文字字幕乱码综合| 香蕉av资源在线| 国产成人欧美在线观看| 免费在线观看影片大全网站| 免费观看的影片在线观看| 欧美精品啪啪一区二区三区| 天天添夜夜摸| 一级毛片高清免费大全| 老汉色av国产亚洲站长工具| 欧美大码av| 97人妻精品一区二区三区麻豆| 久久午夜亚洲精品久久| 成人国产综合亚洲| 亚洲性夜色夜夜综合| 欧美一级a爱片免费观看看| 嫩草影视91久久| 男插女下体视频免费在线播放| 天天一区二区日本电影三级| 欧美一区二区亚洲| 午夜视频国产福利| 91麻豆精品激情在线观看国产| 成人av在线播放网站| 婷婷精品国产亚洲av| 欧美性感艳星| netflix在线观看网站| 黄色女人牲交| 91麻豆av在线| 无遮挡黄片免费观看| 欧美日韩福利视频一区二区| 两个人的视频大全免费| 国产亚洲精品久久久com| 欧美精品啪啪一区二区三区| 制服丝袜大香蕉在线| 国产精品电影一区二区三区| 国产欧美日韩精品亚洲av| 久久伊人香网站| 国产成人系列免费观看| 国产视频内射| 此物有八面人人有两片| 黄色片一级片一级黄色片| 亚洲国产高清在线一区二区三| 免费人成视频x8x8入口观看| 又黄又爽又免费观看的视频| 51午夜福利影视在线观看| 午夜免费男女啪啪视频观看 | 欧美绝顶高潮抽搐喷水| 国内毛片毛片毛片毛片毛片| 中文字幕高清在线视频| 少妇丰满av| 精品欧美国产一区二区三| 免费观看精品视频网站| 999久久久精品免费观看国产| 九色成人免费人妻av| 欧美丝袜亚洲另类 | 国产麻豆成人av免费视频| 亚洲最大成人中文| 国内揄拍国产精品人妻在线| 午夜免费激情av| 欧美日韩福利视频一区二区| 观看免费一级毛片| 亚洲va日本ⅴa欧美va伊人久久| 亚洲片人在线观看| 免费看美女性在线毛片视频| 日韩欧美 国产精品| 嫩草影视91久久| 欧美性猛交黑人性爽| 老司机午夜十八禁免费视频| 窝窝影院91人妻| 日韩欧美精品v在线| 毛片女人毛片| 日韩欧美在线二视频| av天堂中文字幕网| 亚洲精品粉嫩美女一区| av女优亚洲男人天堂| 国产又黄又爽又无遮挡在线| 女同久久另类99精品国产91| 免费高清视频大片| 91久久精品国产一区二区成人 | 欧美三级亚洲精品| 午夜免费观看网址| 亚洲最大成人手机在线| 老司机深夜福利视频在线观看| 亚洲成人精品中文字幕电影| tocl精华| 亚洲av中文字字幕乱码综合| 亚洲自拍偷在线| 亚洲黑人精品在线| 国产综合懂色| 色在线成人网| 成年人黄色毛片网站| 成人永久免费在线观看视频| 国产精品久久久久久精品电影| av女优亚洲男人天堂| 国产成+人综合+亚洲专区| 国产爱豆传媒在线观看| 欧美在线黄色| 亚洲精品国产精品久久久不卡| aaaaa片日本免费| 欧美日韩瑟瑟在线播放| 他把我摸到了高潮在线观看| 黄片大片在线免费观看| 香蕉久久夜色| 一二三四社区在线视频社区8| 99久久综合精品五月天人人| 麻豆久久精品国产亚洲av| 两个人视频免费观看高清| 天堂网av新在线| eeuss影院久久| 欧美日韩一级在线毛片| www日本在线高清视频| 床上黄色一级片| 久久伊人香网站| 午夜免费成人在线视频| 亚洲五月婷婷丁香| 少妇高潮的动态图| 国产一区二区三区在线臀色熟女| 日韩欧美国产在线观看| 国产精品亚洲一级av第二区| 啦啦啦免费观看视频1| 黄色视频,在线免费观看| 日本一二三区视频观看| 欧美高清成人免费视频www| 午夜免费成人在线视频| 舔av片在线| 精品人妻一区二区三区麻豆 | 免费av毛片视频| 国产精品嫩草影院av在线观看 | 国产黄色小视频在线观看| 免费在线观看日本一区| av中文乱码字幕在线| 免费搜索国产男女视频| 欧美日本视频| 亚洲熟妇中文字幕五十中出| 亚洲第一欧美日韩一区二区三区| 午夜两性在线视频| АⅤ资源中文在线天堂| 禁无遮挡网站| 国产精品99久久久久久久久| 国产私拍福利视频在线观看| 国产日本99.免费观看| 亚洲国产日韩欧美精品在线观看 | 女人被狂操c到高潮| 午夜视频国产福利| 五月伊人婷婷丁香| 国产午夜精品久久久久久一区二区三区 | 午夜福利成人在线免费观看| 网址你懂的国产日韩在线| 亚洲国产欧美人成| 99热这里只有精品一区| 2021天堂中文幕一二区在线观| 男人的好看免费观看在线视频| 亚洲av不卡在线观看| 一区二区三区激情视频| 欧美bdsm另类| 超碰av人人做人人爽久久 | 国产成人av激情在线播放| 精品人妻偷拍中文字幕| 99国产综合亚洲精品| 精品人妻一区二区三区麻豆 | 色播亚洲综合网| 成人欧美大片| 国产蜜桃级精品一区二区三区| 精品无人区乱码1区二区| 少妇熟女aⅴ在线视频| 99在线人妻在线中文字幕| 国产日本99.免费观看| av在线蜜桃| 久久亚洲真实| 欧美日韩国产亚洲二区| 少妇的逼好多水| 亚洲成a人片在线一区二区| 欧美乱色亚洲激情| 国产一区二区激情短视频| 丰满人妻熟妇乱又伦精品不卡| 中文字幕av成人在线电影| 欧美成狂野欧美在线观看| 在线观看免费视频日本深夜| 99久久无色码亚洲精品果冻| 一级毛片高清免费大全| 国产国拍精品亚洲av在线观看 | ponron亚洲| 十八禁人妻一区二区| 成年版毛片免费区| 成人特级av手机在线观看| 国产成人av激情在线播放| 精品国产三级普通话版| 国产视频内射| 好男人电影高清在线观看| 国产精品久久久久久人妻精品电影| 久久久久久久久中文| 91麻豆精品激情在线观看国产| 精品日产1卡2卡| 亚洲自拍偷在线| 在线观看免费午夜福利视频| 在线天堂最新版资源| 亚洲黑人精品在线| 91在线观看av| 黄片小视频在线播放| 国产精品永久免费网站| 一级a爱片免费观看的视频| 国内精品久久久久久久电影| 久9热在线精品视频| 亚洲国产中文字幕在线视频| 欧美绝顶高潮抽搐喷水| 国产一区二区在线av高清观看| 成人亚洲精品av一区二区| 国产一区二区三区视频了| 免费观看人在逋| 久久国产精品人妻蜜桃| 午夜老司机福利剧场| 国产精品乱码一区二三区的特点| 久久精品影院6| 成年女人毛片免费观看观看9| 午夜免费成人在线视频| 别揉我奶头~嗯~啊~动态视频| 在线播放无遮挡| 亚洲av美国av| 内地一区二区视频在线| av中文乱码字幕在线| tocl精华| 欧美三级亚洲精品| 久久九九热精品免费| 老司机深夜福利视频在线观看| 国产高清视频在线观看网站| 日韩欧美国产在线观看| 色在线成人网| 国产精品美女特级片免费视频播放器| 国产午夜福利久久久久久| 嫁个100分男人电影在线观看| 白带黄色成豆腐渣| 丝袜美腿在线中文| 天天一区二区日本电影三级| 在线观看美女被高潮喷水网站 | 国产在线精品亚洲第一网站| 最新中文字幕久久久久| 欧美色欧美亚洲另类二区| 精品一区二区三区视频在线观看免费| 国产精品 国内视频| 又黄又爽又免费观看的视频| 亚洲av第一区精品v没综合| 两性午夜刺激爽爽歪歪视频在线观看| 波多野结衣高清作品| 欧美中文日本在线观看视频| 日韩中文字幕欧美一区二区| 嫩草影院精品99| 亚洲第一电影网av| 嫩草影视91久久| 最近最新免费中文字幕在线| 搡老熟女国产l中国老女人| 久久精品国产清高在天天线| 国产97色在线日韩免费| 色哟哟哟哟哟哟| 国产真实乱freesex| 亚洲色图av天堂| 最近最新中文字幕大全免费视频| 久久久久久久久中文| 亚洲国产欧美人成| 欧美最黄视频在线播放免费| 天堂动漫精品| 一级毛片女人18水好多| 中文字幕人妻丝袜一区二区| 99久久综合精品五月天人人| 日韩成人在线观看一区二区三区| 非洲黑人性xxxx精品又粗又长| 久久精品91蜜桃| 午夜精品在线福利| 亚洲av五月六月丁香网| av天堂在线播放| 一级黄片播放器| 啦啦啦韩国在线观看视频| 99在线人妻在线中文字幕| 亚洲天堂国产精品一区在线| 久久中文看片网| 亚洲在线观看片| 岛国视频午夜一区免费看| 免费观看精品视频网站| or卡值多少钱| 免费观看精品视频网站| 草草在线视频免费看| 欧美3d第一页| 亚洲精品亚洲一区二区| 久久性视频一级片| 少妇高潮的动态图| 久久天躁狠狠躁夜夜2o2o| 亚洲国产高清在线一区二区三| 欧美乱妇无乱码| 我的老师免费观看完整版| 欧美xxxx黑人xx丫x性爽| 国产探花极品一区二区| 90打野战视频偷拍视频| 亚洲在线观看片| 国产主播在线观看一区二区| 精品无人区乱码1区二区| 身体一侧抽搐| 性色avwww在线观看| 又黄又爽又免费观看的视频| 99国产精品一区二区蜜桃av| 成年版毛片免费区| 亚洲精品久久国产高清桃花| 国产老妇女一区| 丝袜美腿在线中文| 特级一级黄色大片| 69人妻影院| 亚洲专区国产一区二区| 国产亚洲av嫩草精品影院| 国产爱豆传媒在线观看| 桃色一区二区三区在线观看| eeuss影院久久| 日韩欧美国产在线观看| 国产av不卡久久| netflix在线观看网站| 日日干狠狠操夜夜爽| 精品不卡国产一区二区三区| 99在线视频只有这里精品首页| 国产精品久久久久久亚洲av鲁大| 又爽又黄无遮挡网站| 日本 av在线| 九色国产91popny在线| 成年女人永久免费观看视频| 成人永久免费在线观看视频| 母亲3免费完整高清在线观看| 在线观看免费视频日本深夜| 成人av在线播放网站| 亚洲 国产 在线| 97超级碰碰碰精品色视频在线观看| 午夜免费成人在线视频| 狂野欧美激情性xxxx| avwww免费| 午夜激情福利司机影院| 精品久久久久久,| 一卡2卡三卡四卡精品乱码亚洲| 男女做爰动态图高潮gif福利片| 亚洲国产精品久久男人天堂| 国产精品一及| 啦啦啦观看免费观看视频高清| 国产一区二区亚洲精品在线观看| 九色国产91popny在线| АⅤ资源中文在线天堂| 午夜免费男女啪啪视频观看 | 亚洲五月婷婷丁香| 久久久久久九九精品二区国产| 国产97色在线日韩免费| 一区福利在线观看| 国产在线精品亚洲第一网站| 精品久久久久久久毛片微露脸| 国产精品国产高清国产av| 一本一本综合久久| 免费看a级黄色片| 成人18禁在线播放| 国产黄a三级三级三级人| 国产成人欧美在线观看| 欧美成狂野欧美在线观看| 全区人妻精品视频| 精品久久久久久久末码| 亚洲国产高清在线一区二区三| 中国美女看黄片| 小说图片视频综合网站| 精品一区二区三区视频在线 | 午夜视频国产福利| 一夜夜www| 欧美区成人在线视频| 国产成人aa在线观看| 午夜福利欧美成人| 久久久精品大字幕| 午夜福利免费观看在线| 99久久九九国产精品国产免费| 亚洲欧美日韩高清专用| 久久国产乱子伦精品免费另类| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 |