• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A COMPACTNESS THEOREM FOR STABLE FLAT SL (2,C) CONNECTIONS ON 3-FOLDS*

    2022-06-25 02:13:16TengHUANG黃騰

    Teng HUANG (黃騰)

    School of Mathematical Sciences,University of Science and Technology of China;CAS Key Laboratory of Wu Wen-Tsun Mathematics,University of Science and Technology of China,Hefei 230026,China

    E-mail:htmath@ustc.edu.cn;htustc@gmail.com

    Abstract Let Y be a closed 3-manifold such that all flat SU (2)-connections on Y are non-degenerate.In this article,we prove a Uhlenbeck-type compactness theorem on Y for stable flat SL (2,C) connections satisfying an L2-bound for the real curvature.Combining the compactness theorem and a result from[7],we prove that the moduli space of the stable flat SL (2,C) connections is disconnected under certain technical assumptions.

    Key words Stable flat SL (2,C) connections;Vafa-Witten equations;compactness theorem

    1 Introduction

    LetXbe an oriented,closed,smoothn-dimensional manifold with a smooth Riemannian metricg,and letPbe a principalG-bundle overX,withGbeing a compact Lie group.We denote by APthe set of all connections onP,and by Ωk(X,gP) the set of gP-valuledk-forms,where gPis the adjoint bundle ofP.Suppose thatAis a connection onPand its curvature is denoted byFA∈Ω2(X,gP).For any connectionAonP,we have the covariant exterior derivativesdA:Ωk(X,gP)→Ωk+1(X,gP).The curvature

    of the complex connection A:=A+iφis a 2-form with values in.We say that A=A+iφis a complex flat connection with the moment map condition,if the pair (A,φ) satisfies

    The system of the pairs (A,φ) is elliptic[4].For convenience,we call the solutions of the elliptic system stable flat connections (see[1]).These equations are not only invariant under the actions of the real gauge group GP=C∞(P×GG),but also invariant under the actions of the complex gauge groupThe solution of stable flat connections on the compact Riemannian surface Σ is also a solution of Hitchin’s equation[6].The moduli space of the solutions of Hitchin’s equation which satisfyis compact;see[4,Theorem 4.1].Following[3,Proposition 2.2.3]or[10,Proposition 1.2.6],we know that the gauge-equivalence classes of flat connections over a connected manifold,X,are in one-to-one correspondence with the conjugacy classes of representationsπ1(X)→G.

    The Uhlenbeck compactness theorem[17,20]on the moduli space of the connections withLp-bounds on curvature is one of the most fundamental theorems in the analytical part of gauge theory.In[13],Taubes studied the Uhlenbeck style compactness problem forSL(2,C) connections,including solutions to the above equations,for the three-and four-manifolds[13–15].

    We denote by

    the moduli space of the stable flatSL(2,C) connections.In particular,the moduli space of gauge-equivalence classes[Γ]of flat connections Γ onP,

    can be embedded into M (P,g) via the mapA(A,0).The Uhlenbeck compactness theorem[17]shows that the moduli spaceM(P,g) is compact.

    One can see that the pair (A,φ) has the a priori estimate (see[4])

    wherec0is a positive constant dependent on the metricg.Then the Uhlenbeck compactness theorem implies that the moduli space of solutions of stable flatSL(2,C) connections satisfying (1.1) withis compact for every given positive constantK.On the other hand,there are examples of sequences of solutions (Ai,φi) to (1.1) such that ‖φi‖L2(X)diverges to infinity,therefore the moduli space of solutions to (1.1) is not always compact.An interesting question to ask is the following:

    LetKbe a positive constant number,and consider the subset of M (P,g) consisting of (A,φ) such that ‖F(xiàn)A‖L2(X)≤K,is this subset always compact?

    In this article,we consider the case for the stable flatSL(2,C) connections on a closed,smooth,oriented three-manifoldY.We will give a positive answer to the question above ifY,GandPsatisfy certain conditions.

    We denote by

    the self-dual operator with respect to a flat connection Γ.We recall the definition of nondegenerate flat connections as follows (see[2,Definition 2.4]):

    Definition 1.1LetGbe a compact Lie group,and letPbe aG-bundle over a closed,smooth manifoldXof dimensionn≥2,endowed with a smooth Riemannian metricg.The flat connection Γ is called non-degenerate if

    The main observation of this article can be stated as follows:

    Theorem 1.2(A compactness theorem for stable flatSL(2,C) connections with bounded real curvatures) LetYbe a closed,oriented,smooth Riemannian three-manifold,and letPbe a principalSU(2) orSO(3)-bundle overY.Let{(Ai,φi)}i∈Nbe a sequence ofC∞-solutions of Equations (1.1).Suppose that all flat connections on the principal bundlePare non-degenerate.If theL2-norms of the curvatures ‖F(xiàn)Ai‖L2(Y)are bounded,then there is a subsequence of Ξ?N and a sequence of gauge transformations{ui}i∈Ξsuch thatconverges to a pair (A∞,φ∞) obeying Equations (1.1) onPin theC∞-topology.In particular,the moduli space of solutions of stable flatSL(2,C) connections,which obeysRY|FA|2≤K,is compact,for every positive constantK.

    Remark 1.3Taubes[13]considered a sequence of complex connections Ai:=Ai+iφisuch that theL2-norms ofFAiare bounded (in this article,the complex curvature is just zero).There are two possible cases:(1) if ‖φi‖L2(X)has a bounded sequence,then Taubes provesin theC∞-topology;(2) if ‖φi‖L2(X)has no bounded sequence,then Taubes makes sense of the limit as a Z2harmonic spinor.In particular,if the sequence ‖F(xiàn)Ai‖L2(Y)is divergent to infinity,then following inequality (1.2),one can see that the sequence ‖φi‖L2(Y)is also divergent to infinity.

    As a particular case of Theorem 1.2,we have anL2-bound on the extra fields in the fibre direction at a connectionA0.Namely,we have

    Corollary 1.4LetYbe a closed,oriented,smooth Riemannian three-manifold,and letPbe a principalSU(2) orSO(3)-bundle overY.Suppose that all flat connections on the principal bundlePare non-degenerate.Then for any sequence of solutions{(A0,φi)}i∈Nof Equations (1.1),there exists a subsequence Ξ?N and a positive constantC>0 such thatfor alli?Ξ.

    Corollary 1.4 is similar to the Vafa-Witten equations case;see[12,Corllary 1.4].

    Following the notation of[3,Section 4.2.1],we denote by ([A,φ]) the equivalence class of a pair (A,φ),that is,a point in M (P,g).We denote

    We can define a distance function on M (P,g) as follows:

    We can use the compactness theorem 1.2 to study the topology of the moduli space of stable flatSL(2,C) connections.

    Theorem 1.5Assume the hypotheses of Theorem 1.2.Suppose that all flat connections on the principalG-bundlePare non-degenerate.If (A,φ) is aC∞-solution of Equations (1.1),then there is a positive constantsuch that

    unlessAis a flat connection.

    Remark 1.6There are many combinations of conditions onG,P,Yandg,which imply that the flat connection is non-degenerate.For example,ifYis a closed,oriented Riemannian three-manifold with the homology ofS3andPis a principalSU(2)-bundle overY,then every flat connection Γ onPis non-degenerate.

    Corollary 1.7LetYbe a closed,oriented,smooth Riemannian three-manifold with the homology ofS3,and letPbe a principalSU(2)-bundle.Let{(Ai,φi)}i∈Nbe a sequence ofC∞-solutions of Equations (1.1).If theL2-norms of the curvatures ‖F(xiàn)Ai‖L2(Y)have a bound,then there is a subsequence of Ξ?N and a sequence of gauge transformations{ui}i∈Ξsuch thatconverges to a pair (A∞,φ∞) obeying Equations (1.1) onPin theC∞-topology.Furthermore,there is a positive constant(P,g)∈(0,1]such that

    unlessAis a flat connection.

    The organization of this paper is as follows:in Section 2,we first recall the compactness theorem of the Vafa-Witten equations,which was proved by Tanaka[12].We also observe that the set of stable flatSL(2,C) connections on a compact 3-foldYis in one-to-one correspondence with solutions toS1-invariant Vafa-Witten equations onY×S1.Then,by Tanaka’s compactness theorem,we can prove a compactness theorem for stable flatSL(2,C) connections.In Section 3,we obtain,by our compactness theorem,a topological property of the moduli space of stable flatSL(2,C) connections.

    2 Compactness Theorem for Stable SL (2,C) Flat Connections

    2.1 Vafa-Witten equations and stable SL(2,C) flat connections

    In this section,we recall the compactness theorem of Vafa-Witten equations,which was proved by Tanaka[12].For an oriented 4-dimensional Riemannian manifoldXwith metricg,the Hodge star operator*:Ω2(X)→Ω2(X) induces the following splitting:

    Accordingly,the space of gP-valued two-forms Ω2(X,gP) splits as

    We begin by defining the Vafa-Witten equations[19].One also can see Equations (2.4)–(2.5) in[12].We call the pair (A,B)∈AP×Ω2,+(X,gP) a solution of Vafa-Witten equations if (A,B) satisfies

    where[B.B]∈Ω2,+(X,gP) is defined as in[11,Appendix A].Vafa-Witten equations were introduced by Vafa and Witten to studyS-duality in a twist of the N=4 supersymmetric Yang-Mills theory[19].By appropriately counting the number of points of the moduli space of Vafa-Witten equations,we hope to obtain a numberV W(P),called the Vafa-Witten invariant for the principal bundleP→X[11,Section 1.3].These equations were also considered by Haydys[5]and Witten[21]from a different point of view.

    LetGbe a Lie group and letPbe a principalG-bundle over a smooth Riemannian manifoldX.We recall the equivalent characterizations of flat bundles[10,Section 1.2],that is,bundles admitting a flat connection.

    Proposition 2.1([10,Proposition 1.2.6]) For a principalG-bundlePoverX,the following three conditions are equivalent:

    (1)Padmits a flat structure;

    (2)Padmits a flat connection;

    (3)Pis defined by a representationρ:π1(X)→G.

    Proposition 2.2If (A,φ) is aC∞-solution of (1.1) over a closedn-manifoldX,then

    We now return to the setting of this article.LetYbe an oriented,smooth,Riemannian three-manifold,and letPbe aG-principal bundle overYwithGbeing a compact Lie group.We denote byX:=Y×S1the product manifold with the product metric.We pull back a connectionAonP→Ytop*1(P)→Xvia the canonical projection

    where*Y(resp.*X) is the Hodge star operator with respect to metricgY(resp.gX).We then have

    Proposition 2.3The canonical projection gives a one-to-one correspondence between stable flat connections onPandS1-invariant Vafa-Witten equations on the pullback bundle(P).

    ProofThe proof is similar to that of[11,Lemma 8.2.2].In a local coordinate{e1,e2,e3}ofT*Y,we can denote

    Note that

    Then,by the definition ofB,we get

    We also observe that

    Therefore,we have

    We also have another equation:

    2.2 Compactness theorem for Vafa-Witten equations

    Mares studied the analytic aspects of Vafa-Witten equations in[11].We do not have anyL2-bounded on the curvatureFAof a connectionAwhich satisfies the Vafa-Witten equations as in the case of Hitchin-Simpson equations[6].Mares observed that if (A,B) is a solution of Vafa-Witten equations and theL2-norm ofBhas a uniform bound,then the curvatureFAalso has a uniform bound in theL2-norm by the identity

    where ⊙ denotes some bilinear on Ω2,+(X,gP)?Ω2,+(X,gP),sis the scalar curvature of the metric,andW+is the self-dual part of the Weyl curvature of the metric (see[12,Page 1204]or[11,Section B.4]for more details).Following the Uhlenbeck compactness theorem,Mares obtained a compactness theorem of Vafa-Witten equations under the extra fieldsBthat have a bound in theL2-norm[11].

    For a sequence of connections{Ai}onP,Tanaka defined a setS({Ai}) as follows:

    Hereε0is a positive constant which is defined as in[12].This setS({Ai}) describes the singular set of a sequence of connections{Ai}.In[12],Tanaka observed that under the particular circumstance where the connections are non-concentrating and the limiting connection is nonlocally reducible,one obtains anL2-bound on the extra fields.Here,we say that a connectionAon a principalSU(2) orSO(3) bundlePis locally reducible if the vector bundle gPhas a one-dimensional subbundle that isA-covariantly constant (see[12,Definition 2.1]).Note that a connection on a principalSU(2) orSO(3) bundlePbeing locally reducible is the same as being honestly reducible ifXis simply connected.The following is an analogue of the second part of[16,Theorem 1.1],but under the assumption thatS({Ai}) is empty:

    Theorem 2.4([16,Theorem 1.2]and[12,Proposition 4.4]) Let{(Ai,Bi)}be a sequence of solutions of Vafa-Witten equations,and setri:=‖φi‖L2(X).Letδdenote the injectivity radius ofX.Suppose that there existr∈(0,δ) and a sequence Ξ?N such that

    for everyi∈Ξ andx∈X.Assume that the sequence{ri}i∈Nhas no bounded subsequence.Then there exist a closed,nowhere dense setZ?X,a real line bundle I→X-Z,a sectionν∈Γ(X-Z,I?Ω2,+),a connectionAΔonP|X-Z,and an isometric bundle homomorphismσΔ:I→gP.Their properties are as follows:

    (a)Zis the zero locus of|ν|;

    (b) the function|ν|is Hlder continuousC0,1/κonX;

    (c) the sectionvis harmonic in the sense of dν=0;

    (d)|?ν|is anL2-function onX-Zthat extends as anL2-function onX;

    (e) the curvature tensor ofAΔis anti-self-dual;

    (f) the homomorphismσΔisAΔ-covariantly constant.

    In addition,there exist a subsequence Λ?Ξ and a sequenceuiof automorphisms fromPsuch that

    2.3 Proof of our results

    In this section,we give the proof of our main result.First,we observe

    Proposition 2.5LetYbe a closed,oriented,smooth Riemannian three-manifold,and letPbe a principalG-bundle withGbeing a compact Lie group.Let{Ai}i∈Nbe a sequence ofC∞-connections onPwith theL2-norms of the curvatures ‖F(xiàn)Ai‖L2(X)having a uniform bound.We denote by{Ai}the pullbackS1-invariant connections.Then the setS({Ai}) is empty,whereS(·) is defined in Equation (2.1).

    ProofFor a point (y0,θ0)∈Y×S1,we denote by

    the geodesic ball onY×S1.Hence,we have

    We can choosersufficiently small such that

    whereκis the constant on Theorem 2.4.This complete proof. □

    Following the idea in the proof of[15,Theorem 1.2],we can obtain a compactness theorem for the stable flatSL(2,C) connections on the three-manifold.

    Theorem 2.6LetYbe a closed,oriented,smooth Riemannian three-manifold,and letPbe a principalG-bundle withGbeingSU(2) orSO(3).Let{(Ai,φi)}i∈Nbe a sequence ofC∞-solutions of Equations (1.1),and setri:=‖φi‖L2(X).Suppose that theL2-norms of the curvatures ‖F(xiàn)Ai‖L2(Y)have a uniform bound and that the sequence{ri}i∈Nhas no bounded subsequence.Then there exist a closed,nowhere dense setZY?Y,a real line bundle IY→Y-ZY,a sectionν∈Γ(Y-ZY,IY?Ω1),a connectionAΔonP|Y-ZY,and an isometric bundle homomorphismσΔ:IY→gP.Their properties are as follows:

    (a)ZYis the zero locus of|ν|;

    (b) the sectionvis harmonic in the sense ofdν=d*ν=0;

    (c) the curvature tensor ofAΔis flat;

    (d) the homomorphismσΔisAΔ-covariantly constant.

    In addition,there exist a subsequence Λ?Ξ and a sequenceuiof automorphisms fromPsuch that

    ProofAs explained momentarily,this theorem constitutes a special case of Theorem 2.4.To obtain Theorem 2.6 from Theorem 2.4,we takeXin Theorem 2.6 to be the productY×S1with the metric being the product metric.The pull-back of the principalG-bundlePonYtoXvia the projection map toYdefines a principalG-bundle overX;the latter is denoted also byP.Let{(Ai,φi)}be a sequence of solutions of stable flatSL(2,C) connections overY.For simplicity,we keep the same notations for objects onYand their pullbacks toX.We denote thatBi=(1+*X)*Yφi.If we suppose that the sequence{ri:=‖φi‖L2(Y)}i∈Nhas no bounded subsequence,then ‖Bi‖L2(X)also has no bounded subsequence.A similar sort of argument can be used to prove that Theorem 2.4’s setZis the product ofS1and a closed setZY?Y,and that Theorem 2.4’s real line bundle I is isomorphic to the pull-back via the projection map of a real line bundle defined on the complement inYofZY;this denoted for now by IY.Moreover,such an isomorphism identifies Theorem 2.4’s version ofνwith the pull-back of a harmonic,IYvalued 1-form onY-ZY,withZYdenoting the locus where its norm is zero. □

    Remark 2.7Taubes considered a sequence of complex connections{Ai:=Ai+iφi}such that theL2-norms of{FAi}are bounded.If{‖φi‖L2(X)}has no bounded sequence,then Taubes makes sense of the limit as a Z2harmonic spinor[15].In our result,we add the conditions that all connections{Ai}are stable flatSL(2,C) connections and the real curvatures{FAi}areL2-bounded,so we prove the limit as a decoupled stable flatSL(2,C) connection.

    The next theorem is a special case of Theorem 1.1b in[15],and implies,among other things,thatZYhas a measure of zero.To set the notation for this upcoming theorem,we note that a pointp∈ZYis a point of discontinuity for IYif IYis not isomorphic to the product bundle on the complement ofZYin any neighborhood ofp[15].

    Theorem 2.8([15,Theorem 1.1b]) LetZYand IYbe as described in Theorem 2.6.The setZYhas a Hausdorffdimension of at most 1,and moreover,the set of the points of discontinuity for IY(defined in the preceding paragraph) are the points in the closure of an open subset ofZYthat is an embeddedC1curve inYdenoted by Σ.

    Uhlenbeck’s[17]theorem applies to the connections onPand,in particular,makes the following assertion:

    Uhlenbeck’s TheoremLet{Ai}i∈Nbe a sequence of connections onPover a closed,oriented,3-manifold.If theL2-norms of the curvaturesFAiof the connections{Ai}have a uniform bound,then there is a subsequence Ξ?N and a sequence of gauge transformations{ui}i∈Ξsuch thatconverges weakly in the-topology to a connectionA∞onP.

    By the a priori estimate (1.2),we then have

    Theorem 2.9([15,Theoreom 1.1a]) LetYbe a closed,oriented,smooth Riemannian three-manifold,and letPbe a principalSU(2) orSO(3)-bundle overY.Let{(Ai,φi)}i∈Nbe a sequence ofC∞-solutions of Equations (1.1).Suppose that the sequence{‖φi‖L2(Y)}has a bounded subsequence.Then there is a subsequence of Ξ?N and a sequence of gauge transformations{ui}i∈Ξsuch thatconverges to a pair (A∞,φ∞) obeying Equations (1.1) onPinC∞-topology.

    We are finally ready to use the above results in the following proposition:

    Proposition 2.10LetZYand IYbe as described in Theorem 2.6,so thatσΔandAΔare defined overY-ZY.Then we have that

    (1) There exists a smooth flat connectionA∞defined over all ofY,and a Sobolev classgauge transformationu∞defined overY-ZYsuch thatis restricted toY-ZYofA∞.DefiningoverY-ZY,we then have that?A∞σ∞=0.

    (2) The bundle IYoverY-ZYextends to a bundle defined over all ofY,which we again denote by IY.

    (3) There exist extensions of bothv∈Γ(IY?Ω1) andσ∞:IY→gPto all ofY.We again denote these byvandσ∞.The extensions satisfy dv=0 and?A∞σ∞=0.

    ProofThe idea of our proof is similar to that of[12,Proposition 4.6].

    We first prove item 1.Following the weak Uhlenbeck compactness theorem (see[20,Theorem A]),for any sequence{Ai}i∈Nwith boundedL2-curvature{FAi}i∈Non a principalGbundle over a closed three-manifold,there exists a subsequence (again denote{Ai}i∈N) and a sequence of gauge transformations{ui}i∈Nsuch that(Ai) converges weakly to a limit connectionA∞over all ofYinRecall from Theorem 2.6 thatAΔis thelimit over compact subsetY-ZYof gauge equivalent connections.Since weaklylimits preservegauge equivalence,it follows that there exists a Sobolev-classgauge transformationu∞such that

    Note thatAΔis flat and gauge-equivalent over the complement ofZYtoA∞.Thus,A∞is anconnection whose curvature isL2,and vanishes on the completion ofZY,which,by Theorem 2.8,is a set of measure zero.Hence the curvature ofA∞is flat and so a standard elliptic regularity argument can be used to prove that there is anand aC0automorphism ofPthat transformsA∞into a smooth flat connection.After possibly composingu∞with such an automorphism,we may assume,without loss of generality,thatA∞is smooth and thatu∞is continuous.We also have that?A∞σ∞=0 follows from Theorem 2.6,sinceσΔisAΔ-covariantly constant.This establishes item 1.

    We next prove item 2,by which IYextends overZY.Let Σ?ZYdenote theC1submanifold that is described by Theorem 2.8.It is enough to prove that Σ is empty.For this purpose,assume to the contrary that Σ? and letS?Σ be a component.This is aC1embedded curve.Fix a pointp∈S.SinceSisC1,there is an embedded diskD?Yclosure intersects thatStransversally at a single point which isp.This is also its only intersection point withZY,sinceSis an open subset ofZY.Sincepis a point of discontinuity for the bundle IY,the restriction of IYtoD-{p}is not isomorphic to the product line bundle.In particular,parallel transport byAΔofσΔalong any circle inD-{p}which wraps once aroundpgives-σΔ.However,AΔis gauge-equivalent to a connection which is smooth over all ofD.This parallel transport around a sufficiently small bounded interval will be arbitrarily close to+σΔ,which is a contradiction.

    Finally,we prove item 3 by showing that bothvandσ∞extend to all ofYassections.Granted this extension,we may argue as in item 1 that both dvand?A∞σ∞areL2sections which vanish almost everywhere,and hence,by elliptic regularity,vandσ∞are smooth and satisfy dv=0 and?A∞σ∞=0 over all ofY. □

    Following the above results,we can prove a Uhlenbeck-type compactness theorem onYfor stable flatSL(2,C) connections satisfying anL2-bound for the real curvature.

    Proof of Theorem 1.2We setri:=‖φi‖L2(Y).First,we can prove that there exists a subsequence Ξ?N such that{ri}i∈Ξhas a uniform bound.If not,then the sequence{ri}i∈Nhas no bounded subsequence.We denoteA∞,νandσ∞as described in Proposition 2.10.Hence,following Proposition 2.10,we have

    Sinceν?σ∞∈Ω1(Y,gP),the hypothesis of the flat connectionA∞implies that

    Following item 1 in Proposition 2.10,there exists a continuous Sobolev-classgauge transformationu∞defined overY-ZYsuch that

    onY-ZY.The zero locus of the extension of|ν|is the setZY,and we can set thatσΔis a unit length,AΔ-covariantly constant homomorphism overY-ZY.Hence,we can say that|ν|=0 onY.

    On the other hand,following the last item in Theorem 2.6,there exist a subsequence Ξ?N and a sequence{ui}i∈Ξof automorphisms fromPsuch thatconverges toν?σΔin the-topology on compact subset inY-ZYand theC0-topology onY.Meanwhile,converges to|ν|in the weakly-topology and theC0-topology on the whole ofY.Hence

    That contradicts the fact that,?i∈N.In particular,the preceding argument shows that there exists a subsequence Ξ?N such that{ri}i∈Ξhas a uniform bound.Thus following Theorem 2.9,there is a subsequence (again denote by{(Ai,φi)}i∈Ξ) and a sequence of the gauge transformation{ui}i∈Ξsuch thatconverges to a pair (A∞,φ∞) onPin theC∞-topology. □

    Corollary 2.11LetYbe a closed,oriented Riemannian three-manifold with the homology ofS3,and letPbe a principalSU(2)-bundle.Let{(Ai,φi)}i∈Nbe a sequence ofC∞solutions of Equations (1.1).If theL2-norms of the curvatures ‖F(xiàn)Ai‖L2(Y)have a uniform bound,then there is a subsequence of Ξ?N and a sequence of gauge transformations{ui}i∈Nsuch thatconverges to a pair (A∞,φ∞) obeying Equations (1.1) onPin theC∞-topology.

    3 Disconnectedness of the Moduli Space M (P,g)

    3.1 A lower positive bound of extra fields

    We call a stable flat connection A:=A+iφdecoupled if the real connectionAis flat and the extra fieldφis a harmonic gP-1-form with respect to,i.e,

    Using a result of Uhlenbeck[18],we observe that if we have the stable flat connection A over a closed,smooth,Riemannian three-manifoldY,then theL2-norm of extra fields has a uniform positive lower bound unless the real connection is flat.

    Theorem 3.1([7]) LetYbe a closed,oriented,Riemannian three-manifold and endowed with a smooth Riemannian metricg,and letPbe a principalG-bundle withGbeing a compact Lie group.If (A,φ) is aC∞-solution of equations (1.1),then there is a positive constantC=C(X,g,G) such that ‖φ‖L2(Y)≥C,unlessAis a flat connection.

    Suppose that all flat connections onPare non-degenerate.Then the extra fields vanish if the stable flat connectionA+iφis decoupled over a closed Riemannian manifold.Following Theorem 3.1,we then have

    Corollary 3.2Assume the hypothesis of Theorem 3.1.Suppose that all flat connections on the principal bundlePare non-degenerate.If (A,φ) is aC∞-solution of equations (1.1),then either there exists a positive constantC=C(X,g,G) such that ‖φ‖L2(Y)≥Corφvanishes.

    3.2 A lower positive bound of curvatures

    One can see thatM(P,g) is the space of real flat connections and that M′(P,g):=M (P,g)M(P,g) is the space of real connections that are non-flat.Hence we can denote by

    the distance betweenM(P,g) and M′(P,g).Following Theorem 3.1,we can obtain a topological property of the moduli space M (P,g).

    Proposition 3.3(Disconnectedness of the moduli space M (P,g)) LetYbe a closed,oriented,smooth,Riemannian three-manifold,and letPbe a principalG-bundle withGbeing a compact Lie group.Suppose that all flat connections on the principal bundlePare nondegenerate.If the moduli spacesM(P,g) and M′(P,g):=M (P,g)M(P,g) are all non-empty,then the moduli space M (P,g) is disconnected.

    ProofUnder the hypothesis of the flat connection,following the Corollary 3.2,theL2-norm of the extra field ‖φ‖L2(X)has a lower bound unlessφvanishes.If the moduli spacesM(P,g) and M (P,g)M(P,g) are all non-empty,then

    whereC=C(Y,g) is the positive constant in Corollary 3.2,i.e.,the moduli space M (P,g) is disconnected. □

    We extend the idea in[9]to a stable flatSL(2,C) connection case,and we prove a gap result of the real curvature following the compactness theorem 1.2.

    Proposition 3.4LetYbe a closed,oriented,smooth,Riemannian three-manifold,and letPbe a principalG-bundle withGbeingSU(2) orSO(3).Suppose that all flat connections on the principal bundlePare non-degenerate.If the pair (A,φ) is aC∞-solution of equations (1.1),then there is a positive constantC=C(Y,g,P) such that ‖F(xiàn)A‖L2(Y)≥C,unless the real connectionAis flat.

    ProofSuppose that the constantCdoes not exist.We may then choose a sequence{(Ai,φi)}i∈Nsuch that ‖F(xiàn)Ai‖L2(Y)→0 asi→∞,and that{Ai}i∈Nare all non-flat.Thus the compactness Theorem 1.2 implies that there exists a pair (A∞,φ∞) that obeys equations (1.1),and that there is a sequence of gauge transformations{ui}i∈Ξsuch that (u*i(Ai),u*i(φi))→(A∞,φ∞) inC∞overY.Following Theorem 3.1,theL2-norm of extra field ‖φ∞‖L2Xhas a positive lower bound.Therefore,we have

    whereC=C(Y,g) is a positive constant.

    On the other hand,since ‖F(xiàn)Ai‖L2(Y)→0,the weak Uhlenbeck compactness theorem implies that the connectionA∞onPis flat.HenceA∞is non-degenerate,by the hypothesis on this proposition,which implies the extra fieldφ∞≡0.This is in contradiction to the fact that ‖φ∞‖L2(Y)has a uniform positive lower bound. □

    Remark 3.5The solutions of stable flat connections also satisfy the complex Yang-Mills equations[4].The author proved that if the pair (A,φ) is a smooth solution of a stable flat connection over a closed,smooth,Riemanniann-manifoldX,the curvatureFAof a non-flat connectionAhas a uniform positive lowerLp-bound under the condition that all flat connections are all non-degenerate;see[8,Theorem 1.2].

    Proof of Theorem 1.5First,we give the a priori estimate for the curvature of a connection.Since

    In the last inequality,we used the Sobolev embeddingfor 2≤p≤6 with the embedding constantCS.Here

    due to the fact that

    for allU,V∈Ty(Y).Combining the preceding inequalities yields that

    wherec=c(Y,g) is a positive constant.

    Therefore,we have

    whereCis the positive constant in Proposition 3.4.We set,and thus

    This complete the proof. □

    AcknowledgementsI would like to thank the anonymous referees for careful reading of the manuscript and for helpful comments.I would like to thank Y.Tanaka for kind comments regarding this and the companion article[12].

    国产精品一区二区性色av| 久热久热在线精品观看| 欧美日韩视频高清一区二区三区二| 欧美日韩精品成人综合77777| 欧美精品人与动牲交sv欧美| 99re6热这里在线精品视频| 国产成人午夜福利电影在线观看| 美女中出高潮动态图| 精品亚洲成国产av| 欧美一级a爱片免费观看看| 观看免费一级毛片| 高清毛片免费看| 成年免费大片在线观看| 超碰av人人做人人爽久久| 3wmmmm亚洲av在线观看| 网址你懂的国产日韩在线| 国产成人精品一,二区| 18禁动态无遮挡网站| 国产大屁股一区二区在线视频| 日韩一区二区视频免费看| 女人久久www免费人成看片| 99视频精品全部免费 在线| av在线蜜桃| 少妇丰满av| 97在线视频观看| 欧美成人a在线观看| 久久久久国产精品人妻一区二区| 老熟女久久久| 久久av网站| av福利片在线观看| 看免费成人av毛片| 老师上课跳d突然被开到最大视频| 九九爱精品视频在线观看| 国产精品伦人一区二区| 欧美精品亚洲一区二区| 舔av片在线| 欧美另类一区| 久久人人爽av亚洲精品天堂 | 国产高清国产精品国产三级 | 亚洲av二区三区四区| 观看av在线不卡| 欧美性感艳星| 建设人人有责人人尽责人人享有的 | 狠狠精品人妻久久久久久综合| 18+在线观看网站| 三级国产精品欧美在线观看| 大片电影免费在线观看免费| 一本一本综合久久| 成人午夜精彩视频在线观看| 国产精品偷伦视频观看了| 99九九线精品视频在线观看视频| 蜜桃亚洲精品一区二区三区| av福利片在线观看| 亚洲内射少妇av| 国产成人aa在线观看| 日韩欧美一区视频在线观看 | 亚洲欧洲日产国产| 色视频www国产| 日韩成人伦理影院| 五月伊人婷婷丁香| 插阴视频在线观看视频| 男女无遮挡免费网站观看| 纵有疾风起免费观看全集完整版| 多毛熟女@视频| 狂野欧美激情性bbbbbb| 久久精品国产亚洲av涩爱| 国产精品无大码| 超碰av人人做人人爽久久| 超碰97精品在线观看| 麻豆成人av视频| 亚洲欧美精品专区久久| 国产av国产精品国产| 狠狠精品人妻久久久久久综合| 性高湖久久久久久久久免费观看| 国产精品一及| 在现免费观看毛片| 国产淫语在线视频| 自拍偷自拍亚洲精品老妇| 少妇裸体淫交视频免费看高清| 青春草国产在线视频| 亚洲欧美成人精品一区二区| 精品人妻视频免费看| 日本av手机在线免费观看| 亚洲av不卡在线观看| 大香蕉久久网| 亚洲av福利一区| 成年人午夜在线观看视频| 日韩电影二区| 亚洲熟女精品中文字幕| 一区二区三区乱码不卡18| 老司机影院毛片| 久久久成人免费电影| 一区二区三区免费毛片| 亚洲丝袜综合中文字幕| 欧美日韩在线观看h| 亚洲精品久久午夜乱码| 精品亚洲成国产av| 亚洲精品亚洲一区二区| 亚洲,一卡二卡三卡| 日韩 亚洲 欧美在线| 国产淫片久久久久久久久| av网站免费在线观看视频| 我的老师免费观看完整版| 制服丝袜香蕉在线| 欧美精品一区二区免费开放| 我要看日韩黄色一级片| 国产亚洲精品久久久com| 国产老妇伦熟女老妇高清| 蜜桃亚洲精品一区二区三区| 成年av动漫网址| 久久久久久久大尺度免费视频| 成人一区二区视频在线观看| 人体艺术视频欧美日本| 亚洲精品自拍成人| 我的女老师完整版在线观看| av在线播放精品| 国产精品国产三级国产专区5o| 日韩欧美一区视频在线观看 | 精品99又大又爽又粗少妇毛片| 久久这里有精品视频免费| 免费观看在线日韩| 日韩精品有码人妻一区| 18禁在线播放成人免费| 麻豆乱淫一区二区| videos熟女内射| 国产成人午夜福利电影在线观看| 色网站视频免费| 日产精品乱码卡一卡2卡三| 丰满人妻一区二区三区视频av| 99九九线精品视频在线观看视频| 超碰av人人做人人爽久久| 高清欧美精品videossex| 欧美日韩亚洲高清精品| 尤物成人国产欧美一区二区三区| 久久久久久久亚洲中文字幕| 国产精品99久久久久久久久| 99精国产麻豆久久婷婷| 只有这里有精品99| 97在线视频观看| 色视频www国产| 欧美变态另类bdsm刘玥| 日韩伦理黄色片| 春色校园在线视频观看| 人妻 亚洲 视频| 国产午夜精品久久久久久一区二区三区| 黄色怎么调成土黄色| 欧美高清性xxxxhd video| av天堂中文字幕网| 国产高清国产精品国产三级 | 亚洲av男天堂| 一级黄片播放器| 国产一区二区三区综合在线观看 | 国产午夜精品一二区理论片| 国内揄拍国产精品人妻在线| 国产成人aa在线观看| 内射极品少妇av片p| 久久久成人免费电影| 丝袜脚勾引网站| 一个人看视频在线观看www免费| 草草在线视频免费看| 亚洲四区av| 小蜜桃在线观看免费完整版高清| 欧美日韩精品成人综合77777| 夜夜骑夜夜射夜夜干| 久久久精品免费免费高清| 日本av免费视频播放| 亚洲成人手机| 久久国产精品男人的天堂亚洲 | 极品少妇高潮喷水抽搐| 91aial.com中文字幕在线观看| 美女福利国产在线 | 国产精品av视频在线免费观看| 久久国内精品自在自线图片| 久久av网站| 亚洲国产精品专区欧美| 97精品久久久久久久久久精品| 亚洲国产日韩一区二区| 精品久久久久久久久av| 嘟嘟电影网在线观看| 国产精品久久久久久久电影| 久久99热这里只频精品6学生| 新久久久久国产一级毛片| 日韩一本色道免费dvd| 久久99热这里只频精品6学生| 观看免费一级毛片| 少妇丰满av| 亚洲国产色片| 久久国产精品大桥未久av | 亚洲精品第二区| 精品酒店卫生间| 高清av免费在线| 美女视频免费永久观看网站| 久久久亚洲精品成人影院| 国产免费视频播放在线视频| 日韩成人伦理影院| 少妇的逼好多水| 免费看日本二区| 寂寞人妻少妇视频99o| 舔av片在线| 亚洲欧美一区二区三区国产| 免费看光身美女| 99热国产这里只有精品6| 一级二级三级毛片免费看| 国产乱人偷精品视频| 亚洲精品日韩在线中文字幕| 日本一二三区视频观看| 亚洲色图av天堂| 精品久久久久久久久av| 观看免费一级毛片| 又大又黄又爽视频免费| 成年人午夜在线观看视频| 岛国毛片在线播放| 久久人人爽av亚洲精品天堂 | 丰满迷人的少妇在线观看| 又爽又黄a免费视频| 久久久午夜欧美精品| 好男人视频免费观看在线| 日韩欧美一区视频在线观看 | 国产成人a∨麻豆精品| 亚洲三级黄色毛片| 亚洲伊人久久精品综合| 在线免费观看不下载黄p国产| 久久国产精品大桥未久av | 亚洲成人一二三区av| 国产精品久久久久久久电影| 男男h啪啪无遮挡| 国产精品国产av在线观看| 亚洲av成人精品一二三区| 亚洲精品成人av观看孕妇| 国产有黄有色有爽视频| av卡一久久| 久久毛片免费看一区二区三区| 色婷婷av一区二区三区视频| 五月天丁香电影| 日本黄色日本黄色录像| 国产视频首页在线观看| 大又大粗又爽又黄少妇毛片口| 精品久久久久久久久亚洲| 国产淫片久久久久久久久| 成人亚洲精品一区在线观看 | 欧美一级a爱片免费观看看| 一区在线观看完整版| 女性被躁到高潮视频| 少妇高潮的动态图| 自拍欧美九色日韩亚洲蝌蚪91 | 在线看a的网站| 日韩中文字幕视频在线看片 | 日韩人妻高清精品专区| 男女国产视频网站| 亚洲成人一二三区av| 岛国毛片在线播放| 色婷婷av一区二区三区视频| 男女免费视频国产| 一级毛片电影观看| 亚洲va在线va天堂va国产| tube8黄色片| 国产成人精品久久久久久| 午夜激情久久久久久久| 亚洲高清免费不卡视频| 国产成人精品一,二区| 边亲边吃奶的免费视频| 搡老乐熟女国产| 建设人人有责人人尽责人人享有的 | 亚洲av欧美aⅴ国产| 成人黄色视频免费在线看| 中国国产av一级| 国产精品一二三区在线看| 久久久久久久久久成人| 深夜a级毛片| 王馨瑶露胸无遮挡在线观看| 观看免费一级毛片| 亚洲电影在线观看av| 女人久久www免费人成看片| 免费看光身美女| 日韩不卡一区二区三区视频在线| 99久久综合免费| 国产免费又黄又爽又色| 亚洲欧美精品专区久久| 最近中文字幕高清免费大全6| 最近最新中文字幕大全电影3| 亚洲av中文av极速乱| 免费观看无遮挡的男女| 一级毛片aaaaaa免费看小| 欧美精品一区二区免费开放| av不卡在线播放| 日日摸夜夜添夜夜添av毛片| 少妇丰满av| 男男h啪啪无遮挡| 联通29元200g的流量卡| 久久久午夜欧美精品| 亚洲欧美日韩卡通动漫| 免费少妇av软件| 国产一区二区三区av在线| 丰满少妇做爰视频| 中国美白少妇内射xxxbb| 亚洲综合色惰| 乱系列少妇在线播放| 又黄又爽又刺激的免费视频.| 99精国产麻豆久久婷婷| 日韩av免费高清视频| 秋霞在线观看毛片| 看十八女毛片水多多多| 国产精品三级大全| 青春草国产在线视频| 99久久精品一区二区三区| 国产精品一区二区性色av| 18禁裸乳无遮挡动漫免费视频| 水蜜桃什么品种好| 亚洲久久久国产精品| 成人国产av品久久久| av国产免费在线观看| 少妇人妻精品综合一区二区| 男女啪啪激烈高潮av片| 色婷婷久久久亚洲欧美| 永久免费av网站大全| 美女cb高潮喷水在线观看| av福利片在线观看| 日韩欧美精品免费久久| 波野结衣二区三区在线| 王馨瑶露胸无遮挡在线观看| 大陆偷拍与自拍| 亚洲aⅴ乱码一区二区在线播放| 国产伦在线观看视频一区| 国产高清国产精品国产三级 | 一区二区三区四区激情视频| 国产欧美亚洲国产| 在线观看免费高清a一片| 亚洲最大成人中文| 一二三四中文在线观看免费高清| 成人免费观看视频高清| 少妇猛男粗大的猛烈进出视频| 亚洲性久久影院| 亚洲精品国产色婷婷电影| 日韩欧美一区视频在线观看 | 97精品久久久久久久久久精品| 成年美女黄网站色视频大全免费 | 在线观看一区二区三区| 美女高潮的动态| 大话2 男鬼变身卡| 日日摸夜夜添夜夜爱| 日韩在线高清观看一区二区三区| 丰满迷人的少妇在线观看| 日韩在线高清观看一区二区三区| 偷拍熟女少妇极品色| 欧美老熟妇乱子伦牲交| 免费大片18禁| 一个人看视频在线观看www免费| 国产精品女同一区二区软件| 十八禁网站网址无遮挡 | 免费看日本二区| 国产一区二区三区av在线| 日本黄色片子视频| 婷婷色综合大香蕉| 高清毛片免费看| 国产精品秋霞免费鲁丝片| 蜜桃久久精品国产亚洲av| 欧美日韩精品成人综合77777| 嘟嘟电影网在线观看| 成人黄色视频免费在线看| 国产精品久久久久久精品古装| 26uuu在线亚洲综合色| av.在线天堂| 99热国产这里只有精品6| 秋霞在线观看毛片| 午夜福利网站1000一区二区三区| 日韩成人av中文字幕在线观看| 最近最新中文字幕大全电影3| 深夜a级毛片| 一本一本综合久久| 欧美区成人在线视频| 国产国拍精品亚洲av在线观看| 欧美高清性xxxxhd video| 亚洲美女黄色视频免费看| 国产人妻一区二区三区在| 伦理电影大哥的女人| 一级二级三级毛片免费看| 美女中出高潮动态图| 少妇人妻 视频| 久久人人爽人人片av| 欧美日韩一区二区视频在线观看视频在线| 亚洲欧美日韩卡通动漫| 久久毛片免费看一区二区三区| 99久久精品热视频| 久久久久久久大尺度免费视频| 国产精品无大码| 免费黄色在线免费观看| h日本视频在线播放| 观看美女的网站| 精品一品国产午夜福利视频| 国产伦精品一区二区三区视频9| 国产乱来视频区| 成人毛片a级毛片在线播放| 毛片女人毛片| 伦理电影大哥的女人| 最近中文字幕高清免费大全6| 日韩欧美一区视频在线观看 | 国产午夜精品久久久久久一区二区三区| a 毛片基地| 国产熟女欧美一区二区| av国产精品久久久久影院| 欧美高清成人免费视频www| 各种免费的搞黄视频| 高清毛片免费看| 91午夜精品亚洲一区二区三区| 嫩草影院入口| 亚洲国产精品999| 一本色道久久久久久精品综合| 欧美高清性xxxxhd video| 亚洲成人中文字幕在线播放| 少妇熟女欧美另类| 午夜福利在线观看免费完整高清在| 91在线精品国自产拍蜜月| 欧美日本视频| 高清日韩中文字幕在线| 日韩 亚洲 欧美在线| 免费观看av网站的网址| 亚洲aⅴ乱码一区二区在线播放| 97在线人人人人妻| 日韩不卡一区二区三区视频在线| 香蕉精品网在线| 男人舔奶头视频| 一区二区三区免费毛片| 国产毛片在线视频| 少妇的逼好多水| tube8黄色片| 久久久久精品久久久久真实原创| 欧美日韩亚洲高清精品| 自拍偷自拍亚洲精品老妇| 久久精品国产亚洲网站| 国产熟女欧美一区二区| 六月丁香七月| 欧美激情极品国产一区二区三区 | 久久综合国产亚洲精品| 国产色婷婷99| 深夜a级毛片| 最后的刺客免费高清国语| 一个人免费看片子| 交换朋友夫妻互换小说| 国产综合精华液| a级一级毛片免费在线观看| 亚洲av男天堂| 国产久久久一区二区三区| 五月伊人婷婷丁香| 日本黄色片子视频| 大话2 男鬼变身卡| 91精品伊人久久大香线蕉| 伦精品一区二区三区| 国产成人精品婷婷| 国产日韩欧美亚洲二区| 日韩中字成人| 韩国av在线不卡| 边亲边吃奶的免费视频| 最近手机中文字幕大全| .国产精品久久| 在线观看免费高清a一片| 久久久精品免费免费高清| 噜噜噜噜噜久久久久久91| 看免费成人av毛片| 亚洲国产av新网站| 亚洲欧美日韩卡通动漫| 一个人免费看片子| 久久久精品94久久精品| 亚洲久久久国产精品| 亚洲婷婷狠狠爱综合网| 你懂的网址亚洲精品在线观看| 国产淫片久久久久久久久| 日日啪夜夜撸| 成年av动漫网址| 国产欧美另类精品又又久久亚洲欧美| 国产成人午夜福利电影在线观看| 卡戴珊不雅视频在线播放| 午夜福利在线观看免费完整高清在| 久久久久国产精品人妻一区二区| 一区在线观看完整版| 涩涩av久久男人的天堂| 多毛熟女@视频| 欧美激情国产日韩精品一区| 国精品久久久久久国模美| 国产成人一区二区在线| 黑人猛操日本美女一级片| 中文在线观看免费www的网站| 日韩制服骚丝袜av| 亚洲美女搞黄在线观看| 精品久久久久久电影网| 新久久久久国产一级毛片| 最黄视频免费看| 男人狂女人下面高潮的视频| 只有这里有精品99| 国产精品一二三区在线看| 夫妻性生交免费视频一级片| 丰满乱子伦码专区| av专区在线播放| 免费播放大片免费观看视频在线观看| 久久久久网色| 成年美女黄网站色视频大全免费 | 亚洲国产精品成人久久小说| 国产高清不卡午夜福利| 亚洲成人手机| 日韩一本色道免费dvd| 国产亚洲一区二区精品| 一区在线观看完整版| 精品99又大又爽又粗少妇毛片| 在线观看一区二区三区| 妹子高潮喷水视频| 中文欧美无线码| 韩国高清视频一区二区三区| 91久久精品电影网| 国产精品久久久久久久久免| 亚洲欧美成人综合另类久久久| 亚洲精品国产av蜜桃| 边亲边吃奶的免费视频| 久久久成人免费电影| 免费看日本二区| 五月伊人婷婷丁香| 如何舔出高潮| 亚洲精品,欧美精品| 久久久久性生活片| 日产精品乱码卡一卡2卡三| 日韩 亚洲 欧美在线| 日韩一本色道免费dvd| 国产美女午夜福利| 人妻夜夜爽99麻豆av| 国产片特级美女逼逼视频| 亚洲精品aⅴ在线观看| 简卡轻食公司| 日本-黄色视频高清免费观看| 我要看黄色一级片免费的| 亚洲欧美精品自产自拍| 日韩亚洲欧美综合| 国产免费一级a男人的天堂| 狂野欧美激情性bbbbbb| 99久久精品热视频| 亚洲欧美成人精品一区二区| 亚洲va在线va天堂va国产| 在线观看免费日韩欧美大片 | 五月天丁香电影| 日本午夜av视频| 美女中出高潮动态图| 啦啦啦视频在线资源免费观看| 男的添女的下面高潮视频| 欧美日韩亚洲高清精品| 一级片'在线观看视频| 免费看光身美女| 国产淫片久久久久久久久| 在线观看一区二区三区| 赤兔流量卡办理| 97热精品久久久久久| 蜜臀久久99精品久久宅男| av黄色大香蕉| 在线观看美女被高潮喷水网站| 制服丝袜香蕉在线| 如何舔出高潮| 多毛熟女@视频| 国产男女超爽视频在线观看| 99热这里只有是精品在线观看| 18禁裸乳无遮挡动漫免费视频| 在线精品无人区一区二区三 | 欧美日韩在线观看h| 久久国产精品男人的天堂亚洲 | 日韩欧美 国产精品| 在线亚洲精品国产二区图片欧美 | 91aial.com中文字幕在线观看| 久久国产亚洲av麻豆专区| 特大巨黑吊av在线直播| 亚洲欧美日韩无卡精品| 免费在线观看成人毛片| 精品人妻视频免费看| 国产精品久久久久久久久免| 又大又黄又爽视频免费| 免费黄网站久久成人精品| 国产精品人妻久久久影院| 亚洲最大成人中文| 日韩 亚洲 欧美在线| 久久久久久久久大av| 久久久久久久久久成人| 男人爽女人下面视频在线观看| 精品国产三级普通话版| 中国美白少妇内射xxxbb| 丰满少妇做爰视频| 精品人妻偷拍中文字幕| 免费看av在线观看网站| 亚洲怡红院男人天堂| 国产精品99久久99久久久不卡 | 亚洲第一区二区三区不卡| 国产精品一区www在线观看| 成人黄色视频免费在线看| 日日啪夜夜爽| 久久久精品94久久精品| 亚洲欧美日韩东京热| 国产精品嫩草影院av在线观看| 黄片无遮挡物在线观看| 亚洲不卡免费看| 有码 亚洲区| 国产精品不卡视频一区二区| 免费观看性生交大片5| 日本免费在线观看一区| 青春草国产在线视频| 亚洲av.av天堂| 国产成人午夜福利电影在线观看| 91精品伊人久久大香线蕉| 免费观看在线日韩| 国产乱来视频区| 菩萨蛮人人尽说江南好唐韦庄| 久久婷婷青草| 成人18禁高潮啪啪吃奶动态图 | 亚洲四区av| 亚洲真实伦在线观看| 国产深夜福利视频在线观看| 国产男女内射视频| 亚洲欧美成人精品一区二区| 卡戴珊不雅视频在线播放| 九九在线视频观看精品| 国产淫片久久久久久久久| 一区二区三区精品91| 久久精品国产亚洲av天美|