• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CONTINUOUS SELECTIONS OF THE SET-VALUED METRIC GENERALIZED INVERSE IN 2-STRICTLY CONVEX BANACH SPACES*

    2022-06-25 02:13:34ShaoqiangSHANG商紹強

    Shaoqiang SHANG (商紹強)

    College of Mathematical Sciences,Harbin Engineering University,Harbin 150001,China

    E-mail:sqshang@163.com

    Abstract In this paper,we prove that if X is an almost convex and 2-strictly convex space,linear operator T:X→Y is bounded,N (T) is an approximative compact Chebyshev subspace of X and R (T) is a 3-Chebyshev hyperplane,then there exists a homogeneous selection Tσ of T? such that continuous points of Tσ and T? are dense on Y.

    Key words Continuous selection;3-Chebyshev hyperplane;set-valued metric generalized inverses;2-strictly convex space

    1 Introduction

    LetXdenote a real Banach space with unit ballB(X) and unit sphereS(X).LetX*denote the dual space of Banach spaceXand letAf={x∈S(X):f(x)=1=‖f‖}.Let int (A) denote the interior ofAand diam (A) denote the diameter ofA,whereAis a subset ofX.LetTdenote a linear bounded operator fromXintoY.LetN(T) andR(T) denote the null space and the range ofT,respectively.LetHbe a subspace ofX.Then the metric projection operatorPH:X→His defined by

    LetπHdenote a selection forPH.It is well known thatHis said to be proximinal ifPH(x)? wheneverx∈X.Moreover,subspace spaceHis said to be a Chebyshev subspace ifPH(x) is a singleton wheneverx∈X.Lety0∈Yandx0∈X.If

    then the pointx0is said to be a best approximative solution of the equationTx=y0(see[5]).Define the set

    Then the set-valued mappingT?:D(T?)→2Xis said to be the set-valued metric generalized inverse ofT(see[5]),where

    In 1974,Nashed and Votruba gave the definition of the set-valued metric generalized inverse and further pointed out that the continuous selection of the set-valued metric generalized inverse is worth studying (see[5]).In 2019,Shaoqiang Shang and Yunan Cui proved the following theorem:

    Theorem 1.1(See[8]) Let Banach spaceXandYbe approximatively compact,letT:X→Ybe bounded,letN(T) be Chebyshev and letR(T) be 2-Chebyshev.Then the following statements are equivalent:

    (1) the pointy0is a continuous point ofT?;

    (2) for everyz∈T?(y0),there exists a selectionTσofT?such thatTσ(y0)=zandy0is a continuous point ofTσ;

    (3) the functiong?is continuous at pointy0andTT?is lower semicontinuous at pointy0,where

    The continuous selection of the set-valued metric generalized inverse has great depth and breadth,hence continuous selection has attracted the attention of a large number of mathematicians.However,since the continuous selection of generalized inverses is a very difficult problem,the research results have relatively few in this field.One of the difficulties in the study of the set-valued metric generalized inverse is that the development of geometric theory in Banach space is incomplete,and this affects the study of the set-valued metric generalized inverse.In order to further study the generalized inverse,Shaoqiang Shang and Yunan Cui gave the definition of almost convex space.

    Definition 1.2(See[1]) A Banach spaceXis said to be almost convex iffn∈S(X*),‖xn‖→1,fn(xn)→1 and the diameter ofAfnis greater than zero for alln∈N,so dist (xn,Afn)→0 asn→∞.

    Using almost convex space,Shaoqiang Shang and Yunan Cui studied continuous selection of the generalized inverses and gave the following theorem:

    Theorem 1.3(See[1]) LetXbe an almost convex and 2-strictly convex space,letT:X→Ybe a bounded linear operator,letN(T) be an approximative compact Chebyshev subspace ofXand letR(T) be a 2-Chebyshev hyperplane.Then there exists a homogeneous selectionTσofT?such that continuous points ofTσandT?are dense onY.

    In Theorem 1.2,we require thatR(T) is a 2-Chebyshev hyperplane ofY.It is well known that 2-Chebyshev space is an extension of the Chebyshev space.Furthermore,we have the concept ofk-Chebyshev space.

    Definition 1.4(See[11]) A subspaceHis called ak-Chebyshev subspace ofXifPH(x)? and dim (span{x-PH(x)})≤kwheneverx∈X.Moreover,ifk-Chebyshev subspaceHis a hyperplane ofX,thenHis called ak-Chebyshev hyperplane ofX.

    It is well known thatMis a 1-Chebyshev subspace ofXif and only ifMis a Chebyshev subspace ofX.Moreover,it is well known that

    and (k+1)-Chebyshev subspace is not necessarilyk-Chebyshev subspace.Moreover,ifR(T) is a 3-Chebyshev hyperplane,then the method of proof of Theorem 1.3 is completely invalid.Naturally,therefore,we have to ask:ifR(T) is 3-Chebyshev,is Theorem 1.3 true?In this paper,we prove that ifXis an almost convex and 2-strictly convex space,linear operatorT:X→Yis bounded,N(T) is an approximative compact Chebyshev subspace ofXandR(T) is a 3-Chebyshev hyperplane,then there exists a homogeneous selectionTσofT?such that continuous points ofTσandT?are dense onY.Moreover,ifR(T) is a 2-Chebyshev hyperplane ofY,then (1) continuous points ofT?are dense onwhereG0={y∈Y:diamT?(y)=0}andT?are continuous on(2) there exists a homogeneous selectionTσofT?such that continuous points ofTσare dense onand are continuous onOther results of generalized inverses are shown in[2–4]and[6–8].We next give some definitions that we will use later.

    Definition 1.5(See[9]) A pointx0is called a continuous point ofG:X→2Yifx0is an upper semicontinuous point and is a lower semicontinuous point ofG.

    Definition 1.6(See[11]) A closed subspaceMofXis called approximatively compact if?Mhas a subsequence of convergence wheneverx∈Xand ‖x-yn‖→dist (x,M).

    Definition 1.7(See[12]) A Banach spaceXis called 2-strictly convex ifx1,x2,x3are linearly dependent whenever{x1,x2,x3}?S(X) and ‖x1+x2+x3‖=3.

    2 Main Theorems

    Theorem 2.1LetXbe an almost convex and 2-strictly convex space,letT:X→Ybe a bounded linear operator,letN(T) be an approximative compact Chebyshev subspace ofXand letR(T) be a 3-Chebyshev hyperplane.Then there exists a homogeneous selectionTσofT?such that continuous points ofTσandT?are dense onY.

    In order to get the theorem,we give some lemmas.

    Lemma 2.2Suppose thatXis a Banach space,thatAis a convex subset ofX,that[x1,x2]?Aand that[x1,x2]∩intA?.Then (x1,x2)?intA,where (x1,x2)={tx1+(1-t)x2:t∈(0,1)}and[x1,x2]={tx1+(1-t)x2:t∈[0,1]}.

    ProofIt is easy to see that the Lemma is true,which completes the proof. □

    Lemma 2.3Suppose thatXis 2-strictly convex,thatT:X→Yis a bounded linear operator,that subspaceN(T) ofXis a proximinal and thatR(T) is ak-Chebyshev subspace ofY.Then for anyy∈Y,T?(y) is a line segment.

    ProofSinceR(T) is ak-Chebyshev subspace ofY,we get thatPR (T)(y) is compact for everyy∈Y.Define the linear operatorwhere[x]∈X/N(T) andx∈X.SinceR(T) is ak-Chebyshev subspace ofY,we obtain thatR(T) is closed.SinceTis a bounded linear operator,by the definition ofwe obtain thatis bounded.Therefore,by the inverse operator Theorem,we get thatis bounded.Let?PR (T)(y) such that

    SincePR (T)(y) is compact,we can assume thatzn→z0asn→∞.Then there exists a pointu0∈Xsuch thatTu0=z0.Hence we get thatu0-PN (T)(u0)?T?(y).This implies thatT?(y)? for everyy∈Y.Suppose that there exists a pointy0∈Ysuch thatT?(y0) is not a line segment.Then there exists a set{x1,x2,x3}?T?(y0) such that co{x1,x2,x3}is not a line segment.Moreover,we may assume thatT?(y0)?S(X).Therefore,by the convexity ofT?(y0),we get that

    Therefore,by the Hahn-Banach Theorem and the above formula,there exists a functional∈S(X*) such that

    This implies that ‖x1+x2+x3‖=‖x1‖+‖x2‖+‖x3‖=3 andSinceXis 2-strictly convex,we get thatx1,x2,x3are linearly dependent.Hence we may assume thatx3=t1x1+t2x2.Then.This implies thatt1+t2=1.Hence we havex3∈{λx1+(1-λ)x2:λ∈R},which contradicts the fact co{x1,x2,x3}is not a line segment.Hence we get thatT?(y) is a line segment for anyy∈Y,which completes the proof. □

    We next will prove Theorem 2.1.

    ProofSinceN(T) is an approximative compact Chebyshev subspace ofX,we get thatN(T) is proximinal.SinceXis a 2-strictly convex space andR(T) is a 3-Chebyshev hyperplane,by Lemma 2.3,we get that for everyy∈Y,T?(y) is a line segment.We divide the proof into five steps.

    Step 1Let us first prove thatT?is upper semicontinuous onY.Suppose thatT?is not upper semicontinuous at pointy0.Then there exists an open setW?T?(y0) and two sequences,xn∈T?(yn) and ‖yn-y0‖→0 asn→∞.Define the bounded linear operatorwhere[x]∈X/N(T) andx∈X.Then we obtain thatis a bounded linear operator.SinceT?(y) is a line segment for everyy∈Y,letT?(yn)=[x(1,n),x(2,n)]for everyn∈N.SinceN(T) is an approximative compact Chebyshev subspace ofX,by the proof of Theorem 5 of[1],we get the following formulas:

    Moreover,by the proof of Theorem 5 of[1],we get a contradiction.Hence we get thatT?is upper semicontinuous onY.

    Step 2SinceR(T) is a 3-Chebyshev hyperplane ofY,we get thatR(T) is proximinal.Therefore,by the proof of Theorem 5 of[1],there exists a functionalf∈S(X*) such that

    for ally∈Y.Pick a pointy0/∈R(T).Then we get thatf(y0)0.SinceR(T) is a 3-Chebyshev hyperplane ofY,by the formulaPR (T)(y)=y-f(y)Af,we have

    Hence,if dim (spanAf)=1,then the setT?(y) is a singleton for everyy∈Y.SinceT?is upper semicontinuous onY,we get thatT?is continuous onY.Moreover,if dim (spanAf)=2,thenR(T) is a 2-Chebyshev hyperplane ofY.Therefore,by Theorem 5 of[1],we get that there exists a homogeneous selectionTσofT?such that continuous points ofTσandT?are dense onY.Hence we may assume,without loss of generality,that dim (spanAf)=3.Since dim (spanAf)=3,there exists a set{z1,z2,z3}?Afsuch thatz1,z2,z3are linearly independent.Therefore,by the formula dim (spanAf)=3,we get thatHf={t1z1+t2z2+t3z3∈X:t1+t2+t3=1}?Afis a hyperplane of three-dimensional spaceX0=span{z1,z2,z3}.Pick a point

    Then,byAf?Hf,we haveAf-z0?Hf-z0.SinceHfis a hyperplane of three-dimensional space,we obtain thatHf-z0=span{Af-z0}is a two-dimensional space.Sincez1,z2,z3are linearly independent,we get thatAf-z0is a convex subset ofHf-z0and that int (Af-z0)?.

    Step 3DefineG0={y∈Y:diamT?(y)=0}.Letv0∈YG0.Then there exists a real numberr∈(0,+∞) such thatB(v0,r)?YG0,whereB(v0,r)={z∈X:‖z-v0‖≤r}.Define the set

    We claim thatGkis closed for everyk∈N.In fact,let?Gkand ‖yi-z0‖→0 asi→∞.LetT?(yi)=[u(1,i),u(2,i)]for everyi∈N.Then,from the proof of Step 1,we may assume that dist(Tu(1,i),TT?(z0))→0 asi→∞.Hence we may assume that there exists a pointu(1,0)∈T?(z0) such thatTu(1,i)→Tu(1,0)∈TT?(z0).Sinceis a bounded linear operator,there exists a sequence?N(T) such that ‖u(1,i)+zi-u(1,0)‖→0 asi→∞.Sinceis a bounded linear operator,byu(1,i)∈T?(zi) andu(1,0)∈T?(z0),we get that ‖u(1,i)‖→‖u(1,0)‖ asi→∞.Therefore,by the formulau(1,0)∈T?(z0),we have

    SinceN(T) is an approximative compact Chebyshev subspace ofX,by the formula ‖u(1,i)+zi-u(1,0)‖→0,we may assume thatis a Cauchy sequence.Hence we obtain thatis a Cauchy sequence.Let ‖u(1,i)-u0(1,0)‖→0 asi→∞.Then,by the formula ‖u(1,i)‖→‖u(1,0)‖,we get that ‖u(1,0)‖=‖u0(1,0)‖.Moreover,byTu(1,i)→Tu(1,0)∈TT?(z0) and ‖u(1,i)-u0(1,0)‖→0,we haveTu0(1,0)=Tu(1,0)∈TT?(z0).Therefore,byu(1,0)∈T?(z0) and ‖u(1,0)‖=‖u0(1,0)‖,we haveu0(1,0)∈T?(z0).Similarly,we get thatu(2,i)→u0(2,0)∈T?(z0) asi→∞.This implies that

    Thenz0∈Gk.This implies thatGkis closed for allk∈N.Hence we get thatGk∩B(v0,r) is closed for allk∈N.Since closed ballB(v0,r) is a complete metric space,by the Baire Theorem of categories,there exists a natural numberk0such thatGk0∩B(v0,r) has an interior point ofGk0∩B(v0,r).Hence there exists a pointy0∈Gk0∩B(v0,r) and a real numberδ∈(0,+∞) such that the pointy0is an interior point ofGk0∩B(v0,r) andB(y0,δ)∩R(T)=?.Letε>0.Sincey0is an interior point ofGk0∩B(v0,r),there existsd∈(0,min{ε,δ/2}) such that

    Moreover,sinceB(y0,δ)∩R(T)=? andd∈(0,min{ε,δ/2}),we get thatB(y0,d)∩R(T)=?.

    Step 4We will prove that continuous points ofT?are dense onY.In fact,sinceT?is upper semicontinuous onY,we obtain thatT?is continuous at every point ofG0={y∈Y:diamT?(y)=0}.Therefore,by the proof shown in Step 3,we just need to prove thatT?has a lower semicontinuous point onB(y0,d).Moreover,by the proof shown in Step 2,we know that there exists a functionalf∈S(X*) such that

    SincePR (T)(y)=y-f(y)Affor everyy∈Y,we obtain that ifπR (T)(y)∈PR (T)(y),then there exists a unique pointz∈Afsuch thatπR (T)(y)=y-f(y)zwhenevery∈YR(T).SinceT?(y) is a line segment for everyy∈Y,we obtain thatTT?(y) is a line segment for everyy∈Y.Hence we define a set-valued mappingF:YR(T)→2Ysuch thatF(y)=[z1,z2]?Af,where

    for everyy∈YR(T).For clarity,we will next divide the proof into two cases.

    Case IFor anyr>0 there exists a pointy∈B(y0,r) such that (F(y)-z0)∩int (Af-z0)?,where the definition ofz0see formula (2.1).Hence we can assume that

    Moreover,from the proof shown in Step 3,we know that there exists a natural numberk0∈Nand a real numberd>0 such that

    Let ‖yn-y0‖→0 asn→∞.Then we may assume,without loss of generality,thatB(y0,d/2).LetT?(y0)=[x(1,0),x(2,0)]andT?(yn)=[x(1,n),x(2,n)]for everyn∈N.Then ‖x(1,0)-x(2,0)‖≥1/k0and ‖x(1,n)-x(2,n)‖≥1/k0for alln∈N.Moreover,from the proof shown in Step 1,we can assume,without loss of generality,that

    Pick a pointx0∈T?(y0).We next will prove that there exists a pointxn∈T?(yn) such that ‖xn-x0‖→0 asn→∞.SinceT?is upper semicontinuous onY,we can assume,without loss of generality,thatx(1,n)→u(1,0)∈T?(y0) andx(2,n)→u(2,0)∈T?(y0) asn→∞.Then we get thatu(1,0)u(2,0).We claim thatTu(1,0)-Tu(2,0)0.Otherwise,we would haveu(2,0)-u(1,0)∈N(T).Hence 0∈PN (T)(u(1,0)) andu(1,0)-u(2,0)∈PN (T)(u(1,0)).SinceN(T) is an approximative compact Chebyshev subspace ofX,we get thatu(2,0)-u(1,0)=0,which is a contradiction.Therefore,by the formulasT?(y0)=[x(1,0),x(2,0)]andTu(1,0)-Tu(2,0)0,we get thatTx(1,0)-Tx(2,0)0.Moreover,by the formulaPR (T)(y)=y-f(y)Af,there exist two pointsz(1,0)∈Afandz(2,0)∈Afsuch that

    Moreover,there exist two pointsz(1,n)∈Afandz(2,n)∈Afsuch that

    for alln∈N.SinceTx(1,n)→Tu(1,0) andTx(2,n)→Tu(2,0),by formulas (2.2) and (2.3),we obtain that ‖z(1,n)-z(1,0)‖→0 and ‖z(2,n)-z(2,0)‖→0 asn→∞.Moreover,by the formulasT?(y0)=[x(1,0),x(2,0)]andu(1,0)-u(2,0)0,we get that

    SinceTu(1,0)-Tu(2,0)0,byTx(1,n)→Tu(1,0) andTx(2,n)→Tu(2,0),we can assume thatandx0∈[x(1,0),x(2,0)],by formula (2.4),we get that

    Moreover,by the formulasPR (T)(y0)=y0-f(y0)AfandTx0∈PR (T)(y0),there exists a pointv0∈Afsuch thatTx0=y0-f(y0)v0.Therefore,by formulas (2.2) and (2.5),we have

    Moreover,by the definition ofF,we havev0∈F(y0).Hence there existst0∈Rsuch that

    Therefore,by the formulas ‖z(1,n)-z(1,0)‖→0 and ‖z(2,n)-z(2,0)‖→0,we obtain that ‖vn-v0‖→0 asn→∞,where

    Then we get thatvn-z0∈span{Af-z0}.Sincez(1,0)-z0∈Af-z0,z(2,0)-z0∈Af-z0,z(1,n)-z0∈Af-z0andz(2,n)-z0∈Af-z0,by the convexity ofAf-z0,we have the formulas

    for alln∈N.Since (F(y0)-z0)∩int (Af-z0)?,by Lemma 2.2,we get thath0is an interior point ofAf-z0in two dimensional space span{Af-z0}.Hence there exists a real numberη∈(0,+∞) such that

    Moreover,since ‖z(1,n)-z(1,0)‖→0 and ‖z(2,n)-z(2,0)‖→0,by the above formula,we can assume that

    This implies thathnis an interior point ofAf-z0in two dimensional Banach space span{Afz0}.Hence the origin point is an interior point ofAf-z0-hnin two dimensional Banach space span{Af-z0}.Hence,for anyn∈N,we define the Minkowski functional

    in two dimensional Banach space span{Af-z0}.Therefore,by formula (2.7) and the definition ofμKn,we have the formula

    whenevery∈span{Af-z0}.Letm=1/η.Then we get that|μKn(y)|≤m‖y‖ for everyn∈N.Therefore,byv0-z0∈Af-z0,we obtain thatv0-z0-hn∈Af-z0-hn.This implies thatμKn(v0-z0-hn)≤1 for alln∈N.Sincevn-z0∈span{Af-z0}andhn∈span{Af-z0},we obtain thatvn-z0-hn∈span{Af-z0}.Therefore,by the formulas|μKn(y)|≤m‖y‖ andvn-z0-hn∈span{Af-z0},we have the inequalities

    for alln∈N.Therefore,by the formulasμKn(v0-z0-hn)≤1 and ‖vn-v0‖→0,we have

    Therefore,by the above inequality,there exists a sequence?[0,1]such that

    Moreover,it is easy to see that

    for alln∈N.Sinceun∈Af-z0-hn,by the above formula,we have the formula

    for alln∈N.Sincevn-z0=t0(z(1,n)-z0)+(1-t0)(z(2,n)-z0) andhn=(z(1,n)-z0)/2+(z(2,n)-z0)/2,by the above formula,we have the formula

    for alln∈N.Therefore,by the above formula,we have the formula

    for alln∈N.Therefore,by the formulasλn→1 and ‖vn-v0‖→0,we get that ‖wn-v0‖→0 asn→∞.Therefore,by the formulas ‖yn-y0‖→0 and ‖wn-v0‖→0,we have

    Moreover,by the formulaPR (T)(yn)=yn-f(yn)Af,we obtain thatyn-f(yn)wn∈PR (T)(yn) for alln∈N.Therefore,by formulas (2.3) and (2.8),we have

    for alln∈N.SinceT?(yn)=[x(1,n),x(2,n)]for alln∈N,it is easy to see that (x(1,n)+x(2,n))/2∈T?(yn) for alln∈N.Therefore,by the formulasx(1,n)∈T?(yn) andx(2,n)∈T?(yn),we have the formula

    for alln∈N.Therefore,by the Hahn-Banach Theorem,there exists a functionalfn∈S(X*) such that

    for alln∈N.Therefore,by the formulasx(1,n)→u(1,0)∈T?(y0) andx(2,n)→u(2,0)∈T?(y0),we have the following formula:

    Therefore,by the above formula,we have the formula

    Moreover,we can assume thatT?(y0)?S(X).Therefore,by the formulasu(1,0)-u(2,0)0 andx0∈{tu(1,0)+(1-t)u(2,0):t∈R},we get thatfn(x0)→1 asn→∞.Moreover,by the formulaT?(y0)?S(X),we get that ‖x(1,n)‖→‖u(1,0)‖=1 asn→∞.SinceXis an almost convex and 2-strictly convex space,we get that

    Therefore,by the formula ‖x(1,n)‖Afn?{tx(1,n)+(1-t)x(2,n):t∈R},there exists a point

    such thatxn→x0and ‖xn‖=‖x(1,n)‖ for everyn∈N.Hence,ifTxn∈PR (T)(yn) for everyn∈N,we obtain thatxn∈T?(yn).Otherwise,we can assume thatTxnPR (T)(yn) for everyn∈N.Then,by formula (2.10) and the definition ofyn-f(yn)wn,there exist two sequences?Rsuch thatxn=λnx(1,n)+(1-λn)x(2,n) and

    for everyn∈N.Therefore,by the formula ‖xn-x0‖→0,we get that ‖Txn-Tx0‖→0 asn→∞.Therefore,by formula (2.9) and ‖yn-f(yn)wn-Tx0‖→0,we get that

    Therefore,by formula liminfn→∞‖Tx(1,n)-Tx(2,n)‖>0,we haveλn-tn→0 asn→∞.Moreover,by the formulasTxnPR (T)(yn) andyn-f(yn)wn∈PR (T)(yn),we may assume thatyn-f(yn)wn∈[Txn,Tx(1,n)]for everyn∈N.Define the sequence{en}∞n=1?X,whereen=tnx(1,n)+(1-tn)x(2,n) for alln∈N.Then,by the formulasλn-tn→0 andxn=λnx(1,n)+(1-λn)x(2,n),we have ‖en-xn‖→0 asn→∞.This implies that ‖en-x0‖→0 asn→∞.Therefore,byTen=yn-f(yn)wn∈PR (T)(yn) andyn-f(yn)wn∈[Txn,Tx(1,n)],we get thaten∈[xn,x(1,n)]for alln∈N.Then,byTen∈PR (T)(yn),we haveen∈T?(yn) for alln∈N.

    Case IIThere exists a real numberr>0 such that (F(y)-z0)∩int (Af-z0)=? for anyy∈B(y0,r).Pick a pointx0∈T?(y0) and letT?(yn)=[x(1,n),x(2,n)]and ‖yn-y0‖→0 asn→∞.Then,from the previous proof,we have that

    Moreover,by Step 1,we get thatT?is upper semicontinuous onY.Hence we may assume,without loss of generality,thatx(1,n)→u(1,0)∈T?(y0) andx(2,n)→u(2,0)∈T?(y0).Moreover,by the previous proof,we obtain thatTu(1,0)Tu(2,0).Therefore,by the formulaPR (T)(y)=y-f(y)Af,there exist two pointsz(1,0)∈Afandz(2,0)∈Afsuch that

    Moreover,there exist two pointsz(1,n)∈Afandz(2,n)∈Afsuch that

    for everyn∈N.Hencez(1,n)→z(1,0) andz(2,n)→z(2,0) asn→∞.Thenz(1,n)-z0→z(1,0)-z0andz(2,n)-z0→z(2,0)-z0asn→∞.Since there exists a real numberr>0 such that (F(y)-z0)∩int (Af-z0)=? for anyy∈B(y0,r),by Lemma 2.2,we get that

    Sincez(1,n)-z0∈Af-z0andz(2,n)-z0∈Af-z0,we get thatu(n)∈Af-z0andw(n)∈Af-z0.Therefore,by formula (2.14),we get thatu(n)int (Af-z0) andw(n)int (Af-z0) for everyn∈N.Pick a pointv(0)∈int (Af-z0).Then,by the formulau(0)int (Af-z0),we get thatv(1)=2u(0)-v(0)Af-z0.In fact,suppose thatv(1)=2u(0)-v(0)∈Af-z0.Then,by Lemma 2.2,we have that

    which is a contradiction.Since span{Af-z0}is a two dimensional space,it is easy to see thatu(0) andw(0) are two interior points ofG,where

    Therefore,by formulas ‖u(n)-u(0)‖→0 and ‖w(n)-w(0)‖→0,we can assume thatu(n)∈Gandw(n)∈G.Sincev(0)∈int (Af-z0) andv(1)=2u(0)-v(0)Af-z0,by formula (2.13),we have the following formula:

    Sinceu(n)∈Af-z0,u(n)∈G,w(n)∈Af-z0andw(n)∈G,by the definition ofGand the above formula,it is easy to see that

    for alln∈N.Moreover,sincev(0)∈int (Af-z0),by Lemma 2.2 and formula (2.13),we have

    Therefore,by the formulasu(n)int (Af-z0) andw(n)int (Af-z0),we have

    for alln∈N.Moreover,sinceTu(1,0)Tu(2,0),by the definitions ofu(0) andw(0),we get that ‖u(0)-w(0)‖>0.Therefore,by the formulas ‖u(n)-u(0)‖→0 and ‖w(n)-w(0)‖→0,we can assume that 2‖u(n)-w(n)‖>‖u(0)-w(0)‖>0 for alln∈N.Therefore,by formula (2.15),we have the equation

    for alln∈N.Therefore,by the above equation,we get that

    for alln∈N.SinceTu(1,0)-Tu(2,0)0,by the formulasTx0∈TT?(y0)?PR (T)(y0) and ‖yn-y0‖→0,there exists a pointw0∈Afsuch that

    Therefore,by the above formula and formula (2.11),there existst0∈Rsuch that

    Therefore,by the formulay0/∈R(T)=N(f),we havew0=t0z(1,0)+(1-t0)z(2,0).Therefore,by formula (2.16),there exists a sequence?Rsuch thatw0=tnz(1,n)+(1-tn)z(2,n).Therefore,by formula (2.12),we have the formula

    for everyn∈N.Repeating the proof used in Case I,by formulas (2.11)-(2.12) and (2.16),there exists a pointxn∈T?(yn) such that ‖xn-x0‖→0 asn→∞.

    Therefore,by Cases I and II,we get that lower-semicontinuous points ofT?are dense onY.SinceT?is upper semicontinuous onY,we get that continuous points ofT?are dense onY.

    Step 5LetT?(y)=[x(y,1),x(y,2)]for ally∈Y.Then we define a mappingTσ:Y→X,where

    Therefore,by the proof of Theorem 5 of[1],we get that continuous points ofTσare dense onY.We next will prove thatTσ:Y→Xis homogeneous.In fact,letv∈Yandλ∈R.Pick a pointu∈T?(v).Then

    SincePR (T)(λv)=λPR (T)(v),by the above formula,we get that

    HenceλT?(v)?T?(λv).Similarly,we get thatT?(λv)?λT?(v).Hence we get thatλT?(y)=T?(λy) for everyλ∈Randy∈Y.Therefore,by the definition ofTσandλT?(y)=T?(λy),we get thatTσ:Y→Xis a homogeneous mapping,which completes the proof. □

    Under the conditions of Theorem 2.1,it is easy to see that the setG0={y∈Y:diamT?(y)=0}is nonempty.In general,the setG={y∈Y:diamT?(y)>0}is nonempty.To illustrate this problem,we give an example.

    Example 2.4LetX=(R2,‖·‖0) andY=(R3,‖·‖1),where ‖(x,y)‖0=max{|x|,|y|}and ‖(x,y,z)‖1=max{|x|,|y|,|z|}.LetT:X→Ybe a bounded linear operator,whereT(x,y)=(x,y,0).ThenXis 2-strictly convex.Moreover,by Theorem 4 of[1],we get thatXis an almost convex space.It is easy to see thatR(T) is a 3-Chebyshev hyperplane ofY.Pick a point (0,3,1)∈Y.Then it is easy to see that

    Then diamT?(0,3,1)>0.Moreover,it is easy to see that there exists a neighbourhoodUof point (0,3,1) such that diamT?(x,y,z)>0 whenevery∈U.

    Definition 2.5(See[11]) A Banach spaceXis said to be uniformly convex if ‖xn-yn‖→0 wheneverand ‖xn+yn‖→2.

    Corollary 2.6LetXibe a product space of uniformly convex spaces,letT:X→Ybe bounded,letN(T) be Chebyshev and let hyperplaneR(T) be 3-Chebyshev.Then there exists a homogeneous selectionTσofT?such that continuous points ofTσandT?are dense onY,where ‖(x1,x2)‖=‖x1‖+‖x2‖.

    ProofBy Theorem 3 of[1],we obtain thatXis an almost convex and 2-strictly convex space.Moreover,sinceX1andX2are uniformly convex,we get that every closed subspace ofXis approximatively compact.Therefore,by Theorem 2.1,we get that there exists a homogeneous selectionTσofT?such that continuous points ofTσandT?are dense onY.This completes the proof. □

    Theorem 2.7LetXbe an almost convex and 2-strictly convex space,letT:X→Ybe a bounded linear operator,letN(T) be an approximative compact Chebyshev subspace ofXand letR(T) be a 2-Chebyshev hyperplane.Then,

    (1) continuous points ofT?are dense onandT?is continuous onwhereG0={y∈Y:diamT?(y)=0};

    (2) there exists a homogeneous selectionTσofT?such that continuous points ofTσare dense onandTσis continuous on

    ProofBy Theorem 2.1,we know thatT?is upper semicontinuous onY.SinceG0={y∈Y:diamT?(y)=0},we get that continuous points ofT?are dense onDefine the bounded linear operatorwhere[x]∈X/N(T) andx∈X.Pick a pointy0∈Then there exists a real numberr∈(0,+∞) such thatis not a singleton for everyy∈B(y0,r).Therefore,by the proof of Theorem 5 of[1],we get thatT?is continuous at pointy0.This implies thatT?are continuous onLetT?(y)=[x(y,1),x(y,2)]for ally∈Y.Pick a selectionTσofT?such that

    ThenTσis homogeneous.Moreover,by the proof of Theorem 5 of[1],we obtain that continuous points ofTσare dense onandTσis continuous onThis completes the proof. □

    狂野欧美激情性bbbbbb| 国产精品 国内视频| 亚洲精品,欧美精品| 成人国产av品久久久| 精品国产一区二区久久| 欧美另类一区| 亚洲欧美中文字幕日韩二区| 久久精品熟女亚洲av麻豆精品| 亚洲,欧美,日韩| 日韩视频在线欧美| 久久久a久久爽久久v久久| 国产精品一二三区在线看| 日韩大片免费观看网站| 观看av在线不卡| av视频免费观看在线观看| 丝袜喷水一区| 狂野欧美白嫩少妇大欣赏| 日韩大片免费观看网站| 26uuu在线亚洲综合色| 欧美精品人与动牲交sv欧美| 肉色欧美久久久久久久蜜桃| 99国产综合亚洲精品| 亚洲欧美一区二区三区黑人 | 国产成人91sexporn| 亚洲美女视频黄频| 99国产综合亚洲精品| 九九在线视频观看精品| 日韩一本色道免费dvd| 亚洲av欧美aⅴ国产| 内地一区二区视频在线| 99久久精品国产国产毛片| 亚洲精品av麻豆狂野| 卡戴珊不雅视频在线播放| 亚洲精品av麻豆狂野| 国产精品免费大片| 久热这里只有精品99| 国产精品一区www在线观看| 丰满饥渴人妻一区二区三| 少妇熟女欧美另类| 在线观看人妻少妇| 80岁老熟妇乱子伦牲交| 久久精品国产亚洲av涩爱| 国产精品一区二区在线观看99| 欧美xxⅹ黑人| 国产在线视频一区二区| 日日啪夜夜爽| 免费观看的影片在线观看| 五月玫瑰六月丁香| xxx大片免费视频| 亚洲av电影在线观看一区二区三区| 久久久精品94久久精品| 夫妻性生交免费视频一级片| 久久久久网色| 国产极品天堂在线| 国产精品蜜桃在线观看| 我的女老师完整版在线观看| 久久精品国产鲁丝片午夜精品| 最近最新中文字幕免费大全7| 男人添女人高潮全过程视频| 一级二级三级毛片免费看| 女人久久www免费人成看片| 毛片一级片免费看久久久久| 美女脱内裤让男人舔精品视频| 老司机影院成人| 国产精品 国内视频| 香蕉精品网在线| 亚洲国产av影院在线观看| 亚州av有码| 日韩,欧美,国产一区二区三区| 欧美日韩国产mv在线观看视频| 我的老师免费观看完整版| 韩国高清视频一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 久久久国产欧美日韩av| 中文字幕免费在线视频6| 老司机亚洲免费影院| freevideosex欧美| 18禁动态无遮挡网站| 少妇人妻久久综合中文| 51国产日韩欧美| 亚洲精品自拍成人| 免费黄网站久久成人精品| www.色视频.com| 两个人免费观看高清视频| av电影中文网址| 人妻系列 视频| 乱码一卡2卡4卡精品| 亚洲国产精品999| 成人亚洲精品一区在线观看| 满18在线观看网站| 亚洲熟女精品中文字幕| 国产亚洲欧美精品永久| 一本色道久久久久久精品综合| 国产亚洲最大av| 国产成人a∨麻豆精品| 中文字幕精品免费在线观看视频 | 国产成人av激情在线播放 | 亚洲av日韩在线播放| 久久精品国产亚洲网站| www.色视频.com| 久久久欧美国产精品| 91九色精品人成在线观看| 久久精品成人免费网站| 男人舔女人的私密视频| 国产亚洲欧美精品永久| av有码第一页| 五月天丁香电影| 日韩有码中文字幕| 日韩欧美一区视频在线观看| 在线观看免费高清a一片| 免费看十八禁软件| 国产亚洲精品第一综合不卡| 久久国产精品人妻蜜桃| 久久人妻熟女aⅴ| 老熟妇仑乱视频hdxx| svipshipincom国产片| 国产男女超爽视频在线观看| 女同久久另类99精品国产91| 少妇的丰满在线观看| 久久久国产精品麻豆| 亚洲午夜精品一区,二区,三区| 少妇裸体淫交视频免费看高清 | 亚洲中文字幕日韩| 性高湖久久久久久久久免费观看| 国产成人欧美在线观看 | 免费观看a级毛片全部| 欧美精品啪啪一区二区三区| 午夜福利欧美成人| 久久热在线av| 男女边摸边吃奶| 啦啦啦免费观看视频1| 精品高清国产在线一区| 最黄视频免费看| 国产免费av片在线观看野外av| 女性被躁到高潮视频| 桃花免费在线播放| 五月开心婷婷网| 美女视频免费永久观看网站| 国产精品一区二区在线不卡| 又黄又粗又硬又大视频| 成人av一区二区三区在线看| 亚洲精品久久成人aⅴ小说| 搡老岳熟女国产| 国产精品麻豆人妻色哟哟久久| 久久这里只有精品19| 亚洲天堂av无毛| 国产亚洲午夜精品一区二区久久| 日韩大码丰满熟妇| 久久av网站| 999久久久精品免费观看国产| 国产人伦9x9x在线观看| 丝袜人妻中文字幕| kizo精华| 精品少妇一区二区三区视频日本电影| 亚洲精品国产一区二区精华液| 亚洲欧美一区二区三区黑人| tube8黄色片| 中文字幕精品免费在线观看视频| 亚洲三区欧美一区| 黑人巨大精品欧美一区二区蜜桃| 飞空精品影院首页| 国产高清视频在线播放一区| 激情视频va一区二区三区| 久久ye,这里只有精品| 少妇的丰满在线观看| 91老司机精品| 欧美黄色片欧美黄色片| 女人爽到高潮嗷嗷叫在线视频| 久久久国产成人免费| 女性生殖器流出的白浆| 999久久久国产精品视频| 大片免费播放器 马上看| 精品久久久久久电影网| 大陆偷拍与自拍| 色在线成人网| 亚洲自偷自拍图片 自拍| 亚洲综合色网址| 亚洲精华国产精华精| 欧美变态另类bdsm刘玥| 一二三四在线观看免费中文在| 欧美国产精品一级二级三级| 免费看十八禁软件| 亚洲av美国av| 成人av一区二区三区在线看| 一区二区三区国产精品乱码| 99热网站在线观看| 久久人妻熟女aⅴ| 久久精品aⅴ一区二区三区四区| 久热爱精品视频在线9| 亚洲情色 制服丝袜| 亚洲色图 男人天堂 中文字幕| 黄色视频不卡| 精品人妻1区二区| 欧美精品啪啪一区二区三区| 一级毛片电影观看| 十八禁人妻一区二区| 久久精品aⅴ一区二区三区四区| 国产视频一区二区在线看| 最近最新中文字幕大全电影3 | 性色av乱码一区二区三区2| 午夜福利欧美成人| 中文亚洲av片在线观看爽 | 亚洲伊人久久精品综合| 肉色欧美久久久久久久蜜桃| 精品国产一区二区三区四区第35| 九色亚洲精品在线播放| 最新美女视频免费是黄的| 欧美日韩一级在线毛片| 亚洲av日韩精品久久久久久密| 无遮挡黄片免费观看| 老司机在亚洲福利影院| 国产在线精品亚洲第一网站| 精品国产乱码久久久久久小说| 久久人妻福利社区极品人妻图片| 日韩精品免费视频一区二区三区| 麻豆乱淫一区二区| av国产精品久久久久影院| 日韩大片免费观看网站| 中国美女看黄片| 亚洲精品国产精品久久久不卡| 国产亚洲精品第一综合不卡| 黄色成人免费大全| 日日摸夜夜添夜夜添小说| 少妇的丰满在线观看| 十八禁人妻一区二区| 久久久久久久久免费视频了| 亚洲国产av新网站| 久久亚洲真实| 岛国毛片在线播放| 精品一区二区三卡| 国产日韩欧美视频二区| 亚洲国产欧美在线一区| 男女边摸边吃奶| 亚洲av电影在线进入| 国产欧美日韩一区二区三| av线在线观看网站| 国产精品一区二区精品视频观看| 日本av手机在线免费观看| 国产精品亚洲av一区麻豆| 亚洲人成电影观看| 久久国产精品大桥未久av| 国产精品久久久人人做人人爽| 三上悠亚av全集在线观看| 一本久久精品| 久久人妻av系列| 少妇的丰满在线观看| 久久香蕉激情| 电影成人av| 久久精品人人爽人人爽视色| 国产主播在线观看一区二区| 黑人巨大精品欧美一区二区蜜桃| 变态另类成人亚洲欧美熟女 | 亚洲国产av影院在线观看| 久久久久久久久免费视频了| 天堂俺去俺来也www色官网| 亚洲精品在线观看二区| 在线永久观看黄色视频| 国产三级黄色录像| 狠狠狠狠99中文字幕| 亚洲熟女精品中文字幕| 午夜精品久久久久久毛片777| 亚洲av国产av综合av卡| 久久99一区二区三区| 色94色欧美一区二区| 91精品三级在线观看| 国产精品久久久人人做人人爽| 少妇精品久久久久久久| 日韩制服丝袜自拍偷拍| 999久久久精品免费观看国产| 手机成人av网站| 丰满少妇做爰视频| 新久久久久国产一级毛片| 国产高清激情床上av| 国产在线观看jvid| 日韩三级视频一区二区三区| 人人妻人人澡人人看| 亚洲午夜理论影院| 色在线成人网| 久久亚洲真实| 亚洲 欧美一区二区三区| 天堂俺去俺来也www色官网| videos熟女内射| 91麻豆精品激情在线观看国产 | 精品卡一卡二卡四卡免费| 精品国产亚洲在线| 久久av网站| 成年人免费黄色播放视频| 午夜福利,免费看| 91麻豆精品激情在线观看国产 | 后天国语完整版免费观看| 久久精品成人免费网站| 人成视频在线观看免费观看| 叶爱在线成人免费视频播放| 国产一区二区三区在线臀色熟女 | 女人精品久久久久毛片| 国产成人av教育| 日本一区二区免费在线视频| 国产熟女午夜一区二区三区| 制服诱惑二区| 欧美乱妇无乱码| 日本av免费视频播放| 亚洲五月婷婷丁香| 最新的欧美精品一区二区| 久久久久久久久久久久大奶| 人成视频在线观看免费观看| 国产成人精品久久二区二区91| 亚洲精品中文字幕一二三四区 | 久久人人爽av亚洲精品天堂| av天堂久久9| 欧美大码av| 人人澡人人妻人| 青青草视频在线视频观看| 青青草视频在线视频观看| 亚洲情色 制服丝袜| 黑人欧美特级aaaaaa片| 两个人看的免费小视频| 久久久精品94久久精品| 欧美日韩福利视频一区二区| 一区二区三区精品91| 大香蕉久久成人网| 免费人妻精品一区二区三区视频| 桃红色精品国产亚洲av| 高清毛片免费观看视频网站 | 久久免费观看电影| 最近最新免费中文字幕在线| 久久精品成人免费网站| 桃红色精品国产亚洲av| 在线观看免费日韩欧美大片| 中文欧美无线码| 中文字幕人妻熟女乱码| 欧美日韩福利视频一区二区| 精品国产乱码久久久久久小说| 免费在线观看黄色视频的| 国产成人av教育| 国产成人免费观看mmmm| 久久久久视频综合| 色综合欧美亚洲国产小说| 国产精品久久电影中文字幕 | 18禁国产床啪视频网站| 亚洲精品美女久久久久99蜜臀| 日韩三级视频一区二区三区| 久久精品人人爽人人爽视色| 丝袜美腿诱惑在线| 欧美在线一区亚洲| 丝袜人妻中文字幕| 国产av又大| 国产麻豆69| 成人三级做爰电影| 久久ye,这里只有精品| 伦理电影免费视频| 又紧又爽又黄一区二区| 在线天堂中文资源库| 精品国产乱码久久久久久小说| 成人永久免费在线观看视频 | 国产精品二区激情视频| 国产亚洲欧美在线一区二区| 久久中文字幕一级| 亚洲国产欧美一区二区综合| cao死你这个sao货| 99riav亚洲国产免费| 别揉我奶头~嗯~啊~动态视频| 国产国语露脸激情在线看| 在线av久久热| 99热网站在线观看| 欧美另类亚洲清纯唯美| 色综合欧美亚洲国产小说| av天堂久久9| 在线观看免费高清a一片| 欧美 亚洲 国产 日韩一| 女同久久另类99精品国产91| 中文字幕制服av| 国产成人系列免费观看| 一进一出好大好爽视频| 大香蕉久久网| 国产伦人伦偷精品视频| 在线观看免费日韩欧美大片| 国产精品秋霞免费鲁丝片| 亚洲精品国产一区二区精华液| 欧美久久黑人一区二区| 王馨瑶露胸无遮挡在线观看| 水蜜桃什么品种好| 午夜视频精品福利| 亚洲第一av免费看| 深夜精品福利| 中文字幕另类日韩欧美亚洲嫩草| 中国美女看黄片| 精品久久久久久电影网| 日韩中文字幕视频在线看片| 在线播放国产精品三级| 精品高清国产在线一区| 欧美日韩精品网址| 亚洲全国av大片| 两个人免费观看高清视频| 99在线人妻在线中文字幕 | 极品人妻少妇av视频| 色播在线永久视频| 丁香六月天网| 51午夜福利影视在线观看| 大码成人一级视频| 久久精品亚洲熟妇少妇任你| 91麻豆精品激情在线观看国产 | 亚洲色图av天堂| 丝瓜视频免费看黄片| 少妇被粗大的猛进出69影院| 岛国毛片在线播放| 一边摸一边抽搐一进一小说 | 1024视频免费在线观看| 免费不卡黄色视频| 亚洲情色 制服丝袜| 岛国在线观看网站| 亚洲 国产 在线| 国产精品久久久人人做人人爽| 大陆偷拍与自拍| 欧美日韩视频精品一区| 一本—道久久a久久精品蜜桃钙片| 九色亚洲精品在线播放| 亚洲性夜色夜夜综合| 狂野欧美激情性xxxx| 在线 av 中文字幕| 蜜桃在线观看..| 99香蕉大伊视频| 99久久99久久久精品蜜桃| 搡老岳熟女国产| 久久99一区二区三区| 国产一区二区 视频在线| 久久久久久人人人人人| 啪啪无遮挡十八禁网站| 日本wwww免费看| 国产精品电影一区二区三区 | 啦啦啦中文免费视频观看日本| 又紧又爽又黄一区二区| 免费少妇av软件| 成在线人永久免费视频| 亚洲人成电影免费在线| 久久人妻av系列| av免费在线观看网站| 亚洲第一av免费看| 黄色视频,在线免费观看| 在线观看免费午夜福利视频| 国产日韩一区二区三区精品不卡| 老熟妇乱子伦视频在线观看| 日韩成人在线观看一区二区三区| 久久久国产精品麻豆| 国产欧美日韩一区二区精品| 在线播放国产精品三级| 一边摸一边抽搐一进一出视频| 久久久国产欧美日韩av| 国产三级黄色录像| 久久久国产成人免费| 国产在线精品亚洲第一网站| 又紧又爽又黄一区二区| 亚洲精品久久成人aⅴ小说| 精品免费久久久久久久清纯 | a级毛片在线看网站| 高清av免费在线| 热99国产精品久久久久久7| 涩涩av久久男人的天堂| 国产一区二区三区在线臀色熟女 | 在线观看舔阴道视频| 老熟女久久久| 国产成人精品在线电影| 女警被强在线播放| 亚洲精品久久午夜乱码| 亚洲三区欧美一区| 人妻 亚洲 视频| 最近最新免费中文字幕在线| 午夜久久久在线观看| 欧美激情久久久久久爽电影 | 黄片小视频在线播放| 国产精品九九99| 亚洲人成电影免费在线| 国产av国产精品国产| 午夜视频精品福利| 亚洲精品粉嫩美女一区| 久9热在线精品视频| 亚洲 欧美一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 老汉色av国产亚洲站长工具| 亚洲熟女精品中文字幕| 看免费av毛片| 欧美 日韩 精品 国产| 国产在线免费精品| 国产成人av教育| 亚洲午夜理论影院| 新久久久久国产一级毛片| 精品国产乱码久久久久久男人| 亚洲成国产人片在线观看| 久久精品亚洲熟妇少妇任你| 日韩视频在线欧美| a级毛片在线看网站| 中文字幕最新亚洲高清| 精品国产亚洲在线| 久久久水蜜桃国产精品网| 国产精品美女特级片免费视频播放器 | 亚洲精品美女久久久久99蜜臀| 麻豆国产av国片精品| 成人精品一区二区免费| 亚洲成人免费av在线播放| 国产成人精品久久二区二区91| www.精华液| 成人特级黄色片久久久久久久 | 免费女性裸体啪啪无遮挡网站| 成年女人毛片免费观看观看9 | 欧美成狂野欧美在线观看| 窝窝影院91人妻| 国产亚洲精品第一综合不卡| 满18在线观看网站| 亚洲欧洲精品一区二区精品久久久| 天堂俺去俺来也www色官网| 日韩三级视频一区二区三区| 极品人妻少妇av视频| 亚洲va日本ⅴa欧美va伊人久久| 午夜福利一区二区在线看| 中文欧美无线码| 亚洲av片天天在线观看| 十八禁网站免费在线| 国产欧美日韩综合在线一区二区| 国产亚洲精品一区二区www | 成人特级黄色片久久久久久久 | 一夜夜www| 久久久久精品国产欧美久久久| 动漫黄色视频在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 婷婷成人精品国产| 久久免费观看电影| 欧美 亚洲 国产 日韩一| 欧美日韩中文字幕国产精品一区二区三区 | 久久天堂一区二区三区四区| 欧美日韩福利视频一区二区| 国产精品熟女久久久久浪| 午夜福利,免费看| 99久久精品国产亚洲精品| 国产精品一区二区精品视频观看| 日本黄色日本黄色录像| 少妇的丰满在线观看| 黑人巨大精品欧美一区二区mp4| 女性生殖器流出的白浆| 亚洲综合色网址| 丝袜在线中文字幕| 天堂中文最新版在线下载| 黄片播放在线免费| 无遮挡黄片免费观看| 国产黄频视频在线观看| 欧美乱码精品一区二区三区| 日韩欧美一区视频在线观看| 欧美日韩福利视频一区二区| a级毛片黄视频| 亚洲精品粉嫩美女一区| 午夜久久久在线观看| av在线播放免费不卡| 老司机在亚洲福利影院| 久久国产精品大桥未久av| 日日夜夜操网爽| 91精品三级在线观看| 久久人妻av系列| 18禁国产床啪视频网站| 久久ye,这里只有精品| 女人高潮潮喷娇喘18禁视频| 青草久久国产| 色老头精品视频在线观看| 国产午夜精品久久久久久| 国产精品 欧美亚洲| 99久久人妻综合| 这个男人来自地球电影免费观看| 久久精品国产综合久久久| 亚洲,欧美精品.| 91麻豆av在线| 亚洲 国产 在线| 欧美日韩成人在线一区二区| 老司机深夜福利视频在线观看| 日本黄色日本黄色录像| 午夜成年电影在线免费观看| 久久精品国产a三级三级三级| 久久精品91无色码中文字幕| 欧美日韩国产mv在线观看视频| 人妻一区二区av| 大片电影免费在线观看免费| 18禁观看日本| 一区二区三区精品91| 国产老妇伦熟女老妇高清| 成人亚洲精品一区在线观看| 丰满迷人的少妇在线观看| 欧美在线黄色| 老司机午夜十八禁免费视频| 国产一区二区三区视频了| 纵有疾风起免费观看全集完整版| 99久久99久久久精品蜜桃| 99国产精品免费福利视频| 人妻久久中文字幕网| 十八禁高潮呻吟视频| tocl精华| 黑人巨大精品欧美一区二区mp4| 一夜夜www| 欧美日韩国产mv在线观看视频| 亚洲精品美女久久av网站| 夫妻午夜视频| 天天影视国产精品| 国产一区二区在线观看av| 久久婷婷成人综合色麻豆| 99riav亚洲国产免费| 国产精品久久久久久精品电影小说| 亚洲性夜色夜夜综合| 国产1区2区3区精品| 精品少妇黑人巨大在线播放| 久久久久精品国产欧美久久久| 国产又爽黄色视频| e午夜精品久久久久久久| 天天躁夜夜躁狠狠躁躁| 青草久久国产| 欧美成人午夜精品| 久久天躁狠狠躁夜夜2o2o| 久久久久网色| 日本a在线网址| 高清欧美精品videossex| 国产精品自产拍在线观看55亚洲 |