• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    In-situ ultrasonic calibrations of pressure and temperature in a hinge-type double-stage cubic large volume press

    2022-06-29 08:53:46QingzeLi李青澤XipingChen陳喜平LeiXie謝雷TiexinHan韓鐵鑫JiachengSun孫嘉程andLeimingFang房雷鳴
    Chinese Physics B 2022年6期
    關(guān)鍵詞:雷鳴

    Qingze Li(李青澤), Xiping Chen(陳喜平), Lei Xie(謝雷),Tiexin Han(韓鐵鑫), Jiacheng Sun(孫嘉程), and Leiming Fang(房雷鳴)

    Key Laboratory for Neutron Physics,Institute of Nuclear Physics and Chemistry,China Academy of Engineering Physics,Mianyang 621900,China

    Keywords: cubic press, simultaneous in-situ calibration of pressures and temperatures, acoustic travel-time,high pressure and high temperature

    1. Introduction

    Pressure (P) and temperature (T) are important thermodynamic parameters to modulate structures or physical properties of materials and provide new insights into the nature of matter under extremeP–Tconditions.[1,2]To date, large volume press (LVP) has been widely used in industrial applications and scientific research owing to their unique advantages such as large sample volume, precise high-temperature control,and low costs.[3–9]However,only few LVP are installed at synchrotron/neutron sources beamline stations,i.e.,beamlinebased LVP,and the corresponding cell pressures can bein-situdetermined by using the equation-of-state (EOS) of pressure markers,such as Au,Pt,MgO,and NaCl.[10–13]

    In terms of in-house(laboratory setup)LVP,the LVP cell pressures are usually off-line calibrated at room temperature as a function of ram load, which inevitably yields relatively large errors especially for the simultaneous highP–Tcalibrations. Cell pressures at room temperature are usually calibrated by the electrical resistance method, based on the wellknown fixed-points phase transition of some typical materials upon compression (e.g., Bi, Tl, Ba, ZnTe, and ZnS).[5,8,14,15]By contrast, the cell pressures at high temperatures are usually calibrated by the recovered minerals/material subjected to olivine-to-wadsleyite or quartz-to-coesite phase transitions at high pressure and high temperature, which are usually identified using x-ray diffraction measurements and/or scanning electron imaging (SEM) observations,[16,17]or by the melting curve of metals (i.e., Cu and Al) at high pressure.[18]For conventional/off-line pressure calibration methods, however, the high-pressure cell assembly is needed to put pressure marks/materials,so those methods are not suitable to determine cell pressures at simultaneous high-temperature and high-pressure conditions. As a result, those traditional offline pressure calibration methods are not suitable or precise enough forin-situphysical property measurements(i.e.,electrical resistivity measurements,and ultrasonic measurements),owing to relatively larger errors in the calibrated cell pressures at simultaneous high-pressure and high-temperature conditions. Thus, precise calibrations of cell pressures and/or temperatures are of necessity and importance for carrying out high-pressure and/or high-temperature experiments when synchrotron x-ray/neutron diffraction beams are not available.

    Recently, new methods forin-situpressure calibration by using an acoustic travel-time approach have been further developed by some groups. Wanget al.[19]firstly reported that the shear wave travel-times of Al2O3buffer rod can be utilized forin-situdetermination of pressures and temperatures in a LVP chamber up to 15 GPa and 900°C. Higoet al.[20]and Songet al.[21]have also performed the cell pressure calibration in a large volume press by calibrating the travel-times of Al2O3buffer rod at pressures up to 12 GPa and room temperature. The previous results from acousticcalibration method are in good agreement with those by fixedpoints room-temperature pressure calibration results. On the other hand, temperatures in LVP are usually directly measured by using thermocouples (e.g., Pt94Rh6/Pt70Rh30, and W3Re97/W25Re75).During LVP-based highP–Texperiments,an additional electromotive force (EMF) can be induced by many factors such as pressures, and thermocouple position,resulting in inaccuracy of measurements.[1]In this method,thermocouples are usually placed on the surface of tungsten carbide anvils to reduce the deformation upon compression,but still have a risk to breakdown the thermocouples at high pressure, and should destroy the integrity of the heater and chamber when the thermocouple was placed on the cell assembly.

    The hinge-type cubic large volume press, also called China-type cubic large volume press, as a type of important high-pressure device, has been widely used in industrial synthesis and high pressure scientific research both in China and world.[5,8]On the basis of the previous study on the ultrasonic travel-time of polycrystalline Al2O3versus pressures and temperatures,[19]we have performed simultaneousinsitucalibration of pressures and temperatures in the hingetype second-stage cubic large volume press up to 15 GPa and 1400 K.The pressures and temperatures in a LVP chamber arein-situand simultaneous determined to be independent of synchrotron x-ray/neutron diffraction beams, as compared with those by conventional/offline pressure calibration method and direct thermocouple measurements, respectively. The precise calibration of pressures at variously high temperatures in a LVP is reported.

    2. Experimental methods

    High pressure ultrasonic measurement experiments were conducted in a newly designed hinge-type cubic large volume press (6×14 MN) with second-stage, which was installed at the high-pressure laboratory of China Mianyang Research Reactor (CMRR) neutron scattering facility, China Academy of Engineering Physics.[22–26]The schematic experimental setup for the newly designed hinge-type cubic LVP, and the highpressure ultrasonic measurement system is shown in Fig.1.

    Fig.1. The schematic experimental setup for the hinge-type cubic LVP-based high pressure ultrasonic measurement system.

    The corresponding cell assemblies for the current LVPbased ultrasonic measurement at highPand high/roomTare shown in Fig. 2. The 14/8 cell assembly, an MgO octahedron with the edge length of 14 mm as a pressure medium and eight cubic WC anvils with the truncation edge length of 8 mm as the second-stage anvils, is used. A high-density double-side polished of polycrystalline Al2O3and WC are served as acoustic buffer rod and the sample respectively. For simultaneously highP–Tultrasonic measurements, the sample is usually surrounded by a mixture of NaCl and hexagonal boron nitride (h-BN) (4:1 by weight), which can provide a quasi-hydrostatic pressure environment around the sample.The quasi-hydrostatic environment of the cell has been verified in previous h-AlN compression experiments.[23]A gold foil with 2 μm thickness is inserted between the buffer rod and the sample to enhance their mechanical coupling. In terms of high temperature experiments, a rhenium foil with 50 μm thickness is used as a furnace/heater to generate high temperatures.A W3Re97–W25Re75thermocouple is placed near the sample side for direct measurements of the cell temperatures. The acoustic signals are excited by a dual mode LiNbO3transducer(10-degreeY-cut), serving as both a transmitter and receiver,which is mounted on the back corner of one WC cube. During the current ultrasonic measurements, the compressional(P) and shear (S) wave travel-times are derived by using the pulse echo overlap (PEO) technique,[27]and the travel-times inside the Al2O3buffer rod and the sample were obtained by overlapping the echoes reflected from the anvil and the buffer rod with a precision better than 0.2%.[28–30]

    Fig. 2. Schematic cross-section cell assemblies for the current LVPbased ultrasonic measurements at(a)high-P and room T;(b)and at the simultaneous HP and HT conditions.

    3. Results and discussio n

    In this experiment, we have performed five heatingcooling cycles at ram loads up to 3.46 MN and temperatures up to 1400 K. In the current highP–Tacoustic experiments,all the data are collected along cooling during decompression. The as-measured sample is annealed at the peak pressures and temperatures for several minutes to release nonhydrostatic stress accumulated in the sample upon compression.Figure 3 shows the typical acoustic echoes at the peak pressure and temperature of~15 GPa and~1400 K from the current LVP-based ultrasonic measurements at high pressure and high temperature. The high signal-to-noise ratio and the clear separation of reflections from the buffer rod and the sample ensure a precise determination of travel-times of the sample.

    Fig.3. Typical acoustic echoes of the interfaces between the WC anvil,Al2O3 buffer rod,and a typical WC sample at ~15 GPa and ~1400 K.

    3.1. In-situ calibration of pressures at room temperature

    As shown in Table 1, the shear waves travel-times (tS)for Al2O3buffer rod at different ram loads from the ultrasonic measurements at high pressure and room temperature(runs 1 and 2)are summarized.The cell pressures as a function of ram loads can be derived,based on the previously reportedP–tSrelation of Al2O3buffer rod[19]

    wheretSandtS0are the S wave travel-times at high pressure and zero pressure, respectively.tS0is derived from a least square fit oftSin this study. Although the Al2O3buffer rod is not located at the center of the highP–Tcell assembly which may cause nonnegligible nonhydrostatic stress accumulated in the buffer rod,by using the current acoustic pressure–temperature calibration method,the accumulated stress in the buffer rod will have no effect on the calibrated pressure and temperature results. Because we have used the same highP–Tcell assembly as Wanget al.,[19]where theP–tSandP–T–tP–tSequations are derived based on the measured travel-times for Al2O3buffer rod,and the cell pressures from the synchrotron x-ray diffraction date of pressure markers for NaCl or Au(located at the center of the chamber). Details can be found elsewhere in Ref.[19].

    Table 1. Shear wave travel-times of Al2O3 buffer rod at various ram loads from the current high-pressure ultrasonic measurements for runs 1 and 2.

    For comparison,the corresponding room temperature cell pressures are also calibrated by using the well-known phase transition of some typical materials(e.g.,Bi: I–II at 2.55 GPa;ZnTe: I–II at 5 GPa,II–III at 9–9.5 GPa,semi/metal at 11.5–13 GPa; ZnS: semi/metal at 15.6 GPa), i.e., fixed-point pressure calibration method. For good understanding, the cell pressures as determined by our measured shear wave traveltimes for Al2O3buffer rod are plotted as a function of ram load in Fig. 4, as compared with those by the conventional off-line pressure calibration method. It can be seen, the cell pressures asin-situdetermined from the acoustic travel-time method are in good agreement with those by the conventional fixed-point method within mutual uncertainties.

    Fig.4. In-situ ultrasonic calibration of pressures at room temperature in a hinge-type LVP,the gray line is a guide to the eye.

    3.2. In-situ calibrations of temperatures and pressures

    As reported in Ref. [19], the cell pressure and temperature can both be determined by P and S wave travel-times(tPandtS),profit from the P and S waves can be measured simultaneously by the state-of-the-art ultrasonic measurement technique,and theP–tP–tSandT–tP–tSequations can be expressed as

    wheretS/tPis the measured S/P wave travel-time at high pressure,andtS0/tP0is at zero pressure. Since both P and S waves are simultaneously measured in the current study, and the intrinsic difference between P and S waves in their respective pressure and temperature dependences warrants a unique solution for pressure and temperature. The measuredtS/tPand the determined pressure and temperature at various highP–Tare summarized in Table 2. For comparison,temperatures directly measured by thermocouples are also included.tS0andtP0were derived from a least square fit oftSandtPat high pressure of various ram load and the temperature annealing to ambient, and yield to 0.6882 μs and 1.1806 μs, respectively. What is noteworthy is that, in some cases, the buffer rod may experience plastic deformation if the stress exceeds the yield strength of polycrystalline Al2O3during heating to the peak pressure and temperature conditions of the experiment in the first heating cycle. However, if the subsequent heating along decompression is not above the peak temperature, the cell assembly is expected to experience only elastic deformation,thus the results of pressure and temperature calibration are also believable.

    Table 2.Summary of acoustic travel-times(tP and tS),ram load,electric power,temperatures,and pressures as calibrated by acoustic travel-time method and direct thermocouple measurements.

    To further confirm the validation of acoustic highP–Tcalibration approach,the temperaturesversuspowers at different ram load are plotted in Fig.5(a),as compared with those by direct thermocouple measurements. Obviously, the temperatures obtained from the acoustic travel-time approach are generally consistent with those by direct thermocouple measurements. However, the temperatures measured by thermocouples are slightly lower than those calibrated by acoustic traveltime method,especially at high temperature region. This discrepancy may be due to the effects of pressure and temperature on the electromotive force(EMF)when performing direct temperature measurements by using thermocouples. This behavior has been reported where the difference between the nominal and real temperatures was~29 K at 16 GPa and 1173 K,and this difference will become much more pronounced at higher temperatures and pressures.[31]

    To clarify the effects of various pressures on temperatures at a certain electric power,various temperatures as a function of ram loads at electric powers of 300 W and 450 W are shown in Fig.5(b),which isin situcalibrated by acoustic travel-time approach. It is easy to see that the pressure effects on the temperature cannot be ignored,due to the cell assembly/heater is deformation and shrink during the compression. The temperatures are~20°C/MN drops when the ram loads increase from 0.5 MN to 3.5 MN.

    Fig.5. (a)Temperatures versus powers at various load. (b)Pressure effect on the temperature as calibrated by acoustic travel-time approach,in comparison with those by direct thermocouple measurements.

    To know deeply about stress accumulated in highpressure cell assembly during cold compression, thein-situcalibration of cell pressures before- and after-annealing are plotted in Fig. 6(a) for comparison. It is found that the cell pressure drops about 30%(from~14 GPa to~10 GPa)at the same load of 3.5 MN just after annealing at~1400 K,owing to the stress relaxation at high temperature. In order to further know how temperature affects the cell pressures after annealing in the LVP-based highP–Texperiments,the cell pressures are plotted as a function of temperature and load in Fig.6(b).It finds that the cell pressures show an increase of~0.2 GPa with the increase of temperatures by 100 K after annealing.To conclude,at a certain load,the cell assembly up to a maximum pressure before annealing at maximum temperature,and then the pressure will decrease with the temperature anneal, and the pressure reach a minimum when the temperature anneal to ambient.

    Fig. 6. (a) Ambient-temperature cell pressures versus load after annealing,as compared with those before heating; (b)cell pressures as a function of temperature and load.

    Based on the current ultrasonic travel-time calibrations ofP–Tresults, an empirical formula to determining the cell pressures (P) by a two-dimensional temperature–load (T–F)can be yielded,

    whereFis the load in MN,andTis the temperature in K.

    The obtained empirical formula is helpful to understand the rear pressure of the cell assembly in LVP highP–Texperiments. Indeed, this empirical formula cannot be commonly used in all cell assembly,because the formula should be changed by the change of cell assembly materials andP–Texperiment region. However,its significance is to know how the cell pressure changes andin-situdetermine the pressure and temperature in LVP highP–Texperiments by acoustic traveltime method.

    4. Conclusion

    In this study,ultrasonic interferometry measurement system has been performed into a hinge-type second-stage cubic large volume press (LVP), in order toin-situsimultaneous calibration of pressures and temperatures up to 15 GPa and 1400 K by using acoustic travel-time approach. The results show that the acoustic travel-timein-situpressure-calibration approach is much more convenient and reliable and can be used for both room-temperature pressure calibration and simultaneous highP–Tcalibration, and the calibrated temperatures by acoustic travel-time approach agree well with those by direct thermocouple measurements. An empirical formula for pressure is presented to understand the rear pressure of the cell assembly in LVP highP–Texperiments. The significance of acoustic travel-timeP–Tcalibration approach is to know how the cell pressure changes andin-situdetermine the pressure and temperature in LVP highP–Texperiments. This method can be conductedin-situphysical property measurements under extreme highP–Tenvironments and can be used in different type of LVP,especially when the rare synchrotron x-ray/neutron diffraction beams are not available.

    Acknowledgements

    The authors would like to thank Prof. Yongtao Zou,Prof.Duanwei He and Prof. Fang Peng for the helpful discussions.

    Project supported by the National Natural Science Foundation of China (Grant Nos. 12075215, 11872198, and U2030110)and the National Key Research and Development Program of China(Grant No.2016YFA0401503).

    猜你喜歡
    雷鳴
    Quantitative determination of the critical points of Mott metal–insulator transition in strongly correlated systems
    雷鳴和細(xì)雨
    Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
    Measuring the flexibility matrix of an eagle's flight feather and a method to estimate the stiffness distribution?
    Detection of Magnetic Field Gradient and Single Spin Using Optically Levitated Nano-Particle in Vacuum?
    動(dòng)物可笑堂
    強(qiáng)勁、震撼 Rythmik Audio(雷鳴)FV25HP
    Tunneling field effect transistors based on in-plane and vertical layered phosphorus heterostructures?
    Capital Market Analysis
    商情(2017年5期)2017-03-30 23:58:25
    坑人的兄弟
    亚洲欧美激情在线| 久久午夜综合久久蜜桃| 99精品在免费线老司机午夜| 建设人人有责人人尽责人人享有的| 免费黄频网站在线观看国产| 极品教师在线免费播放| 免费不卡黄色视频| 精品卡一卡二卡四卡免费| 亚洲精品在线美女| 欧美日韩国产mv在线观看视频| 午夜91福利影院| 精品一区二区三区视频在线观看免费 | 免费看a级黄色片| 免费在线观看完整版高清| 日本a在线网址| 久久久精品国产亚洲av高清涩受| 高潮久久久久久久久久久不卡| 国产精品免费视频内射| 少妇被粗大的猛进出69影院| 丝袜人妻中文字幕| 人人澡人人妻人| 欧美成人午夜精品| 99精品欧美一区二区三区四区| 男女边摸边吃奶| 久久久国产一区二区| 我要看黄色一级片免费的| 亚洲精品在线观看二区| 肉色欧美久久久久久久蜜桃| 色婷婷av一区二区三区视频| 国产精品电影一区二区三区 | 18在线观看网站| 亚洲av第一区精品v没综合| 亚洲av电影在线进入| 免费观看人在逋| 香蕉丝袜av| 国产福利在线免费观看视频| a在线观看视频网站| 精品熟女少妇八av免费久了| 性少妇av在线| svipshipincom国产片| 正在播放国产对白刺激| av一本久久久久| 我的亚洲天堂| 久久精品亚洲精品国产色婷小说| 国产精品1区2区在线观看. | 午夜福利乱码中文字幕| 国产精品久久久久久人妻精品电影 | 亚洲欧美日韩另类电影网站| 国产高清激情床上av| 久久久久久久精品吃奶| 国产高清videossex| 777久久人妻少妇嫩草av网站| 男女无遮挡免费网站观看| 亚洲欧美一区二区三区黑人| 一区二区三区激情视频| 亚洲 国产 在线| 在线播放国产精品三级| 欧美日韩国产mv在线观看视频| 日韩欧美国产一区二区入口| 在线看a的网站| 亚洲综合色网址| 不卡av一区二区三区| 欧美精品高潮呻吟av久久| 国内毛片毛片毛片毛片毛片| 精品欧美一区二区三区在线| a级毛片黄视频| 国产不卡一卡二| 99国产精品一区二区蜜桃av | 女性被躁到高潮视频| 免费少妇av软件| 狠狠狠狠99中文字幕| 欧美一级毛片孕妇| 黄网站色视频无遮挡免费观看| 亚洲视频免费观看视频| 欧美激情高清一区二区三区| 汤姆久久久久久久影院中文字幕| 脱女人内裤的视频| 国产亚洲精品第一综合不卡| 最近最新中文字幕大全免费视频| 免费av中文字幕在线| 一二三四在线观看免费中文在| 久久久精品免费免费高清| 母亲3免费完整高清在线观看| 国产激情久久老熟女| 欧美精品亚洲一区二区| 一二三四社区在线视频社区8| 后天国语完整版免费观看| 黄色丝袜av网址大全| 国产成人精品久久二区二区免费| 日韩中文字幕欧美一区二区| 十八禁网站免费在线| 后天国语完整版免费观看| 99精品在免费线老司机午夜| 男女午夜视频在线观看| 亚洲av第一区精品v没综合| 亚洲综合色网址| 水蜜桃什么品种好| 国产欧美日韩一区二区三| 汤姆久久久久久久影院中文字幕| 丝袜美足系列| 男女无遮挡免费网站观看| 最近最新免费中文字幕在线| 国产在线精品亚洲第一网站| 国产男靠女视频免费网站| 欧美激情高清一区二区三区| 久久ye,这里只有精品| 动漫黄色视频在线观看| 免费高清在线观看日韩| 亚洲第一欧美日韩一区二区三区 | 老司机影院毛片| 在线av久久热| 国产精品熟女久久久久浪| 午夜福利视频在线观看免费| 好男人电影高清在线观看| 婷婷丁香在线五月| 9191精品国产免费久久| 中文字幕精品免费在线观看视频| 97在线人人人人妻| 岛国毛片在线播放| 18禁黄网站禁片午夜丰满| 国产精品久久电影中文字幕 | 91av网站免费观看| bbb黄色大片| 两人在一起打扑克的视频| 黑人猛操日本美女一级片| 黄色毛片三级朝国网站| 欧美人与性动交α欧美软件| 少妇猛男粗大的猛烈进出视频| 久久99热这里只频精品6学生| 亚洲中文日韩欧美视频| 色综合婷婷激情| 日韩免费高清中文字幕av| 一区二区三区乱码不卡18| 午夜视频精品福利| 久久中文看片网| 俄罗斯特黄特色一大片| av福利片在线| 欧美精品av麻豆av| 精品国产国语对白av| 一级黄色大片毛片| 精品一区二区三卡| 日韩熟女老妇一区二区性免费视频| 在线观看免费日韩欧美大片| 2018国产大陆天天弄谢| 亚洲av片天天在线观看| 97人妻天天添夜夜摸| 嫩草影视91久久| 深夜精品福利| 如日韩欧美国产精品一区二区三区| e午夜精品久久久久久久| 精品国产乱子伦一区二区三区| 欧美日韩av久久| 国产xxxxx性猛交| 中文字幕人妻丝袜制服| 别揉我奶头~嗯~啊~动态视频| 久久人人爽av亚洲精品天堂| 岛国在线观看网站| 女人高潮潮喷娇喘18禁视频| 91av网站免费观看| 最新在线观看一区二区三区| 国产成人免费无遮挡视频| 又黄又粗又硬又大视频| 精品国产亚洲在线| 久久精品熟女亚洲av麻豆精品| 国产亚洲欧美在线一区二区| 久久精品91无色码中文字幕| 中文字幕色久视频| 9色porny在线观看| 久久人人爽av亚洲精品天堂| 少妇裸体淫交视频免费看高清 | 亚洲国产毛片av蜜桃av| 一区二区日韩欧美中文字幕| 欧美黑人欧美精品刺激| 中文字幕人妻丝袜制服| 男女免费视频国产| 桃红色精品国产亚洲av| 操美女的视频在线观看| 国产aⅴ精品一区二区三区波| 日日夜夜操网爽| 九色亚洲精品在线播放| 好男人电影高清在线观看| 80岁老熟妇乱子伦牲交| 十八禁网站网址无遮挡| 国产精品二区激情视频| 亚洲成av片中文字幕在线观看| 日本黄色日本黄色录像| 啦啦啦 在线观看视频| 欧美日韩成人在线一区二区| 色精品久久人妻99蜜桃| 欧美日韩福利视频一区二区| 丰满迷人的少妇在线观看| 99国产精品99久久久久| 手机成人av网站| 在线亚洲精品国产二区图片欧美| 一进一出好大好爽视频| 亚洲av第一区精品v没综合| 后天国语完整版免费观看| 久久久精品94久久精品| 久久精品亚洲精品国产色婷小说| 久久婷婷成人综合色麻豆| 国产淫语在线视频| 久久精品国产亚洲av高清一级| 亚洲成a人片在线一区二区| 国产99久久九九免费精品| 国产成人精品久久二区二区免费| 日日爽夜夜爽网站| 亚洲专区国产一区二区| 国产日韩欧美在线精品| 国产不卡av网站在线观看| 香蕉丝袜av| 欧美精品一区二区免费开放| 亚洲成国产人片在线观看| 亚洲欧洲精品一区二区精品久久久| 最近最新中文字幕大全电影3 | 天天躁日日躁夜夜躁夜夜| 不卡av一区二区三区| 中文亚洲av片在线观看爽 | 黑人巨大精品欧美一区二区mp4| 精品一区二区三区视频在线观看免费 | 美女国产高潮福利片在线看| 麻豆成人av在线观看| 一区二区三区激情视频| 黑人巨大精品欧美一区二区蜜桃| 国产成人系列免费观看| 蜜桃在线观看..| videosex国产| 亚洲精品自拍成人| 一区在线观看完整版| 两人在一起打扑克的视频| 国产亚洲午夜精品一区二区久久| 精品少妇久久久久久888优播| 成人影院久久| 中文字幕av电影在线播放| 又紧又爽又黄一区二区| 女人被躁到高潮嗷嗷叫费观| 国产精品二区激情视频| 精品福利永久在线观看| 精品欧美一区二区三区在线| 丰满少妇做爰视频| 在线 av 中文字幕| 精品亚洲成国产av| 老司机影院毛片| 国产极品粉嫩免费观看在线| 国产精品一区二区在线不卡| 男男h啪啪无遮挡| 欧美精品啪啪一区二区三区| 丝袜在线中文字幕| 日韩视频在线欧美| 亚洲中文av在线| 又大又爽又粗| 亚洲成a人片在线一区二区| xxxhd国产人妻xxx| 亚洲三区欧美一区| 日韩精品免费视频一区二区三区| 99国产综合亚洲精品| 国产欧美日韩一区二区精品| 黄色丝袜av网址大全| 精品少妇内射三级| 婷婷成人精品国产| 欧美在线黄色| 黑丝袜美女国产一区| 黄片大片在线免费观看| 一本—道久久a久久精品蜜桃钙片| 最近最新中文字幕大全电影3 | 自线自在国产av| 深夜精品福利| a在线观看视频网站| 欧美亚洲 丝袜 人妻 在线| 免费不卡黄色视频| 成年版毛片免费区| 久久国产亚洲av麻豆专区| 久久精品亚洲熟妇少妇任你| 亚洲精品中文字幕在线视频| 巨乳人妻的诱惑在线观看| 久久久久精品人妻al黑| 国产极品粉嫩免费观看在线| 精品第一国产精品| 日韩制服丝袜自拍偷拍| 国内毛片毛片毛片毛片毛片| 正在播放国产对白刺激| 日韩免费av在线播放| 国产成人精品在线电影| 国产精品久久电影中文字幕 | 十八禁人妻一区二区| 一本—道久久a久久精品蜜桃钙片| 午夜免费鲁丝| 国产精品久久久久久精品电影小说| 嫩草影视91久久| 免费在线观看完整版高清| 久久99一区二区三区| 黄色片一级片一级黄色片| av天堂久久9| www日本在线高清视频| 好男人电影高清在线观看| 蜜桃在线观看..| 亚洲七黄色美女视频| 日韩有码中文字幕| 国产aⅴ精品一区二区三区波| 不卡av一区二区三区| 久久人人97超碰香蕉20202| 在线天堂中文资源库| 如日韩欧美国产精品一区二区三区| √禁漫天堂资源中文www| 国产成+人综合+亚洲专区| 女同久久另类99精品国产91| kizo精华| 免费人妻精品一区二区三区视频| 国产成人啪精品午夜网站| 又紧又爽又黄一区二区| 乱人伦中国视频| 欧美老熟妇乱子伦牲交| 亚洲一区二区三区欧美精品| 成人18禁在线播放| 99国产精品一区二区三区| 午夜视频精品福利| 亚洲精品一二三| 人成视频在线观看免费观看| 99热国产这里只有精品6| 国产日韩一区二区三区精品不卡| www日本在线高清视频| 日韩制服丝袜自拍偷拍| 中文字幕人妻丝袜一区二区| 色精品久久人妻99蜜桃| 婷婷丁香在线五月| 咕卡用的链子| 久久久久久久大尺度免费视频| 久久中文看片网| 国产黄色免费在线视频| 色综合欧美亚洲国产小说| av不卡在线播放| 精品一品国产午夜福利视频| 欧美精品一区二区免费开放| 国产av国产精品国产| netflix在线观看网站| 天天躁夜夜躁狠狠躁躁| 日韩三级视频一区二区三区| 久久精品亚洲av国产电影网| 午夜成年电影在线免费观看| 手机成人av网站| 国产淫语在线视频| cao死你这个sao货| av网站在线播放免费| www日本在线高清视频| 国产xxxxx性猛交| 99精国产麻豆久久婷婷| 国产成人一区二区三区免费视频网站| 午夜激情久久久久久久| 妹子高潮喷水视频| 丝袜美腿诱惑在线| 欧美一级毛片孕妇| 日韩一区二区三区影片| 国产三级黄色录像| 少妇的丰满在线观看| 夜夜骑夜夜射夜夜干| 美女午夜性视频免费| 久久免费观看电影| 精品一区二区三区av网在线观看 | 不卡一级毛片| 亚洲精品中文字幕一二三四区 | 人人妻人人澡人人爽人人夜夜| 成人18禁在线播放| 老熟妇仑乱视频hdxx| cao死你这个sao货| 日日摸夜夜添夜夜添小说| 国产不卡av网站在线观看| 国产单亲对白刺激| 亚洲国产欧美日韩在线播放| 母亲3免费完整高清在线观看| 丰满迷人的少妇在线观看| 男女午夜视频在线观看| 交换朋友夫妻互换小说| 国产亚洲欧美精品永久| 国产亚洲一区二区精品| 人成视频在线观看免费观看| netflix在线观看网站| 亚洲视频免费观看视频| av片东京热男人的天堂| 欧美精品亚洲一区二区| 日本黄色日本黄色录像| 国产男女内射视频| 极品少妇高潮喷水抽搐| 久久性视频一级片| 午夜91福利影院| 久久久欧美国产精品| 狂野欧美激情性xxxx| 亚洲国产欧美日韩在线播放| 一级片免费观看大全| 中文字幕av电影在线播放| 一区福利在线观看| 成人黄色视频免费在线看| 丰满迷人的少妇在线观看| 日韩视频在线欧美| 国产欧美日韩综合在线一区二区| www日本在线高清视频| 视频区欧美日本亚洲| 高清av免费在线| 亚洲成国产人片在线观看| 超碰97精品在线观看| 亚洲国产欧美一区二区综合| 夜夜骑夜夜射夜夜干| 久久久国产精品麻豆| 人人妻人人添人人爽欧美一区卜| 日韩制服丝袜自拍偷拍| 中亚洲国语对白在线视频| 精品高清国产在线一区| 免费在线观看完整版高清| 熟女少妇亚洲综合色aaa.| 亚洲中文字幕日韩| 国产亚洲精品久久久久5区| 成人18禁高潮啪啪吃奶动态图| 国产无遮挡羞羞视频在线观看| 国产av精品麻豆| 搡老乐熟女国产| 日韩欧美国产一区二区入口| 亚洲五月婷婷丁香| 高清欧美精品videossex| 在线天堂中文资源库| 高清av免费在线| 国产欧美日韩一区二区三区在线| 视频在线观看一区二区三区| 亚洲成人手机| 亚洲男人天堂网一区| 最新在线观看一区二区三区| 在线观看www视频免费| 国产成人精品无人区| 9191精品国产免费久久| 老汉色av国产亚洲站长工具| 国产国语露脸激情在线看| 在线观看www视频免费| 国产精品 国内视频| 老司机亚洲免费影院| 国产欧美日韩精品亚洲av| 国产人伦9x9x在线观看| av欧美777| 桃花免费在线播放| 欧美日韩黄片免| 欧美乱妇无乱码| 超碰97精品在线观看| 嫁个100分男人电影在线观看| 水蜜桃什么品种好| 国产成人精品无人区| 91老司机精品| 熟女少妇亚洲综合色aaa.| 久久人人97超碰香蕉20202| 国产色视频综合| av免费在线观看网站| 亚洲九九香蕉| 99精品在免费线老司机午夜| 国产91精品成人一区二区三区 | 亚洲精品中文字幕在线视频| 亚洲人成电影观看| 欧美国产精品va在线观看不卡| 成年人免费黄色播放视频| 亚洲欧洲日产国产| 日韩视频在线欧美| 成年女人毛片免费观看观看9 | 免费日韩欧美在线观看| 国产欧美亚洲国产| 国产亚洲午夜精品一区二区久久| 亚洲国产成人一精品久久久| 欧美日韩亚洲综合一区二区三区_| 精品午夜福利视频在线观看一区 | 热99久久久久精品小说推荐| svipshipincom国产片| 日韩中文字幕欧美一区二区| 十八禁网站网址无遮挡| 中文字幕色久视频| 国产在线一区二区三区精| 国产成人一区二区三区免费视频网站| 亚洲专区国产一区二区| 人妻 亚洲 视频| 中国美女看黄片| 中文字幕av电影在线播放| 搡老岳熟女国产| 欧美精品人与动牲交sv欧美| 男女高潮啪啪啪动态图| 大型黄色视频在线免费观看| 亚洲国产欧美一区二区综合| 国产精品一区二区在线不卡| 国产在线一区二区三区精| 亚洲av第一区精品v没综合| 中文字幕高清在线视频| 国产精品二区激情视频| 久久久久久久久免费视频了| 男女无遮挡免费网站观看| 99精品久久久久人妻精品| av不卡在线播放| 女人久久www免费人成看片| 国产1区2区3区精品| 亚洲av美国av| 国产精品 欧美亚洲| 精品一区二区三卡| 在线av久久热| 极品少妇高潮喷水抽搐| 最新在线观看一区二区三区| 亚洲成人免费av在线播放| 老司机午夜十八禁免费视频| 日韩免费av在线播放| 亚洲天堂av无毛| 另类精品久久| 在线观看免费日韩欧美大片| 黄色成人免费大全| 交换朋友夫妻互换小说| 激情在线观看视频在线高清 | 国产精品自产拍在线观看55亚洲 | 一区二区三区乱码不卡18| 视频区欧美日本亚洲| www.精华液| 亚洲精品在线观看二区| 一区二区av电影网| 欧美激情久久久久久爽电影 | 交换朋友夫妻互换小说| 99九九在线精品视频| 天堂动漫精品| 在线播放国产精品三级| 亚洲国产成人一精品久久久| 亚洲av国产av综合av卡| 午夜福利影视在线免费观看| 美女高潮到喷水免费观看| 多毛熟女@视频| 国产成人系列免费观看| 一区二区av电影网| 国产欧美日韩一区二区三区在线| 免费在线观看黄色视频的| 亚洲成人免费电影在线观看| 欧美精品一区二区大全| 高清欧美精品videossex| 精品国产乱码久久久久久男人| 精品久久久精品久久久| 黑人欧美特级aaaaaa片| 欧美精品高潮呻吟av久久| 日韩中文字幕视频在线看片| 在线观看一区二区三区激情| 欧美日韩一级在线毛片| 老汉色∧v一级毛片| 欧美乱妇无乱码| 国产一区二区三区视频了| 国产欧美日韩一区二区精品| 亚洲专区中文字幕在线| 99久久国产精品久久久| 国产高清视频在线播放一区| 18禁黄网站禁片午夜丰满| 国产高清视频在线播放一区| 国产欧美日韩一区二区精品| 91字幕亚洲| 热99re8久久精品国产| 999久久久国产精品视频| 男人操女人黄网站| 狠狠精品人妻久久久久久综合| 99热国产这里只有精品6| 久久精品国产a三级三级三级| 久久这里只有精品19| 久久精品国产a三级三级三级| 久久久久久亚洲精品国产蜜桃av| 国产成人系列免费观看| 国产男女内射视频| 国产免费av片在线观看野外av| 正在播放国产对白刺激| 宅男免费午夜| 国产99久久九九免费精品| 视频区欧美日本亚洲| 99国产精品一区二区三区| 亚洲av欧美aⅴ国产| 变态另类成人亚洲欧美熟女 | 国产91精品成人一区二区三区 | 亚洲,欧美精品.| 亚洲精品久久午夜乱码| 十八禁网站网址无遮挡| 午夜免费鲁丝| 人人妻人人澡人人爽人人夜夜| 精品久久久精品久久久| 亚洲七黄色美女视频| 一边摸一边抽搐一进一出视频| 日韩人妻精品一区2区三区| 日本黄色视频三级网站网址 | 99精品久久久久人妻精品| 自线自在国产av| 日韩中文字幕视频在线看片| 男女无遮挡免费网站观看| 国产aⅴ精品一区二区三区波| 亚洲精品美女久久久久99蜜臀| 热re99久久国产66热| 香蕉丝袜av| av免费在线观看网站| 亚洲熟女精品中文字幕| 久久人人97超碰香蕉20202| 亚洲免费av在线视频| 午夜福利乱码中文字幕| 淫妇啪啪啪对白视频| 国产免费现黄频在线看| 国产精品熟女久久久久浪| 久久久久久久久久久久大奶| 超碰成人久久| cao死你这个sao货| 久久久精品区二区三区| 精品久久久久久电影网| 精品一品国产午夜福利视频| 国产精品一区二区免费欧美| 国产在线免费精品| 国产在视频线精品| 1024视频免费在线观看| 女人被躁到高潮嗷嗷叫费观| e午夜精品久久久久久久| 免费少妇av软件| 两个人看的免费小视频| 国产亚洲欧美在线一区二区| 久久国产亚洲av麻豆专区| 狠狠婷婷综合久久久久久88av| 在线观看66精品国产| 亚洲一卡2卡3卡4卡5卡精品中文| 黑人巨大精品欧美一区二区蜜桃| 色综合欧美亚洲国产小说| 亚洲成av片中文字幕在线观看| 午夜福利影视在线免费观看| 免费看十八禁软件|