• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schr¨odinger equation

    2022-06-29 09:24:18LiJunChang常莉君YiFanMo莫一凡LiMingLing凌黎明andDeLuZeng曾德爐
    Chinese Physics B 2022年6期
    關(guān)鍵詞:黎明

    Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德爐)

    School of Mathematics,South China University of Technology,Guangzhou 510640,China

    Keywords: nonlinear Schr¨odinger equation,vector rogue waves,deep learning,numerical simulations

    1. Introduction

    Nonlinear Schr¨odinger(NLS)equations generally can be used to describe the nonlinear wave phenomena in diverse physics fields and have attracted more and more attention especially in hydrodynamics, nonlinear optical fibers, planar wave guides, and Bose–Einstein condensates theory.[1–5]For the integrable NLS systems,there exist lots of exact solutions including solitons, breathers, and rogue waves (RWs). They are all nonlinear waves with localized structure both in time and space. Note that, on the one hand, some solitons will produce breathers when they are disturbed periodically. And the RWs are the limit form of the breathers. On the other hand, solitons are stable waves and invariant of shape in the evolution under vanishing background, while RWs are unstable waves and the variation of shape in the evolution under non-vanishing background due to modulation instability. Especially,the amplitudes of RWs are usually two times or even higher than those of its surrounding waves, hence they frequently cause sea accidents and pose a great threat to people’s navigation safety for years. RWs were firstly constructed analytically by Peregrine,[4]expressed by the first-order functions.But these solutions did not get much attention until Solliet al.observed optical RWs in an optical fiber experiment.[6]Zakharovet al.[7]found the physical mechanism of usual RW generation was frequently related with modulation instability.Afterwards, RWs of different physical systems were one after another derived by related Darboux transformation.[8–16]Furthermore, recent studies have shown that the vector RWs ofn-component NLS equations are thePTsymmetry under the constraints of some parameters and classified intontypes in terms of the degree of polynomials.[17–19]In this paper, our research concentrates on data-drivenPT-symmetric vector RW solutions for the focusing multi-component NLS equation with nonzero boundary conditions:

    In the last decades,deep learning has achieved great success in a wide variety of areas because of strong data representation ability, such as image processing, speech recognition, natural language processing, and many more.[20–24]Since neural networks (NNs) are universal approximation of functions,[25]as we know, it is natural to solve differential equations using NNs. Lagariset al.[26]presented a method to solve ordinary differential equations(ODEs)and partial differential equations(PDEs)by artificial neural networks(ANNs)for a given form of trainable solution. Sirignsnoet al.[27]introduced deep Galerkin method (DGM) to solve high dimensional PDE by Monte Carlo method for fast computation of second derivatives and an integral along its respective domain under proper measurement. Raissiet al.[28]put forward physics-informed neural networks (PINNs) method to solve PDEs and inverse problems through automatic differentiation technique(AD)[29]by random sampling points in the space domain. After that the variations of PINNs[30–46]have widely applied to solve distinct kinds of PDEs over years. Linet al.[35]utilized the two-stage PINN to simulate abundant localized wave solutions of integrable equations by introducing the measurement of conserved quantities into mean squared error loss method. Puet al.[36–38]proposed the improved PINN with neuron-wise locally adaptive activation function to simulate vector localized waves of Manakov system such as one-rational soliton solutions, RWs solution,breathers,and their interaction solutions. Wanget al.[39]combined the classical spectral method with PINN algorithm to correct the error perturbation caused by modulation instability on boundary problem and further simulate more accurate RW or breather solutions of NLS equation with a smaller numerical error for long time. However,mainly due to the difficulties of the computational complexity and the algorithmic instability in solvingn-component coupled nonlinear equations,previous studies of data-driven RWs mostly focused on one-component systems. The dynamical behaviors and relevant patterns of data-driven RWs of multi-component systems such as two- and three-component are less studied with deep learning method. Recently, in this respect, Moet al.[42]proposed the MS-PINN algorithm which picks the pre-fixed points for training the network again to simulate the datadriven degenerate/non-degenerate vector solitons for coupled NLS equation with the zero boundary theory. The MS-PINN algorithm combines the multiple thoughts of time-adaptive,adaptive sampling of collocation points, error measurement,and adaptive-weight[34,43–45]and obtains good numerical results on 2-NLS systems in the rectangle shape domain. Penget al.[46]used the Riemann–Hilbert method and PINN algorithm to solveN-double poles solutions for the non-local Hirota equation with nonzero boundary conditions. Inspired by above some papers,one of our goals of this work is to extend the zero boundary theory to the non-zero ones for the vector NLS equation with the MS-PINN algorithm.[42]In addition,we use the elliptic andX-shape spatio-temporal boundary conditions to simulate thePTsymmetric RWs of 2-NLS and 3-NLS systems.To the best of our knowledge,these results have never been reported before.

    The structure of this paper is assigned as follows. In Section 2, we introduce briefly the PINN algorithm and give detailed descriptions about MS-PINN training method. In Section 3, we use the MS-PINN to simulate data-driven vector RW solutions of the 2-NLS system(1)in elliptic and X-shapes domains. Meanwhile, data-drivenPT-symmetric two-vector RW solutions of the 3-NLS system are also studied. In Section 4,some conclusions and discussions are given.

    2. Multi-stage physics informed neural networks

    In general,if we want to solve Eq.(1)by using deep learning,the most common neural networks are PINNs.The PINNs set up a deep neural network with the inputx,t,and the outputq(x,t), such that the output values can well approximate the solution of Eq. (1). PINNs take physical informationf(x,t)defined by Eq.(2)into consideration and use it as a part of the total loss functions on the spatio-temporal domain beside satisfying the initial and boundary conditions.And then we minimize the loss function through the optimization algorithm such as Adam[47]or L-BFGS[48]in order to obtain the optimal parameters. Define the residual functionf(x,t)ofn-component NLS system Eq.(1)below

    In the multi-stage physics informed neural network(MSPINN) algorithm, as shown in Fig. 1, we do not sample data points in the boundary region and the initial region respectively according to the traditional classical sampling method, but choose the adaptive spatio-temporal boundary points in manner of surrounding sampling on time and space together. Take the elliptic domain as an example,as displayed in Fig. 1(a), we first treat the boundary points of the elliptic domain in the direction of time and space as the spatiotemporal boundary points(yellow point)and then decompose the whole domain intoNparts which are kept apart from the spatio-temporal boundary points, forming one-to-one correspondence stages. Each stage we collect some collocation

    Fig.1. Adaptive sampling collocation points in space-time. (a)and(b)The pre-fixed points from the one stage next stage the in elliptic domain and X shape domain,respectively.

    Fig.2. The MS-PINNs architecture. The first stage: the input X1f ∪Xi. By PINN algorithm the pre-fixed points X1P are obtained. The second stage: the input are X2f ∪Xi ∪X1P. By PINN algorithm,we obtain pre-fixed points X2P. The last stage: the input is XNf ∪Xi ∪XN-1P . By PINN algorithm,the output is q(x,t).

    To more clearly represent the algorithm flowing-chart,we give the model architecture, as shown in Fig. 2. In the 1-st stage the inputs are the collocation pointsX1fand spatiotemporal boundary pointsXi, then we train the parameters by using PINN algorithm. When the loss function less than the given threshold value or the training iteration reaches our setM,we manually select theX1Ppre-fixed points which contribute to the smallest loss value of Lossf. Similarly,in the 2-nd stage the inputs areX2f,Xi,andX1P,we still train the model using PINN algorithm and when the loss function less than

    3. Data-driven PT symmetric rogue waves of n-NLS equation

    RWs,as a special type of nonlinear waves,have attracted more and more attentions in optical systems and other scientific disciplines. Recently, many studies onPT-symmetric vector RW solutions in anyn-component NLS models have also been proposed. However, due to modulation instability mechanism and the difficulty of observational conditions for RWs, we do not have a complete understanding of RW phenomena. Thus in this section,we would like to precisely simulate thePTsymmetric vector RW solutions of 2-NLS and 3-NLS systems with the non-zero spatio-temporal boundary conditions by MS-PINN algorithm.

    3.1. The PT symmetric fundamental vector RW solution of 2-NLS system

    Specifically,the fundamental vector RW solutions forj=1,...,n,where

    aj=ζcscωj,bj=ζcotωj,aj,bj,α0,ζ,ωj ∈R are the parameters which nontrivially contribute to the profile of the vector RWs. ThePT-symmetric structure of a vector RW isqj(x,t)=PT qj(x,t)=Pq*j(x,-t).Tis the conventional bosonic the time-reversal operator:t →-t, i→-i, where*denotes the complex conjugation.

    For a 2-NLS system, we can obtain explicitly the vector RW solutionq(x,t)=(q1(x,t),q2(x,t)) with the parametersω1=π/3,ω2=2π/3,ζ=1,α0=-1/2,t ∈[-1,1],x ∈[-4,4]by Eq.(9).We simulate the data-driven vector RWs by deep neural network with 3 hidden layers and 50 neurons per hidden layer.The activation function is the hyperbolic tangent (tanh) function. By dividing the whole domain into 4 parts and following 4 stages,we set the numbers of total collocation pointsNf=2×104,spatio-temporal boundary pointsN0=200 and pre-fixed pointsNk=(0.6k/4)Nf=3×103k,(k=1,...,4) which means 60% of collocation points are selected as pre-fixed points. In each stage the number of iterations of is 5000 and the learning rateεis 1e-4 for training with optimizer L-BFGS.

    We know RWs usually admit one peak and two valleys,one valley and two peaks and two peaks and two valleys. For the RW of scalar NLS equation,RW usually has one peak and two valleys and the maximum amplitude is twice height of the background field. For the RWs of multi-component NLS equation,there exist the bright,dark and four-petal type RWs,which are the generalization of classic RWs. For more information about the classification of fundamental RW types,please refer to these articles.[18,50,51]Each componentqjof the 2-NLS system is a kind of the fundamental RW and the types of the structures are controlled byωj. As shown in Fig.3,q1andq2are eye-shaped RWs with one hump and two valleys in top panel. Then we take relative L2(RL2)error as evaluation metrics in order to validate the method with simulated data.At the same time,considering the effect of noise in real-world observations, we add 5%white noise data and 10%white noise data to the spatio-temporal boundary condition. As shown in Fig.4, the absolute error|q1|+|q2|of the MS-PINN method is nearly 30 times less than that of the PINN method. The absolute errors of the MS-PINN method with 5%and 10%white noise data still nearly 20 times and 6 times less than PINN algorithm.

    Fig.3. The intensity of PT symmetric vector RW solutions of the 2-NLS system simulated by the MS-PINN algorithm in elliptic area and the comparison between the intensity of the predicted solutions and accurate solutions of two components system at times t =-0.5 and t =0 corresponding to the two temporal snapshots depicted by the blue vertical lines in the top panel.

    Fig.4. The absolute error|q1|+|q2|of PINN method,MS-PINN algorithm with clean data,MS-PINN algorithm with 5%white noise data and with 10%white noise data.

    Fig. 5. The intensity of PT symmetric vector RWs of the 2-NLS equation simulated by the MS-PINN method in X-shape domain and the comparison between the intensity of the predicted solutions and accurate solutions of two components system at times t =-0.5 and t =0 corresponding to the two temporal snapshots depicted by the blue vertical lines in the top panel.

    In order to explain the applicability of the algorithm in complex geometry domain for 2-NLS equation,we replace the oval region with the X-shape domain,as shown in Fig.5. By the comparison between the predicted solutions and exact solutions of 2-NLS equation,we find the MS-PINN algorithm also well approximate the exact solution. Figure 6 shows the absolute error of the PINN method is about much 100 times,30 times,and 10 times larger than those of the MS-PINN method with clean training data, 5% white noise data and 10% white noise data, respectively. It can be seen that the data-driven solutions of nonlinear coupled system can be still kept relatively stable against the small perturbation.

    Fig.6. The absolute error|q1|+|q2|of PINN method,MS-PINN algorithm with clean data,MS-PINN algorithm with 5%white noise data and with 10%white noise data.

    Table 1. The comparison of the PINN method and MS-PINN method base on 5 independent repeated experiments for 2-NLSE in elliptic-and X-shape regions.

    Because the neural network may get different solutions from different initial data, we train the neural network from random initialization for 5 times. More detailed information aboutRL2error and time cost with PINN method and MS-PINN algorithm in elliptic-and X-shape domains are displayed in Table 1. “-E,-X”denote the abbreviations of ellipse and X shape. PINN-E and MS-PINN-X represent the uses of the PINN and MS-PINN algorithm in ellipse and X-shape region,respectively.

    3.2. The PT symmetric vector two-RW solutions of 3-NLS system

    In the above subsection,we have simulated thePTsymmetric fundamental vector RW solutions of the relative 2-NLS equations and analyzed theRL2error of MS-PINN algorithm with 5%white noise data and 10%white noise data.To our knowledge, simulating asymptotic behaviors of thePTsymmetric vector RW solutions of 3-NLS system with deep learning has not been evaluated at present. For 3-NLS equation, we choose an exact vector two-RW solutionsq(x,t)=(q1(x,t),q2(x,t),q3(x,t))given by setting the special parameters[18]

    We simulate the data-drivenPT-symmetric vector RW solutions by deep neural networks with 3 hidden layers neural network and 200 neurons per hidden layer. By dividing the whole domain into 4 parts, we have naturally 4 stages. The datadriven vector RW solutions of system resulted from the MS-PINN algorithm with the randomly chosen spatio-temporal boundary pointsN0=400,total number of collocation pointsNf=4×104and the number of pre-fixed pointsNk=(0.6k/4)Nf=6×103k,(k=1,2,3,4). In other words, we consider 60% of collocation points as pre-fixed points in trained domain for each stage. In each stage the maximum iterationMis 2×104and the learning rate thresholdεis 10-3with optimizer L-BFGS.

    Figure 7 shows the intensity plots of 3-NLS equation onx ∈[-20,20],t ∈[-0.5,0.5].Top panel shows the density evolutions of 3-NLS system. Bottom panel shows the intensity of three components att=-0.25 andt= 0.25 corresponding to the two temporal snapshots depicted by the white horizontal lines in the top panel. Based on the classification of fundamental RW types,[18]the density plots ofq1andq3for the 3-NLS system are both four-petaled RWs sinceω1,ω3∈(π/6,π/3)∪(2π/3,5π/6),while the intensity plot ofq2is the bright RW due toω2∈[π/3,2π/3]. The simulation shows that the data-driven predicted solutions are very close to the exact solutions given before,which further demonstrates the observability of RWs in the physical experiments.

    Fig.7. The intensity plots of the PT symmetric vector RW solutions of 3-NLS system simulated by MS-PINN method and the six plots of the comparison between the of the predicted solutions and accurate solutions of three components system at times t=-0.25 and t=0.25.

    Fig.8. The absolute error|q1|+|q2|+|q3|of PINN method,MS-PINN algorithm with clean data,MS-PINN algorithm with 5%white noise data and with 10%white noise data,respectively.

    The absolute error|q1|+|q2|+|q3| of the PINN method and that of the MS-PINN method (with clean data, 5% white noise data and 10% white noise data) are displayed in Fig. 8. Obviously, the MS-PINN method obtains much 50 times better experimental effect than that of the PINN algorithm on 3-NLS equation.Though we add some white noise data to spatio-temporal boundary condition, the absolute errors are still much less than that of the PINN algorithm. For 3-NLS system, more specificRL2errors and time costs with PINN method and MS-PINN algorithm with white noise data are shown in Table 2.

    Table 2.The comparison of the PINN method and MS-PINN method base on 5 independent repeated experiments for 3-NLSE.

    4. Conclusion

    In this work,we utilize a multi-stage deep learning training algorithm to simulate data-drivenPT-symmetric vector RW solutions of 2-NLS systems and two-vector RWs of 3-NLS systems with spatio-temporal boundary condition (nonzero boundary condition). In fact, the spatio-temporal conditions do not conform to the traditional numerical methods of solving the equation in manner of time evolution,but comply with physics dynamics in the way of simultaneous evolution of time and space. Numerical simulations show that the MSPINN algorithm can well recover different dynamical behaviors of RW solutions in the 2-NLS and 3-NLS equations. In the future, we would like to explore whether the MS-PINN algorithm is applied to the discovery problems of other integrable NLS and non-integrable nonlinear wave system by adding more prior knowledge about the geometry and physical properties of system.

    Acknowledgments

    Project supported by National Natural Science Foundation of China (Grant Nos. 11771151, 61571005, and 61901160), the Science and Technology Program of Guangzhou (Grant No. 201904010362), and the Fundamental Research Program of Guangdong Province, China (Grant No.2020B1515310023).

    猜你喜歡
    黎明
    風云三號E星——黎明星
    黎明之光
    黎明之子
    趣味(語文)(2020年5期)2020-11-16 01:34:56
    美若黎明
    青年歌聲(2019年9期)2019-09-17 09:02:54
    黎明被一群鳥兒啄出
    誰家的可可④ 這里的黎明靜悄悄
    幽默大師(2018年4期)2018-11-02 05:38:54
    黎明
    讀者(2017年8期)2017-03-29 20:11:49
    黎明的軍號
    灶神星上的“黎明”
    太空探索(2015年4期)2015-07-12 14:16:21
    谷神星迎來新“黎明”
    太空探索(2015年4期)2015-07-12 14:16:08
    桃红色精品国产亚洲av| 国产午夜精品论理片| 色在线成人网| 亚洲七黄色美女视频| 黄色配什么色好看| 小蜜桃在线观看免费完整版高清| 很黄的视频免费| 国内精品久久久久久久电影| 成人鲁丝片一二三区免费| 亚洲人与动物交配视频| 亚洲欧美日韩高清专用| 亚洲最大成人手机在线| 成年版毛片免费区| 国产精品精品国产色婷婷| 亚洲三级黄色毛片| 草草在线视频免费看| 色视频www国产| 亚洲专区国产一区二区| 婷婷精品国产亚洲av在线| 亚洲av免费高清在线观看| 亚洲av五月六月丁香网| 亚洲精品国产成人久久av| 中文在线观看免费www的网站| 亚洲国产精品sss在线观看| 可以在线观看的亚洲视频| 亚洲,欧美,日韩| www日本黄色视频网| 国产精品美女特级片免费视频播放器| 黄色配什么色好看| 狂野欧美激情性xxxx在线观看| 欧洲精品卡2卡3卡4卡5卡区| 亚洲av二区三区四区| 丰满乱子伦码专区| 精品久久久久久久久久久久久| 成人毛片a级毛片在线播放| 亚洲五月天丁香| 亚洲va日本ⅴa欧美va伊人久久| 成年女人永久免费观看视频| 日韩欧美国产在线观看| 亚洲av中文av极速乱 | 岛国在线免费视频观看| 日韩一区二区视频免费看| 久久精品久久久久久噜噜老黄 | 欧美潮喷喷水| 亚洲综合色惰| 欧美另类亚洲清纯唯美| 亚洲美女黄片视频| 亚洲国产色片| 成年女人看的毛片在线观看| 亚洲五月天丁香| 国产伦精品一区二区三区四那| 日日撸夜夜添| 亚洲国产精品久久男人天堂| 18禁黄网站禁片免费观看直播| 麻豆精品久久久久久蜜桃| 日韩人妻高清精品专区| 欧美精品国产亚洲| 色在线成人网| 女人被狂操c到高潮| 日本熟妇午夜| 在线观看美女被高潮喷水网站| 精品久久久久久成人av| 久久精品夜夜夜夜夜久久蜜豆| 色av中文字幕| 色噜噜av男人的天堂激情| 久久久国产成人精品二区| 特大巨黑吊av在线直播| 精品一区二区三区视频在线| 国产一区二区在线av高清观看| 日韩人妻高清精品专区| 人人妻人人看人人澡| 欧洲精品卡2卡3卡4卡5卡区| 美女高潮喷水抽搐中文字幕| 老女人水多毛片| 美女大奶头视频| 国产精品久久久久久久久免| 五月伊人婷婷丁香| 国产精品伦人一区二区| 国产精品无大码| 如何舔出高潮| 欧美日本亚洲视频在线播放| 亚洲 国产 在线| 日韩欧美在线乱码| 很黄的视频免费| 日日干狠狠操夜夜爽| 欧美日韩精品成人综合77777| 男女啪啪激烈高潮av片| 无人区码免费观看不卡| 三级男女做爰猛烈吃奶摸视频| 久久天躁狠狠躁夜夜2o2o| 人妻制服诱惑在线中文字幕| 日本免费a在线| 精品久久久噜噜| 国产午夜福利久久久久久| www.www免费av| 国产精品一区二区性色av| 国内精品宾馆在线| 中文资源天堂在线| 狠狠狠狠99中文字幕| 亚洲国产日韩欧美精品在线观看| 偷拍熟女少妇极品色| 看免费成人av毛片| 一区二区三区免费毛片| 日本-黄色视频高清免费观看| 亚洲欧美日韩高清专用| 欧美+亚洲+日韩+国产| 日韩亚洲欧美综合| 久久久久久九九精品二区国产| 国产精品久久视频播放| 国产乱人伦免费视频| 日韩高清综合在线| 欧美高清成人免费视频www| 精品久久久久久久久亚洲 | 国内精品久久久久久久电影| 日韩亚洲欧美综合| 可以在线观看的亚洲视频| 一边摸一边抽搐一进一小说| 久久人人爽人人爽人人片va| 永久网站在线| 亚洲欧美清纯卡通| 午夜福利高清视频| 午夜激情福利司机影院| 欧美bdsm另类| 久久国产精品人妻蜜桃| 久久久久久国产a免费观看| 不卡视频在线观看欧美| 99久久精品国产国产毛片| 国产亚洲精品综合一区在线观看| 国国产精品蜜臀av免费| 亚洲精品乱码久久久v下载方式| 少妇的逼好多水| 不卡视频在线观看欧美| 久久午夜亚洲精品久久| 国产午夜精品久久久久久一区二区三区 | 国产精品日韩av在线免费观看| 色吧在线观看| 热99在线观看视频| 精品久久久噜噜| 成年女人永久免费观看视频| 日韩国内少妇激情av| 精品久久久久久久末码| 国产免费一级a男人的天堂| 成年免费大片在线观看| 97超视频在线观看视频| 中文资源天堂在线| 亚洲欧美日韩卡通动漫| 午夜福利高清视频| 欧美国产日韩亚洲一区| 久久久精品欧美日韩精品| 三级男女做爰猛烈吃奶摸视频| 国内精品久久久久久久电影| 99久久精品热视频| 国产aⅴ精品一区二区三区波| 91久久精品国产一区二区三区| 天天一区二区日本电影三级| 午夜精品久久久久久毛片777| 一a级毛片在线观看| 中文字幕久久专区| 日本爱情动作片www.在线观看 | a级毛片a级免费在线| 免费一级毛片在线播放高清视频| 欧美zozozo另类| 两个人视频免费观看高清| 黄色一级大片看看| 一边摸一边抽搐一进一小说| 成人av在线播放网站| 欧美成人免费av一区二区三区| 美女cb高潮喷水在线观看| 他把我摸到了高潮在线观看| 少妇人妻一区二区三区视频| 亚洲成人精品中文字幕电影| 在线国产一区二区在线| 精品欧美国产一区二区三| 搡老岳熟女国产| 国产伦一二天堂av在线观看| 国产亚洲av嫩草精品影院| 最新中文字幕久久久久| 熟妇人妻久久中文字幕3abv| 成人性生交大片免费视频hd| 88av欧美| 国产老妇女一区| 午夜福利高清视频| 久久欧美精品欧美久久欧美| 精品国产三级普通话版| 国产精品日韩av在线免费观看| а√天堂www在线а√下载| 少妇猛男粗大的猛烈进出视频 | 一进一出抽搐动态| 亚洲欧美精品综合久久99| 亚洲中文日韩欧美视频| av.在线天堂| 久久精品91蜜桃| 草草在线视频免费看| 丰满乱子伦码专区| 乱系列少妇在线播放| 午夜久久久久精精品| 亚洲av五月六月丁香网| 日韩人妻高清精品专区| 亚洲美女视频黄频| 露出奶头的视频| 午夜福利在线观看吧| 国产成人aa在线观看| 老女人水多毛片| 国产伦在线观看视频一区| 亚洲av五月六月丁香网| 日本免费一区二区三区高清不卡| 成人国产一区最新在线观看| 亚洲国产精品sss在线观看| 亚洲最大成人av| 99久久无色码亚洲精品果冻| 在现免费观看毛片| av黄色大香蕉| 国产毛片a区久久久久| 国产一区二区三区av在线 | 男人的好看免费观看在线视频| 亚洲五月天丁香| 精品无人区乱码1区二区| 99精品在免费线老司机午夜| 麻豆久久精品国产亚洲av| 日日啪夜夜撸| 舔av片在线| 久久精品国产清高在天天线| or卡值多少钱| 能在线免费观看的黄片| 亚洲美女搞黄在线观看 | 成人性生交大片免费视频hd| 级片在线观看| 久久久久久九九精品二区国产| 亚洲性夜色夜夜综合| 欧美另类亚洲清纯唯美| 不卡一级毛片| 综合色av麻豆| 国产久久久一区二区三区| 免费观看在线日韩| 嫩草影院精品99| 日本在线视频免费播放| 国产精品综合久久久久久久免费| 99在线人妻在线中文字幕| 久久久久国内视频| 99热6这里只有精品| 小蜜桃在线观看免费完整版高清| av天堂中文字幕网| 久久精品国产亚洲av香蕉五月| 毛片一级片免费看久久久久 | 国产黄色小视频在线观看| 亚洲av免费高清在线观看| 九色国产91popny在线| 看黄色毛片网站| 悠悠久久av| 国产不卡一卡二| 男女啪啪激烈高潮av片| 亚洲18禁久久av| 国产淫片久久久久久久久| 国产麻豆成人av免费视频| 精品久久久久久久久久久久久| 中文字幕高清在线视频| 色哟哟哟哟哟哟| 搞女人的毛片| 欧美潮喷喷水| 亚洲国产高清在线一区二区三| 午夜免费成人在线视频| 日本 av在线| 国产一区二区三区在线臀色熟女| 国产成人影院久久av| 一级av片app| 国产亚洲欧美98| 联通29元200g的流量卡| 亚洲精品一卡2卡三卡4卡5卡| 在线观看av片永久免费下载| 3wmmmm亚洲av在线观看| 久久精品国产亚洲av香蕉五月| 久久久久久久午夜电影| 一本久久中文字幕| 国产精品伦人一区二区| 亚洲欧美日韩东京热| av天堂在线播放| 精品一区二区免费观看| 最近中文字幕高清免费大全6 | 最近最新免费中文字幕在线| 干丝袜人妻中文字幕| 欧美绝顶高潮抽搐喷水| 亚洲欧美日韩无卡精品| 国产精品精品国产色婷婷| 成人av在线播放网站| 免费在线观看日本一区| 国产午夜福利久久久久久| 亚洲综合色惰| 禁无遮挡网站| 国产69精品久久久久777片| 国产高清三级在线| 色哟哟哟哟哟哟| АⅤ资源中文在线天堂| 嫩草影院新地址| 久久精品国产亚洲网站| 啦啦啦啦在线视频资源| 午夜视频国产福利| 99久久精品一区二区三区| 国产精品综合久久久久久久免费| 亚洲熟妇熟女久久| 色哟哟·www| 国内精品久久久久久久电影| 真人做人爱边吃奶动态| 人人妻,人人澡人人爽秒播| 波多野结衣高清作品| 啪啪无遮挡十八禁网站| 久久久久性生活片| 国产精品伦人一区二区| 乱码一卡2卡4卡精品| 欧美高清成人免费视频www| 99久久久亚洲精品蜜臀av| 精品人妻视频免费看| 免费观看人在逋| 又爽又黄无遮挡网站| 搞女人的毛片| 午夜福利18| 久久久久久久午夜电影| 国产精品日韩av在线免费观看| 久久久久国内视频| 日韩欧美在线二视频| 日本一二三区视频观看| 深爱激情五月婷婷| 男女视频在线观看网站免费| 亚洲欧美日韩高清专用| 啦啦啦啦在线视频资源| 中文字幕av在线有码专区| 国产探花极品一区二区| 国内精品一区二区在线观看| 亚洲 国产 在线| 亚洲精品在线观看二区| 久久精品人妻少妇| 我要搜黄色片| 国产视频内射| 亚洲色图av天堂| 色综合站精品国产| 91精品国产九色| 婷婷亚洲欧美| 日本免费一区二区三区高清不卡| 久久久久久久久久黄片| 干丝袜人妻中文字幕| 国产视频一区二区在线看| 色吧在线观看| 69av精品久久久久久| 又黄又爽又刺激的免费视频.| 日韩精品青青久久久久久| 欧美性猛交黑人性爽| 很黄的视频免费| 又黄又爽又刺激的免费视频.| 亚洲电影在线观看av| 极品教师在线免费播放| 久久久久久久久久久丰满 | av国产免费在线观看| 久久精品国产清高在天天线| 我要看日韩黄色一级片| 成年免费大片在线观看| 国语自产精品视频在线第100页| www.色视频.com| 国产成人影院久久av| 别揉我奶头 嗯啊视频| 夜夜看夜夜爽夜夜摸| 国产伦精品一区二区三区视频9| 亚洲黑人精品在线| 成人一区二区视频在线观看| 有码 亚洲区| 男人和女人高潮做爰伦理| 91在线观看av| 国产成人福利小说| 午夜久久久久精精品| 亚洲自拍偷在线| 国内精品宾馆在线| 国产精品98久久久久久宅男小说| 国产精品爽爽va在线观看网站| 亚洲不卡免费看| 日本五十路高清| 1024手机看黄色片| 免费av不卡在线播放| 观看美女的网站| 免费一级毛片在线播放高清视频| 国产一区二区在线观看日韩| 国产视频内射| 日韩精品青青久久久久久| 1024手机看黄色片| 在线天堂最新版资源| 天天躁日日操中文字幕| 国产精品亚洲美女久久久| 国国产精品蜜臀av免费| 午夜久久久久精精品| 一级a爱片免费观看的视频| 麻豆成人午夜福利视频| 日本黄色视频三级网站网址| 欧美激情在线99| 亚洲av中文字字幕乱码综合| 久久久久久久久大av| 人妻少妇偷人精品九色| 小说图片视频综合网站| 少妇裸体淫交视频免费看高清| 免费一级毛片在线播放高清视频| 国产精品国产三级国产av玫瑰| 欧美成人免费av一区二区三区| 日韩一本色道免费dvd| 久久午夜福利片| 国产精品人妻久久久久久| 亚洲精品色激情综合| 亚洲av不卡在线观看| 91av网一区二区| 免费看av在线观看网站| 男女啪啪激烈高潮av片| 好男人在线观看高清免费视频| 黄色日韩在线| 国产伦人伦偷精品视频| 赤兔流量卡办理| 国产精品av视频在线免费观看| 国产单亲对白刺激| 久久久久久九九精品二区国产| 嫩草影院入口| 国产亚洲精品综合一区在线观看| 国产精品一及| 成人二区视频| 九九在线视频观看精品| 色精品久久人妻99蜜桃| 99久久九九国产精品国产免费| 日本免费a在线| 日日摸夜夜添夜夜添av毛片 | 国产在视频线在精品| 国产主播在线观看一区二区| 人妻久久中文字幕网| 欧美日本亚洲视频在线播放| 国产欧美日韩一区二区精品| 少妇熟女aⅴ在线视频| 乱人视频在线观看| 亚洲三级黄色毛片| 国产私拍福利视频在线观看| 欧美高清性xxxxhd video| av国产免费在线观看| 麻豆精品久久久久久蜜桃| 精品一区二区三区视频在线观看免费| 亚洲国产精品成人综合色| 国产精品不卡视频一区二区| 变态另类丝袜制服| 免费在线观看日本一区| 91麻豆精品激情在线观看国产| 特大巨黑吊av在线直播| 国产精品福利在线免费观看| 亚洲人成伊人成综合网2020| 成人国产一区最新在线观看| 精品欧美国产一区二区三| 精品不卡国产一区二区三区| 国产一区二区激情短视频| 欧美一区二区亚洲| 黄色欧美视频在线观看| 久久久久久久久大av| 国产精品伦人一区二区| 国产三级中文精品| 最近最新免费中文字幕在线| 亚洲最大成人中文| 综合色av麻豆| 看片在线看免费视频| 国产欧美日韩精品亚洲av| 十八禁国产超污无遮挡网站| 日日撸夜夜添| 人妻久久中文字幕网| 国产三级中文精品| 国产精品美女特级片免费视频播放器| 国产精品一区二区性色av| 日韩欧美精品免费久久| 不卡视频在线观看欧美| 欧美性猛交╳xxx乱大交人| 99精品在免费线老司机午夜| 精品国产三级普通话版| 很黄的视频免费| 一区二区三区高清视频在线| 18禁裸乳无遮挡免费网站照片| 欧美激情国产日韩精品一区| 淫秽高清视频在线观看| 看片在线看免费视频| 亚洲aⅴ乱码一区二区在线播放| 免费在线观看影片大全网站| 日韩亚洲欧美综合| 国产午夜福利久久久久久| 国产精品女同一区二区软件 | 少妇人妻一区二区三区视频| 欧美另类亚洲清纯唯美| 2021天堂中文幕一二区在线观| 国产中年淑女户外野战色| 国内少妇人妻偷人精品xxx网站| 成人性生交大片免费视频hd| 嫩草影视91久久| 亚洲四区av| av在线蜜桃| 欧美色视频一区免费| 一级黄色大片毛片| 中亚洲国语对白在线视频| .国产精品久久| 亚洲精品国产成人久久av| 小蜜桃在线观看免费完整版高清| 一进一出好大好爽视频| 免费黄网站久久成人精品| 国产免费av片在线观看野外av| 男女那种视频在线观看| 99在线人妻在线中文字幕| 99久久精品一区二区三区| 琪琪午夜伦伦电影理论片6080| 人人妻人人看人人澡| 制服丝袜大香蕉在线| 国语自产精品视频在线第100页| 在线观看午夜福利视频| 成人永久免费在线观看视频| 欧美在线一区亚洲| 国产黄片美女视频| 少妇裸体淫交视频免费看高清| 日韩国内少妇激情av| 校园人妻丝袜中文字幕| 国产精品野战在线观看| 亚洲av日韩精品久久久久久密| 欧美日本视频| 狂野欧美激情性xxxx在线观看| 国产亚洲精品综合一区在线观看| 久久久久久久午夜电影| 中国美白少妇内射xxxbb| 欧美激情在线99| 中文亚洲av片在线观看爽| 亚洲av免费高清在线观看| 又粗又爽又猛毛片免费看| 国产亚洲欧美98| 男人舔女人下体高潮全视频| 中文字幕人妻熟人妻熟丝袜美| 波多野结衣高清作品| 成人欧美大片| 18禁在线播放成人免费| 婷婷亚洲欧美| 日本一二三区视频观看| 国内少妇人妻偷人精品xxx网站| 99热这里只有是精品在线观看| 精品久久久久久久久亚洲 | 欧美日韩精品成人综合77777| 成熟少妇高潮喷水视频| 国产精品久久久久久精品电影| 亚洲人成网站在线播| 国产主播在线观看一区二区| 欧美国产日韩亚洲一区| 亚洲av美国av| 国产色婷婷99| or卡值多少钱| 日韩精品中文字幕看吧| 中国美女看黄片| 亚洲成人久久性| 18禁黄网站禁片午夜丰满| 日本五十路高清| 老司机福利观看| 国产精品国产三级国产av玫瑰| 国产欧美日韩精品一区二区| 日韩欧美免费精品| 亚洲av五月六月丁香网| 午夜福利视频1000在线观看| 欧美日韩综合久久久久久 | 黄色欧美视频在线观看| 国产高清视频在线观看网站| 国产精品电影一区二区三区| 国产av不卡久久| 又爽又黄a免费视频| 国产精品一及| 午夜久久久久精精品| 亚洲精品色激情综合| 少妇的逼水好多| 男女之事视频高清在线观看| 国产高清不卡午夜福利| 99在线视频只有这里精品首页| 午夜福利在线在线| 日韩欧美在线二视频| 天堂动漫精品| 国产精品亚洲美女久久久| 精品久久久久久久末码| 日本黄大片高清| 韩国av在线不卡| 成人国产麻豆网| 亚洲国产精品久久男人天堂| 国产亚洲91精品色在线| av在线亚洲专区| 色播亚洲综合网| 两个人的视频大全免费| 久久久国产成人精品二区| 国产高清激情床上av| 中文在线观看免费www的网站| 九色成人免费人妻av| 韩国av一区二区三区四区| 性插视频无遮挡在线免费观看| 国产精品亚洲一级av第二区| 别揉我奶头~嗯~啊~动态视频| 最好的美女福利视频网| 国产单亲对白刺激| 久久婷婷人人爽人人干人人爱| 亚洲在线观看片| 极品教师在线免费播放| 欧美激情久久久久久爽电影| 国产黄a三级三级三级人| 国产亚洲精品综合一区在线观看| 91久久精品国产一区二区成人| 两个人的视频大全免费| 夜夜夜夜夜久久久久| 亚洲美女视频黄频| 日韩大尺度精品在线看网址| 变态另类丝袜制服| 日日摸夜夜添夜夜添av毛片 | 亚洲av五月六月丁香网| 麻豆成人午夜福利视频| 22中文网久久字幕| 69人妻影院| 伦精品一区二区三区| a级毛片a级免费在线| 日韩精品中文字幕看吧| 在线观看午夜福利视频| 又粗又爽又猛毛片免费看| 色视频www国产| 男女做爰动态图高潮gif福利片| 久久久精品大字幕| 黄色视频,在线免费观看|