• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schr¨odinger equation

    2022-06-29 09:24:18LiJunChang常莉君YiFanMo莫一凡LiMingLing凌黎明andDeLuZeng曾德爐
    Chinese Physics B 2022年6期
    關(guān)鍵詞:黎明

    Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德爐)

    School of Mathematics,South China University of Technology,Guangzhou 510640,China

    Keywords: nonlinear Schr¨odinger equation,vector rogue waves,deep learning,numerical simulations

    1. Introduction

    Nonlinear Schr¨odinger(NLS)equations generally can be used to describe the nonlinear wave phenomena in diverse physics fields and have attracted more and more attention especially in hydrodynamics, nonlinear optical fibers, planar wave guides, and Bose–Einstein condensates theory.[1–5]For the integrable NLS systems,there exist lots of exact solutions including solitons, breathers, and rogue waves (RWs). They are all nonlinear waves with localized structure both in time and space. Note that, on the one hand, some solitons will produce breathers when they are disturbed periodically. And the RWs are the limit form of the breathers. On the other hand, solitons are stable waves and invariant of shape in the evolution under vanishing background, while RWs are unstable waves and the variation of shape in the evolution under non-vanishing background due to modulation instability. Especially,the amplitudes of RWs are usually two times or even higher than those of its surrounding waves, hence they frequently cause sea accidents and pose a great threat to people’s navigation safety for years. RWs were firstly constructed analytically by Peregrine,[4]expressed by the first-order functions.But these solutions did not get much attention until Solliet al.observed optical RWs in an optical fiber experiment.[6]Zakharovet al.[7]found the physical mechanism of usual RW generation was frequently related with modulation instability.Afterwards, RWs of different physical systems were one after another derived by related Darboux transformation.[8–16]Furthermore, recent studies have shown that the vector RWs ofn-component NLS equations are thePTsymmetry under the constraints of some parameters and classified intontypes in terms of the degree of polynomials.[17–19]In this paper, our research concentrates on data-drivenPT-symmetric vector RW solutions for the focusing multi-component NLS equation with nonzero boundary conditions:

    In the last decades,deep learning has achieved great success in a wide variety of areas because of strong data representation ability, such as image processing, speech recognition, natural language processing, and many more.[20–24]Since neural networks (NNs) are universal approximation of functions,[25]as we know, it is natural to solve differential equations using NNs. Lagariset al.[26]presented a method to solve ordinary differential equations(ODEs)and partial differential equations(PDEs)by artificial neural networks(ANNs)for a given form of trainable solution. Sirignsnoet al.[27]introduced deep Galerkin method (DGM) to solve high dimensional PDE by Monte Carlo method for fast computation of second derivatives and an integral along its respective domain under proper measurement. Raissiet al.[28]put forward physics-informed neural networks (PINNs) method to solve PDEs and inverse problems through automatic differentiation technique(AD)[29]by random sampling points in the space domain. After that the variations of PINNs[30–46]have widely applied to solve distinct kinds of PDEs over years. Linet al.[35]utilized the two-stage PINN to simulate abundant localized wave solutions of integrable equations by introducing the measurement of conserved quantities into mean squared error loss method. Puet al.[36–38]proposed the improved PINN with neuron-wise locally adaptive activation function to simulate vector localized waves of Manakov system such as one-rational soliton solutions, RWs solution,breathers,and their interaction solutions. Wanget al.[39]combined the classical spectral method with PINN algorithm to correct the error perturbation caused by modulation instability on boundary problem and further simulate more accurate RW or breather solutions of NLS equation with a smaller numerical error for long time. However,mainly due to the difficulties of the computational complexity and the algorithmic instability in solvingn-component coupled nonlinear equations,previous studies of data-driven RWs mostly focused on one-component systems. The dynamical behaviors and relevant patterns of data-driven RWs of multi-component systems such as two- and three-component are less studied with deep learning method. Recently, in this respect, Moet al.[42]proposed the MS-PINN algorithm which picks the pre-fixed points for training the network again to simulate the datadriven degenerate/non-degenerate vector solitons for coupled NLS equation with the zero boundary theory. The MS-PINN algorithm combines the multiple thoughts of time-adaptive,adaptive sampling of collocation points, error measurement,and adaptive-weight[34,43–45]and obtains good numerical results on 2-NLS systems in the rectangle shape domain. Penget al.[46]used the Riemann–Hilbert method and PINN algorithm to solveN-double poles solutions for the non-local Hirota equation with nonzero boundary conditions. Inspired by above some papers,one of our goals of this work is to extend the zero boundary theory to the non-zero ones for the vector NLS equation with the MS-PINN algorithm.[42]In addition,we use the elliptic andX-shape spatio-temporal boundary conditions to simulate thePTsymmetric RWs of 2-NLS and 3-NLS systems.To the best of our knowledge,these results have never been reported before.

    The structure of this paper is assigned as follows. In Section 2, we introduce briefly the PINN algorithm and give detailed descriptions about MS-PINN training method. In Section 3, we use the MS-PINN to simulate data-driven vector RW solutions of the 2-NLS system(1)in elliptic and X-shapes domains. Meanwhile, data-drivenPT-symmetric two-vector RW solutions of the 3-NLS system are also studied. In Section 4,some conclusions and discussions are given.

    2. Multi-stage physics informed neural networks

    In general,if we want to solve Eq.(1)by using deep learning,the most common neural networks are PINNs.The PINNs set up a deep neural network with the inputx,t,and the outputq(x,t), such that the output values can well approximate the solution of Eq. (1). PINNs take physical informationf(x,t)defined by Eq.(2)into consideration and use it as a part of the total loss functions on the spatio-temporal domain beside satisfying the initial and boundary conditions.And then we minimize the loss function through the optimization algorithm such as Adam[47]or L-BFGS[48]in order to obtain the optimal parameters. Define the residual functionf(x,t)ofn-component NLS system Eq.(1)below

    In the multi-stage physics informed neural network(MSPINN) algorithm, as shown in Fig. 1, we do not sample data points in the boundary region and the initial region respectively according to the traditional classical sampling method, but choose the adaptive spatio-temporal boundary points in manner of surrounding sampling on time and space together. Take the elliptic domain as an example,as displayed in Fig. 1(a), we first treat the boundary points of the elliptic domain in the direction of time and space as the spatiotemporal boundary points(yellow point)and then decompose the whole domain intoNparts which are kept apart from the spatio-temporal boundary points, forming one-to-one correspondence stages. Each stage we collect some collocation

    Fig.1. Adaptive sampling collocation points in space-time. (a)and(b)The pre-fixed points from the one stage next stage the in elliptic domain and X shape domain,respectively.

    Fig.2. The MS-PINNs architecture. The first stage: the input X1f ∪Xi. By PINN algorithm the pre-fixed points X1P are obtained. The second stage: the input are X2f ∪Xi ∪X1P. By PINN algorithm,we obtain pre-fixed points X2P. The last stage: the input is XNf ∪Xi ∪XN-1P . By PINN algorithm,the output is q(x,t).

    To more clearly represent the algorithm flowing-chart,we give the model architecture, as shown in Fig. 2. In the 1-st stage the inputs are the collocation pointsX1fand spatiotemporal boundary pointsXi, then we train the parameters by using PINN algorithm. When the loss function less than the given threshold value or the training iteration reaches our setM,we manually select theX1Ppre-fixed points which contribute to the smallest loss value of Lossf. Similarly,in the 2-nd stage the inputs areX2f,Xi,andX1P,we still train the model using PINN algorithm and when the loss function less than

    3. Data-driven PT symmetric rogue waves of n-NLS equation

    RWs,as a special type of nonlinear waves,have attracted more and more attentions in optical systems and other scientific disciplines. Recently, many studies onPT-symmetric vector RW solutions in anyn-component NLS models have also been proposed. However, due to modulation instability mechanism and the difficulty of observational conditions for RWs, we do not have a complete understanding of RW phenomena. Thus in this section,we would like to precisely simulate thePTsymmetric vector RW solutions of 2-NLS and 3-NLS systems with the non-zero spatio-temporal boundary conditions by MS-PINN algorithm.

    3.1. The PT symmetric fundamental vector RW solution of 2-NLS system

    Specifically,the fundamental vector RW solutions forj=1,...,n,where

    aj=ζcscωj,bj=ζcotωj,aj,bj,α0,ζ,ωj ∈R are the parameters which nontrivially contribute to the profile of the vector RWs. ThePT-symmetric structure of a vector RW isqj(x,t)=PT qj(x,t)=Pq*j(x,-t).Tis the conventional bosonic the time-reversal operator:t →-t, i→-i, where*denotes the complex conjugation.

    For a 2-NLS system, we can obtain explicitly the vector RW solutionq(x,t)=(q1(x,t),q2(x,t)) with the parametersω1=π/3,ω2=2π/3,ζ=1,α0=-1/2,t ∈[-1,1],x ∈[-4,4]by Eq.(9).We simulate the data-driven vector RWs by deep neural network with 3 hidden layers and 50 neurons per hidden layer.The activation function is the hyperbolic tangent (tanh) function. By dividing the whole domain into 4 parts and following 4 stages,we set the numbers of total collocation pointsNf=2×104,spatio-temporal boundary pointsN0=200 and pre-fixed pointsNk=(0.6k/4)Nf=3×103k,(k=1,...,4) which means 60% of collocation points are selected as pre-fixed points. In each stage the number of iterations of is 5000 and the learning rateεis 1e-4 for training with optimizer L-BFGS.

    We know RWs usually admit one peak and two valleys,one valley and two peaks and two peaks and two valleys. For the RW of scalar NLS equation,RW usually has one peak and two valleys and the maximum amplitude is twice height of the background field. For the RWs of multi-component NLS equation,there exist the bright,dark and four-petal type RWs,which are the generalization of classic RWs. For more information about the classification of fundamental RW types,please refer to these articles.[18,50,51]Each componentqjof the 2-NLS system is a kind of the fundamental RW and the types of the structures are controlled byωj. As shown in Fig.3,q1andq2are eye-shaped RWs with one hump and two valleys in top panel. Then we take relative L2(RL2)error as evaluation metrics in order to validate the method with simulated data.At the same time,considering the effect of noise in real-world observations, we add 5%white noise data and 10%white noise data to the spatio-temporal boundary condition. As shown in Fig.4, the absolute error|q1|+|q2|of the MS-PINN method is nearly 30 times less than that of the PINN method. The absolute errors of the MS-PINN method with 5%and 10%white noise data still nearly 20 times and 6 times less than PINN algorithm.

    Fig.3. The intensity of PT symmetric vector RW solutions of the 2-NLS system simulated by the MS-PINN algorithm in elliptic area and the comparison between the intensity of the predicted solutions and accurate solutions of two components system at times t =-0.5 and t =0 corresponding to the two temporal snapshots depicted by the blue vertical lines in the top panel.

    Fig.4. The absolute error|q1|+|q2|of PINN method,MS-PINN algorithm with clean data,MS-PINN algorithm with 5%white noise data and with 10%white noise data.

    Fig. 5. The intensity of PT symmetric vector RWs of the 2-NLS equation simulated by the MS-PINN method in X-shape domain and the comparison between the intensity of the predicted solutions and accurate solutions of two components system at times t =-0.5 and t =0 corresponding to the two temporal snapshots depicted by the blue vertical lines in the top panel.

    In order to explain the applicability of the algorithm in complex geometry domain for 2-NLS equation,we replace the oval region with the X-shape domain,as shown in Fig.5. By the comparison between the predicted solutions and exact solutions of 2-NLS equation,we find the MS-PINN algorithm also well approximate the exact solution. Figure 6 shows the absolute error of the PINN method is about much 100 times,30 times,and 10 times larger than those of the MS-PINN method with clean training data, 5% white noise data and 10% white noise data, respectively. It can be seen that the data-driven solutions of nonlinear coupled system can be still kept relatively stable against the small perturbation.

    Fig.6. The absolute error|q1|+|q2|of PINN method,MS-PINN algorithm with clean data,MS-PINN algorithm with 5%white noise data and with 10%white noise data.

    Table 1. The comparison of the PINN method and MS-PINN method base on 5 independent repeated experiments for 2-NLSE in elliptic-and X-shape regions.

    Because the neural network may get different solutions from different initial data, we train the neural network from random initialization for 5 times. More detailed information aboutRL2error and time cost with PINN method and MS-PINN algorithm in elliptic-and X-shape domains are displayed in Table 1. “-E,-X”denote the abbreviations of ellipse and X shape. PINN-E and MS-PINN-X represent the uses of the PINN and MS-PINN algorithm in ellipse and X-shape region,respectively.

    3.2. The PT symmetric vector two-RW solutions of 3-NLS system

    In the above subsection,we have simulated thePTsymmetric fundamental vector RW solutions of the relative 2-NLS equations and analyzed theRL2error of MS-PINN algorithm with 5%white noise data and 10%white noise data.To our knowledge, simulating asymptotic behaviors of thePTsymmetric vector RW solutions of 3-NLS system with deep learning has not been evaluated at present. For 3-NLS equation, we choose an exact vector two-RW solutionsq(x,t)=(q1(x,t),q2(x,t),q3(x,t))given by setting the special parameters[18]

    We simulate the data-drivenPT-symmetric vector RW solutions by deep neural networks with 3 hidden layers neural network and 200 neurons per hidden layer. By dividing the whole domain into 4 parts, we have naturally 4 stages. The datadriven vector RW solutions of system resulted from the MS-PINN algorithm with the randomly chosen spatio-temporal boundary pointsN0=400,total number of collocation pointsNf=4×104and the number of pre-fixed pointsNk=(0.6k/4)Nf=6×103k,(k=1,2,3,4). In other words, we consider 60% of collocation points as pre-fixed points in trained domain for each stage. In each stage the maximum iterationMis 2×104and the learning rate thresholdεis 10-3with optimizer L-BFGS.

    Figure 7 shows the intensity plots of 3-NLS equation onx ∈[-20,20],t ∈[-0.5,0.5].Top panel shows the density evolutions of 3-NLS system. Bottom panel shows the intensity of three components att=-0.25 andt= 0.25 corresponding to the two temporal snapshots depicted by the white horizontal lines in the top panel. Based on the classification of fundamental RW types,[18]the density plots ofq1andq3for the 3-NLS system are both four-petaled RWs sinceω1,ω3∈(π/6,π/3)∪(2π/3,5π/6),while the intensity plot ofq2is the bright RW due toω2∈[π/3,2π/3]. The simulation shows that the data-driven predicted solutions are very close to the exact solutions given before,which further demonstrates the observability of RWs in the physical experiments.

    Fig.7. The intensity plots of the PT symmetric vector RW solutions of 3-NLS system simulated by MS-PINN method and the six plots of the comparison between the of the predicted solutions and accurate solutions of three components system at times t=-0.25 and t=0.25.

    Fig.8. The absolute error|q1|+|q2|+|q3|of PINN method,MS-PINN algorithm with clean data,MS-PINN algorithm with 5%white noise data and with 10%white noise data,respectively.

    The absolute error|q1|+|q2|+|q3| of the PINN method and that of the MS-PINN method (with clean data, 5% white noise data and 10% white noise data) are displayed in Fig. 8. Obviously, the MS-PINN method obtains much 50 times better experimental effect than that of the PINN algorithm on 3-NLS equation.Though we add some white noise data to spatio-temporal boundary condition, the absolute errors are still much less than that of the PINN algorithm. For 3-NLS system, more specificRL2errors and time costs with PINN method and MS-PINN algorithm with white noise data are shown in Table 2.

    Table 2.The comparison of the PINN method and MS-PINN method base on 5 independent repeated experiments for 3-NLSE.

    4. Conclusion

    In this work,we utilize a multi-stage deep learning training algorithm to simulate data-drivenPT-symmetric vector RW solutions of 2-NLS systems and two-vector RWs of 3-NLS systems with spatio-temporal boundary condition (nonzero boundary condition). In fact, the spatio-temporal conditions do not conform to the traditional numerical methods of solving the equation in manner of time evolution,but comply with physics dynamics in the way of simultaneous evolution of time and space. Numerical simulations show that the MSPINN algorithm can well recover different dynamical behaviors of RW solutions in the 2-NLS and 3-NLS equations. In the future, we would like to explore whether the MS-PINN algorithm is applied to the discovery problems of other integrable NLS and non-integrable nonlinear wave system by adding more prior knowledge about the geometry and physical properties of system.

    Acknowledgments

    Project supported by National Natural Science Foundation of China (Grant Nos. 11771151, 61571005, and 61901160), the Science and Technology Program of Guangzhou (Grant No. 201904010362), and the Fundamental Research Program of Guangdong Province, China (Grant No.2020B1515310023).

    猜你喜歡
    黎明
    風云三號E星——黎明星
    黎明之光
    黎明之子
    趣味(語文)(2020年5期)2020-11-16 01:34:56
    美若黎明
    青年歌聲(2019年9期)2019-09-17 09:02:54
    黎明被一群鳥兒啄出
    誰家的可可④ 這里的黎明靜悄悄
    幽默大師(2018年4期)2018-11-02 05:38:54
    黎明
    讀者(2017年8期)2017-03-29 20:11:49
    黎明的軍號
    灶神星上的“黎明”
    太空探索(2015年4期)2015-07-12 14:16:21
    谷神星迎來新“黎明”
    太空探索(2015年4期)2015-07-12 14:16:08
    a级片在线免费高清观看视频| 国产极品粉嫩免费观看在线| 在线观看免费视频网站a站| 国产精品98久久久久久宅男小说| 国产免费男女视频| 99国产极品粉嫩在线观看| 亚洲av美国av| 大香蕉久久成人网| 国产av一区在线观看免费| 欧美一级毛片孕妇| 国产又色又爽无遮挡免费看| 看免费av毛片| 国产成人av教育| 国产精品 国内视频| 亚洲av美国av| 欧美成狂野欧美在线观看| 成人三级做爰电影| 高清av免费在线| 99久久国产精品久久久| 日本黄色日本黄色录像| a级毛片黄视频| 一级毛片女人18水好多| 久9热在线精品视频| 在线观看午夜福利视频| 在线播放国产精品三级| 在线十欧美十亚洲十日本专区| 欧美日韩瑟瑟在线播放| 欧美黄色淫秽网站| 亚洲视频免费观看视频| 亚洲三区欧美一区| 国产亚洲精品一区二区www| 黄色a级毛片大全视频| 国产精品久久久久成人av| 亚洲伊人色综图| 国产一区二区激情短视频| 国产色视频综合| 午夜久久久在线观看| 久久草成人影院| 黄频高清免费视频| 久久人人97超碰香蕉20202| 激情在线观看视频在线高清| 亚洲国产精品合色在线| 一级毛片高清免费大全| 亚洲 欧美一区二区三区| 久久久久久免费高清国产稀缺| 涩涩av久久男人的天堂| 精品国产一区二区三区四区第35| 亚洲 欧美一区二区三区| 国产黄色免费在线视频| 亚洲成av片中文字幕在线观看| av在线播放免费不卡| 国产又爽黄色视频| 亚洲精品久久成人aⅴ小说| 久久精品国产亚洲av高清一级| 97超级碰碰碰精品色视频在线观看| 高清av免费在线| 91大片在线观看| 一级片'在线观看视频| 久久热在线av| 亚洲国产欧美日韩在线播放| 天天添夜夜摸| 中出人妻视频一区二区| 九色亚洲精品在线播放| 深夜精品福利| 欧美人与性动交α欧美精品济南到| 怎么达到女性高潮| 国产伦一二天堂av在线观看| av电影中文网址| 亚洲欧美激情综合另类| 国产精品久久久人人做人人爽| 757午夜福利合集在线观看| 搡老熟女国产l中国老女人| 亚洲中文日韩欧美视频| 日韩国内少妇激情av| 无遮挡黄片免费观看| 天堂√8在线中文| 琪琪午夜伦伦电影理论片6080| 男女做爰动态图高潮gif福利片 | a级毛片在线看网站| 90打野战视频偷拍视频| 国产有黄有色有爽视频| 成年人黄色毛片网站| 人人妻人人添人人爽欧美一区卜| 97碰自拍视频| 久久精品国产亚洲av高清一级| 别揉我奶头~嗯~啊~动态视频| 久久精品亚洲av国产电影网| 久久狼人影院| 女人爽到高潮嗷嗷叫在线视频| 欧美中文日本在线观看视频| 视频区图区小说| 少妇的丰满在线观看| 亚洲自偷自拍图片 自拍| 亚洲 欧美 日韩 在线 免费| 黄网站色视频无遮挡免费观看| 最近最新中文字幕大全电影3 | 国产av精品麻豆| 女生性感内裤真人,穿戴方法视频| 免费av毛片视频| 成人免费观看视频高清| 久9热在线精品视频| 久久久久久久久免费视频了| 亚洲一区二区三区色噜噜 | 国产精华一区二区三区| 一区在线观看完整版| 国产精品自产拍在线观看55亚洲| 久久精品亚洲精品国产色婷小说| 国产在线精品亚洲第一网站| 亚洲中文日韩欧美视频| av免费在线观看网站| 女人高潮潮喷娇喘18禁视频| av在线播放免费不卡| 男人舔女人下体高潮全视频| 精品国产美女av久久久久小说| 日韩 欧美 亚洲 中文字幕| 18禁美女被吸乳视频| 美女扒开内裤让男人捅视频| 国产成人欧美| 亚洲欧美日韩无卡精品| 日韩欧美一区视频在线观看| 国产亚洲精品久久久久久毛片| 精品久久久久久久久久免费视频 | 国内久久婷婷六月综合欲色啪| 欧美中文综合在线视频| 熟女少妇亚洲综合色aaa.| x7x7x7水蜜桃| 一级片'在线观看视频| 青草久久国产| 最好的美女福利视频网| 国产成人精品久久二区二区免费| xxxhd国产人妻xxx| 丰满迷人的少妇在线观看| 亚洲精品久久午夜乱码| 女同久久另类99精品国产91| 另类亚洲欧美激情| 露出奶头的视频| 欧美日韩亚洲综合一区二区三区_| 国产高清激情床上av| 乱人伦中国视频| 婷婷精品国产亚洲av在线| 黄色女人牲交| 国产欧美日韩精品亚洲av| 满18在线观看网站| 久久热在线av| 久久国产乱子伦精品免费另类| 大型av网站在线播放| 伦理电影免费视频| 国产精品亚洲一级av第二区| 女人高潮潮喷娇喘18禁视频| 12—13女人毛片做爰片一| 超碰成人久久| 精品欧美一区二区三区在线| 亚洲精品国产一区二区精华液| 精品一区二区三区av网在线观看| 高清在线国产一区| 国产成人精品久久二区二区免费| 美女午夜性视频免费| 国产精品 国内视频| 色婷婷av一区二区三区视频| 热99re8久久精品国产| 久久久久国内视频| 国产精品自产拍在线观看55亚洲| 黄色女人牲交| 美女高潮到喷水免费观看| 日韩欧美免费精品| 国产欧美日韩综合在线一区二区| 欧美精品啪啪一区二区三区| 国产一区二区在线av高清观看| 久久久久久亚洲精品国产蜜桃av| 国产熟女xx| 在线观看www视频免费| 乱人伦中国视频| 国产成人欧美| 国产精品亚洲一级av第二区| 日韩国内少妇激情av| 免费在线观看视频国产中文字幕亚洲| 亚洲午夜精品一区,二区,三区| 丝袜在线中文字幕| 亚洲 国产 在线| 老司机亚洲免费影院| 丁香六月欧美| 老司机午夜福利在线观看视频| 男女下面插进去视频免费观看| 91av网站免费观看| 午夜福利免费观看在线| 亚洲激情在线av| 999精品在线视频| xxx96com| 一级,二级,三级黄色视频| av在线天堂中文字幕 | 亚洲精品成人av观看孕妇| 一级毛片精品| 99久久精品国产亚洲精品| av中文乱码字幕在线| 亚洲中文日韩欧美视频| 成人国语在线视频| 久久久久久亚洲精品国产蜜桃av| 成人三级做爰电影| 黑人操中国人逼视频| 不卡一级毛片| 狠狠狠狠99中文字幕| 黑人欧美特级aaaaaa片| 水蜜桃什么品种好| 亚洲精品在线观看二区| 亚洲视频免费观看视频| 欧美午夜高清在线| 男女做爰动态图高潮gif福利片 | 法律面前人人平等表现在哪些方面| 在线播放国产精品三级| 手机成人av网站| 美女高潮喷水抽搐中文字幕| 色综合欧美亚洲国产小说| 亚洲 欧美 日韩 在线 免费| 亚洲av成人av| 国产精品久久久久久人妻精品电影| 久久亚洲真实| 亚洲色图 男人天堂 中文字幕| 波多野结衣一区麻豆| 国产精品成人在线| 三级毛片av免费| 国产精品永久免费网站| 亚洲av五月六月丁香网| 亚洲中文av在线| 男人操女人黄网站| 亚洲avbb在线观看| 久久久久精品国产欧美久久久| 一进一出抽搐动态| 久久久久九九精品影院| 日本撒尿小便嘘嘘汇集6| 国产高清videossex| 国产1区2区3区精品| 女人被躁到高潮嗷嗷叫费观| 国产黄色免费在线视频| www日本在线高清视频| 男女床上黄色一级片免费看| 成人亚洲精品av一区二区 | 成人亚洲精品一区在线观看| 人成视频在线观看免费观看| 后天国语完整版免费观看| 午夜精品久久久久久毛片777| 又大又爽又粗| 热99re8久久精品国产| 欧美丝袜亚洲另类 | 欧美精品一区二区免费开放| 女人爽到高潮嗷嗷叫在线视频| 韩国av一区二区三区四区| 国产精品一区二区精品视频观看| 一进一出抽搐gif免费好疼 | 中亚洲国语对白在线视频| 淫秽高清视频在线观看| 国产黄色免费在线视频| 欧美成人免费av一区二区三区| 欧美乱码精品一区二区三区| 国产精品免费一区二区三区在线| 免费在线观看亚洲国产| 在线观看免费高清a一片| 欧美成人午夜精品| 午夜影院日韩av| 精品人妻在线不人妻| 久热这里只有精品99| 亚洲欧美一区二区三区黑人| 亚洲人成伊人成综合网2020| 可以在线观看毛片的网站| 国产亚洲av高清不卡| 亚洲成人免费av在线播放| a在线观看视频网站| 欧美人与性动交α欧美软件| 91成年电影在线观看| 久久热在线av| 波多野结衣高清无吗| 国产亚洲精品久久久久5区| 久久久久久亚洲精品国产蜜桃av| 亚洲午夜理论影院| 天堂俺去俺来也www色官网| 亚洲成人精品中文字幕电影 | 19禁男女啪啪无遮挡网站| a级毛片在线看网站| 日韩欧美在线二视频| 午夜两性在线视频| 欧美激情极品国产一区二区三区| 亚洲免费av在线视频| www日本在线高清视频| 免费看a级黄色片| 午夜福利欧美成人| 国产午夜精品久久久久久| 国产色视频综合| 欧美久久黑人一区二区| 久久精品91蜜桃| 欧美日本中文国产一区发布| 国产高清国产精品国产三级| 日本 av在线| e午夜精品久久久久久久| a级毛片黄视频| 深夜精品福利| 欧美精品一区二区免费开放| 久久人妻av系列| 女性被躁到高潮视频| 日韩欧美国产一区二区入口| 国产欧美日韩精品亚洲av| 亚洲人成电影观看| 50天的宝宝边吃奶边哭怎么回事| 欧美+亚洲+日韩+国产| 亚洲人成电影观看| 黑人巨大精品欧美一区二区mp4| 亚洲精品中文字幕一二三四区| 热re99久久国产66热| 免费av毛片视频| 操出白浆在线播放| 一级毛片高清免费大全| 亚洲成人久久性| 日韩 欧美 亚洲 中文字幕| 中文字幕人妻丝袜制服| 欧美日韩福利视频一区二区| 久久久久久久久中文| 亚洲美女黄片视频| 精品福利永久在线观看| 亚洲在线自拍视频| 国产成人欧美| 黑丝袜美女国产一区| 操美女的视频在线观看| 可以在线观看毛片的网站| 久久婷婷成人综合色麻豆| 日韩欧美三级三区| 欧美色视频一区免费| 国产1区2区3区精品| 色在线成人网| 成人手机av| 一级黄色大片毛片| 免费高清在线观看日韩| 多毛熟女@视频| 亚洲欧美激情在线| 岛国视频午夜一区免费看| 亚洲五月天丁香| 成人三级做爰电影| 老司机深夜福利视频在线观看| 免费看a级黄色片| 大型av网站在线播放| 最近最新中文字幕大全电影3 | 欧美+亚洲+日韩+国产| 啦啦啦 在线观看视频| 国产精品久久久久久人妻精品电影| 亚洲一区二区三区欧美精品| 久99久视频精品免费| 国产成人欧美在线观看| 久久精品亚洲熟妇少妇任你| 丰满的人妻完整版| 欧美日韩一级在线毛片| 日韩免费高清中文字幕av| 嫩草影院精品99| 91精品国产国语对白视频| 亚洲av成人av| 脱女人内裤的视频| 亚洲中文av在线| 一级毛片精品| 国产精品爽爽va在线观看网站 | 国产精品久久久久成人av| 美女午夜性视频免费| 狠狠狠狠99中文字幕| 欧美一级毛片孕妇| 国产精品国产高清国产av| 搡老岳熟女国产| 亚洲国产欧美一区二区综合| 黑人猛操日本美女一级片| 999久久久国产精品视频| 国产成人精品无人区| 看免费av毛片| 亚洲精品国产精品久久久不卡| 久久久久精品国产欧美久久久| 天天躁夜夜躁狠狠躁躁| cao死你这个sao货| 国产aⅴ精品一区二区三区波| 欧美亚洲日本最大视频资源| 男女下面进入的视频免费午夜 | 国产区一区二久久| 可以在线观看毛片的网站| 波多野结衣高清无吗| 18禁美女被吸乳视频| 亚洲一区高清亚洲精品| 色婷婷久久久亚洲欧美| 久久狼人影院| 欧美精品一区二区免费开放| 久久 成人 亚洲| 亚洲视频免费观看视频| 最近最新中文字幕大全电影3 | 97碰自拍视频| av片东京热男人的天堂| 一级a爱片免费观看的视频| 国产极品粉嫩免费观看在线| 日韩精品中文字幕看吧| 亚洲第一青青草原| 99香蕉大伊视频| 淫妇啪啪啪对白视频| 亚洲精品在线美女| 国产精品自产拍在线观看55亚洲| 大码成人一级视频| 欧美日韩瑟瑟在线播放| 88av欧美| 99久久国产精品久久久| 免费在线观看视频国产中文字幕亚洲| 亚洲国产精品一区二区三区在线| 黄色成人免费大全| tocl精华| 亚洲伊人色综图| 操美女的视频在线观看| 99re在线观看精品视频| 夫妻午夜视频| 国产精品免费一区二区三区在线| 国产激情久久老熟女| 男人舔女人的私密视频| 午夜福利在线观看吧| 啦啦啦在线免费观看视频4| 在线观看www视频免费| 淫秽高清视频在线观看| www.精华液| 亚洲精品在线美女| 久久人妻熟女aⅴ| 最新美女视频免费是黄的| 女人高潮潮喷娇喘18禁视频| 18禁裸乳无遮挡免费网站照片 | 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲精品在线美女| 国产成人精品久久二区二区91| 亚洲精品久久午夜乱码| 精品久久久久久,| 黄片大片在线免费观看| 免费在线观看日本一区| 人人妻,人人澡人人爽秒播| 男女之事视频高清在线观看| 9色porny在线观看| 神马国产精品三级电影在线观看 | svipshipincom国产片| 欧美老熟妇乱子伦牲交| 精品国内亚洲2022精品成人| 亚洲性夜色夜夜综合| 不卡av一区二区三区| 女性生殖器流出的白浆| 精品第一国产精品| 国产野战对白在线观看| 1024视频免费在线观看| 亚洲情色 制服丝袜| 自线自在国产av| 久久久久国内视频| 美女福利国产在线| 欧美午夜高清在线| 操美女的视频在线观看| 亚洲精品中文字幕在线视频| 久久精品亚洲av国产电影网| 国产视频一区二区在线看| 757午夜福利合集在线观看| 欧美乱色亚洲激情| 精品一品国产午夜福利视频| 97超级碰碰碰精品色视频在线观看| 亚洲人成网站在线播放欧美日韩| 精品久久久久久久毛片微露脸| 欧美久久黑人一区二区| 另类亚洲欧美激情| 精品国内亚洲2022精品成人| 香蕉丝袜av| 欧美精品亚洲一区二区| 欧美在线一区亚洲| 一本综合久久免费| 国产精品日韩av在线免费观看 | 日韩高清综合在线| 丝袜美足系列| 亚洲av美国av| 老司机午夜福利在线观看视频| 成人av一区二区三区在线看| 大型av网站在线播放| 看片在线看免费视频| 午夜福利一区二区在线看| 青草久久国产| 精品福利观看| 久久精品人人爽人人爽视色| 久久国产精品人妻蜜桃| 亚洲片人在线观看| 夜夜夜夜夜久久久久| 免费在线观看影片大全网站| 桃色一区二区三区在线观看| 少妇被粗大的猛进出69影院| 精品国内亚洲2022精品成人| 精品免费久久久久久久清纯| 一区二区三区激情视频| 免费在线观看亚洲国产| 天天躁狠狠躁夜夜躁狠狠躁| 国产成人一区二区三区免费视频网站| 老司机在亚洲福利影院| 国产精品日韩av在线免费观看 | 午夜免费激情av| 韩国av一区二区三区四区| 欧美激情 高清一区二区三区| 成年女人毛片免费观看观看9| 黄色 视频免费看| 色综合站精品国产| 免费久久久久久久精品成人欧美视频| 中文字幕人妻丝袜一区二区| 天堂影院成人在线观看| 久久久国产欧美日韩av| 男人操女人黄网站| 国产精品国产高清国产av| 日韩三级视频一区二区三区| 免费不卡黄色视频| 午夜精品国产一区二区电影| 中亚洲国语对白在线视频| 无限看片的www在线观看| 淫秽高清视频在线观看| 男女高潮啪啪啪动态图| 涩涩av久久男人的天堂| 69精品国产乱码久久久| 丰满饥渴人妻一区二区三| 午夜免费激情av| 神马国产精品三级电影在线观看 | 欧美 亚洲 国产 日韩一| 国产成年人精品一区二区 | 亚洲成人免费av在线播放| 视频在线观看一区二区三区| 亚洲欧美一区二区三区久久| 午夜福利,免费看| 午夜久久久在线观看| 欧美在线黄色| 很黄的视频免费| 超碰97精品在线观看| 亚洲五月婷婷丁香| 激情在线观看视频在线高清| 制服诱惑二区| 久久国产精品男人的天堂亚洲| 亚洲在线自拍视频| 亚洲欧美精品综合一区二区三区| 黄色片一级片一级黄色片| 欧美黑人精品巨大| 一级毛片精品| 电影成人av| 又紧又爽又黄一区二区| 18禁裸乳无遮挡免费网站照片 | 久久欧美精品欧美久久欧美| 桃红色精品国产亚洲av| 国产精品久久久久成人av| 99国产精品免费福利视频| 久久久久精品国产欧美久久久| 午夜福利欧美成人| 性少妇av在线| 伊人久久大香线蕉亚洲五| 日本一区二区免费在线视频| 亚洲精品中文字幕在线视频| 久久这里只有精品19| 国产男靠女视频免费网站| 国产亚洲欧美98| 成人av一区二区三区在线看| 后天国语完整版免费观看| 中文亚洲av片在线观看爽| 91av网站免费观看| 在线观看免费高清a一片| 欧美黑人欧美精品刺激| www.熟女人妻精品国产| 国产又色又爽无遮挡免费看| av片东京热男人的天堂| 久久欧美精品欧美久久欧美| 夜夜夜夜夜久久久久| 91成人精品电影| 可以免费在线观看a视频的电影网站| 巨乳人妻的诱惑在线观看| 十分钟在线观看高清视频www| 又紧又爽又黄一区二区| 18禁美女被吸乳视频| 国产伦一二天堂av在线观看| 国产成人精品在线电影| 天堂影院成人在线观看| 国产又爽黄色视频| 成人国语在线视频| av欧美777| 高清av免费在线| 久久亚洲精品不卡| 男女高潮啪啪啪动态图| 欧美老熟妇乱子伦牲交| 欧美最黄视频在线播放免费 | 两个人看的免费小视频| 亚洲精品粉嫩美女一区| 99国产精品99久久久久| 露出奶头的视频| 欧美日韩国产mv在线观看视频| 成在线人永久免费视频| 国产精品野战在线观看 | 久久久国产一区二区| 亚洲成人精品中文字幕电影 | 午夜精品久久久久久毛片777| 亚洲一区二区三区色噜噜 | 国产精品一区二区免费欧美| 国产精品久久久av美女十八| 欧洲精品卡2卡3卡4卡5卡区| 国产一区二区激情短视频| 一二三四在线观看免费中文在| 视频区图区小说| 日本欧美视频一区| 最近最新中文字幕大全电影3 | 精品高清国产在线一区| av有码第一页| 午夜日韩欧美国产| 琪琪午夜伦伦电影理论片6080| 精品高清国产在线一区| 国产精品日韩av在线免费观看 | www.熟女人妻精品国产| 精品国产美女av久久久久小说| 国产高清videossex| 国产91精品成人一区二区三区| 黄色a级毛片大全视频| 露出奶头的视频| 999久久久精品免费观看国产| 国产亚洲欧美精品永久| 99精品欧美一区二区三区四区| 看黄色毛片网站| 亚洲av熟女| 日本黄色视频三级网站网址| 国产熟女午夜一区二区三区| 亚洲精品中文字幕在线视频| 女警被强在线播放| 人人妻,人人澡人人爽秒播|