• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials

    2022-06-29 09:23:42ManXu許曼XiaonaYin殷曉娜JingjingHuang黃晶晶MengLiu劉蒙HuiyunZhang張會云andYupingZhang張玉萍
    Chinese Physics B 2022年6期
    關(guān)鍵詞:晶晶

    Man Xu(許曼) Xiaona Yin(殷曉娜) Jingjing Huang(黃晶晶) Meng Liu(劉蒙)Huiyun Zhang(張會云) and Yuping Zhang(張玉萍)

    1College of Electronic and Information Engineering,Shandong University of Science and Technology,Qingdao 266590,China

    2Collaborative Innovation Center of Light Manipulations and Applications,Shandong Normal University,Jinan 250358,China

    Keywords: terahertz,chiral metamaterials,asymmetric transmission,tunable

    1. Introduction

    Terahertz (THz) waves lie between microwave and infrared waves in the electromagnetic spectrum, and they have many unique properties,[1]including high signal-noise ratio,ultra-wideband, and strong transmission capability.[2]Natural materials have a relatively weak electromagnetic response in the terahertz band. Therefore, traditional terahertz modulators are not only inefficient, but also very thick, which is not conducive to the development of modern optical systems.Metamaterials manipulate terahertz wave at will by the arbitrary design of subwavelength microstructure array. They have been realized many novel electromagnetic effects which are not available from conventional materials,such as negative magnetic permeability,[3,4]zero refractive index,[5,6]and negative refractive index.[7]The introduction of terahertz metamaterial has promoted the development of high efficiency and integrated modulators, which have filled the “THz gap” to a large extent.[8]Asymmetric transmission(AT)devices are one of the branches of terahertz functional devices,which exhibit promising application in the development of radomes,circulators and isolators.

    In 2006,Fedotovet al.[9]proposed AT of circularly polarized waves for the first time by using fishscale-shaped metamaterials in the optical frequency. Then in 2010, Menzelet al.[10]first realized AT of linearly polarized waves in threedimensional(3D)chiral optical metamaterials. Subsequently,chiral metamaterials have been widely used to achieve AT of linearly polarized waves in the microwave[11]and terahertz regions.[12]In 2017, Fanget al.[13]proposed a dualband AT device composed of five-layer metamaterial structure,which achieved strong AT effect for the linearly polarized incidence around 0.51 THz and 0.81 THz. In 2018, Stephenet al.[14]proposed a sandwich structure for AT of linearly polarized waves with a maximum AT parameter of 0.95 in the microwave band. However,once these devices have been fabricated,their working frequency and amplitude cannot be controlled in real time, which seriously limits their practical application.

    In order to overcome the above bottlenecks and obtain THz devices with dynamically controlled performance, materials with adjustable electromagnetic properties are combined into metamaterial structures, such as graphene,[15–19]Dirac semimetals(DSMs),[20]and vanadium dioxide (VO2).[21–24]These tunable metamaterial structures are conducive to the development of novel terahertz devices,such as modulators,[25–28]filters,[25–28]and sensors.[25–27]Zhaoet al.[15]proposed a three-layer metal–graphene–metal metasurface to achieve the tunability of linear AT by varying the Fermi energy of the graphene.However,graphene exhibits an instable property and interact light weakly since it is composed of single layer atom,[29]which limits its development of high efficiency AT devices. DSMs are considered to be analogues of three-dimensional graphene. In comparison, it has higher electron mobility[30,31]and interacts with incident waves strongly.[32]Furthermore, the Fermi energy of DSMs can be by alkaline surface doping.[33,34]These excellent properties make DSMs a suitable candidate material for the construction of actively controlled metamaterial absorbers,[35–38]electromagnetic induced transparency[39–43]devices,polarization conversion devices.[44,45]Daiet al.[20]designed AT devices for linearly polarized waves based on DSMs. The proposed device achieves a maximum AT parameter of 0.38 at 1.56 THz,and the resonant frequency and amplitude were dynamically tunable by changing the DSMs Fermi energy. However,the tunability of the resonant frequency was accompanied by a reduction in the AT intensity as the decrease of the DSMs Fermi level. It is well-known that VO2exhibits a phase transition from an insulating dielectric state to a metallic state[42]via electrical,thermal,and optical stimuli.[46–48]During the transition progress, VO2undergoes a drastic change in conductivity exceeding four orders of magnitude around the critical temperature 68°. Recently,Liuet al.[21]carried out a systematic research on temperature-controlled two-dimensional(2D)chirality and 3D chirality in the terahertz regime,including the dynamically controlled linearly polarized AT,[22]switchable chiral mirrors,[23]and actively controlled negative refractive index.[24]However, all AT of linearly polarized devices were designed cannot simultaneously realize these two functionalities. Firstly, the resonant frequency of the AT is dynamically tunable while maintaining the amplitude of AT.Then,the amplitude can be dynamically tuned independently leading to a switch for AT.

    In this work, we proposed a theoretical AT device based on VO2and DSMs in the terahertz region. At the room temperature,VO2is in its insulating state,tunable broadband AT of linearly polarized terahertz waves has been achieved. The resonant frequency can be dynamically tuned by modifying the Fermi level of DSFs while maintaining the amplitude of AT. Increasing the operation temperature across 68°C, VO2transmit from insulating state to metallic state, the AT amplitude of linearly polarized waves decrease significantly, while the resonant frequency remains the same almost be almost unchanged. This work can be used to inspire the fabrication of tunable AT devices in the terahertz range,as well as the similar modulator operating in other frequency.

    2. Design and theoretical analysis

    Figure 1 illustrates the schematic of a unit cell of the proposed chiral metasurface,which consists of three layers. The top layer composed of DSMs and VO2microstructures,which a 6-shaped structure with a thickness of 0.7 μm. The 6-shaped patterns on the front and back surfaces of the dielectric layer are structurely identical and the bottom pattern is a mirror image of the top layer rotated by 90°. The polyimide layers have been treated as a lossy material with dielectric constant set toεp=3+0.09i,[49]and its thickness is 21 μm. The width of DSMs bars isw=3 μm, and the gap between DSMs bars isg=3 μm. The period of the unit isP=20 μm. When VO2in its insulating state, this chiral metasurface can achieve AT effect shown in Fig. 1(a). VO2transmit from insulating state to metallic state,AT can be turned off shown in Fig.1(b). The electromagnetic simulation software CST Microwave Studio is used to simulate the chiral metasurface. In simulations,the unit cell boundary conditions are employed along thexandydirections, and the open boundary condition is applied along thezdirection.

    In the range of long wave limitq ?KF, the longitudinal dynamic conductivity formula of DSMs can be obtained by Kubo formula in random-phase approximation theory. The conductivity of DSMs can be calculated by the formulaδ(w)=δintra(w)+δinter(w),whereδintra(w)andδinter(w)are the intraband and interband conductivity respectively. The interband and intraband conductivity of the DSMs can be defined as[50]

    Since the 6-shaped patterns on the front and back surfaces of the dielectric layer have the characteristic of chirality,the copolarized transmission coefficients of linearly polarized waves are always equal. The formula can be further simplified as

    3. Results and discussion

    The spectra response of the proposed device has been demonstrated for the case where VO2is in the insulating dielectric state with conductivity of 10 S/m, and the Fermi energy level of the DSMs is 0.15 eV.Figures 2(a)and 2(b)show the four elements of the transmission matrix for a linearly polarized wave propagating along the backward (-z) and forward(+z)directions.For they-polarized waves propagating in the backward direction and thex-polarized waves propagating in the forward direction,the AT device allows waves to transmit through themselves with a perfect diode effect. As shown in Fig.2(a),the co-polarization transmission coefficients(Txx,Tyy)are always equal over the entire frequency range,while the cross-polarization transmission coefficients (Txy,Tyx) are significantly different. The value of|Tyx| is higher than 0.7 and|Txy|is lower than 0.16 in the range of 1.184 THz–1.8336 THz.Compared with Figs.2(a)and 2(b),when the propagation direction is switched,the co-polarized transmission coefficients remains unchanged, while cross-polarized transmission coefficients will exchange. It can be observed from Figs.2(c)and 2(d), when thex-linearly polarized waves propagating along the backward direction, the polarization azimuth is 88.1°and-68.8°at 1.184 THz and 1.8336 THz. Therefore, these phenomena are identical to the conditions required for the AT effect that cause AT of linearly polarized waves.

    The AT performance can be described more intuitively by introducing the polarization conversion ratio (PCR) and the total transmission intensity (T) of thex- andy-linearly polarized waves. The equations PCRx=|Tyx|2/(|Txx|2+|Tyx|2)and PCRy=|Txy|2/(|Tyy|2+|Txy|2) are used to illustrate the performance of thex- andy-linear PCRxand PCRyshown in Fig.3(b). PCRxis greater than 0.8 in the range of 1.15 THz–2.4 THz, indicating that most of thex-polarized waves are converted toy-polarized waves. The equations|Tx|2=|Txx|2+|Tyx|2and|Ty|2=|Tyy|2+|Txy|2represent the total transmittance ofx-andy-polarized waves. Figure 3(c)shows the total transmission intensity of linearly polarized waves propagating from the forward and backward directions respectively. Total transmission intensityTbxofx-polarized waves incident along backward direction shows one peak of 0.64 at 1.33 THz,while total transmission intensityTbyofy-polarized waves is relatively low.

    According to Eqs. (12) and (13), we calculate the polarization rotation angleθand ellipticityηof linearly polarized waves propagating in the backward direction shown in Figs.4(a)and 4(b). As can be seen from Fig.4(a),the polarization azimuth of thex-polarized waves at 1.2 THz is close to 90°,achieving a perfectx–ypolarization conversion. However,the absolute value ofy-polarized waves in the whole frequency range is less than 25°,so it can hardly be converted intox-polarized waves when passing through the device. The incident linearly polarized waves change into linearly or elliptically polarized waves after passing through the chiral structure as shown in Fig.4(b). Theηofx-polarized andy-polarized is 0 at the frequency 1.79 THz,which indicate that the transmitted wave is still linearly polarized. In the frequency range of less than 1.79 THz, theηofx-polarized wave is less than 0,thus the transmitted wave becomes right-handed elliptical polarized one. When the frequency is greater than 1.79 THz,ηis always more than 0,and the transmitted wave is left-handed circular polarization.

    Figure 5 shows the four transmission matrices at different Fermi levels when the linearly polarized waves propagating in the backward direction. When the Fermi level of DSMs is modified from 0.05 eV to 0.15 eV,the amplitude of transmission coefficients are basically unchanged and the resonant frequency are blue shifted. Therefore, changing the Fermi level of the DSMs can achieve dynamic tunability of resonant frequency,thus increasing the applications of devices.

    By analyzing the electric field of linearly polarized waves propagating in the backward direction, the AT effect can be more clearly understood. Figure 6(a)shows that the direction of the electric field changes from horizontal to vertical as thex-polarized waves are incident, which indicates that thex–ypolarization transition is achieved at 1.30 THz.In contrast,the direction of the electric field of the output wave is still vertical when they-polarized waves propagate,as shown in Fig.6(b).

    The intensity of the four transmission matrices can be tailored by modifying the conductivity of VO2as shown in Fig. 8(a). When thex- andy-linearly polarized waves propagate in the backward direction, the cross-polarized transmission coefficients|Tyx| and|Txy| decrease continuously as the metallic properties of VO2increase. However, the copolarized transmission coefficients|Txx|and|Tyy|increase continuously. Therefore,the curves in Fig.8(a)will form the phenomenon in Figs.8(b)and 8(c). It can be seen from Fig.8(b)that AT parameterΔxlincontinuously decreases by increasing the conductivity of the VO2. The phenomenon of AT basically disappears when the conductivity is 105S/m. With the conductivity of VO2increase,the rising conductivity leads to a continuous decrease in transmission, as shown in Fig. 8(c).Thus,AT occurs when VO2is in the insulator state and it can be turned off by increasing its conductivity.

    4. Conclusion

    In this work, we have realized a dynamically controlled broadband AT device for linearly polarized terahertz waves based on DSMs and VO2materials. When the VO2in its insulating state (10 S/m), the bandwidth of AT parameter greater than 0.5 is 0.59 THz in the frequency range of 1.21 THz–1.80 THz. When the VO2in its metallic state (105S/m),the AT parameter is almost 0 in the entire frequency range of 0.8 THz–2.4 THz. Therefore,the amplitude of AT can be dynamically tailored by modifying the conductivity of VO2. The resonant frequency of AT exhibits blue shift with the Fermi level of DSMs increases from 0.05 eV to 0.15 eV while maintaining the amplitude of AT.The method of adjusting resonant frequency and amplitude independently increases the practicability of devices,which is conducive to the development of AT devices.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant Nos. 61875106, 62105187,and 61775123), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2021QF010), the Shandong Social Science Planning Project, China (Grant No. 21CZXJ08), and the National Key Research and Development Program of China(Grant No.2017YFA0701000).

    猜你喜歡
    晶晶
    THE EXISTENCE AND MULTIPLICITY OF k-CONVEX SOLUTIONS FOR A COUPLED k-HESSIAN SYSTEM?
    巧算最小表面積
    啄木鳥醫(yī)生
    Digging for the past
    How To Make Friends(1)
    奇韻南京之“時空碰撞美”
    炎熱的夏天
    The Impact of Dignity on Design Behavior
    青年生活(2019年3期)2019-09-10 16:57:14
    麗寧十八彎
    紅櫻綠茶兩相歡
    日本av手机在线免费观看| 国产成人91sexporn| 国产精品久久久久久精品电影| 变态另类成人亚洲欧美熟女| 免费看光身美女| 在线免费观看不下载黄p国产| 激情 狠狠 欧美| 亚洲精品自拍成人| 欧美人与善性xxx| 亚洲最大成人手机在线| 国产 一区精品| 中国美白少妇内射xxxbb| 免费黄网站久久成人精品| 午夜亚洲福利在线播放| 男女做爰动态图高潮gif福利片| 国产精品1区2区在线观看.| 国产在视频线在精品| 最近2019中文字幕mv第一页| 亚洲婷婷狠狠爱综合网| 国产精品日韩av在线免费观看| 在线观看av片永久免费下载| 国产精品乱码一区二三区的特点| 国产v大片淫在线免费观看| 六月丁香七月| av又黄又爽大尺度在线免费看 | 亚洲欧洲国产日韩| 一级黄色大片毛片| 国产综合懂色| 少妇熟女欧美另类| 99在线人妻在线中文字幕| 天天一区二区日本电影三级| 欧美一区二区国产精品久久精品| 久久久午夜欧美精品| 蜜桃亚洲精品一区二区三区| 亚洲精品国产成人久久av| 国产免费一级a男人的天堂| 欧美人与善性xxx| 欧美潮喷喷水| 成人二区视频| 日韩欧美精品免费久久| 国国产精品蜜臀av免费| 精品人妻偷拍中文字幕| 精品久久久久久久久久免费视频| 好男人在线观看高清免费视频| 哪里可以看免费的av片| 51国产日韩欧美| 天堂av国产一区二区熟女人妻| 国产精品久久久久久久电影| 国产私拍福利视频在线观看| 国产精品久久久久久av不卡| 国产亚洲av片在线观看秒播厂 | 色视频www国产| 久久亚洲国产成人精品v| 国产精品久久久久久亚洲av鲁大| 亚洲国产欧美人成| 欧美丝袜亚洲另类| 欧美激情久久久久久爽电影| 国产伦精品一区二区三区视频9| 国产黄色小视频在线观看| 女人被狂操c到高潮| 欧美最黄视频在线播放免费| 国产亚洲精品久久久久久毛片| 最新中文字幕久久久久| 18禁裸乳无遮挡免费网站照片| 亚洲国产精品久久男人天堂| 国产精品.久久久| 久久亚洲精品不卡| 日本欧美国产在线视频| 啦啦啦韩国在线观看视频| 成人特级黄色片久久久久久久| 国内揄拍国产精品人妻在线| 好男人视频免费观看在线| 欧美高清性xxxxhd video| 婷婷亚洲欧美| 深夜精品福利| 午夜激情福利司机影院| 日本熟妇午夜| 亚洲av男天堂| 能在线免费观看的黄片| 久久亚洲国产成人精品v| 国产极品天堂在线| av在线天堂中文字幕| 国产中年淑女户外野战色| 日韩欧美在线乱码| 国产精品一区二区三区四区免费观看| 精品人妻偷拍中文字幕| 国产精品精品国产色婷婷| 国产美女午夜福利| 国产免费男女视频| 草草在线视频免费看| 中国美女看黄片| 国产 一区 欧美 日韩| 在线天堂最新版资源| 国产一区亚洲一区在线观看| 午夜激情福利司机影院| 伦理电影大哥的女人| 丰满的人妻完整版| 久久午夜亚洲精品久久| 啦啦啦韩国在线观看视频| 欧美精品一区二区大全| 狠狠狠狠99中文字幕| 欧美另类亚洲清纯唯美| 成人亚洲欧美一区二区av| 国产成年人精品一区二区| 午夜精品在线福利| 久久这里有精品视频免费| 亚洲精品自拍成人| 性插视频无遮挡在线免费观看| 欧洲精品卡2卡3卡4卡5卡区| 99视频精品全部免费 在线| 亚洲一级一片aⅴ在线观看| 欧美色视频一区免费| 亚洲三级黄色毛片| 精品人妻视频免费看| 欧美激情在线99| 中文字幕人妻熟人妻熟丝袜美| 女同久久另类99精品国产91| 久久精品影院6| 午夜精品在线福利| 尾随美女入室| 国产私拍福利视频在线观看| 免费观看的影片在线观看| 免费人成在线观看视频色| 男女啪啪激烈高潮av片| 亚洲婷婷狠狠爱综合网| 久久久欧美国产精品| 国产真实伦视频高清在线观看| 少妇裸体淫交视频免费看高清| 久久精品国产亚洲网站| 变态另类成人亚洲欧美熟女| 久久人人爽人人爽人人片va| 蜜桃亚洲精品一区二区三区| 一级黄色大片毛片| 国产精品一区二区三区四区久久| 国产麻豆成人av免费视频| 国产激情偷乱视频一区二区| 美女大奶头视频| 两个人视频免费观看高清| 亚洲av不卡在线观看| 国产精品1区2区在线观看.| 99久久中文字幕三级久久日本| 国产亚洲av嫩草精品影院| 国产精品麻豆人妻色哟哟久久 | 不卡视频在线观看欧美| 丰满人妻一区二区三区视频av| 亚洲欧美日韩高清专用| 欧美激情国产日韩精品一区| 黑人高潮一二区| 国产精品美女特级片免费视频播放器| 欧美+日韩+精品| 日韩制服骚丝袜av| 少妇人妻精品综合一区二区 | 亚洲内射少妇av| 桃色一区二区三区在线观看| 白带黄色成豆腐渣| 丰满人妻一区二区三区视频av| 国产淫片久久久久久久久| 国产精品人妻久久久久久| 国产不卡一卡二| 一区二区三区免费毛片| 日韩视频在线欧美| 日韩精品有码人妻一区| 国产中年淑女户外野战色| 欧美激情久久久久久爽电影| 亚洲欧洲日产国产| 直男gayav资源| 边亲边吃奶的免费视频| 性插视频无遮挡在线免费观看| 老女人水多毛片| 国产乱人视频| 久久午夜福利片| 成人综合一区亚洲| 少妇丰满av| 好男人在线观看高清免费视频| 久久久久久久久中文| 美女大奶头视频| videossex国产| 国产亚洲av片在线观看秒播厂 | 特大巨黑吊av在线直播| 高清午夜精品一区二区三区 | 欧美激情国产日韩精品一区| 成人国产麻豆网| 1024手机看黄色片| h日本视频在线播放| 国产一区二区在线av高清观看| 久久精品国产亚洲网站| 欧美三级亚洲精品| av在线天堂中文字幕| 精品99又大又爽又粗少妇毛片| 国产熟女欧美一区二区| 岛国在线免费视频观看| 看片在线看免费视频| 91av网一区二区| 亚洲四区av| 中国美白少妇内射xxxbb| eeuss影院久久| 日韩亚洲欧美综合| 免费无遮挡裸体视频| 亚洲国产欧美在线一区| 内地一区二区视频在线| 人人妻人人澡欧美一区二区| av女优亚洲男人天堂| 天天一区二区日本电影三级| 久久久久久久午夜电影| 久久精品国产鲁丝片午夜精品| 色哟哟哟哟哟哟| a级毛片a级免费在线| 成人亚洲精品av一区二区| 人体艺术视频欧美日本| 嫩草影院新地址| 久久久精品大字幕| 日韩精品有码人妻一区| 啦啦啦啦在线视频资源| 国产精品综合久久久久久久免费| 日韩av在线大香蕉| 午夜视频国产福利| 国产精品免费一区二区三区在线| 麻豆精品久久久久久蜜桃| 全区人妻精品视频| 亚洲国产精品成人综合色| 国产大屁股一区二区在线视频| 边亲边吃奶的免费视频| 亚洲精品国产av成人精品| 亚洲,欧美,日韩| 国产男人的电影天堂91| 欧美极品一区二区三区四区| av天堂在线播放| 一边摸一边抽搐一进一小说| 91狼人影院| 国产精品,欧美在线| 热99re8久久精品国产| 人人妻人人澡人人爽人人夜夜 | 国产老妇女一区| a级毛片a级免费在线| 乱码一卡2卡4卡精品| 亚洲欧美精品专区久久| 熟女人妻精品中文字幕| 亚洲中文字幕一区二区三区有码在线看| 男人舔女人下体高潮全视频| 99久久精品国产国产毛片| 久久久久久久久中文| 国内精品美女久久久久久| 观看美女的网站| 真实男女啪啪啪动态图| 欧美bdsm另类| 久久草成人影院| 色哟哟哟哟哟哟| 亚洲av第一区精品v没综合| 国产成人a区在线观看| 五月伊人婷婷丁香| 欧美3d第一页| 日日啪夜夜撸| 亚洲成人久久爱视频| 国产黄片美女视频| 亚洲七黄色美女视频| 免费一级毛片在线播放高清视频| 色综合亚洲欧美另类图片| 51国产日韩欧美| 你懂的网址亚洲精品在线观看 | 欧美丝袜亚洲另类| 91午夜精品亚洲一区二区三区| 69av精品久久久久久| 国产探花在线观看一区二区| 亚洲av免费在线观看| 国产69精品久久久久777片| 我的老师免费观看完整版| 欧美在线一区亚洲| 日韩成人伦理影院| a级毛片a级免费在线| 久久久久久久亚洲中文字幕| 久久99热这里只有精品18| 成人二区视频| 国产午夜精品久久久久久一区二区三区| 性色avwww在线观看| 亚洲性久久影院| 久久人人爽人人爽人人片va| 亚洲在线观看片| 最新中文字幕久久久久| 成熟少妇高潮喷水视频| 欧美+亚洲+日韩+国产| 一本久久精品| 亚洲人成网站在线播放欧美日韩| 我要搜黄色片| 亚洲无线观看免费| 我要看日韩黄色一级片| 18+在线观看网站| 长腿黑丝高跟| 久久人妻av系列| 亚洲成人中文字幕在线播放| 色视频www国产| 国产爱豆传媒在线观看| 久久午夜亚洲精品久久| 国产亚洲精品久久久久久毛片| 日本免费a在线| 又黄又爽又刺激的免费视频.| 日韩欧美精品v在线| 午夜爱爱视频在线播放| 亚洲成人久久性| 天天躁日日操中文字幕| 国产毛片a区久久久久| 舔av片在线| 啦啦啦韩国在线观看视频| 久久99热这里只有精品18| 如何舔出高潮| 日韩中字成人| 国产91av在线免费观看| 成人国产麻豆网| 99久国产av精品| 国产亚洲5aaaaa淫片| 久久久久网色| 亚洲一区二区三区色噜噜| av卡一久久| 两性午夜刺激爽爽歪歪视频在线观看| 欧美一区二区国产精品久久精品| 中文字幕久久专区| 爱豆传媒免费全集在线观看| 国产高清三级在线| 美女国产视频在线观看| av黄色大香蕉| 色吧在线观看| 丝袜喷水一区| 波多野结衣高清作品| 老女人水多毛片| 久久久成人免费电影| 99久国产av精品| 国产精品无大码| 国产精品一二三区在线看| ponron亚洲| 一级毛片我不卡| 亚洲av二区三区四区| 在线观看美女被高潮喷水网站| 中文字幕久久专区| 国产精品一区二区三区四区久久| 又爽又黄a免费视频| 久久这里只有精品中国| 国产av一区在线观看免费| 哪个播放器可以免费观看大片| 国产成人aa在线观看| 成年女人看的毛片在线观看| 在现免费观看毛片| 插逼视频在线观看| 亚洲欧美清纯卡通| 熟女电影av网| 美女cb高潮喷水在线观看| 免费人成在线观看视频色| 亚洲av免费在线观看| 国产 一区 欧美 日韩| 国产精品久久久久久精品电影| 晚上一个人看的免费电影| 日韩欧美精品v在线| 国产69精品久久久久777片| 久久99精品国语久久久| 夜夜夜夜夜久久久久| 日本五十路高清| 三级毛片av免费| 亚洲激情五月婷婷啪啪| 成年免费大片在线观看| 国产亚洲5aaaaa淫片| 欧美色欧美亚洲另类二区| 久久久午夜欧美精品| 少妇熟女欧美另类| 日韩欧美精品v在线| 性欧美人与动物交配| 亚洲精品日韩在线中文字幕 | 18禁黄网站禁片免费观看直播| 狂野欧美白嫩少妇大欣赏| 日韩一本色道免费dvd| 乱系列少妇在线播放| 男的添女的下面高潮视频| 午夜爱爱视频在线播放| 午夜福利在线在线| 热99re8久久精品国产| 日韩一本色道免费dvd| 亚洲人与动物交配视频| 2021天堂中文幕一二区在线观| 日韩 亚洲 欧美在线| 欧美一区二区精品小视频在线| 给我免费播放毛片高清在线观看| 插逼视频在线观看| 99在线视频只有这里精品首页| 人体艺术视频欧美日本| 国产精品嫩草影院av在线观看| 小说图片视频综合网站| 久久午夜亚洲精品久久| 我的老师免费观看完整版| 亚洲国产精品成人久久小说 | 免费看av在线观看网站| 少妇被粗大猛烈的视频| 又爽又黄a免费视频| 我的女老师完整版在线观看| 国内精品久久久久精免费| 日韩欧美三级三区| 国产成人a区在线观看| 亚洲av成人av| 国产探花在线观看一区二区| 综合色av麻豆| 亚洲性久久影院| 最近中文字幕高清免费大全6| 久久久久久久久久成人| 毛片一级片免费看久久久久| 你懂的网址亚洲精品在线观看 | 精品久久久久久久久久免费视频| 亚洲精品色激情综合| 久久久久久久亚洲中文字幕| 国国产精品蜜臀av免费| 特级一级黄色大片| 亚洲国产精品成人综合色| 国产精品一区二区三区四区免费观看| 毛片一级片免费看久久久久| 久久精品91蜜桃| 久久九九热精品免费| 91久久精品电影网| 韩国av在线不卡| 国产精品福利在线免费观看| 免费黄网站久久成人精品| 久久久久久伊人网av| 午夜精品一区二区三区免费看| 亚洲精品色激情综合| 欧美潮喷喷水| 亚洲av一区综合| 日韩,欧美,国产一区二区三区 | 亚洲久久久久久中文字幕| 美女国产视频在线观看| 国产精品电影一区二区三区| 色哟哟·www| 亚洲国产日韩欧美精品在线观看| 一级毛片久久久久久久久女| 亚洲av二区三区四区| 免费观看的影片在线观看| 男的添女的下面高潮视频| 国产日本99.免费观看| 亚洲精品成人久久久久久| 成年av动漫网址| 国产精品,欧美在线| 国产在线精品亚洲第一网站| 国产成人福利小说| 麻豆成人av视频| 岛国在线免费视频观看| 成人特级黄色片久久久久久久| 久久九九热精品免费| 日韩一本色道免费dvd| 欧美丝袜亚洲另类| 国产伦精品一区二区三区视频9| 尤物成人国产欧美一区二区三区| 国产精品,欧美在线| 国产成人a区在线观看| 久久精品综合一区二区三区| 亚洲欧美日韩东京热| 亚洲精品影视一区二区三区av| 欧美日韩综合久久久久久| 给我免费播放毛片高清在线观看| 欧美一区二区精品小视频在线| 热99re8久久精品国产| 亚洲国产精品sss在线观看| 午夜福利成人在线免费观看| 国产精品久久久久久精品电影| 国产色爽女视频免费观看| 久久精品综合一区二区三区| 日韩,欧美,国产一区二区三区 | 一边亲一边摸免费视频| 最近最新中文字幕大全电影3| 五月玫瑰六月丁香| 久久亚洲国产成人精品v| 免费人成视频x8x8入口观看| 国产亚洲精品久久久久久毛片| 午夜精品在线福利| 亚洲精品自拍成人| 99热这里只有精品一区| 亚洲熟妇中文字幕五十中出| 国产精品人妻久久久久久| 欧美激情在线99| av.在线天堂| 可以在线观看的亚洲视频| 亚洲精品久久久久久婷婷小说 | 精品人妻一区二区三区麻豆| 99在线人妻在线中文字幕| 人人妻人人看人人澡| 亚洲七黄色美女视频| 亚洲中文字幕日韩| 麻豆精品久久久久久蜜桃| 精品国产三级普通话版| 国内精品久久久久精免费| 欧美性猛交黑人性爽| 日韩,欧美,国产一区二区三区 | 国产大屁股一区二区在线视频| 波多野结衣高清作品| 国产伦理片在线播放av一区 | 亚洲国产日韩欧美精品在线观看| 成人午夜高清在线视频| 三级国产精品欧美在线观看| 夜夜夜夜夜久久久久| 久久久成人免费电影| 久久这里有精品视频免费| 国产高清有码在线观看视频| 不卡一级毛片| 女人被狂操c到高潮| 久久精品夜夜夜夜夜久久蜜豆| 国产乱人偷精品视频| 国产成人福利小说| 大香蕉久久网| 简卡轻食公司| 26uuu在线亚洲综合色| 久久久精品大字幕| 国产黄色小视频在线观看| 你懂的网址亚洲精品在线观看 | 国产成人午夜福利电影在线观看| 狠狠狠狠99中文字幕| 国产极品精品免费视频能看的| 午夜激情欧美在线| 99久久精品热视频| 日韩欧美在线乱码| 一边摸一边抽搐一进一小说| 精品人妻偷拍中文字幕| 亚洲美女搞黄在线观看| 少妇的逼好多水| 日韩,欧美,国产一区二区三区 | 亚洲在线自拍视频| 听说在线观看完整版免费高清| 99久久九九国产精品国产免费| 久久久久九九精品影院| 久久热精品热| 久久精品国产亚洲av天美| 国产精品三级大全| 黄色一级大片看看| 国产片特级美女逼逼视频| 精华霜和精华液先用哪个| 国内精品久久久久精免费| 一级二级三级毛片免费看| 插逼视频在线观看| 美女高潮的动态| 日韩欧美三级三区| 中文资源天堂在线| 一本久久精品| 国产一区二区三区av在线 | 国产黄a三级三级三级人| 国产免费男女视频| 春色校园在线视频观看| 久久国产乱子免费精品| 久久久久久久亚洲中文字幕| 欧美日韩乱码在线| 欧美日韩一区二区视频在线观看视频在线 | 18禁裸乳无遮挡免费网站照片| 天天躁夜夜躁狠狠久久av| 亚洲美女搞黄在线观看| 亚洲国产欧洲综合997久久,| 天天一区二区日本电影三级| 99在线视频只有这里精品首页| 欧美日韩在线观看h| 天堂网av新在线| 岛国在线免费视频观看| 天天躁夜夜躁狠狠久久av| 久久精品国产亚洲av天美| 狂野欧美激情性xxxx在线观看| 国产黄片美女视频| 麻豆乱淫一区二区| 久久久久久久久久黄片| 国产精品乱码一区二三区的特点| 毛片女人毛片| eeuss影院久久| 免费一级毛片在线播放高清视频| 欧美激情在线99| 91午夜精品亚洲一区二区三区| 亚洲人成网站在线播| a级毛片免费高清观看在线播放| 色综合色国产| 秋霞在线观看毛片| 久久久久久久久久黄片| 成人高潮视频无遮挡免费网站| 日本一二三区视频观看| 日本色播在线视频| 可以在线观看毛片的网站| 亚洲欧美日韩卡通动漫| 亚洲精品乱码久久久久久按摩| 内地一区二区视频在线| 激情 狠狠 欧美| 精品熟女少妇av免费看| 晚上一个人看的免费电影| 亚洲国产欧美人成| 美女脱内裤让男人舔精品视频 | 99久久久亚洲精品蜜臀av| 蜜桃亚洲精品一区二区三区| 麻豆国产97在线/欧美| 成年版毛片免费区| 一进一出抽搐动态| 国产精品免费一区二区三区在线| 国产伦理片在线播放av一区 | 老熟妇乱子伦视频在线观看| 久99久视频精品免费| 在线观看一区二区三区| 国产伦精品一区二区三区四那| 欧美zozozo另类| 亚洲精品日韩在线中文字幕 | 有码 亚洲区| 亚洲成人av在线免费| 成年免费大片在线观看| 少妇的逼好多水| 小说图片视频综合网站| 蜜桃亚洲精品一区二区三区| 97在线视频观看| 亚洲国产高清在线一区二区三| 又爽又黄无遮挡网站| 国产成人福利小说| 在线观看免费视频日本深夜| 色视频www国产| 九色成人免费人妻av| 欧美日韩综合久久久久久| 国产精品伦人一区二区| 国产黄a三级三级三级人| 国产白丝娇喘喷水9色精品| 欧美色欧美亚洲另类二区| 亚洲av成人av| 成年版毛片免费区| 久久人人爽人人片av| 国产亚洲91精品色在线| 在线a可以看的网站|