• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    甜瓜S-腺苷甲硫氨酸脫羧酶基因的克隆及白粉病誘導(dǎo)表達(dá)分析

    2018-06-26 07:19:14劉長(zhǎng)命張顯王永琦
    生物工程學(xué)報(bào) 2018年6期
    關(guān)鍵詞:甲硫氨酸脫羧酶西北農(nóng)林科技大學(xué)

    劉長(zhǎng)命,張顯,王永琦

    1 商洛學(xué)院,陜西 商洛 726000

    2 西北農(nóng)林科技大學(xué) 園藝學(xué)院,陜西 楊凌 712100

    Muskmelon is one of the most important cultivated plants worldwide. However, in China,melon was threatened by various abiotic and biotic stresses[1]. Powdery mildew, which is strictly biotrophic and completely dependent on the living host cells for survival[2], is a common disease of melon under field and greenhouse conditions worldwide. Many recent studies have shown thatPodosphaera xanthii(P. xanthii) is predominant in most countries[3-5]. Based on our previous study[6], it could be preliminarily confirmed that theP. xanthiirace 2F is the predominant physiological race within cucurbitaceous plants in Guanzhong areas,Shaanxi Province of China.

    Currently, control of powdery mildew on melon is mainly achieved by widespread application of various fungicides. Although powdery mildew can be controlled by fungicides, the cost and the environmental impact of residues are undesirable consequences, and the long term use has led to fungicide resistance of powdery mildew races[7].Furthermore, with the accumulation of toxic heavy metals in soil, the exceeded level of relevant metal ions will be found in melon, which seriously affects the melon food safety. Compared with the application of fungicides, using resistant cultivars is a more effective and environmentally safe approach to disease control.

    Plants use various mechanisms to defend against pathogens, and these are often initiated by plant disease resistance genes, which may encode cell receptors that detect the presence of a specific pathogen and these initiate the activation of signal transduction pathways. Polyamines (PAs) are small ubiquitous compounds that have been implicated in the regulation of many physiological progresses and a variety of stress responses in plants[8]. The enhanced level of polyamines plays an important role in the protective response of plants to various abiotic stresses[9]. SAMDC is one of the key regulatory enzymes in the biosynthesis of polyamines. There are some reports aboutSAMDCgenes responses to abiotic stresses in plants[10].However, very few study about biotic stresses was conducted in melon.

    In our previous study using cDNA-AFLP method, we observed an EST (expression sequence tag) that was induced in leaves of ‘Yuantian930’upon infection withP. xanthii[6]. We analyzed the EST sequence and found that it was the only one completely consistent withSAMDCin melon genome sequence database (https://melonomics.net/). Since‘Yuantian930’ has been shown to be highly resistant to powdery mildew, we undertook the present study to gain a better understanding of SAMDC in melon and verified its potential role in powdery mildew resistance. We cloned the full-length ofCmSAMDCgene from ‘Yuantian930’ and further analyzed its expression in response toP. xanthii. The aim of this study was to determine whether or not there was a relationship between melon resistance and the response ofCmSAMDCtoP. xanthiiinfection. To our knowledge, this is the first report ofSAMDCgene potentially related to powdery mildew resistance in melon.

    1 Materials and methods

    1.1 Plant material and inoculation method

    The powdery mildew (PM) resistant clone,Chinese wild melonC. melo‘Yuantian930’ was used in this study, which was provided by the melon and watermelon research group of Horticulture Institute of Northwest A&F University, China. TheP. xanthiiisolate used in this work was collected from natural infections in cucurbit and through mono bacterial colony propagation. The melon seedlings were grown in the plant growth chamber at 30 ℃/18 ℃ (day/night) operating a 16h/8 h(light/dark) photoperiod and 70%–85% relative humidity. PM inoculation were performed by spraying plants with a suspension of 106sporangia/mLP. xanthiiconidiophores, and then the plants were kept in the same conditions. The leaves from the infected plants (at the forth-leaf stage)were collected after 0 h, 12 h, 24 h, 48 h, 72 h and 120 h, stored at –80 ℃. As a control, leaves were collected from plants treated with sterile water only.

    1.2 RN A extraction and cDNA synthesis

    Total RNA was extracted from melon leaves using the Trizol reagent following the instructions of the Trizol kit (Tiangen, Beijing). Residual DNA was removed by DNase Ⅰ (Promega, Madison,WI, USA). Concentration of total RNA was measured with an ultraviolet spectrophotometer(V-550, JASCO, Japan) at 260 nm. RNA purity was checked by determining theA260/A280ratio, and RNA integrity was examined by 1% agarose gel electrophoresis. SmartTMRACE cDNA Amplification Kit was used to synthesize cDNA,following the instructions of the Clontech kit(Clontech-TaKaRa Bio Inc., Japan).

    1.3 Cloning of melon CmSAMDC

    On the basis of the EST fragment ofCmSAMDCfrom Chinese wild melonC. melo‘Yuntian-930’ by cDNA-AFLP analysis and the data from melon genome sequence database, the gene-specific primers (Table 1)CmSAMDCs andCmSAMDCa containing full ORF (open reading frame) were designed using Primer Premier 5.0, and theBamH I andEcoR I restriction sites were added.PCR amplification ofCmSAMDCwith one microliter of cDNA from infected leaves was added to a PCR mix containing 2 U ofTaqpolymerase(MBI Fermentas), 1× PCR buffer, 2.5 mmol/L MgCl2, 0.1 mmol/L of each dNTP, and 0.5 mmol/L of the forward and reverse degenerate primers. The final volume of each reaction was 25 μL and PCR was performed using a Bio-Rad thermocycler following conditions: initial denaturation at 94 ℃for 3 min; followed by 35 cycles of 94 ℃ for 30 s,56 ℃ for 1 min, 72℃for 1 min; and a final extension at 72 ℃ for 10 min. The PCR products were electrophoresed in 1.5% agarose gel. The fragments of expected size was isolated and puri fi ed using the Gel Extraction Kit (BioTake, USA). The pGEM-T Easy Vector System (Promega, Madison,USA) was used for DNA cloning. The positive clones identified by PCR and enzyme digestion were sequenced by the Beijing Aoke Biotech Co.Ltd. (Beijing, China).

    1.4 Sequence analysis

    The similarity analysis of nucleotide and protein sequences was carried out using the Blast tool at NCBI (http://www.ncbi.nlm.nih.gov/blast).The deduced amino acid sequence was analyzed with the Predict Protein Analysis System(http://www.predictprotein.org/). The parameters for the given protein were computed using the ProtParam tool at the ExPASy Proteomics Server(http://web.expasy.org/protparam/). The transmembrane regions and orientation of given protein was predicted using the TMHMM Server v. 2.0(http://www.cbs.dtu.dk/services/TMHMM/). The multiple sequences alignment was performed with Clustal X and Genedoc software, and a phylogenetic tree was constructed using the MEGA 5.1 software by the Neighbor-joining method. The reliability of each node on phylogenetic tree was tested by bootstrapping 1 000 times.

    表1 所用引物序列Table 1 Primers used in this study

    1.5 Quantitativ e real-time PCR and data analysis

    The first-strand cDNA was synthesized using the Reverse Transcription System Kit (Promega,USA) according to the manufacturer’s instructions.A pair of gene-specific primers (Table 1)CmSAMDCf andCmSAMDCf were designed following the recommended guidelines for qRT-PCR primer design, and primers specific for the melonActingene (GenBank Accession No.AY859055) were used as the internal control (Table 1).The product size was 147 bp.

    Relative levels of gene expression were analyzed with the Themal Cycler Dice?Real Time System (Bio-Rad, Hercules, CA, USA) and normalized with the results forActin. Each 20 μL PCR reaction contained 10 μL of SYBR?Premix ExTaqTMⅡ (2×), 0.8 μL of PCR Forward Primer(10 μmol/L), 0.8 μL of PCR Reverse Primer(10 μmol/L), 2 μL of cDNA (200 ng/μL), and 6.4 μL of ddH2O. The PCR cycling conditions consisted of an initial polymerase activation step at 95 ℃ for 30 s,followed by 40 cycles of 95 ℃ for 5 s and 60 ℃ for 30 s. Output data generated by the instrument on-board software iQ5 (Bio-Rad) were transferred to Sigmaplot software (v.10.0, Systat Inc., CA,USA) for analysis. Real-time quantitative RT-PCR was performed in three replicates for each sample.In addition, reverse transcription negative control was included to check for potential genomic DNA contamination. The relative expression ofCmSAMDCgene was calculated according to the method of 2–△△Ct. The △△CT=(CT,Target–CT,Actin)Timex–(CT,Target–CT,Actin)Time0,CT,Targetmeans theCTvalue of target gene,CT,Actinmeans theCTvalue of control gene, Time x means the post inoculation time (12 h,24 h, 48 h, 72 h, 120 h), Time 0 means the time before inoculation (0 h).

    1.6 Expression of CmSAMDC in E. coli

    After verifying the sequence, the recombinant plasmid of positive clone was digested withBamH I/EcoR I and ligated directly into the prokaryotic expression vector pET-28a (Fermentas, USA),which was predigested with the same enzymes. A recombination reaction yielding a pET-28a andCmSAMDCfusion construct was conducted. After sequencing and con fi rming by restriction digestion,the positive recombinant prokaryotic expression plasmids, designated pET28a-CmSAMDC, were then transformed into competentE. colistrain BL21(DE3) for expression of the fusion protein. TransformedE. colicells were incubated at 37 ℃ overnight in Luria-Bertani medium with 50 mg/L Kan. 1 mL of the overnight cultures were added into 50 mL of fresh LB medium containing Kan and incubated with shaking at 37 ℃ untilOD600reached 0.6.Isopropyl-β-d-thiogalactoside (IPTG) was added to a final concentration of 1 mmol/L and the incubation was continued at 37 ℃. 2 mL of thallus were collected at 2 h, 4 h, 6 h and 8 h respectively after IPTG was added, followed by centrifuging at 12 000×gfor 30 s, and then resuspended with 5×buffer solution [every 10 mL reaction contained:0.6 mL Tris-HCl (1 mol/L, pH 6.8), 5 mL glycerol(50%), 2 mL SDS (10%), 0.5 mL mercaptoethanol,1 mL bromophenol blue (1%), 0.9 mL ddH2O]. The resulting lysate was heated at 100 ℃ for 10 min,and then centrifuged at 12 000×gfor 1 min. The supernatant was used as a sample for SDS-PAGE.After electrophoresis, the gel was stained with Coomassie Brilliant Blue.

    2 Results and discussion

    2.1 Isola tion of CmSAMDC gene

    Based on the study conducted before, a length of 479 bp product was found highly identical toSAMDCinCucumis sativus,Brassica junceaandArabidopsis thaliana[11]. Given this, the full ORF ofSAMDCgene with a length of 1 095 bp was amplified from ‘Yuntian 930’ and namedCmSAMDC(GenBank Accession No. KF151861).Results from agarose gel electrophoresis showed that the PCR products had the expected molecular size of 1 095 bp, which suggested that the full length ofCmSAMDCgene was successfully ampli fi ed by gene special primers (Fig. 1).

    圖1 CmSAMDC基因的擴(kuò)增Fig. 1 Amplification of CmSAMDC gene. M: DL2000 marker; 1: the CmSAMDC cDNA.

    2.2 Bioinform atics analysis of CmSAMDC

    The results showed that the deduced peptide consists of 364 amino acid residues, with a predicted molecular weight of 40 kDa, and theoretical pI of 4.61. The transmembrane regions and orientation was predicted that the given protein probably has no transmembrane region (Fig. 2).Phylogenetic analysis comprising the SAMDC protein sequences from twenty plants revealed that theCmSAMDCprotein had close distance withCucumis sativus,Arabidopsis thaliana,Brassica junceaandCitrofortunella microcarpa, as they all belong to dicotyledon, and the lowest similarity was detected as toSaccharum officinarum,Triticum aestivumandZea mays, since the last three belong to monocot (Fig. 3).

    In this study, the expected size ofSAMDCgene in melon was isolated, and the sequence analyses indicated that theCmSAMDCfrom ‘Yuantian930’shares a high level of sequence homology with other plants ofSAMDCgenes[12-15]. Phylogenetic analysis and the alignment of the deduced amino acid sequences with other plants revealed a series of common features, which was consistent with former studies[16].

    圖2 跨膜域與方向的預(yù)測(cè)Fig. 2 The transmembrane regions and orientation prediction. The line with solid dot and solid square means the polypeptide inside or outside the membrane respectively; the line with solid hexagon means the transmembrane region.

    2.3 Expr ession of CmSAMDC in E. coli BL21(DE3)

    After the array and orientation of the insert sequence were con fi rmed by restriction digestion with enzymeEcoRⅠ/BamHⅠand sequencing, the PCR product was directly cloned into pET-28a.Sequencing results showed thatCmSAMDCgene has been inserted correctly into pET-28a vector(Fig. 4). Upon IPTG induction, fusion proteins containing the desired protein were expressed inE. coliBL21 (DE3). As illustrated by the SDS-PAGE(Fig. 5), the fusion protein was detected as a broad and a predominant band at 43 kDa (including 3 kDa His-tag)in the induced cell lysate with pET28a-SAMDC (lane 4 h and 6 h), and six hours of IPTG induction would be suitable. The molecular mass was consistent with the molecular weight calculated from the amino acid sequence. No reaction was observed with no-loading vector and 0 h as well.

    2.4 Expression analysis of CmSAMDC

    The expression level ofCmSAMDCin response toP. xanthiiin PM-resistant clone‘Yuntian930’ was investigated at different time by qRT-PCR. As shown in Fig. 6,CmSAMDCwas constitutively expressed at low levels in leaves of‘Yuantian930’ before inoculation, then it was peaked at 48 h as almost 7 times high as observed in control. These results suggested that transcription ofCmSAMDCis indeed upregulated in Chinese wild PM-resistant melonC. melo‘Yuntian-930’ upon infection ofP. xanthiipathogens.

    圖3 20種植物SAMDC蛋白氨基酸進(jìn)化樹分析Fig. 3 Phylogenetic tree analysis based on the alignment of deduced amino acid sequences of SAMDC protein in 20 plants. Two major classes were identified and classified to dicotyledon and monocot. The numbers below the branches refer to the percentage of 1 000 bootstrap replications supporting the nodes.

    圖4 融合表達(dá)載體的酶切鑒定Fig. 4 Validation of fusion expression vector by digestion. M: DNA marker (250, 1 000, 2 500, 5 000, 10 000,12 500, 15 000 bp); 1: pGEM-T-SAMDC digested with EcoRⅠand BamHⅠ; 2: pET28a-SAMDC digested with EcoRⅠand BamHⅠ.

    圖5 pET-28a-CmSAMDC重組體的原核表達(dá)分析Fig. 5 CmSAMDC proteins expressed in E. coli and separated by SDS-PAGE. The arrows showed the molecular weight of the target protein agreed well with the predicted.

    圖6 中國(guó)野生甜瓜白粉病菌侵染后CmSAMDC基因表達(dá)分析Fig. 6 Expression profiles of CmSAMDC gene in Chinese wild melon after P. xanthii infection. Each experiment was repeated three times, and the standard error bars were indicated. Total RNA was extracted from leaves of C. melo clone ‘Yuntian930’, and analyzed at 0 h,12 h, 24 h, 48 h, 72 h and 120 h after inoculation with P. xanthii. The leaves of the plants on which sterile water was sprayed were collected as the control leaves (CK).

    For coping with biotic and abiotic stresses,plants have evolved a wide range of defense mechanisms. These defense mechanisms depend on a series of proteins, including many involved in regulating cellular response to stress and signaling crosstalk[17]. Many of these proteins involved the production of phytohormones, pathogenesis-related proteins and transcription factors[18]. The pathogen defense mechanism in plants has been reported to be associated with early and strong gene expression[19]. Most plant resistance genes are transcriptionally regulated in response to pathogen attack. In rice, the transcription of resistance geneXa1appears to increase following pathogen inoculation[20], which indicates that the transcription of the resistance gene depends on the type of plant-pathogen interaction.

    During this experiment, we have examined the expression pattern ofSAMDCin PM-resistant clone‘Yuantian930’ in response toP. xanthiiand it showed higher levels and stronger expression,which was almost 7 times as high as observed in no pathogen inoculation. This trend is similar toSAMDCexpressing in sugarcane[13], tall fescue[14]and tomato under abiotic stress[21]. In addition, the author’s further research also shows thatSAMDCgene plays protective roles in melon resistance to powdery mildew infection by transgenic arabidopsis plants expressingCmSAMDC[22]. Thus,SAMDCwas involved inP. xanthii-induced defense response besides the important role in response to abiotic stress[23-26]. However, the close relationship of SAMDC and powdery mildew stress need to be further verified.

    3 Conclusion

    In summary, we have demonstrated thatCmSAMDCgene was induced byP. xanthiiin PM-resistant melon leaves and likely plays a positive role in defense mechanisms that confer resistance to powdery mildew in melon. Further investigations ofCmSAMDCmay aid us in understanding the mechanism(s) of PM resistance in melon.

    REFERENCES

    [1]Akkurt M, Welter L, Maul E, et al. Development of SCAR markers linked to powdery mildew (Uncinulanecator) resistance in grapevine (Vitis viniferaL. andVitissp.). Mol Breed, 2007, 19(2): 103-111.

    [2]Cheng H, Kun WP, Liu DS, et al. Molecular cloning and expression analysis ofCmMlo1in melon. Mol Bio Rep,2012, 39(2): 1903-1907.

    [3]Fekete C, Fung RWM, Szabó Z, et al. Up-regulated transcripts in a compatible powdery mildew-grapevine interaction. Plant Physiol Biochem, 2009, 47(8): 732-738.

    [4]Kim M, Panstruga R, Elliott C, et al. Calmodulin interacts with MLO protein to regulate defence against mildew in barley. Nature, 2002, 416(6879): 447-451.

    [5]Consonni C, Humphry ME, Hartmann HA, et al.Conserved requirement for a plant host cell protein in powdery mildew pathogenesis. Nat Genet, 2006, 38(6):716-720.

    [6]Xian F. Genetic mechanisms, hormonal changes and cDNA-AFLP analysis of resistance to powdery mildew in wild melon [sp. Agrestis(NAUD.) Greb.][D].Yangling: Northwest A&F University, 2012 (in Chinese).咸豐. 野生甜瓜[sp.Agrestis(Naud.) Greb.]抗白粉病的遺傳機(jī)制和激素變化及其 cDNA-AFLP分析[D].楊凌: 西北農(nóng)林科技大學(xué), 2012.

    [7]Fekete C, Fung RWM, Szabó Z, et al. Up-regulated transcripts in a compatible powdery mildew-grapevine interaction. Plant Physiol Biochem, 2009, 47(8):732-738.

    [8]Dangl JL, Jones JDG. Plant pathogens and integrated defence responses to infection. Nature, 2001, 411(6839):826-833.

    [9]Kubi? J. Exogenous spermidine differentially alters activities of some scavenging system enzymes, H2O2and superoxide radical levels in water-stressed cucumber leaves. J Plant Physiol, 2008, 165(4):397-406.

    [10]Walters DR. Polyamines and plant disease.Phytochemistry, 2003, 64(1): 97-107.

    [11]Liu CM, Xian F, Tian ZG, et al. Analysis of gene expression profiling in the incompatible interaction between Chinese wild melon ‘Yuntian930’ andPodosphaera xanthii. Acta Phytopathol Sin, 2014, 44(1):65-73 (in Chinese).劉長(zhǎng)命, 咸豐, 田治國(guó), 等. 野生甜瓜‘云甜 930’與白粉病菌互作的基因表達(dá)特征. 植物病理學(xué)報(bào), 2014,44(1): 65-73.

    [12]Roy M, Wu R. Overexpression ofS-adenosylmethionine decarboxylase gene in rice increases polyamine level and enhances sodium chloride-stress tolerance. Plant Sci,2002, 163(5): 987-992.

    [13]Liu JX, Que YX, Guo JL, et al. Molecular cloning of sugarcaneS-adenosylmethionine decarboxylase gene(Sc-SAMDC) and its expression analysis. Sci Agric Sin,2010, 43(7): 1448-1457 (in Chinese).劉金仙, 闕友雄, 郭晉隆,等. 甘蔗 S-腺苷蛋氨酸脫羧酶基因Sc-SAMDC的克隆和表達(dá)分析. 中國(guó)農(nóng)業(yè)科學(xué), 2010, 43(7): 1448-1457.

    [14]Wang XL, Liu XX, Wang SY, et al. Cloning and differential expression analysis ofS-adenosylmethionine decarboxylase geneFaSAMDCin tall fescue. Acta Pratacult Sin, 2011, 20(4): 169-179 (in Chinese).王小利, 劉曉霞, 王舒穎, 等. 高羊茅腺苷甲硫氨酸脫羧酶基因FaSAMDC的克隆與差異表達(dá)分析. 草業(yè)學(xué)報(bào), 2011, 20(4): 169-179.

    [15]Wi SJ, Kim WT, Park KY. Overexpression of carnationS-adenosylmethionine decarboxylase gene generates a broad-spectrum tolerance to abiotic stresses in transgenic tobacco plants. Plant Cell Rep, 2006, 25(10):1111-1121.

    [16]Li CQ, Shao JF, Wang YJ, et al. Analysis of banana transcriptome and global gene expression profiles in banana roots in response to infection by race 1 and tropical race 4 ofFusarium oxysporumf. sp. cubense.BMC Genomics, 2013, 14: 851.

    [17]Alcázar R, Altabella T, Marco F, et al. Polyamines:molecules with regulatory functions in plant abiotic stress tolerance. Planta, 2010, 231(6): 1237-1249.

    [18]Koh S, André A, Edwards H, et al.Arabidopsis thalianasubcellular responses to compatibleErysiphe cichoracearuminfections. Plant J, 2005, 44(3):516-529.

    [19]Wen XP, Pang XM, Matsuda N, et al. Over-expression of the apple spermidine synthase gene in pear confers multiple abiotic stress tolerance by altering polyamine titers. Transgenic Res, 2008, 17(2): 251-263.

    [20]Kim ST, Kim SG, Hwang DH, et al. Proteomic analysis of pathogen-responsive proteins from rice leaves induced by rice blast fungusMagnaporthe grisea.Proteomics, 2004, 4(11): 3569-3578.

    [21]Liu ZY, Wang XX, Gao JC, et al. Cloning and sequence analysis of aS-adenosylmethionine decarboxylase gene(SlSAMDC1) in tomato. Acta Horticult Sin, 2008, 35(8):1137-1146 (in Chinese).劉志勇, 王孝宣, 高建昌, 等. 番茄 S-腺苷蛋氨酸脫羧酶基因SlSAMDC1的克隆與序列分析. 園藝學(xué)報(bào),2008, 35(8): 1137-1146.

    [22]Liu CM, Li XL, Yang RP, et al. The protective roles of S-adenosylmethionine decarboxylase (SAMDC) gene in melon resistance to powdery mildew infection. Hort Environ Biotechnol, 2014, 55(6): 557-567.

    [23]Perchepied L, Bardin M, Dogimont C, et al.Relationship between loci conferring downy mildew and powdery mildew resistance in melon assessed by quantitative trait loci mapping. Phytopathology, 2005,95(5): 556-565.

    [24]Sabelli PA, Larkins BA. Regulation and function of retinoblastoma related plant genes. Plant Sci, 2009,177(6): 540-548.

    [25]Zhang SP, Xiao YN, Zhao JR, et al. Digital gene expression analysis of early root infection resistance toSporisorium reilianumf. sp.zeaein maize. Mol Genet Genomics, 2013, 288(1/2): 21-37.

    [26]Crowley T, Walters DR. Polyamine metabolism in an incompatible interaction between barley and the powdery mildew fungus,Blumeria graminisf. sp.hordei.J Phytopathol, 2002, 150(11/12): 581-586.

    猜你喜歡
    甲硫氨酸脫羧酶西北農(nóng)林科技大學(xué)
    谷氨酸棒桿菌和大腸桿菌生物合成L-甲硫氨酸的代謝工程改造研究進(jìn)展
    腫瘤中甲硫氨酸代謝及其相關(guān)基因的表達(dá)調(diào)控
    復(fù)方氨基酸注射液(18AA-Ⅱ)中甲硫氨酸氧化雜質(zhì)的研究
    歡迎訂閱《西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版)》
    歡迎訂閱《西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版)》
    歡迎訂閱《西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版)》
    歡迎訂閱《西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版)》
    鳥嘌呤在聚L-甲硫氨酸/石墨烯修飾電極上的電化學(xué)行為及測(cè)定
    沒(méi)食子酸脫羧酶及酶法制備焦性沒(méi)食子酸研究進(jìn)展
    右旋糖酐對(duì)草酸脫羧酶的修飾研究
    美女国产高潮福利片在线看| av在线播放免费不卡| 在线天堂中文资源库| 一级片免费观看大全| 日本撒尿小便嘘嘘汇集6| 亚洲精品久久午夜乱码| 激情视频va一区二区三区| 久热这里只有精品99| 极品教师在线免费播放| 国产欧美日韩综合在线一区二区| 在线播放国产精品三级| 精品少妇一区二区三区视频日本电影| 1024香蕉在线观看| 在线看a的网站| 亚洲成a人片在线一区二区| 中文字幕av电影在线播放| 亚洲中文字幕日韩| 午夜免费观看网址| 亚洲五月婷婷丁香| 欧美乱妇无乱码| 在线播放国产精品三级| 高清欧美精品videossex| 制服诱惑二区| 国产1区2区3区精品| 免费在线观看影片大全网站| 99国产精品免费福利视频| 亚洲人成电影观看| www.精华液| 色婷婷久久久亚洲欧美| 国产不卡一卡二| 男女之事视频高清在线观看| 大片电影免费在线观看免费| 久久精品亚洲熟妇少妇任你| 亚洲国产毛片av蜜桃av| 国产欧美亚洲国产| 天天操日日干夜夜撸| 日韩有码中文字幕| √禁漫天堂资源中文www| 又黄又爽又免费观看的视频| 久久亚洲精品不卡| 亚洲五月婷婷丁香| 日日摸夜夜添夜夜添小说| 老司机靠b影院| 丰满的人妻完整版| 香蕉国产在线看| 国产精品一区二区免费欧美| 亚洲精品中文字幕在线视频| 成人亚洲精品一区在线观看| 中文字幕人妻熟女乱码| 精品国产国语对白av| 亚洲av成人不卡在线观看播放网| 久久香蕉国产精品| 国产成人免费观看mmmm| 久久久久国产精品人妻aⅴ院 | 可以免费在线观看a视频的电影网站| 亚洲午夜理论影院| 久久狼人影院| 大型av网站在线播放| 欧美一级毛片孕妇| 手机成人av网站| 久久狼人影院| 精品福利永久在线观看| 久久久久精品国产欧美久久久| 国产精品一区二区精品视频观看| 人妻一区二区av| 亚洲五月婷婷丁香| 成人精品一区二区免费| 在线观看一区二区三区激情| 国产精品久久久久久人妻精品电影| 成人三级做爰电影| 亚洲成人免费电影在线观看| 一本一本久久a久久精品综合妖精| 大香蕉久久成人网| 成人精品一区二区免费| 啦啦啦免费观看视频1| 高清黄色对白视频在线免费看| 欧美成人免费av一区二区三区 | 一个人免费在线观看的高清视频| 日本wwww免费看| 亚洲av成人一区二区三| 国产一区在线观看成人免费| 18禁裸乳无遮挡免费网站照片 | 一a级毛片在线观看| 男女下面插进去视频免费观看| 国产精品免费大片| 国产精品98久久久久久宅男小说| 日韩欧美一区二区三区在线观看 | 在线十欧美十亚洲十日本专区| 亚洲国产精品sss在线观看 | 国产精品秋霞免费鲁丝片| 午夜日韩欧美国产| 极品少妇高潮喷水抽搐| 老鸭窝网址在线观看| 亚洲欧洲精品一区二区精品久久久| 麻豆乱淫一区二区| 岛国毛片在线播放| 可以免费在线观看a视频的电影网站| 老司机亚洲免费影院| 日韩精品免费视频一区二区三区| 高清毛片免费观看视频网站 | 欧美日韩国产mv在线观看视频| 新久久久久国产一级毛片| 天堂中文最新版在线下载| 精品欧美一区二区三区在线| 久热爱精品视频在线9| 1024香蕉在线观看| 欧美色视频一区免费| 国精品久久久久久国模美| 日韩制服丝袜自拍偷拍| 国产成人精品无人区| √禁漫天堂资源中文www| 女同久久另类99精品国产91| 亚洲精品粉嫩美女一区| av网站在线播放免费| 一二三四在线观看免费中文在| 国产一卡二卡三卡精品| 亚洲熟女精品中文字幕| 色播在线永久视频| 午夜福利乱码中文字幕| 18禁裸乳无遮挡免费网站照片 | 国产精品免费一区二区三区在线 | 久热爱精品视频在线9| 欧美黑人欧美精品刺激| 色婷婷av一区二区三区视频| 国产精品99久久99久久久不卡| 在线永久观看黄色视频| 日韩有码中文字幕| 精品福利观看| 国产精品二区激情视频| 狂野欧美激情性xxxx| 国产精品98久久久久久宅男小说| 国产精品九九99| 99热网站在线观看| 亚洲熟女毛片儿| 亚洲精品美女久久久久99蜜臀| 黄色片一级片一级黄色片| 国产亚洲精品一区二区www | 久久国产亚洲av麻豆专区| videos熟女内射| 啪啪无遮挡十八禁网站| 99国产精品99久久久久| 黄色女人牲交| 热99re8久久精品国产| 又黄又粗又硬又大视频| 亚洲男人天堂网一区| 日韩有码中文字幕| 国产精品一区二区精品视频观看| 90打野战视频偷拍视频| 伦理电影免费视频| 久久人人97超碰香蕉20202| 国产有黄有色有爽视频| 久久久久久久久免费视频了| 日本a在线网址| 国产成人啪精品午夜网站| 成人特级黄色片久久久久久久| 亚洲精品粉嫩美女一区| 成年女人毛片免费观看观看9 | 男女免费视频国产| 国产精品一区二区在线不卡| 女人高潮潮喷娇喘18禁视频| 一级,二级,三级黄色视频| 黄色a级毛片大全视频| 国产精品综合久久久久久久免费 | 国产一区在线观看成人免费| 国产精品成人在线| 亚洲va日本ⅴa欧美va伊人久久| 黄色女人牲交| 久久久久久亚洲精品国产蜜桃av| 一二三四在线观看免费中文在| 久久久水蜜桃国产精品网| 国产区一区二久久| 黄网站色视频无遮挡免费观看| 国产精品九九99| 精品午夜福利视频在线观看一区| 悠悠久久av| 91av网站免费观看| av天堂久久9| 好男人电影高清在线观看| 亚洲av第一区精品v没综合| 欧美精品av麻豆av| 国产一区有黄有色的免费视频| 日韩大码丰满熟妇| 无限看片的www在线观看| 国产不卡av网站在线观看| 久99久视频精品免费| 欧美国产精品va在线观看不卡| 午夜福利一区二区在线看| 久99久视频精品免费| 免费日韩欧美在线观看| 天堂√8在线中文| 大码成人一级视频| 少妇粗大呻吟视频| 久久精品成人免费网站| 亚洲自偷自拍图片 自拍| 久久天堂一区二区三区四区| 亚洲第一欧美日韩一区二区三区| 12—13女人毛片做爰片一| 免费女性裸体啪啪无遮挡网站| 伦理电影免费视频| 搡老岳熟女国产| 后天国语完整版免费观看| 中文字幕精品免费在线观看视频| 国产三级黄色录像| 成人18禁在线播放| 色在线成人网| 久99久视频精品免费| 亚洲午夜精品一区,二区,三区| 国产午夜精品久久久久久| 91麻豆av在线| 丝袜在线中文字幕| 在线看a的网站| 欧美最黄视频在线播放免费 | 免费在线观看完整版高清| 免费不卡黄色视频| 女同久久另类99精品国产91| 满18在线观看网站| 亚洲国产欧美网| 91麻豆精品激情在线观看国产 | 国产成+人综合+亚洲专区| 日韩欧美三级三区| 久久草成人影院| 999精品在线视频| 在线看a的网站| 国产99久久九九免费精品| 亚洲国产看品久久| 午夜精品久久久久久毛片777| 欧美精品啪啪一区二区三区| 岛国毛片在线播放| av一本久久久久| 亚洲伊人色综图| 中国美女看黄片| 好看av亚洲va欧美ⅴa在| 1024香蕉在线观看| 成人国语在线视频| 天天躁夜夜躁狠狠躁躁| 久久性视频一级片| 少妇 在线观看| 国产精品自产拍在线观看55亚洲 | 天天添夜夜摸| 91老司机精品| 国产欧美日韩一区二区三| 国产区一区二久久| 丝瓜视频免费看黄片| 亚洲精品自拍成人| 曰老女人黄片| 天堂中文最新版在线下载| 国精品久久久久久国模美| 两个人免费观看高清视频| 亚洲欧美激情综合另类| 精品电影一区二区在线| 久久午夜亚洲精品久久| 精品少妇一区二区三区视频日本电影| 久久久久久久精品吃奶| 欧美 亚洲 国产 日韩一| 国产一区二区三区综合在线观看| 国产aⅴ精品一区二区三区波| 午夜福利视频在线观看免费| 久久这里只有精品19| 精品国产超薄肉色丝袜足j| 亚洲av日韩在线播放| 99精品在免费线老司机午夜| 99精品欧美一区二区三区四区| 精品午夜福利视频在线观看一区| 色在线成人网| 色婷婷av一区二区三区视频| 自线自在国产av| 在线观看午夜福利视频| 国产免费男女视频| 亚洲性夜色夜夜综合| 我的亚洲天堂| 一区福利在线观看| 99久久综合精品五月天人人| 99国产极品粉嫩在线观看| 久久午夜亚洲精品久久| 建设人人有责人人尽责人人享有的| 满18在线观看网站| 亚洲va日本ⅴa欧美va伊人久久| 女人久久www免费人成看片| 亚洲精品国产色婷婷电影| 无遮挡黄片免费观看| 亚洲人成电影免费在线| 999久久久精品免费观看国产| 夜夜爽天天搞| 欧美不卡视频在线免费观看 | 国产区一区二久久| 人人妻,人人澡人人爽秒播| 后天国语完整版免费观看| 国产精品免费视频内射| 性色av乱码一区二区三区2| 成人精品一区二区免费| 人人妻人人爽人人添夜夜欢视频| 欧美国产精品一级二级三级| 久久久国产欧美日韩av| 亚洲成a人片在线一区二区| 纯流量卡能插随身wifi吗| 一区二区三区精品91| 水蜜桃什么品种好| 男女下面插进去视频免费观看| 91九色精品人成在线观看| 高清视频免费观看一区二区| 久久热在线av| 亚洲,欧美精品.| 成年女人毛片免费观看观看9 | 免费观看a级毛片全部| 黑人巨大精品欧美一区二区mp4| 国产成人精品久久二区二区91| 欧美日韩国产mv在线观看视频| 岛国毛片在线播放| 啦啦啦视频在线资源免费观看| 免费在线观看完整版高清| 夫妻午夜视频| 亚洲精品成人av观看孕妇| 国产伦人伦偷精品视频| 一本大道久久a久久精品| 亚洲av电影在线进入| 看免费av毛片| 国产午夜精品久久久久久| 久久人人爽av亚洲精品天堂| 国产精品二区激情视频| 人人妻人人添人人爽欧美一区卜| www.999成人在线观看| 欧美精品av麻豆av| 国产91精品成人一区二区三区| 校园春色视频在线观看| 亚洲欧美色中文字幕在线| 久久这里只有精品19| 国产欧美日韩一区二区三区在线| 亚洲人成电影免费在线| 久久人人97超碰香蕉20202| 欧美人与性动交α欧美精品济南到| 一边摸一边做爽爽视频免费| 欧美亚洲 丝袜 人妻 在线| 成年版毛片免费区| 欧美精品人与动牲交sv欧美| 老司机在亚洲福利影院| av网站免费在线观看视频| 久久久久国产精品人妻aⅴ院 | 激情视频va一区二区三区| 免费看十八禁软件| 亚洲熟女毛片儿| 一边摸一边抽搐一进一小说 | 免费在线观看黄色视频的| 精品一区二区三区视频在线观看免费 | 丝袜在线中文字幕| 在线观看日韩欧美| 日韩免费av在线播放| 久9热在线精品视频| 日本黄色视频三级网站网址 | 亚洲全国av大片| 一区在线观看完整版| 超碰97精品在线观看| 大香蕉久久成人网| 黄色 视频免费看| 后天国语完整版免费观看| 国产无遮挡羞羞视频在线观看| 丝袜人妻中文字幕| 亚洲三区欧美一区| 成人黄色视频免费在线看| 亚洲精品中文字幕在线视频| 欧美日韩福利视频一区二区| 999久久久国产精品视频| 一级作爱视频免费观看| 丝瓜视频免费看黄片| 视频区图区小说| 男人舔女人的私密视频| 国产精品秋霞免费鲁丝片| 日韩欧美国产一区二区入口| 欧美黄色淫秽网站| 日韩 欧美 亚洲 中文字幕| 大片电影免费在线观看免费| 日韩欧美一区二区三区在线观看 | 欧美在线黄色| 国产成人啪精品午夜网站| 欧美黑人精品巨大| 欧美精品av麻豆av| 中文字幕人妻丝袜一区二区| 久久 成人 亚洲| 国产一区二区激情短视频| 看片在线看免费视频| 亚洲中文av在线| 少妇猛男粗大的猛烈进出视频| 女性生殖器流出的白浆| 99久久99久久久精品蜜桃| 黑丝袜美女国产一区| 精品国产国语对白av| 欧美日韩亚洲综合一区二区三区_| 精品高清国产在线一区| 宅男免费午夜| 老司机午夜福利在线观看视频| 一级作爱视频免费观看| 色婷婷久久久亚洲欧美| 欧美激情高清一区二区三区| 正在播放国产对白刺激| 精品人妻1区二区| 91国产中文字幕| 久久国产精品影院| 99精国产麻豆久久婷婷| 亚洲情色 制服丝袜| 精品亚洲成a人片在线观看| 亚洲一码二码三码区别大吗| 人人妻人人添人人爽欧美一区卜| 日韩精品免费视频一区二区三区| 18禁裸乳无遮挡免费网站照片 | 动漫黄色视频在线观看| 丝袜人妻中文字幕| 悠悠久久av| 一进一出抽搐动态| 新久久久久国产一级毛片| 久99久视频精品免费| 999久久久精品免费观看国产| 夜夜爽天天搞| 日韩免费高清中文字幕av| 妹子高潮喷水视频| 国产精品国产高清国产av | 夜夜爽天天搞| 欧美性长视频在线观看| 一二三四社区在线视频社区8| 国产精品 欧美亚洲| 亚洲国产毛片av蜜桃av| 久久久精品国产亚洲av高清涩受| 成人特级黄色片久久久久久久| av网站免费在线观看视频| 亚洲一区二区三区不卡视频| 极品教师在线免费播放| 精品第一国产精品| 91麻豆精品激情在线观看国产 | 成人18禁在线播放| 巨乳人妻的诱惑在线观看| 色婷婷av一区二区三区视频| 国产无遮挡羞羞视频在线观看| 黄频高清免费视频| 老司机深夜福利视频在线观看| 欧美在线一区亚洲| 亚洲中文字幕日韩| 99久久国产精品久久久| 免费少妇av软件| 丰满人妻熟妇乱又伦精品不卡| 欧美黑人欧美精品刺激| 亚洲av成人一区二区三| 大型av网站在线播放| 又紧又爽又黄一区二区| 欧美日韩福利视频一区二区| av国产精品久久久久影院| 中出人妻视频一区二区| 亚洲国产欧美日韩在线播放| 亚洲一卡2卡3卡4卡5卡精品中文| 国产日韩欧美亚洲二区| 夫妻午夜视频| 99在线人妻在线中文字幕 | 啦啦啦 在线观看视频| 国产成人精品久久二区二区免费| 一夜夜www| 欧美精品亚洲一区二区| 制服诱惑二区| 精品亚洲成a人片在线观看| 亚洲精品国产一区二区精华液| 热99久久久久精品小说推荐| 国产成人免费无遮挡视频| 狠狠婷婷综合久久久久久88av| 欧美不卡视频在线免费观看 | 国产激情欧美一区二区| 久久中文字幕一级| 亚洲五月色婷婷综合| 国产熟女午夜一区二区三区| 精品久久久久久,| 午夜成年电影在线免费观看| 欧美日本中文国产一区发布| 国产精品久久久久成人av| 亚洲一区二区三区欧美精品| 18禁观看日本| 精品午夜福利视频在线观看一区| 人人妻人人爽人人添夜夜欢视频| 精品国产国语对白av| 交换朋友夫妻互换小说| 亚洲欧美日韩另类电影网站| 欧美日韩一级在线毛片| 天天躁狠狠躁夜夜躁狠狠躁| 国产aⅴ精品一区二区三区波| 美女高潮到喷水免费观看| 国产免费男女视频| 一区二区三区精品91| 国产深夜福利视频在线观看| 欧美中文综合在线视频| 亚洲av成人av| 高清欧美精品videossex| 久久久久国内视频| 大型黄色视频在线免费观看| 亚洲成国产人片在线观看| 国产欧美日韩一区二区三| 久久 成人 亚洲| 亚洲av第一区精品v没综合| 亚洲成人免费电影在线观看| 日本撒尿小便嘘嘘汇集6| 国产精品香港三级国产av潘金莲| 人人澡人人妻人| 亚洲九九香蕉| 欧美成人午夜精品| 很黄的视频免费| 精品人妻在线不人妻| 窝窝影院91人妻| 日本a在线网址| 热re99久久精品国产66热6| 操美女的视频在线观看| 久久精品国产清高在天天线| 99国产精品99久久久久| 老鸭窝网址在线观看| ponron亚洲| 欧美成人免费av一区二区三区 | 成人18禁在线播放| 成人免费观看视频高清| 激情在线观看视频在线高清 | 乱人伦中国视频| 多毛熟女@视频| 欧美激情极品国产一区二区三区| 欧美激情久久久久久爽电影 | 亚洲人成电影观看| 国产日韩欧美亚洲二区| 最近最新中文字幕大全电影3 | 日韩一卡2卡3卡4卡2021年| 天天影视国产精品| 国产在线精品亚洲第一网站| 亚洲精品国产精品久久久不卡| 99国产精品99久久久久| 丝袜美腿诱惑在线| 激情视频va一区二区三区| 久久久久久亚洲精品国产蜜桃av| 日韩欧美三级三区| 好看av亚洲va欧美ⅴa在| a在线观看视频网站| av线在线观看网站| svipshipincom国产片| 大香蕉久久网| 下体分泌物呈黄色| 99热国产这里只有精品6| av在线播放免费不卡| 亚洲精品av麻豆狂野| 国产成人精品无人区| 国产精品综合久久久久久久免费 | 1024视频免费在线观看| 婷婷精品国产亚洲av在线 | 一个人免费在线观看的高清视频| 又紧又爽又黄一区二区| 色婷婷av一区二区三区视频| 国产91精品成人一区二区三区| 韩国av一区二区三区四区| 日韩视频一区二区在线观看| 超碰成人久久| 母亲3免费完整高清在线观看| 欧美成人午夜精品| 国产一卡二卡三卡精品| 十八禁网站免费在线| 看片在线看免费视频| 亚洲七黄色美女视频| 国产亚洲精品一区二区www | 校园春色视频在线观看| 日韩欧美三级三区| 啦啦啦在线免费观看视频4| 国产精品九九99| 久久精品国产综合久久久| 天堂中文最新版在线下载| 一级毛片高清免费大全| 三上悠亚av全集在线观看| 最近最新免费中文字幕在线| 一进一出抽搐gif免费好疼 | 天天操日日干夜夜撸| 日本黄色视频三级网站网址 | 日韩免费av在线播放| 久9热在线精品视频| av天堂在线播放| 国产成人欧美在线观看 | 最新在线观看一区二区三区| 美女高潮喷水抽搐中文字幕| 欧美国产精品va在线观看不卡| 精品熟女少妇八av免费久了| 亚洲片人在线观看| 黑人操中国人逼视频| 国产精华一区二区三区| 国产xxxxx性猛交| 99国产精品99久久久久| 国产成人影院久久av| 国产精品久久久av美女十八| 免费在线观看日本一区| 免费人成视频x8x8入口观看| av天堂在线播放| 夜夜躁狠狠躁天天躁| 人成视频在线观看免费观看| 亚洲伊人色综图| 精品一区二区三区av网在线观看| 亚洲aⅴ乱码一区二区在线播放 | 欧美激情高清一区二区三区| 亚洲精品国产区一区二| 国产成人啪精品午夜网站| 国产成人精品在线电影| 中文亚洲av片在线观看爽 | 中文字幕人妻丝袜一区二区| 曰老女人黄片| av片东京热男人的天堂| 99精品欧美一区二区三区四区| 曰老女人黄片| 操美女的视频在线观看| 日本黄色日本黄色录像| 国产精品99久久99久久久不卡| 久久久久久亚洲精品国产蜜桃av| 欧美日本中文国产一区发布| 一级a爱视频在线免费观看| 亚洲免费av在线视频| 黄色视频不卡| 亚洲欧美激情在线| av网站在线播放免费| 日韩视频一区二区在线观看| 999精品在线视频| 国内久久婷婷六月综合欲色啪| 叶爱在线成人免费视频播放| 国产精品综合久久久久久久免费 | 国产av又大|