• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Adaptive Unscented Kalman Filter for Tracking Sudden Environmental Forces Changes in Dynamic Positioning System

    2017-06-22 14:44:11DINGHaohanFENGHuiXUHaixiang
    船舶力學(xué) 2017年6期
    關(guān)鍵詞:無跡武漢理工大學(xué)徐海

    DING Hao-han,FENG Hui,XU Hai-xiang

    (a.Key Laboratory of High Performance Ship Technology of Ministry of Education;b.School of Transportation,Wuhan University of Technology,Wuhan 430063,China)

    An Adaptive Unscented Kalman Filter for Tracking Sudden Environmental Forces Changes in Dynamic Positioning System

    DING Hao-hana,b,FENG Huia,b,XU Hai-xianga,b

    (a.Key Laboratory of High Performance Ship Technology of Ministry of Education;b.School of Transportation,Wuhan University of Technology,Wuhan 430063,China)

    Unscented Kalman filter was widely used in dynamic positioning system since it can reconstruct unmeasured states as well as remove white and colored noise from the state estimates.This paper aims to solve the problem that unscented Kalman filter is unable to track sudden changes of the states of a vessel when it faces the extreme sea environment,while the dynamic positioning system requires to estimate these states accurately and instantaneously.By identifying the instant of a sudden change and appropriately adjusting the estimated covariance matrix,an adaptive unscented Kalman filter was proposed,which is able to track the states of vessel and reduce the deviation of the low-frequency position of the vessel efficiently.Numerical simulations show the effectiveness of the proposed scheme.

    dynamic positioning system;adaptive unscented Kalman filter; environment sudden changes

    0 Introduction

    In dynamic positioning system,it is essential to estimate a system’s state when deciding upcoming control actions.Since most systems have a dual nature,including hidden states and measured variables,estimation is especially necessary to get full state knowledge.Due to the nonlinear property of vessel’s motion,one of the most common approaches for estimating the state of vessel has been the extended Kalman filter(EKF)[1-2].In this approach,each nonlinear step is replaced by its linearized equivalent to deal with the nonlinear model.Although the EKF is very simple,in practice,it has some well-known demerits:if the time step intervals are not sufficiently small,the filter’s performance would be highly unstable which is resulted from linearization,meanwhile,the derivation of Jacobian matrices is very hard and often leads to significant implementation difficulties.Another approach that has been effectively used to deal with the nonlinear terms is unscented Kalman filter(UKF)which was first suggested byJulier et al[3].This filter produces predictions of states and covariance which are provably more accurate than those of the EKF but without the need to calculate Jacobian matrices.Thus,UKF has been used in many different applications[4-8].However,the capability of this filter in tracking sudden changes is insufficient,which will have a great deteriorating effect on the estimation procedure when the system parameters of the vessel have a sudden change.To solve this problem,Bisht et al[9]presented an adaptive unscented Kalman filter(AUKF)for tracking sudden stiffness changes.This approach can identify and track sudden changes in the stiffness values of structural members that could possibly occur in structural system.Yang et al[10-12]proposed several adaptive tracking techniques which were based on the least-squares estimation approach for tracking sudden and gradual changes in system parameters as well.

    Dynamic positioning system is a complex nonlinear system,the wind,wave and current will have a great impact on the positioning accuracy while high precision is required in some occasions.State estimation is crucial for dynamic positioning system since it can estimate the state of a nonlinear dynamic system from a series of noisy measurements.The environment of ocean changes unpredictably and the sudden change of the environmental force always leads the vessel deviate the working position.However,the UKF is not geared to track sudden parameter changes,which will deteriorate the positioning accuracy.The main contribution of this paper is that proposing an adaptive unscented Kalman filter in dynamic positioning system to track the sudden changes in environmental forces caused by wind,wave and current.By detecting the sudden changes and adjusting the estimated covariance matrix to track the change effectively.

    The paper is organized as follows:Chap.2 gives the mathematical modelling of ships.The review of unscented Kalman filter is presented briefly in Chap.3.In Chap.4,the adaptive unscented Kalman filter in dynamic positioning system is proposed.Chap.5 is the simulation results and discussion.The paper ends with the conclusion.

    1 Mathematical modelling of ships

    1.1 Kinematic equations of motion

    We often use earth-fixed frame XEYEZEand vesselfixed frame XYZ to describe the motion of the vessel[13-14]. In earth-fixed frame,position(x,y)and heading ψ of the vessel are expressed in vector form by η=[x,y,ψ]T.In vessel-fixed frame,the decomposing velocities are represented by the state vector ν=[u,v,r]Tand the origin of this frame is located at the vessel center line in a distance xGfrom the center of gravity,see Fig.1.The transformation between the vessel-fixed and the earth-fixed velocity vectorsis:

    Noticeably,R(ψ)is non-singular for all ψ and it is clear that R-1(ψ)=RT(ψ).

    1.2 Ship modelling

    The low frequency motion of a large class of vessels at low speed can be described by the following model:

    where τ∈R3is a vector consisting of control forces and moment and b∈R3containing all unmodeled forces and moments caused by wind,currents and waves.u∈R3is the control inputs and B∈R15×3is a constant matrix describing the actuator configuration.The form of inertia matrix M∈R3×3is:

    where m is the mass of vessel,Izis the moment of inertia about the vessel-fixed z-axis.Xu˙,Yυ˙, Yr˙,Nυ˙and Nr˙are added mass and inertia terms.The linear damping matrix D∈R3×3can be written as

    where the cruise speed u0=0 in DP and u0>0 when moving forward.Generally,the damping forces will be nonlinear.However,linear damping is a good assumption for DP and cruising at low constant speed.

    1.3 First-order wave-induced model

    Generally,a linear wave frequency model of order p can be described as:

    where ξ∈R3×p,ww=[ww1,ww2,ww3]Tis a zero-mean Gaussian white noise and Aw,Ew,Cware constant matrices of appropriate dimensions.ηw=[xw,yw,ψw]Tis the first-order wave-induced motion.The total ship motion is the sum of ηwand η.Here,the first-order wave-induced motions are approximated by a second-order wave model and the state space realization of sec-ond-order wave model in 3 degrees of freedom can be written as

    where ξ1∈R3,ξ2∈R3and:

    where ω0i(i=1,2,3) is the dominating wave frequency,ζi(i=1,2,3)is the relative damping ratio and σi(i=1,2,3)is a parameter related to the wave intensity.

    1.4 Slowly-varying environmental disturbances

    It is assumed that the environmental forces caused by wind,waves and currents are slowly varying and frequently modeled as a first-order Markov process:

    where b∈R3is the slowly-varying environmental forces and moment,wb∈R3is a zero-mean Gaussian white noise,T∈R3×3is a diagonal matrix of positive time constants and Eb∈R3×3is a diagonal matrix scaling the amplitude of wb.

    1.5 Measurement system

    It is assumed that for conventional ships only position and heading measurements are available,leading to:

    where νy∈R3is zero-mean Gaussian white noise.

    1.6 Total system model

    The total system model can be written as

    The corresponding state-space form is denoted by:

    where

    2 Unscented Kalman filter

    Before introducing the adaptive unscented Kalman filter we first describe the traditional unscented Kalman filter to provide a better understanding of the proposed modifications in adaptive unscented Kalman filter.The basic steps of traditional unscented Kalman filter can be depicted as follows[15]:

    (1)Initialization:given the initial value of state vector X0and estimated covariance matrix P0.

    (2)The calculation of sigma points as well as their corresponding weight:

    where n is the dimension of the state vector x,λ=ξ2(n+κ)-n is the scale factor,in which ξ is the range of the sigma point and κ=0 in general.For a Gaussian random variable,gives η=2.

    (3)Time-update:

    where f(·)represents the nonlinear function and Qk∈Rn×nis the covariance matrix of process noise.

    (4)Measurement-update:

    where the Zkis the measurement at time step k and R∈R3×3is the covariance matrix of measurement noise.Kkis the Kalman gain which is defined in terms of the cross-covariance Pxk,zkand the covariance of the error,Pzk,zk.

    3 Adaptive unscented Kalman filter

    The equations defined in Chap.3 show that the conventional unscented Kalman filter have the ability to track the states of the system even if it is a nonlinear process.However,it is unable to track the sudden changes on parameter values because it can not adjust itself to estimate the impact of the sudden change on the system.However,it is common that the environmental forces change suddenly when the vessel encounters the extreme sea environment and this change will deteriorate the accuracy of the dynamic positioning system.So,we need to track this change and it is noticeable that if we readjust the estimated covariance matrix properly,the estimated value can converge to the correct value in a shorter period.To do that, it is necessary to detect the sudden changes as soon as possible,and then adjust the estimated covariance matrix to hasten the change tracking.

    3.1 Sudden change detection

    To identify the sudden change of environmental forces,we need to select a threshold△0and when△>△0means a sudden change.For one thing,we select the maximum value of delta in 1 000 periods which did not have sudden change in environmental forces to ensure that fewer wrong identifications of sudden change.For another,to avoid the estimated covariance matrix is increased many times in several consecutive time steps,we set 100 periods as the convergence period in which the estimated values are reaching the real values.Hence,when the estimated covariance matrix enlarge,it will not be increased again within 100 periods.

    3.2 Enhanced covariance matrix

    When the sudden change has been identified,we modify the diagonal value of the estimated covariance matrix corresponding to the environmental forces to allow the filter algorithm to track this change.We call the modified covariance matrix as enhanced covariance matrix. From the Eq.(14)we can notice that if we increase the estimated covariance matrix, the Kalman filter gains Kkwill increase accordingly,which means that we want to rely more on the precision of the measurements but less on the model,vice versa.Therefore,when the environmental forces change,we need to enlarge the gains Kkto rely more on the measurements since the model is unable to track the change adaptively.In addition,from Refs.[16-17]we can get some guidance about the minimum and maximum limits of the gains in RLS approach.Herein,aproper value should be detemined by which the covariance values calculated just before the change are multiplied.

    Fig.2△values for 1 000 periods when environmental forces have a sudden change in time step 400

    Fig.3 The overall estimation scheme for the adaptive unscented Kalman filter

    3.3 Integration scheme

    The adaptive unscented Kalman filter for dynamic positioning system can be summarized as follows:

    (1)Given the initial value of state vector x0and estimated covariance matrix P0and set k0=0.

    (3)Calculating△,if△>△0and k+1-k0>100 go to step 4,else k=k+1,go to step 2.

    (4)Modifying the diagonal value of the estimated covariance matrix Pk+1corresponding to the environmental forces and set k0=k+1.

    (5)k=k+1,Go to 2.

    The overall scheme of adaptive unscented Kalman filter can be seen in Fig.3.

    4 Simulation results

    Consider that sometimes the environmental forces will last a long time(named as case 1) while sometimes it only continues a short time(denoted by case 2),we perform simulations on these two cases respectively.

    In case 1,the environmental forces suddenly change from[0,0,0]to[5,-5,5]in the 400th period and last to the end of the simulation while in case 2,sudden change on the environmental forces is observed from[0,0,0]to[5,-5,5]in the 400th period and is vanished in the 700th period.The initial position is[0,0,0]and the set position is[5,5,15°] and the vessel will arrive at the set position at 300th period.We choose the step size as 0.5 s. In this model,△0=8.3 was used.The simulation use a model of a platform supply vessel and the main dimensions of this ship model are displayed in Tab.1.

    The inertia matrix and damping matrix of this vessel are:

    Tab.1 The main dimensions of this ship model

    It is assumed that the process noise and measurement noise covariance matrices are:Q= diag(0,0,0,0.01,0.01,0.000 1,0,0,0,0,0,0,0.000 1,0.0001,0.000 1),R=diag(0.001, 0.001,0.000 1).The time constants matrix is T=diag(1 000,1 000,500).Further,the domi-nating wave frequency,relative damping ratio and wave intensity are chosen as ω01=ω02=ω03= 0.8,ζ1=ζ2=ζ3=0.3 and σ1=σ2=σ3=1.At last,we add a PID algorithm after the filter algorithm to provide the control forces in each time step.

    Fig.4 Environmental force of sway in case 1

    Fig.5 Environmental force of sway in case 2

    Fig.6 Position of sway using UKF in case 1

    Fig.7 Position of sway using AUKF in case 1

    Fig.8 Position of sway using UKF in case 2

    Fig.9 Position of sway using AUKF in case 2

    Fig.4 and Fig.5 compared the estimation of environmental force in sway between UKF and AUKF in case 1 and case 2.The low-frequency position,estimated position and measured position in sway between UKF and AUKF in case 1 are shown in Fig.6 and Fig.7 while the low-frequency position,estimated position and measured position in sway between UKF and AUKF in case 2 are given in Fig.8 and Fig.9.It is clear that the deviation of the low-frequency position using AUKF is less than that using UKF due to the convergence rate of AUKF isfaster than that of UKF.It is because the controller will have a better response if the estimator can track the sudden changes in environmental forces effectively.Thus,the simulation results show the validity of the adaptive unscented Kalman filter and prove that this scheme is suitable to the dynamic positioning system.

    5 Conclusions

    In this paper,an adaptive unscented Kalman filter was introduced for the dynamic positioning system in order to identify and track sudden changes in environmental forces that could happen in complex ocean environment.The scheme first detects the sudden change through the definition of the indicator delta,and then adjusts the estimated covariance matrix to track the change.The validity of this scheme is illustrated by simulations of two cases.The presented simulation results clearly show that this scheme can accurately track the short term or long term sudden changes of environmental forces in dynamic positioning system.

    [1]Jouffroy J,Fossen I.A tutorial on incremental stability analysis using contraction theory[J].Modeling,Identification and Control,2010,31(3):93-106.

    [2]Fossen T I.Handbook of marine craft hydrodynamics and motion control[M].John Wiley&Sons,2011.

    [3]Julier S J,Uhlmann J K,Durrant-Whyte H F.A new approach for filtering nonlinear systems[C].American Control Conference,Proceedings of the 1995.IEEE,1995,3:1628-1632.

    [4]Julier S J,Uhlmann J K.Unscented filtering and nonlinear estimation[J].Proceedings of the IEEE,2004,92(3):401-422.

    [5]Zhang S C,Hu G D,Liu S H.Target tracking for maneuvering reentry vehicles with reduced sigma points unscented Kalman filter[C]//Systems and Control in Aerospace and Astronautics,2006.ISSCAA 2006.1st International Symposium on.IEEE,2006:4-202.

    [6]Sun F,Hu X,Zou Y,et al.Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles[J].Energy,2011,36(5):3531-3540.

    [7]Cheng J,Chen D,Landry Jr R,et al.An adaptive unscented Kalman filtering algorithm for MEMS/GPS integrated navigation systems[J].Journal of Applied Mathematics,2014:.

    [8]Hajiyev C,Soken H E.Robust adaptive unscented Kalman filter for attitude estimation of pico satellites[J].International Journal of Adaptive Control and Signal Processing,2014,28(2):107-120.

    [9]Bisht S S,Singh M P.An adaptive unscented Kalman filter for tracking sudden stiffness changes[J].Mechanical Systems and Signal Processing,2014,49(1):181-195.

    [10]Yang J N,Lin S.On-line identification of non-linear hysteretic structures using an adaptive tracking technique[J].International Journal of Non-Linear Mechanics,2004,39(9):1481-1491.

    [11]Yang J N,Lin S.Identification of parametric variations of structures based on least squares estimation and adaptive tracking technique[J].Journal of Engineering Mechanics,2005:.

    [12]Yang J N,Huang H,Lin S.Sequential non-linear least-square estimation for damage identification of structures[J].International Journal of Non-linear Mechanics,2006,41(1):124-140.

    [13]Fossen T I,Strand J P.Passive nonlinear observer design for ships using Lyapunov methods:Full-scale experiments with a supply vessel[J].Automatica,1999,35(1):3-16.

    [14]Snijders J G,van der Woude J W,Westhuis J.Nonlinear observer design for dynamic positioning[C].Dynamic Positioning Conference,2000.

    [15]Shi X,Sun X,Fu M,et al.An Unscented Kalman Filter based wave filtering algorithm for dynamic ship positioning[C]. Automation and Logistics(ICAL),2011 IEEE International Conference on.IEEE,2011:399-404.

    [16]Landau I D,Lozano R,M'Saad M,et al.Adaptive control[M].Berlin:Springer,1998.

    [17]Lin J W,Betti R,Smyth A W,et al.On-line identification of non-linear hysteretic structural systems using a variable trace approach[J].Earthquake Engineering&Structural Dynamics,2001,30(9):1279-1303.

    動力定位中跟蹤環(huán)境力突變的自適應(yīng)無跡卡爾曼濾波

    丁浩晗a,b,馮輝a,b,徐海祥a,b
    (武漢理工大學(xué)a.高性能船舶技術(shù)教育部重點實驗室;b.交通學(xué)院,武漢430063)

    無跡卡爾曼濾波可以在狀態(tài)估計中濾去噪聲干擾,已經(jīng)被廣泛應(yīng)用于動力定位系統(tǒng)中。針對復(fù)雜海洋情況下動力定位系統(tǒng)需要準(zhǔn)確、及時地估計當(dāng)前時刻的狀態(tài)而無跡卡爾曼濾波無法跟蹤狀態(tài)突變的問題,為此文章提出了一種自適應(yīng)無跡卡爾曼濾波。通過及時判斷狀態(tài)值突變并適當(dāng)調(diào)整后驗均方差矩陣,可有效地跟蹤船舶狀態(tài)并減小實際位置與定點位置的偏差。仿真實驗證明了算法的有效性。

    動力定位;自適應(yīng)無跡卡爾曼濾波;環(huán)境力突變

    U662.9

    :A

    國家自然科學(xué)基金項目資助(61301279;51479158)

    丁浩晗(1992-),男,武漢理工大學(xué)交通學(xué)院船舶與海洋工程專業(yè)碩士;

    U662.9

    :A

    10.3969/j.issn.1007-7294.2017.06.006

    1007-7294(2017)06-0711-11

    馮輝(1981-),男,武漢理工大學(xué)交通學(xué)院副教授;

    date:2017-01-15

    Supported by the National Natural Science Foundation of China(61301279,51479158)

    Biography:DING Hao-han(1992-),male,master candidate;FENG Hui(1981-),male,Ph.D.,associate professor, corresponding author,E-mail:wuyun8210@163.com;XU Hai-xiang(1975-),male,Ph.D.,professor.

    徐海祥(1975-),男,武漢理工大學(xué)交通學(xué)院教授。

    猜你喜歡
    無跡武漢理工大學(xué)徐海
    小小宋慈大智慧·無形無跡的證據(jù)
    Path Planning of UAV by Combing Improved Ant Colony System and Dynamic Window Algorithm
    徐海根(徐海)藝術(shù)作品欣賞
    《武漢理工大學(xué)學(xué)報(交通科學(xué)與工程版)》征稿簡則
    《武漢理工大學(xué)學(xué)報(交通科學(xué)與工程版)》征稿簡則
    無跡卡爾曼濾波在電線積冰觀測數(shù)據(jù)處理中的應(yīng)用
    基于無跡卡爾曼濾波的行波波頭辨識
    應(yīng)用RB無跡卡爾曼濾波組合導(dǎo)航提高GPS重獲信號后的導(dǎo)航精度
    Lanterne-volant
    A Brief Study Of The Interactive-oriented Language Teaching
    亚洲精品国产成人久久av| 国产av码专区亚洲av| 麻豆一二三区av精品| 三级男女做爰猛烈吃奶摸视频| av在线观看视频网站免费| 亚洲自偷自拍三级| 国产老妇伦熟女老妇高清| 99热这里只有精品一区| 亚洲最大成人中文| 最新中文字幕久久久久| 亚洲高清免费不卡视频| 久久精品国产鲁丝片午夜精品| 亚洲在久久综合| 神马国产精品三级电影在线观看| 国产视频首页在线观看| 国产精品一二三区在线看| 天堂网av新在线| 国产老妇女一区| 午夜a级毛片| 一夜夜www| 建设人人有责人人尽责人人享有的 | 国产精品永久免费网站| 三级经典国产精品| 精品久久久久久久久亚洲| 中国国产av一级| 欧美xxxx性猛交bbbb| 成人综合一区亚洲| 午夜福利高清视频| 我要看日韩黄色一级片| 国产精品美女特级片免费视频播放器| 美女被艹到高潮喷水动态| 国产午夜福利久久久久久| 国产成人91sexporn| 日韩av在线大香蕉| 99久久人妻综合| 国产精品国产高清国产av| 精品人妻视频免费看| 偷拍熟女少妇极品色| 久久精品国产亚洲网站| 中文字幕av在线有码专区| 两个人的视频大全免费| 亚洲精品国产成人久久av| 久久精品夜色国产| 18+在线观看网站| 国内少妇人妻偷人精品xxx网站| 99在线人妻在线中文字幕| 午夜精品在线福利| 免费一级毛片在线播放高清视频| 午夜福利在线在线| 最近中文字幕高清免费大全6| 啦啦啦啦在线视频资源| www.av在线官网国产| 91av网一区二区| 在线观看美女被高潮喷水网站| 最近2019中文字幕mv第一页| 精品国内亚洲2022精品成人| 婷婷色麻豆天堂久久 | 人妻制服诱惑在线中文字幕| 国产精品av视频在线免费观看| 成人午夜高清在线视频| 亚洲av电影不卡..在线观看| 一个人看的www免费观看视频| 精品国产三级普通话版| 欧美zozozo另类| 99久国产av精品| 久久久久久久久久成人| 久久精品夜夜夜夜夜久久蜜豆| 久久6这里有精品| 亚洲欧美精品综合久久99| 日韩国内少妇激情av| 深夜a级毛片| 午夜老司机福利剧场| 亚洲久久久久久中文字幕| 日韩,欧美,国产一区二区三区 | 日本一本二区三区精品| 男女啪啪激烈高潮av片| 天美传媒精品一区二区| 在线播放国产精品三级| 熟女电影av网| 国产精品人妻久久久影院| 国产精华一区二区三区| 亚洲在线观看片| 寂寞人妻少妇视频99o| 亚洲av成人av| 春色校园在线视频观看| 成年免费大片在线观看| 99热全是精品| 国产精品久久久久久久久免| 久久久久久久亚洲中文字幕| 亚洲丝袜综合中文字幕| 欧美人与善性xxx| 看十八女毛片水多多多| 成人毛片a级毛片在线播放| 精品人妻视频免费看| 色吧在线观看| 嫩草影院精品99| 成人无遮挡网站| 麻豆乱淫一区二区| 成人亚洲精品av一区二区| 免费观看精品视频网站| 国产免费男女视频| 日韩一本色道免费dvd| 欧美性猛交黑人性爽| 青春草国产在线视频| av在线亚洲专区| 欧美日韩精品成人综合77777| 卡戴珊不雅视频在线播放| 国产精品永久免费网站| 免费观看在线日韩| 欧美一区二区国产精品久久精品| 国产视频内射| 一个人看视频在线观看www免费| 五月伊人婷婷丁香| 欧美xxxx黑人xx丫x性爽| av在线老鸭窝| 亚洲精品乱码久久久久久按摩| 舔av片在线| 亚洲精品456在线播放app| 国产精品一区二区三区四区免费观看| 长腿黑丝高跟| 成人鲁丝片一二三区免费| 亚洲欧美日韩东京热| 婷婷六月久久综合丁香| 亚洲成人久久爱视频| 在线播放无遮挡| 国产 一区精品| 免费搜索国产男女视频| 日韩欧美国产在线观看| 日本黄大片高清| 成人特级av手机在线观看| 国产单亲对白刺激| 日本-黄色视频高清免费观看| 一边亲一边摸免费视频| 女的被弄到高潮叫床怎么办| 人人妻人人澡人人爽人人夜夜 | 麻豆国产97在线/欧美| 99热全是精品| 精品国产一区二区三区久久久樱花 | 18禁裸乳无遮挡免费网站照片| 欧美一级a爱片免费观看看| 精品人妻偷拍中文字幕| 免费观看性生交大片5| 久久久久久久久久久丰满| 大话2 男鬼变身卡| 中文字幕熟女人妻在线| 午夜久久久久精精品| 边亲边吃奶的免费视频| 青青草视频在线视频观看| 亚洲久久久久久中文字幕| 免费观看在线日韩| 综合色av麻豆| 亚洲美女搞黄在线观看| 日韩av不卡免费在线播放| 免费观看人在逋| 国产久久久一区二区三区| 国产成人精品久久久久久| 狂野欧美激情性xxxx在线观看| 嘟嘟电影网在线观看| 欧美最新免费一区二区三区| or卡值多少钱| 高清毛片免费看| 我的老师免费观看完整版| 噜噜噜噜噜久久久久久91| 午夜福利成人在线免费观看| 欧美一区二区精品小视频在线| 成人漫画全彩无遮挡| 午夜精品国产一区二区电影 | 午夜精品一区二区三区免费看| 午夜福利在线在线| 亚洲四区av| kizo精华| 亚洲一级一片aⅴ在线观看| 日韩 亚洲 欧美在线| 亚洲最大成人中文| 久久久久久久午夜电影| 亚洲国产精品国产精品| 婷婷色麻豆天堂久久 | 国产高潮美女av| 少妇裸体淫交视频免费看高清| 亚洲图色成人| 午夜福利在线在线| 99久国产av精品国产电影| av在线亚洲专区| 免费av毛片视频| 国产成人aa在线观看| 亚洲国产精品合色在线| 我的女老师完整版在线观看| 蜜桃亚洲精品一区二区三区| 日韩av不卡免费在线播放| 91久久精品国产一区二区成人| 亚洲av成人精品一区久久| 日产精品乱码卡一卡2卡三| 欧美成人a在线观看| 国产精品野战在线观看| 婷婷色综合大香蕉| 国产精品一区www在线观看| 国产成人freesex在线| 97超视频在线观看视频| 亚洲av不卡在线观看| 国内精品美女久久久久久| 亚洲精品国产成人久久av| 亚洲国产精品久久男人天堂| 男人舔奶头视频| 天天躁日日操中文字幕| 成人午夜精彩视频在线观看| 亚洲综合色惰| 久久精品国产99精品国产亚洲性色| 亚洲中文字幕日韩| eeuss影院久久| 成人午夜高清在线视频| 午夜免费男女啪啪视频观看| 亚洲一级一片aⅴ在线观看| 桃色一区二区三区在线观看| 三级经典国产精品| 男女国产视频网站| 久久久精品大字幕| 亚洲精品日韩av片在线观看| 午夜精品在线福利| 在线a可以看的网站| 男女国产视频网站| 夜夜爽夜夜爽视频| 色综合亚洲欧美另类图片| 麻豆乱淫一区二区| 国产精品综合久久久久久久免费| av国产久精品久网站免费入址| 国产精品人妻久久久久久| 村上凉子中文字幕在线| 国产高清国产精品国产三级 | 一本久久精品| 亚洲人成网站高清观看| 日本黄色视频三级网站网址| 亚洲国产欧美在线一区| 久久久国产成人免费| 国产欧美日韩精品一区二区| 久久热精品热| 国产精品爽爽va在线观看网站| 国产黄色视频一区二区在线观看 | 亚洲av.av天堂| 国产在视频线精品| 久久精品熟女亚洲av麻豆精品 | 亚洲成人中文字幕在线播放| 三级毛片av免费| 在线a可以看的网站| 欧美性感艳星| 欧美97在线视频| 免费播放大片免费观看视频在线观看 | 国产色婷婷99| 久久久久久久久大av| a级毛色黄片| av.在线天堂| 国产黄色小视频在线观看| 欧美97在线视频| 久久精品夜夜夜夜夜久久蜜豆| 中文字幕精品亚洲无线码一区| 欧美区成人在线视频| 日韩成人av中文字幕在线观看| 免费观看精品视频网站| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日本免费a在线| 欧美97在线视频| 久久这里只有精品中国| 18禁动态无遮挡网站| 国产爱豆传媒在线观看| 一区二区三区乱码不卡18| 特级一级黄色大片| 激情 狠狠 欧美| 国产成人a区在线观看| 精品久久久久久久久亚洲| 午夜激情福利司机影院| 精品人妻偷拍中文字幕| 国产淫片久久久久久久久| 欧美不卡视频在线免费观看| 国产高清国产精品国产三级 | 精品酒店卫生间| 精品国产三级普通话版| 亚洲精品影视一区二区三区av| 亚洲精品一区蜜桃| 身体一侧抽搐| 色综合站精品国产| 久久国内精品自在自线图片| 亚洲在线自拍视频| 国产高潮美女av| 中国国产av一级| 高清毛片免费看| 欧美精品一区二区大全| 一级毛片久久久久久久久女| 午夜福利成人在线免费观看| 国内精品美女久久久久久| 久久久久久久午夜电影| 欧美丝袜亚洲另类| 国产激情偷乱视频一区二区| 国产极品天堂在线| 好男人视频免费观看在线| 久久精品国产鲁丝片午夜精品| 亚洲中文字幕日韩| 精品午夜福利在线看| 亚洲久久久久久中文字幕| 国产午夜精品久久久久久一区二区三区| 国产精品嫩草影院av在线观看| 黄色日韩在线| 卡戴珊不雅视频在线播放| 欧美日韩国产亚洲二区| 亚洲av电影在线观看一区二区三区 | 狠狠狠狠99中文字幕| 免费av观看视频| 国产av不卡久久| 国产av一区在线观看免费| 国产一区二区在线观看日韩| 干丝袜人妻中文字幕| 国产乱人视频| 人妻少妇偷人精品九色| 欧美精品一区二区大全| 老司机影院成人| 欧美日韩综合久久久久久| 国产黄片视频在线免费观看| 两性午夜刺激爽爽歪歪视频在线观看| av在线天堂中文字幕| 美女被艹到高潮喷水动态| 日韩三级伦理在线观看| 亚洲av成人精品一区久久| 美女国产视频在线观看| 国产乱人偷精品视频| 少妇丰满av| 干丝袜人妻中文字幕| 午夜福利在线在线| 久久99热6这里只有精品| 日韩av在线免费看完整版不卡| 国产精品熟女久久久久浪| 插逼视频在线观看| 国产在视频线精品| 日本-黄色视频高清免费观看| 丰满少妇做爰视频| 三级男女做爰猛烈吃奶摸视频| 丝袜美腿在线中文| 国产白丝娇喘喷水9色精品| 最近中文字幕高清免费大全6| 国产伦在线观看视频一区| 久久久精品欧美日韩精品| 欧美潮喷喷水| 精品久久国产蜜桃| a级一级毛片免费在线观看| 变态另类丝袜制服| 国产精品野战在线观看| 久久久久久大精品| 少妇的逼水好多| 成年女人永久免费观看视频| 赤兔流量卡办理| 国产亚洲午夜精品一区二区久久 | 成年av动漫网址| 亚洲成人中文字幕在线播放| 欧美另类亚洲清纯唯美| 九九久久精品国产亚洲av麻豆| 国产精品蜜桃在线观看| 最新中文字幕久久久久| 国产在线一区二区三区精 | 啦啦啦啦在线视频资源| 91av网一区二区| 一级av片app| 91aial.com中文字幕在线观看| 99热这里只有是精品在线观看| 能在线免费观看的黄片| 全区人妻精品视频| 2021少妇久久久久久久久久久| 欧美日韩一区二区视频在线观看视频在线 | 看十八女毛片水多多多| 国模一区二区三区四区视频| 欧美三级亚洲精品| 中文乱码字字幕精品一区二区三区 | 国产乱人视频| 日韩一区二区三区影片| 国产 一区精品| 亚洲精品456在线播放app| 久久国产乱子免费精品| 国产精品蜜桃在线观看| 久久婷婷人人爽人人干人人爱| 成年av动漫网址| 国产精品国产三级专区第一集| 一本久久精品| 亚洲高清免费不卡视频| 免费黄色在线免费观看| 一个人看视频在线观看www免费| 亚洲av男天堂| 亚洲一区高清亚洲精品| 日本黄色视频三级网站网址| 综合色丁香网| 国产探花在线观看一区二区| 男人舔女人下体高潮全视频| 亚洲欧美一区二区三区国产| 国产高清不卡午夜福利| 视频中文字幕在线观看| 久久精品熟女亚洲av麻豆精品 | 99久久九九国产精品国产免费| 麻豆国产97在线/欧美| 亚洲国产精品国产精品| 国产午夜精品久久久久久一区二区三区| 一本一本综合久久| av福利片在线观看| 欧美性猛交╳xxx乱大交人| 国产午夜精品论理片| 天美传媒精品一区二区| 国产精品1区2区在线观看.| 午夜老司机福利剧场| 免费观看在线日韩| 国产美女午夜福利| 91aial.com中文字幕在线观看| 久热久热在线精品观看| 99久久精品热视频| 国产免费又黄又爽又色| 国产精品爽爽va在线观看网站| 欧美日韩国产亚洲二区| 国产免费视频播放在线视频 | 七月丁香在线播放| 国产淫语在线视频| 成人漫画全彩无遮挡| 日本熟妇午夜| 能在线免费看毛片的网站| 免费观看在线日韩| 最近的中文字幕免费完整| 人人妻人人澡欧美一区二区| 中文字幕免费在线视频6| 亚洲国产精品专区欧美| 久久久精品大字幕| 日韩强制内射视频| 不卡视频在线观看欧美| 精品久久久久久久末码| 亚洲中文字幕一区二区三区有码在线看| 亚洲国产色片| 自拍偷自拍亚洲精品老妇| 男人狂女人下面高潮的视频| 精品久久久久久电影网 | 99九九线精品视频在线观看视频| 国产毛片a区久久久久| av卡一久久| 插逼视频在线观看| 国产成人aa在线观看| av播播在线观看一区| 午夜精品国产一区二区电影 | 欧美三级亚洲精品| 国产中年淑女户外野战色| 亚洲精品,欧美精品| 老司机福利观看| 国产成人免费观看mmmm| 免费一级毛片在线播放高清视频| 搡老妇女老女人老熟妇| 精品国产露脸久久av麻豆 | 嘟嘟电影网在线观看| 九九久久精品国产亚洲av麻豆| 国产成人a区在线观看| 久久久久久久午夜电影| 日韩,欧美,国产一区二区三区 | 日韩精品青青久久久久久| 婷婷色av中文字幕| 日日撸夜夜添| 欧美变态另类bdsm刘玥| 亚洲综合色惰| 日韩欧美国产在线观看| 国产一区二区亚洲精品在线观看| 一个人看视频在线观看www免费| 亚洲婷婷狠狠爱综合网| 成人毛片60女人毛片免费| 在线免费观看不下载黄p国产| 久久国产乱子免费精品| 国产又黄又爽又无遮挡在线| a级毛片免费高清观看在线播放| 国产探花极品一区二区| 国模一区二区三区四区视频| 在线观看av片永久免费下载| 国产精品久久久久久久久免| 97超视频在线观看视频| 亚洲欧美成人精品一区二区| 免费搜索国产男女视频| 寂寞人妻少妇视频99o| 麻豆乱淫一区二区| 亚洲怡红院男人天堂| 联通29元200g的流量卡| 免费大片18禁| 插逼视频在线观看| 久久精品国产亚洲网站| 精品久久久久久电影网 | 一区二区三区四区激情视频| 成年女人看的毛片在线观看| 建设人人有责人人尽责人人享有的 | 日本爱情动作片www.在线观看| 在线a可以看的网站| 成人av在线播放网站| 免费看a级黄色片| 亚洲图色成人| 久久久久久久午夜电影| 免费无遮挡裸体视频| 2021少妇久久久久久久久久久| 2022亚洲国产成人精品| 久久久久久久久久久丰满| 国产一区二区在线av高清观看| 国产探花极品一区二区| 亚洲av免费高清在线观看| 亚洲精品,欧美精品| 亚洲精品一区蜜桃| 久久久久久大精品| 人人妻人人澡人人爽人人夜夜 | 蜜桃亚洲精品一区二区三区| 亚洲av免费在线观看| 亚洲欧美成人精品一区二区| 国模一区二区三区四区视频| 亚洲av中文av极速乱| 欧美高清性xxxxhd video| 一边亲一边摸免费视频| www.av在线官网国产| 日韩亚洲欧美综合| 免费观看a级毛片全部| 真实男女啪啪啪动态图| 免费看美女性在线毛片视频| 你懂的网址亚洲精品在线观看 | 久久久成人免费电影| 亚洲丝袜综合中文字幕| 69av精品久久久久久| 大话2 男鬼变身卡| 久热久热在线精品观看| 久久人人爽人人爽人人片va| 九草在线视频观看| 能在线免费观看的黄片| 亚洲欧洲国产日韩| 成人欧美大片| 91精品伊人久久大香线蕉| 国内少妇人妻偷人精品xxx网站| 中文字幕亚洲精品专区| 麻豆国产97在线/欧美| 国产精品一区二区三区四区免费观看| 成人性生交大片免费视频hd| 国内揄拍国产精品人妻在线| 免费人成在线观看视频色| 最近中文字幕高清免费大全6| 国产一级毛片七仙女欲春2| 国产精品伦人一区二区| 亚洲av福利一区| 日本熟妇午夜| 国产精品久久久久久精品电影小说 | 久99久视频精品免费| 久久久久精品久久久久真实原创| 国产精品野战在线观看| 亚洲高清免费不卡视频| 久久久午夜欧美精品| 国产乱人偷精品视频| 亚洲最大成人av| 人人妻人人澡欧美一区二区| 老师上课跳d突然被开到最大视频| 乱人视频在线观看| 高清午夜精品一区二区三区| 又爽又黄无遮挡网站| 亚洲国产欧洲综合997久久,| 国内精品一区二区在线观看| 简卡轻食公司| 国产伦精品一区二区三区视频9| 国产色婷婷99| 欧美zozozo另类| 天天躁夜夜躁狠狠久久av| 精品99又大又爽又粗少妇毛片| 九色成人免费人妻av| 亚洲性久久影院| 午夜精品在线福利| 黄片wwwwww| 亚洲av中文字字幕乱码综合| 国模一区二区三区四区视频| 亚洲乱码一区二区免费版| 国产 一区 欧美 日韩| 欧美性猛交╳xxx乱大交人| 精品熟女少妇av免费看| 如何舔出高潮| 一级毛片电影观看 | 国产高清有码在线观看视频| 国产白丝娇喘喷水9色精品| 国语对白做爰xxxⅹ性视频网站| 国产免费一级a男人的天堂| 国产黄色视频一区二区在线观看 | 精品一区二区三区视频在线| 亚洲激情五月婷婷啪啪| 非洲黑人性xxxx精品又粗又长| 国产精品av视频在线免费观看| 亚洲成av人片在线播放无| 午夜免费激情av| 国产一区二区三区av在线| 国产淫语在线视频| 久久午夜福利片| 亚洲自拍偷在线| 啦啦啦韩国在线观看视频| 男女视频在线观看网站免费| 日本五十路高清| 国产一区有黄有色的免费视频 | 午夜福利视频1000在线观看| 亚洲欧美日韩无卡精品| 成人欧美大片| 一边摸一边抽搐一进一小说| 亚洲精品,欧美精品| 成人综合一区亚洲| 亚洲五月天丁香| 亚洲欧美精品专区久久| 亚洲三级黄色毛片| 午夜福利在线观看吧| 日韩欧美精品v在线| 大又大粗又爽又黄少妇毛片口| 欧美成人a在线观看| av播播在线观看一区| 亚洲丝袜综合中文字幕| 午夜老司机福利剧场| 亚洲成人中文字幕在线播放| 小蜜桃在线观看免费完整版高清| 国产精华一区二区三区| 男女下面进入的视频免费午夜| 97超碰精品成人国产| 毛片女人毛片| 久久亚洲精品不卡| 麻豆成人av视频| 麻豆成人午夜福利视频| 久久久久久伊人网av| 久久鲁丝午夜福利片| 韩国av在线不卡|