• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Characteristic Study of the Random Wind Load on Semi-submersible Tender Support Platform

    2017-06-22 14:44:22GUJiayangZHANGPeiXIEYulinDENGBinglinCHEN
    船舶力學(xué) 2017年6期
    關(guān)鍵詞:風(fēng)力碩士江蘇

    GU Jia-yang,ZHANG Pei,XIE Yu-lin,DENG Bing-lin,CHEN Yü

    (School of Naval Architecture and Marine Engineering,Jiangsu University of Science and Technology,Zhenjiang 212003,China)

    Characteristic Study of the Random Wind Load on Semi-submersible Tender Support Platform

    GU Jia-yang,ZHANG Pei,XIE Yu-lin,DENG Bing-lin,CHEN Yü

    (School of Naval Architecture and Marine Engineering,Jiangsu University of Science and Technology,Zhenjiang 212003,China)

    Wind load is one of the most important loads acting on offshore platform,and it is directly related to the stability of platform.So it is necessary to determine wind load on various conditions in the design of platform.By using software Fluent and self-compiled program UDF,the wind force (moment)of the semi-submersible support platform in survival condition is numerically calculated. And,the numerical simulation is based on the Reynold’s average NS equation and DES numerical model.Then,typical spectrum Davenport,NPD and API in frequency-domain were converted into random fluctuating wind in time-domain by the superposition of simple harmonic waves.The maximum wind forces/moments are compared and verified with results defined by CCS,DNV and ABS rules.As is concluded from the study:wind forces(moments)of the platform are related to wind spectrum characteristics,wind directions and the tilt angle of platform.On the simulation of three wind spectrums,the maximum wind force(moment)of NPD spectrum is biggest.Mean wind forces (moments)of Davenport and NPD spectrum are close.The minimum wind forces(moments)of Davenport and NPD spectrum change in almost same trend corresponding to different wind directions.

    semi-submersible support platform;random fluctuating winds;wind load; numerical simulation

    0 Introduction

    The capsizal of offshore platforms caused by typhoon(hurricane)not only brings inestimable economic losses but also threatens the life safety of personnel,and even worse,it is often accompanied by oil pollution incidents.For the sake of economy and safety,accurate forecast for wind loads is quite significant.

    Now many numerical researches about wind load on offshore platforms have been carried out.A three-dimensional numerical simulation about a jacket platform on steady wind was madeby Chen et al[1],which can provide reference for the calculation of limit capacity,anti-typhoon practicable exploration and the structural design of platform.The wind load of a jack-up drilling platform which is underwater 400 feet on steady wind was investigated by Lin et al[2].The study is based on a combination of numerical simulation and model test;values show some similarities to wind tunnel experiment results.A numerical simulation about a Truss-Spar-platform on operation and survival conditions was conducted by Yan et al[3]using CFD method,and results were compared with relevant norm.An experimental study about the wind load of a deepwater semi-submersible platform in survival condition(10y or 100y environmental condition)was developed by Cao et al[4].And results were used for dynamic positioning design of the platform. Based on wind load data of massive mobile offshore platforms,Yuan et al[5]discussed the prediction and calculation of wind load in current classification rules.What is more,he depicted the calculation of wind cross curves over turning movement and its specific application. Through a combination of theoretical and experimental method,Chevula et al[6]investigated the unsteady aerodynamics characteristics of hemispherical blunt body at different wind frequencies.Results showed that the stagnation pressure coefficients of bluff body from experiments and theoretical prediction had coincidence in some dimensionless frequency.By using a combination method of CFD and wind-tunnel test,a comparative research about wind load between LNG transport vessel and floating offshore platform was carried out by Wn?k and Soares[7],which especially focus on varying coefficients of wind force and yaw moment along ship length and width direction according to different wind directions.The wind pressure coefficient of oil tanks with several openings in different arrangement forms(2P,3E,3C,4S and 3T),spacing and wind directions was studied by Uematsu et al[8].

    Generally speaking,present numerical simulations of wind load on floating platform mostly concerns steady or gradient wind.The new contribution of this study is that:characteristics of random wind load on a semi-submersible tender support platform BT3500 TSV were investigated based on Fluent software and compiled UDF program.Three kinds of random winds from Davenport,NPD and API wind spectrums were mutually compared,using simple-harmonicwave superposition method.Wind forces and moments corresponding to different platform’s tilt angles,drafts and wind directions were predicted.What is more,changing rules of the wind force and moment were comparatively analyzed also.

    1 Three typical wind spectrums and the simulation of random fluctuating wind

    1.1 Composition of Random fluctuating wind

    The wind force acting on the platform consists of constant and fluctuating components. The wind speed at any point can be expressed as a steady Gauss random process.

    1.2 Three typical wind spectrums

    Wind spectrum can reflect fluctuating changes about wind frequency characteristics.Frequency distribution is an important feature of random wind,which directly affects the interaction between the wind and structures.In this study,typical spectrum Davenport,NPD and API were selected to simulate random wind acting on the platform.

    Davenport wind spectrum(Zuo et al[9]),which is constant in height direction.Its expression is:

    NPD wind spectrum(Zuo et al[9]),which varied in height direction.Its expression is:

    API wind spectrum(Zuo et al[9]),which also varies in height direction,its expression is:

    1.3 Simulation of random fluctuating wind

    There are many methods that can simulate random fluctuating wind in time-domain, simple harmonic wind superposition is the most direct and mature one.In this study,stationary random process was gained by superposing a series of sinusoidal function or cosine function on random phase.The weighted amplitude harmonic-wave superposition proposed by Shinozuka was commonly adopted.Its transformation process can be showed by the following for-mula:

    According to the theory above,the average wind speed above sea level 10 m is identified as V10=20m/s.The random fluctuating wind speed above sea level 20 m in 200 seconds is simulated.As shown in Fig.1.

    Fig.1 The fluctuating wind velocity in time-domain produced by simple harmonic wind superposition

    As can be seen from Fig.1,the random fluctuating wind about mean-speed zero obtained through simple harmonic waves superposition,which shows prominent randomness,pulsation and similar to the practical situation.

    2 Numerical simulation of random wind load on platform

    2.1 Computational procedure

    Fig.2 shows the computational procedure of wind force and moment acting on the platform.The actual calculation procedure based on rules is similar to the flow diagram below. However,the wind is defined as constant value in the rule calculation procedure,not considering the randomness and pulsation.The wind force can be directly computed by the Fluent software.When calculating the wind moment,we need to know the distance between centroid of underwater part and waterline in every load case.The distance can be measured by the model that is produced by Solidworks software.

    2.2 Numerical model and working conditions

    In this study,the wind load of semi-submersible support platform BT3500 TSV is discussed.The BT-3500 is a moored semi-submersible for tender support activities,such as fixed SPAR or TLP platforms located in Brazil,Gulf of Mexico,West of Africa,South East Asia orthe Bass Strait.Generally,a lower hull mainly consists of two pontoons and four columns supported by two bracings.An upper hull consists of a buoyant deck box characterizing the vessel.Living quarters,deck house,other equipments and cranes are all located in or above the upper hull.The platform has the capacity to accommodate an operation staff of 140 persons.

    Fig.2 Flow chart of numerical calculation

    Fig.3 Photos and general layout of BT3500 semi-submersible tender support platform

    The model and general layout are exhibited in Fig.3. The coordinate and wind directions are shown in Fig.4.Main parameters of the platform including overall dimensions,pontoons and columns are shown in the Tab.1.A series of typical condition parameters are determined and exhibited in Tab.2.

    2.3 The calculation flow domain and boundary condition

    Fig.4 Plot of the platform coordinates and wind directions

    The overall size of the semi-submersible platform is 83.00 m×77.35 m×50.00 m,and the calculation flow domainis 500 m×300 m×200 m.The platform is arranged at the front of the fluid domain,which is 200 m from its center to fluid domain entrance.The hull model for dividing mesh in ANSYS ICEM software is exhibited in Fig.5.The boundary conditions are shown in Fig.6.

    (1)Inflow surface is defined as velocity inlet.Random fluctuating wind velocity is computed by self-compiled program.For comparative analysis,random numbers of different calculation schemes are the same.

    (2)Outflow surface is defined as outlet.

    (3)The platform surface is set as wall surface with no slip.

    (4)In order to avoid wall effect,other surfaces are symmetric and vertical component is zero.

    Tab.1 Main parameters of the platform

    Tab.2 Wind loads of platform on various working cases

    Fig.5 Model in tilt 17°and draft of 14.04 m(10°wind direction)

    2.4 Turbulence model and computing parameters

    The Fluent software and Detached Eddy simulation(DES)model are used in this study. What is more,statistical model is applied on boundary-layer near wall and large vortex model is applied in separation zone.Unsteady viscous solver and SIMPLEC method are employed torealize the coupling of pressure and velocity. For better precision,a second order discrete scheme is set.The time step is 0.05s,and every calculation continues 200 s.

    Fig.6 Boundary condition

    2.5 The meshing

    For better accuracy,denser grids were set in the near-wall region and the wake region.However,relatively sparse grids were set in the far-field region to control smaller mesh quantity.Hexahedral,five-sided,prismatic,and a small amount of tetrahedral grids were arranged in boundary layer.The entire meshes of platform surface are shown in Fig.7, and some partial meshes are exhibited in Fig.8 and Fig.9.

    Fig.7 Meshes on surface of platform

    Fig.8 Meshes on surface and wall of crane

    Fig.9 Meshes on surface and wall of column

    3 Results and analysis

    According to the wind force(moment)time history curve,the mean,maximum and minimum wind force(moment)values on different random winds and different conditions were gained.

    3.1 Analysis of condition(12.5 m draft and no tilt)

    3.1.1 The mean wind force and moment

    Fig.10 shows the mean wind force and moment of the platform under different random winds.It can be seen that the wind angle changes from 0°to 120°,the mean wind force and moment both change in sinusoidal order roughly and peak angles are about 60°or 120°nearby.When the wind angle is 0°,the mean wind force and moment both reach their minimums because of smallest wind area and layout of components.The mean wind force(moment)curves of Davenport and NPD spectrums are very similar,values are slightly larger than API wind spectrum.

    As wind angle ranges from 0°to 60°,the mean wind force(moment)increases rapidly, indicating greater capsizing risk of platforms.When wind angle ranges from 60°to 90°,the mean wind force(moment)decreases owing to the reduction of wind area.When the wind angle ranges from 90°to 120°,the mean wind force(moment)increases again owing to the con-tinuous increasing wind area of superstructure.

    Fig.10 Mean wind force and moment under random winds

    3.1.2 The maximum wind force and moments

    The maximum wind force and moment have achieved more attention than the mean value,because the former have closer relationship with platform’s capsizal.A platform may overturn under instantaneous strong wind.

    In the design of platform,the calculation of wind force and moment often referred from relevant rules,such as ABS[10],DNV[11]and CCS[12].The wind force is related to wind pressure, orthographic projection area,the component height coefficient and wind component shape factor.The wind load calculation formulas of ABS and CCS are similar.There are subtle differences on height coefficients and shape factors,results are comparatively close too.DNV specification considers the effect of component height width ratio and Reynolds number on the shape factor,while it is more complex in the actual calculation.

    According to specification,the calculation of wind load can be greatly simplified.But it can not fully consider the effect of shading between platform components,which lead to greater value than wind tunnel experiment and CFD calculation results(Yuan et al[5]).What is more, because of the technical secret,wind tunnel test results of ocean engineering design companies are rarely published,which lead to the difficulty of calculation results verification.In this study,we compared the maximum wind load with specification value and analyzed their changing trends of wind force and moment corresponding to different wind directions.

    Fig.11 Maximum wind force and moment under random winds

    Fig.11 shows the maximum wind force and moment of the platform according to different calculation method in survival condition.From figures above,we can find that changing trends of the maximum wind force and moment are respectively calculated according to random wind spectrums of Davenport,API and NPD.Values are similar to results calculated by CCS,ABS and DNV.When wind angles are 30°and 120°,the maximum wind force(moment)of NPD and API spectrums are close.From figures above we can conclude,the maximum wind force (moment)of NPD spectrum is the largest,API follow,and Davenport is the smallest.It is due to that main wind areas are located at columns,deck boxes and superstructure which are far away from the sea level without consideration of platform’s tilt.What is more,the wind velocity produced by Davenport is constant in height direction but wind velocities produced by NPD and API change in height direction.Different distribution modes of random wind result in different calculation results.

    3.1.3 The minimum wind force and moment

    Fig.12 shows the minimum wind force and moment of platform corresponding to three different wind spectrums in operation condition.As can be seen from the figure,the minimum wind force and moment according to API and NPD spectrums are close and both far less than Davenport spectrum.The NPD and API spectrums,whose spectrum in height direction is in change,random wind stimulated by them are close to the real situation,so the minimum wind and moment based on API and NPD spectrums are more credible because their wind velocity distribution are more similar to the real.

    Fig.12 Minimum wind force and moment under random wind

    3.1.4 Pressure coefficient distribution of platform surface

    In operation condition,we considered the pressure coefficient of platform surface at 60° wind direction on NPD spectrum.As is shown in Fig.13,the wind force appears clear viscous when wind flow through platform surface.The largest positive pressure is located on the windward of four columns,deck house and the deck box,windward of three cranes are under positive pressure.The wind flows through the helicopter deck,producing a thin boundary layer. Furthermore it induced some trailing vortex and swirled in its rear.And negative pressures are produced on the upper surface of the deckhouse.At the same time,positive pressure appears on the upper surface of the helicopter deck due to its thin sheet feature.

    3.2 Analysis of conditions(14.04 m draft and 17°tilt angle)

    3.2.1 Mean wind force and moment

    Fig.14 shows the mean wind force and moment of platform according to three different wind spectrums in operation condition.As wind angle changes from 10°to 30°,the mean wind force and moment increase gradually,and the growth rate becomes larger with the increasing wind angle.In this region,the mean wind force and moment of Davenport and NPD spectrums are approximately the same and both larger than API spectrum.As wind angle changes from 30°to 40°,all three mean wind forces and moments continue to increase at small growth rate, especially the Davenport wind spectrum.As wind angle changes from 40°to 50°,mean wind force and moment of NPD and API spectrums begin to decline,while Davenport spectrum still increases slightly.When at 50°wind angle,mean wind force and moment of Davenport spectrum are larger among all three wind spectrums.

    Fig.14 Mean wind force and moment under random winds

    3.2.2 The maximum wind force and moment

    Fig.15 shows the maximum wind force and moment according to three different wind spectrums in operation condition.As wind angle ranges from 10°to 50°,all three maximum wind forces(moments)are almost similar to mean values.When the wind angle ranges from 10°to 40°,all maximum wind forces(moments)gradually increase.When the wind angle ranges from 40°to 50°,all maximum wind forces(moments)begin decreasing with smaller windward area and less‘shadowing’effect.As is shown in Fig.15,when they are at the same wind angle,the maximum wind force(moment)of NPD wind spectrum is the largest,API spectrumfollows,and Davenport spectrum value is the smallest.

    3.2.3 The minimum wind force and moment

    Fig.16 shows the minimum wind force and moment according to three different wind spectrums in operation condition.As can be seen from the figure,the minimum wind force and moment based on API and NPD spectrums exhibit similar values and changing trends.At the same wind angle,the minimum wind force and moment of Davenport spectrum is 33%larger than API and NPD spectrums.

    Fig.15 Maximum wind force and moment under random winds

    Fig.16 Minimum wind force and moment under random winds

    Fig.17 Pressure distribution on platform surface at 20°wind direction(NPD/100 s)

    3.2.4 Pressure coefficient distribution of platform surface

    In this study,we considered the pressure coefficient of platform surface at 20°wind angle based on NPD spectrum.From the Fig.17,as pontoons out of water directly face the wind,its bottom surface,the front and left sides are all under large positive pressure.Windward surfaces of four columns are under great positive pressure,while the thin boundary layer of column corner is under negative pressure.As to the pressure distribution of deckhouse,the positive pressure on the front surface is greater.Then it decreases significantly on the left surface with obvious boundary of right angle turning under the helicopter deck.The main reason is that the wind separates after passing the front surface,and some airflow branches alter flow direction that lead to the decline of pressure.

    4 Conclusions

    In this study,typical wind spectrums Davenport,NPD and API were converted into random fluctuating winds by simple harmonic spectrum superposition method.By using Fluent software and self-compiled program UDF,wind load and pressure coefficient distribution of the semi-submerged service platform on various conditions were analyzed comparatively,followings are major conclusions:

    (1)Main structures subjected to wind of platform are columns,deckhouse and deck box.

    (2)The wind force and moment of platform are related to wind spectrum characteristics, tilt angles and wind directions.

    (3)The mean wind force(moment)based on Davenport and NPD wind spectrums are close,and both greater than API wind spectrum.

    (4)The maximum wind force(moment)of NPD wind spectrum is the largest,API follows, and Davenport wind spectrum is the smallest.

    (5)The minimum wind force(moment)based on API and NPD wind spectrums are similar on every condition,and the minimum wind force(moment)based on the API and NPD spectrums are more reasonable.

    [1]Chen W J,Chen G M,Zhu B R,Chang Y J.Numerical simulation of wind load on jacket platform under strong typhoon [J].China Offshore Oil and Gas,2013,25(3):73-77.

    [2]Lin Y,Hu A K,Xiong F.Numerical simulation and experiment study on wind load of Jack-Up platform[J].Hydrodynamics Research and Development,Series A,2012,27(2):208-215.

    [3]Yan H S,Xu Y,Zhang Y S,Sun W Y,Fan Z X.The research of wind loading for the SPAR Loadout[J].Ocean Engineering,2012,30(3):131-136.

    [4]Cao M Q,Wang L,Zhou L.Test analysis of wind load on deepwater semi-submersible platform[J].Ocean Engineering, 2009,28(9):17-28.

    [5]Yuan J M,Pan B.Wind overturning loads on the mobile offshore platform[J].Ocean Engineering,1997,15(2):32-38.

    [6]Chevula S,Sanz-Andres A,Franchini S.Aerodynamic external pressure loads on a semi-circular bluff body under wind gusts[J].Journal of Fluids and Structures,2015,54:947-957.

    [7]Wn?k A D,Soares C G.CFD assessment of the wind loads on an LNG carrier and floating platform models[J].Ocean Engineering,2015,97:30-36.

    [8]Uematsu Y S S,Yasunaga J P,Koo C M.Design wind loads for open-topped storage tanks in various arrangements[J]. Journal of Wind Engineering and Industrial Aerodynamics,2015,138:77-86.

    [9]Zuo Q H,Du Q L,Zhao Y H,Duan Z B,Wang Y D.Review of studies on random wind spectrum and its application in coastal engineering[J].Ocean Engineering,2016,34(2):111-121.

    [10]American Bureau of Shipping.Rules for building and classing floating production installations[S].2013.

    [11]Det Norske Veritas.Environmental conditions and environmental loads[S].2007.

    [12]China Classification Society.Standard Specification for offshore mobile platform[S].2012.

    半潛式鉆井服務(wù)支持平臺(tái)隨機(jī)風(fēng)載荷特性研究

    谷家揚(yáng),章培,謝玉林,鄧炳林,陳宇
    (江蘇科技大學(xué)船舶與海洋工程學(xué)院,江蘇鎮(zhèn)江212003)

    風(fēng)載荷是海洋平臺(tái)設(shè)計(jì)載荷之一,直接關(guān)系到平臺(tái)穩(wěn)性,確定平臺(tái)在不同工況下的風(fēng)荷載對(duì)于平臺(tái)安全設(shè)計(jì)具有重要的工程意義。該文基于Fluent軟件結(jié)合自編UDF程序,考慮Davenport、NPD以及API三種典型風(fēng)譜的影響,利用簡(jiǎn)諧波疊加法將風(fēng)譜由頻域轉(zhuǎn)換為時(shí)域內(nèi)的隨機(jī)脈動(dòng)風(fēng)速,引入雷諾平均法求解NS方程結(jié)合分離渦(DES)湍流模型對(duì)半潛式鉆井服務(wù)支持平臺(tái)在自存海況下的風(fēng)力和風(fēng)傾力矩開展了數(shù)值研究,并將數(shù)值模擬得到的最大風(fēng)力及風(fēng)傾力矩與ABS、DNV以及CCS的計(jì)算結(jié)果進(jìn)行了對(duì)比驗(yàn)證。計(jì)算結(jié)果表明:平臺(tái)受到的風(fēng)力和風(fēng)傾力矩與風(fēng)譜自身特性、平臺(tái)傾斜角及風(fēng)向角等因素密不可分;同一工況下采用Davenport與NPD風(fēng)譜計(jì)算時(shí)平臺(tái)受到的平均風(fēng)力(矩)較為接近;NPD風(fēng)譜作用時(shí)平臺(tái)受到的隨機(jī)最大風(fēng)力(矩)最大;采用API與NPD風(fēng)譜計(jì)算時(shí),各工況下最小風(fēng)力(矩)隨風(fēng)向角的變化趨勢(shì)、計(jì)算結(jié)果均基本一致。

    半潛平臺(tái);隨機(jī)脈動(dòng)風(fēng);風(fēng)載荷;數(shù)值模擬

    P751

    :A

    谷家揚(yáng)(1979-),男,博士,江蘇科技大學(xué)副教授,通訊作者,E-mail:gujayang@126.com;

    P751

    :A

    10.3969/j.issn.1007-7294.2017.06.003

    1007-7294(2017)06-0672-13

    章培(1993-),男,江蘇科技大學(xué)碩士研究生;

    謝玉林(1994-),男,江蘇科技大學(xué)碩士研究生;

    鄧炳林(1990-),男,江蘇科技大學(xué)碩士研究生;

    陳宇(1993-),男,江蘇科技大學(xué)碩士研究生。

    date:2017-03-28

    Supported by the National Natural Science Foundation of China(51309123);the Open Foundation of State Key Laboratory of Ocean Engineering(1407)and‘Qing Lan Project’of Colleges and Universities in Jiangsu Province,the collaborative innovation center funded projects in Jiangsu University(High Technology Ship category)

    Biography:GU Jia-yang(1979-),male,Ph.D,associate professor,corresponding author,E-mail:gujiayang@126.com;

    ZHANG Pei(1993-),male,master graduate student;XIE Yu-lin(1994-),male,master graduate student.

    猜你喜歡
    風(fēng)力碩士江蘇
    走進(jìn)風(fēng)力發(fā)電
    昆明理工大學(xué)工商管理碩士(MBA)簡(jiǎn)介
    數(shù)讀江蘇
    數(shù)獨(dú)江蘇
    數(shù)讀江蘇
    江蘇
    如何寫好碩士博士學(xué)位論文
    大型風(fēng)力發(fā)電設(shè)備潤(rùn)滑概要
    你會(huì)測(cè)量風(fēng)力嗎
    不必對(duì)碩士賣米粉大驚小怪
    日韩在线高清观看一区二区三区| kizo精华| 亚洲成人一二三区av| 国产精品精品国产色婷婷| 亚洲真实伦在线观看| 熟女av电影| 日本黄色片子视频| 在线a可以看的网站| 欧美成人精品欧美一级黄| 欧美zozozo另类| 七月丁香在线播放| 国产女主播在线喷水免费视频网站| 亚洲av中文字字幕乱码综合| 日本黄色片子视频| 少妇猛男粗大的猛烈进出视频 | 人妻系列 视频| 天美传媒精品一区二区| 国产伦精品一区二区三区视频9| 在线天堂最新版资源| 99热这里只有是精品50| 国产人妻一区二区三区在| 听说在线观看完整版免费高清| 婷婷色综合大香蕉| 人体艺术视频欧美日本| 亚洲av成人精品一区久久| 亚洲人与动物交配视频| 乱系列少妇在线播放| 高清欧美精品videossex| 精品人妻视频免费看| 亚洲精品视频女| 久久99热6这里只有精品| 一个人观看的视频www高清免费观看| 国产欧美另类精品又又久久亚洲欧美| 综合色av麻豆| 又粗又硬又长又爽又黄的视频| 亚洲自偷自拍三级| 午夜激情久久久久久久| xxx大片免费视频| 天美传媒精品一区二区| 亚洲最大成人手机在线| 干丝袜人妻中文字幕| 新久久久久国产一级毛片| 亚洲人成网站在线观看播放| 一个人看的www免费观看视频| 国产永久视频网站| 搡女人真爽免费视频火全软件| 成人特级av手机在线观看| 亚洲色图综合在线观看| 国产精品一区www在线观看| 最近的中文字幕免费完整| 18禁动态无遮挡网站| 日本一本二区三区精品| 日日摸夜夜添夜夜添av毛片| 黄色配什么色好看| 一个人看的www免费观看视频| 三级男女做爰猛烈吃奶摸视频| 久久鲁丝午夜福利片| 欧美+日韩+精品| 国产精品99久久久久久久久| 80岁老熟妇乱子伦牲交| av在线亚洲专区| 黄色日韩在线| 成人毛片60女人毛片免费| 国产熟女欧美一区二区| 在线精品无人区一区二区三 | 丝袜美腿在线中文| 日韩不卡一区二区三区视频在线| 日本-黄色视频高清免费观看| 秋霞伦理黄片| 五月天丁香电影| 国产精品爽爽va在线观看网站| 最新中文字幕久久久久| 欧美亚洲 丝袜 人妻 在线| 在线a可以看的网站| 国产毛片在线视频| 国产高清三级在线| 国产精品久久久久久精品古装| 2021少妇久久久久久久久久久| 亚洲av电影在线观看一区二区三区 | 老司机影院毛片| 日韩一区二区视频免费看| 美女视频免费永久观看网站| 嫩草影院入口| 啦啦啦在线观看免费高清www| 中文欧美无线码| 肉色欧美久久久久久久蜜桃 | 又粗又硬又长又爽又黄的视频| 亚洲天堂av无毛| 国内少妇人妻偷人精品xxx网站| 亚洲国产日韩一区二区| 日本一本二区三区精品| 蜜桃亚洲精品一区二区三区| 亚洲综合精品二区| 欧美日韩视频高清一区二区三区二| 亚洲综合色惰| 亚洲精品日韩在线中文字幕| 国产精品一区二区三区四区免费观看| 国产色爽女视频免费观看| 97精品久久久久久久久久精品| 国产免费视频播放在线视频| 少妇的逼好多水| 久久精品久久久久久噜噜老黄| 午夜福利网站1000一区二区三区| 免费大片黄手机在线观看| 青春草视频在线免费观看| 精品99又大又爽又粗少妇毛片| 欧美xxxx性猛交bbbb| 亚洲欧美清纯卡通| 欧美zozozo另类| 欧美性感艳星| 精品久久国产蜜桃| 一级毛片 在线播放| 日本午夜av视频| 亚洲精品视频女| 麻豆久久精品国产亚洲av| 精品酒店卫生间| 欧美老熟妇乱子伦牲交| 真实男女啪啪啪动态图| 亚洲精品中文字幕在线视频 | 亚洲av不卡在线观看| 亚洲欧美一区二区三区国产| 一级毛片我不卡| 午夜亚洲福利在线播放| 自拍欧美九色日韩亚洲蝌蚪91 | 久久99热6这里只有精品| 熟女人妻精品中文字幕| 亚洲最大成人手机在线| 最后的刺客免费高清国语| av在线播放精品| 亚洲av电影在线观看一区二区三区 | 18禁在线播放成人免费| 国产av不卡久久| 日韩制服骚丝袜av| 91aial.com中文字幕在线观看| 交换朋友夫妻互换小说| 久久女婷五月综合色啪小说 | 日本黄大片高清| 免费大片黄手机在线观看| 免费看不卡的av| 中文在线观看免费www的网站| 少妇熟女欧美另类| 久久国内精品自在自线图片| 少妇猛男粗大的猛烈进出视频 | 成年女人在线观看亚洲视频 | 欧美bdsm另类| 国产 一区精品| 日本色播在线视频| 国产精品偷伦视频观看了| 国产黄色免费在线视频| 成人毛片60女人毛片免费| 天堂中文最新版在线下载 | 国产精品国产三级专区第一集| 国产精品一区二区性色av| 久久精品夜色国产| 黄色视频在线播放观看不卡| 国产 精品1| av女优亚洲男人天堂| 在线 av 中文字幕| 久久久色成人| 精品一区二区三区视频在线| 热99国产精品久久久久久7| 欧美成人一区二区免费高清观看| 久久99热这里只频精品6学生| 男女国产视频网站| 欧美精品国产亚洲| 亚洲av.av天堂| 一区二区av电影网| 欧美日韩视频精品一区| 国产永久视频网站| 大话2 男鬼变身卡| 亚洲电影在线观看av| 亚洲色图av天堂| www.av在线官网国产| 日韩在线高清观看一区二区三区| 中文字幕亚洲精品专区| 国产精品熟女久久久久浪| 成人国产av品久久久| 精品国产一区二区三区久久久樱花 | 一边亲一边摸免费视频| av又黄又爽大尺度在线免费看| 九九久久精品国产亚洲av麻豆| 亚洲天堂av无毛| 欧美日韩视频精品一区| 只有这里有精品99| 亚洲精品视频女| 久久精品人妻少妇| 寂寞人妻少妇视频99o| 欧美日韩综合久久久久久| 黄色日韩在线| 九九久久精品国产亚洲av麻豆| eeuss影院久久| 亚洲欧美日韩无卡精品| 国产精品福利在线免费观看| 亚洲精品乱码久久久久久按摩| 日韩av不卡免费在线播放| 久久久亚洲精品成人影院| 汤姆久久久久久久影院中文字幕| 日日啪夜夜撸| 少妇人妻一区二区三区视频| 少妇被粗大猛烈的视频| www.色视频.com| 日本猛色少妇xxxxx猛交久久| 久久精品综合一区二区三区| 中国国产av一级| 天美传媒精品一区二区| av卡一久久| 国产亚洲av嫩草精品影院| av女优亚洲男人天堂| 韩国av在线不卡| 欧美成人精品欧美一级黄| 欧美高清性xxxxhd video| 亚洲精品一区蜜桃| 亚洲国产精品国产精品| videos熟女内射| 男女那种视频在线观看| 免费少妇av软件| 青春草视频在线免费观看| 成人美女网站在线观看视频| 欧美97在线视频| 成年女人在线观看亚洲视频 | 中国三级夫妇交换| 高清日韩中文字幕在线| 中国三级夫妇交换| 大码成人一级视频| 一级片'在线观看视频| 麻豆国产97在线/欧美| 大片电影免费在线观看免费| 高清av免费在线| 国产视频首页在线观看| 国产综合精华液| 久久午夜福利片| 国产老妇伦熟女老妇高清| 亚洲精品第二区| 国产精品蜜桃在线观看| 老女人水多毛片| 小蜜桃在线观看免费完整版高清| 99re6热这里在线精品视频| 国产有黄有色有爽视频| 男的添女的下面高潮视频| 国产精品无大码| 国产精品国产三级国产av玫瑰| 国产亚洲午夜精品一区二区久久 | 国产成人a区在线观看| 赤兔流量卡办理| 九草在线视频观看| av在线蜜桃| 神马国产精品三级电影在线观看| 亚洲精品自拍成人| 国产精品无大码| 免费播放大片免费观看视频在线观看| 日本wwww免费看| 亚洲国产欧美在线一区| 久久ye,这里只有精品| 国产av国产精品国产| 欧美日韩国产mv在线观看视频 | av国产久精品久网站免费入址| 精品一区二区三区视频在线| 国产69精品久久久久777片| 久久精品国产鲁丝片午夜精品| 亚洲三级黄色毛片| 特级一级黄色大片| 你懂的网址亚洲精品在线观看| 91午夜精品亚洲一区二区三区| 精华霜和精华液先用哪个| 九九久久精品国产亚洲av麻豆| 在线观看三级黄色| 青春草亚洲视频在线观看| 一二三四中文在线观看免费高清| 美女内射精品一级片tv| 好男人在线观看高清免费视频| 久久久久国产精品人妻一区二区| 中文字幕亚洲精品专区| 成人综合一区亚洲| 亚洲无线观看免费| 九九在线视频观看精品| 亚洲精品乱码久久久久久按摩| 日韩精品有码人妻一区| 男女边吃奶边做爰视频| 国产成人免费无遮挡视频| 亚洲成人久久爱视频| 久久精品国产亚洲av天美| 久久久精品免费免费高清| 免费av不卡在线播放| 欧美亚洲 丝袜 人妻 在线| 99久久中文字幕三级久久日本| 激情 狠狠 欧美| 禁无遮挡网站| 欧美日韩亚洲高清精品| 久热这里只有精品99| 99精国产麻豆久久婷婷| 日本与韩国留学比较| 亚洲自偷自拍三级| 女人十人毛片免费观看3o分钟| 水蜜桃什么品种好| 欧美成人午夜免费资源| 日韩成人伦理影院| 国内精品美女久久久久久| 最新中文字幕久久久久| 国产精品爽爽va在线观看网站| 亚洲国产最新在线播放| 国产美女午夜福利| 蜜桃久久精品国产亚洲av| 中文字幕久久专区| 看免费成人av毛片| 一级毛片黄色毛片免费观看视频| 汤姆久久久久久久影院中文字幕| 亚洲综合色惰| 超碰av人人做人人爽久久| 亚洲四区av| 婷婷色av中文字幕| 国产淫语在线视频| 久久久久国产网址| 国产乱人视频| 最近最新中文字幕免费大全7| 综合色丁香网| 老司机影院成人| 蜜桃久久精品国产亚洲av| 日韩在线高清观看一区二区三区| 你懂的网址亚洲精品在线观看| 精华霜和精华液先用哪个| 夫妻午夜视频| 禁无遮挡网站| 国产久久久一区二区三区| 18+在线观看网站| 精品熟女少妇av免费看| 日韩不卡一区二区三区视频在线| 亚洲av电影在线观看一区二区三区 | 久久国内精品自在自线图片| 干丝袜人妻中文字幕| 午夜精品一区二区三区免费看| 五月开心婷婷网| av播播在线观看一区| 免费电影在线观看免费观看| 久久久久久久精品精品| 国产精品一区www在线观看| 亚洲国产成人一精品久久久| 午夜免费男女啪啪视频观看| 亚洲欧美精品自产自拍| 亚洲国产av新网站| 久久精品久久精品一区二区三区| 免费黄色在线免费观看| 男人添女人高潮全过程视频| 国产老妇女一区| 日本色播在线视频| av在线天堂中文字幕| 国产美女午夜福利| 大又大粗又爽又黄少妇毛片口| 成人亚洲精品一区在线观看 | 午夜精品一区二区三区免费看| 夫妻性生交免费视频一级片| 婷婷色综合大香蕉| 亚洲欧洲日产国产| 五月天丁香电影| 久久久久久久亚洲中文字幕| 人人妻人人爽人人添夜夜欢视频 | 亚洲欧洲国产日韩| 青青草视频在线视频观看| 99久久中文字幕三级久久日本| 亚洲色图综合在线观看| 久久99热6这里只有精品| 日韩欧美一区视频在线观看 | 久久97久久精品| 欧美丝袜亚洲另类| 欧美高清成人免费视频www| 日韩人妻高清精品专区| 777米奇影视久久| 精品久久久精品久久久| 在线亚洲精品国产二区图片欧美 | 男女那种视频在线观看| 国产高清不卡午夜福利| 日本色播在线视频| 一级毛片久久久久久久久女| 秋霞在线观看毛片| a级一级毛片免费在线观看| 国内精品美女久久久久久| 国产精品av视频在线免费观看| 午夜亚洲福利在线播放| 99热全是精品| 午夜视频国产福利| 久久久久久九九精品二区国产| 97超视频在线观看视频| 亚洲婷婷狠狠爱综合网| 九九爱精品视频在线观看| 五月开心婷婷网| 免费播放大片免费观看视频在线观看| 美女xxoo啪啪120秒动态图| 51国产日韩欧美| 亚洲人成网站在线观看播放| 精品人妻偷拍中文字幕| 精品一区二区免费观看| 一区二区三区免费毛片| 精品亚洲乱码少妇综合久久| 亚洲欧美成人精品一区二区| 22中文网久久字幕| 国产男女内射视频| 国产精品久久久久久精品电影小说 | 国产一区二区亚洲精品在线观看| 成年人午夜在线观看视频| 国产淫语在线视频| 欧美精品人与动牲交sv欧美| 亚洲欧洲日产国产| 国产中年淑女户外野战色| 亚洲av中文字字幕乱码综合| 亚洲av中文av极速乱| 成人漫画全彩无遮挡| 色视频www国产| 欧美激情国产日韩精品一区| 美女主播在线视频| 毛片一级片免费看久久久久| 尤物成人国产欧美一区二区三区| 国产av码专区亚洲av| 成人国产av品久久久| 亚洲国产欧美在线一区| 久久久久网色| 看黄色毛片网站| 日本色播在线视频| 国产成人免费无遮挡视频| 九九爱精品视频在线观看| 欧美日韩综合久久久久久| 亚洲av中文av极速乱| 中国三级夫妇交换| 久久6这里有精品| 18禁裸乳无遮挡免费网站照片| 极品少妇高潮喷水抽搐| 成年女人看的毛片在线观看| 又粗又硬又长又爽又黄的视频| 国产美女午夜福利| 色5月婷婷丁香| 精品久久久久久久久亚洲| 国产免费视频播放在线视频| 中文字幕人妻熟人妻熟丝袜美| 在线看a的网站| 亚洲最大成人av| 蜜桃亚洲精品一区二区三区| 成年版毛片免费区| 亚洲欧洲国产日韩| 亚洲va在线va天堂va国产| 成人美女网站在线观看视频| 亚洲av欧美aⅴ国产| 一级毛片电影观看| 欧美xxxx性猛交bbbb| 在线精品无人区一区二区三 | 久久精品人妻少妇| av在线天堂中文字幕| av天堂中文字幕网| 亚洲怡红院男人天堂| 一本一本综合久久| 91精品一卡2卡3卡4卡| 26uuu在线亚洲综合色| 男插女下体视频免费在线播放| av专区在线播放| 亚洲精品日韩在线中文字幕| 国产黄片视频在线免费观看| 成人鲁丝片一二三区免费| 国产白丝娇喘喷水9色精品| 久久久成人免费电影| 男人爽女人下面视频在线观看| 免费看不卡的av| 精品国产三级普通话版| 五月天丁香电影| 麻豆成人av视频| 亚洲综合色惰| 久久久久精品性色| 麻豆成人av视频| 亚洲怡红院男人天堂| 欧美少妇被猛烈插入视频| 亚洲精品成人av观看孕妇| 中国美白少妇内射xxxbb| 日韩精品有码人妻一区| 热99国产精品久久久久久7| 欧美97在线视频| 亚洲成人精品中文字幕电影| 免费观看性生交大片5| 国产精品伦人一区二区| 高清午夜精品一区二区三区| 国产亚洲午夜精品一区二区久久 | 国产精品一区二区性色av| 成人特级av手机在线观看| 精品99又大又爽又粗少妇毛片| 在线天堂最新版资源| 一级a做视频免费观看| 男人狂女人下面高潮的视频| 黄色日韩在线| 精品久久国产蜜桃| 中文字幕制服av| 国产女主播在线喷水免费视频网站| 亚洲av一区综合| 久久久久久久亚洲中文字幕| av在线观看视频网站免费| 啦啦啦中文免费视频观看日本| tube8黄色片| 久久99蜜桃精品久久| 男男h啪啪无遮挡| 日韩电影二区| 国产真实伦视频高清在线观看| 国模一区二区三区四区视频| 午夜视频国产福利| 亚洲怡红院男人天堂| 人妻少妇偷人精品九色| 免费看光身美女| 国产欧美另类精品又又久久亚洲欧美| 韩国av在线不卡| 国产高清不卡午夜福利| 少妇的逼好多水| 晚上一个人看的免费电影| 麻豆久久精品国产亚洲av| 亚洲欧洲日产国产| 国产久久久一区二区三区| 中文字幕av成人在线电影| 性插视频无遮挡在线免费观看| 一级毛片aaaaaa免费看小| 国产精品无大码| 男人和女人高潮做爰伦理| 一个人看视频在线观看www免费| 各种免费的搞黄视频| 日本黄色片子视频| 麻豆久久精品国产亚洲av| 日日摸夜夜添夜夜爱| 久久久精品免费免费高清| 精品久久久久久电影网| 国产中年淑女户外野战色| 亚洲成人av在线免费| 深爱激情五月婷婷| 国产日韩欧美在线精品| av国产免费在线观看| 久久久久网色| 黄色日韩在线| 国产综合精华液| 成年女人在线观看亚洲视频 | 精品人妻熟女av久视频| 黄色日韩在线| 久久人人爽av亚洲精品天堂 | 亚洲美女搞黄在线观看| 91午夜精品亚洲一区二区三区| videossex国产| 亚洲在久久综合| 国产一区二区亚洲精品在线观看| 尤物成人国产欧美一区二区三区| 久久国产乱子免费精品| 亚洲人与动物交配视频| 在线天堂最新版资源| 亚洲,一卡二卡三卡| 欧美老熟妇乱子伦牲交| 国产av不卡久久| 尤物成人国产欧美一区二区三区| 免费看a级黄色片| 老司机影院成人| 三级经典国产精品| 久久人人爽av亚洲精品天堂 | 成年av动漫网址| 中文欧美无线码| 久久久久国产精品人妻一区二区| 99视频精品全部免费 在线| av国产精品久久久久影院| 97超碰精品成人国产| 亚洲av福利一区| 国产在线一区二区三区精| 黄片无遮挡物在线观看| 亚洲欧美一区二区三区国产| 国产午夜福利久久久久久| 丝袜美腿在线中文| 亚洲精品一二三| 欧美另类一区| 国产淫语在线视频| 黑人高潮一二区| 97在线人人人人妻| 亚洲精品日韩av片在线观看| 久久人人爽人人片av| 边亲边吃奶的免费视频| 午夜福利视频1000在线观看| 一个人看的www免费观看视频| 欧美日韩视频高清一区二区三区二| 一级毛片aaaaaa免费看小| 各种免费的搞黄视频| 日日啪夜夜爽| 精品久久久久久久久亚洲| 成人鲁丝片一二三区免费| 男人舔奶头视频| 乱系列少妇在线播放| 1000部很黄的大片| 2021少妇久久久久久久久久久| 夫妻性生交免费视频一级片| 亚洲,一卡二卡三卡| 亚洲在久久综合| 嫩草影院精品99| 国产伦精品一区二区三区四那| 一级片'在线观看视频| 免费少妇av软件| 99久久中文字幕三级久久日本| 久久精品国产鲁丝片午夜精品| 国产成年人精品一区二区| 另类亚洲欧美激情| 在线观看三级黄色| 日韩视频在线欧美| 国产国拍精品亚洲av在线观看| 亚洲三级黄色毛片| 麻豆国产97在线/欧美| 久热这里只有精品99| 久久久久久久午夜电影| 小蜜桃在线观看免费完整版高清| 久久久久久久午夜电影| 看黄色毛片网站| 我要看日韩黄色一级片| 亚洲国产精品999| 视频中文字幕在线观看| 日本熟妇午夜| av在线播放精品| 成人亚洲精品一区在线观看 | 精品久久久久久久久亚洲| 国产欧美日韩一区二区三区在线 | 亚洲av成人精品一二三区| 别揉我奶头 嗯啊视频| 99热网站在线观看| 亚洲在线观看片| 亚洲欧洲日产国产|