• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Comparison on Different Schemes of Direct Numerical Simulation for Low/medium Reynolds Flow

    2017-06-22 14:44:19WANGJianchunWUChengshengWANGXing
    船舶力學(xué) 2017年6期
    關(guān)鍵詞:王星建春雷諾數(shù)

    WANG Jian-chun,WU Cheng-sheng,WANG Xing

    (China Ship Scientific Research Center,Wuxi 214082,China)

    Comparison on Different Schemes of Direct Numerical Simulation for Low/medium Reynolds Flow

    WANG Jian-chun,WU Cheng-sheng,WANG Xing

    (China Ship Scientific Research Center,Wuxi 214082,China)

    Direct numerical simulation(DNS)for low/medium Reynolds lid-driven cavity flow with different schemes are presented.The semi-implicit method for pressure-linked equations(SIMPLE), pressure-implicit splitting of operations(PISO)and pseudo-compressibility schemes are used.The N-S equations are all discretised by the Finite Volume Method for the three schemes,with the same staggered grid arrangement,the fully implicit time-stepping scheme and the QUICK scheme for the discretization of the temporal items and convective transport terms,the results are compared with the benchmark solution reported by Ghia[1].Under the same convergence criteria condition,difference in the stability,accuracy and convergence rate are analyzed.The PISO scheme is the most accurate scheme for low Reynolds number of Re=400 and 1 000 flow.The pseudo-compressibility scheme is found to be the most accurate for Re=5 000 flow.Besides,pseudo-compressibility scheme cost the minimum time to achieve convergence for all the cases,which shows it is one of the best choice for DNS of the low/medium flows.

    SIMPLE;PISO;pseudo-compressibility;DNS;accuracy;convergence rate; stability

    0 Introduction

    In recent years,along with the continuous improvement of computer performance,deepening of the high performance parallel computing study and the fervent need for the industry to the research of the turbulent meticulous flow field,direct numerical simulation(DNS)of the turbulence are constantly studied.Incompressible fluids are the main objects of the DNS research,their governing equations are the incompressible N-S equations.However,a lot of prerequisites need to be met before carrying out the DNS research,for example,a good solver of the governing equations,massively parallel cluster,high precision scheme for the temporal and space discretization,high resolution to catch the minimum scale vortices,and so on.Nowadays,the DNS research is main focused on the low/medium flows since there are so many restrict prerequisites.Among these prerequisites,a good solvers is the fundamental conditions that you can choose to accelerate the DNS program.The main solvers for the incompressible fluid are solving the primitive variable N-S equations,vorticity-stream function method andother methods.SIMPLE and PISO method belong to the first one,the pseudo-compressibility method belongs to other methods.

    The SIMPLE algorithm was relatively straightforward and soon became the main solver of the incompressible flow since it was first put forward in 1972 and it had been successfully implemented in numerous CFD procedures recent years.The PISO scheme was first put forward by Issa in 1986 and was early designed to solve the unsteady N-S equations.The PISO was considered as an extension for the SIMPLE scheme.At the same time,the pseudo-compressibility scheme attracted lots of researchers’attention because the continuous equation and the momentum equations were solved synchronously and the scheme itself had high efficiency.In recent years,these schemes were applied to perform the DNS research by some researchers. Wang et al[2]applied GPU accelerated DNS with the SIMPLE[3-4]scheme to the Re=1 000 and Re=10 000 lid-driven cavity flow and the results agreed with the literature well.Dousset and Pothérat[5]carried out the DNS of low Reynolds Re=100 and Re=200 flows past a truncated square cylinder through the PISO[6]scheme for both steady and unsteady flows and analyzed the formation mechanism of hairpin vortices in the wake of the truncated square cylinder in a duct.Skovorodko[7]used the pseudo-compressibility[8]scheme to complete the DNS of compressible fully developed turbulent Couette flow between two parallel plates and analyzed the slip effects in compressible turbulent channel flow.However,rare articles are found about using the pseudo-compressibility scheme to the DNS of incompressible flows.

    Since the better solver of the N-S equations chosen,the easier the DNS be performed, being aware of the difference among the different kinds of solvers to the governing equations is very important for the DNS research,since you can choose the best solver to your problems. Convergence,accuracy and stability are the three important features used to judge whether a scheme is good or bad for the studied problems.Difference of these important features for the three different schemes is presented in this paper.Same conditions as shown latter are implemented for these different schemes to avoid the influence of other factors in addition to these schemes theirselves.

    1 Numerical methods

    The integral form of the dimensionless incompressible N-S equations is:

    Finite-volume discretion momentum equation in the staggered grid is:

    Mass conservation equation is:

    where the subscripts e,n,w and s represent the control-volume faces and E,N,W and S represent the grid points,nb represents the neighbor grid point as shown in the staggered grid[4,9]system(Fig.1)below.

    Fig.1 Staggered grid system

    1.1 SIMPLE scheme

    There is evidently no equation for the pressure in the incompressible N-S equations,coupling between pressure and velocity is hidden in the continuity equation,bring the problem that how to solve the pressure alone?The Semi-Implicit Method for Pressure-Linked Equation (SIMPLE)was originally put forward by Patankar and Spalding in 1972,resolved the pressurevelocity coupled problem well.Staggered grid arrangement is used in this paper and the main calculation procedures of the SIMPLE algorithm are as follows:

    (2)Solve the discretised momentum Eqs.(4)and(5)to get the u*,v*,using the estimated pressure or the pressure calculated on the last level remarked as P*.

    (3)Calculate the pressure correction P′,ensure the(u*+u′),(v*+v′)corresponding to(P*+P′)satisfy the continuity equation.The pressure correction is then obtained by substituting the corrected velocity into discretised continuity Eq.(6),using the relationship between u′, v′and P′.

    (4)Calculate the velocity corrections u′,v′,ensure the(ue*+ue′ )and(vn*+vn′)still satisfy the linearized momentum equation.

    (5)Set the(u*+u′),(v*+v′)and(P*+aPP′)as the answer of this level and start the calculation for the next level,aPis the under-relax factor,repeat step one to five until the flow field converges,namely the velocities can satisfy both the momentum equations and the continuity equation.The so-called‘level’is the solving process of the algebraic equation set consisted of the fixed coefficient and source.SIMPLE method is essentially a guess-and-correct scheme,the guess steps are 1~3 and correct steps are 4~5.Details refer to the Ref.[6]or[7].

    1.2 PISO scheme

    The PISO method consists of one guess step and two correct steps,the guess step and the first correct step are almost the same of SIMPLE scheme,the main procedure is:

    (1)Guess step-same as the SIMPLE scheme

    Solving discretised momentum equation implicitly based on the estimated or the last level pressure value,remarked as P()k:

    u*,v*and P()kin this step satisfy the momentum equation but may not satisfy the continuity equation.

    (2)First correct step-same as the SIMPLE scheme

    (3)The second correct step-special feature for the PISO scheme

    Search for the second corrected pressure P**and velocities u***,v***based on the calculated pressure P*and velocities u**,v**in the first correct step,make them satisfy the continuity equation and momentum equations better.

    Then,P**,u***,v***are calculated,the second correct step is complemented.Set the P**, u***,v***as the initial value for the next level and continue the procedure above until it satifies the the convergence condition.Details refer to the Ref.[5].

    1.3 Pseudo-compressibility scheme

    Pseudo-compressibility scheme was first put forward by Chorin and Vladimirova separately.The wind tunnel test was started,the wind speed was gradual changed from zero to the stability value,this accelerate process was unsteady.This change from the unsteady to the steady process was essentially the change of the type of governing equations.The idea for the pseudo-compressibility scheme is:If the steady incompressible N-S equations are added an time derivative term?/?t,then they are translated to a virtual unsteady compressible N-S equations.The continuity equation is added pressure derivative term?P/?t,momentum equations are added velocities derivative terms?v→/?t and the N-S equations for the pseudo-compressibility scheme are:

    The procedure for the pseudo-compressibility is very simple:

    (1)Calculate the velocities u,v from the momentum equations(10)based on the estimated pressure or the last level pressure.

    (2)Using the velocities u,v calculated above and the equation(9)to calculate the pressure P.

    (3)Repeat the steps(1-2)until the u,v and P satisfy the convergence condition.

    2 Numerical results

    The convergence criterion[10-11]is:

    where rpis the residual reduction factor,its value range from 0.05 to 0.25.0.1 is used in this paper.

    Accuracy,stability and rapid convergence of the three scheme are compared for three different Reynolds and the corresponding grid number.The results are presented in the Tabs.1-2 and Figs.2-4.As showed in Tab.1,under the same discretised scheme and convergence criterion,different time and iterate number are needed to achieve convergence for different scheme. The pseudo-compressibility cost the minimum time to converge,followed by SIMPLE scheme and then PISO scheme.For the case of Re=400,Re=1 000 and Re=5 000,the corresponding time consumed for SIMPLE scheme is 20.4,18.4 and 44.7 times as the pseudo-compressibility scheme,the time consumed for PISO scheme is 26.2,23.1 and 48.2 times as the pseudocompressibility scheme.Much time are saved for the pseudo-compressibility scheme since it is a non-iterative scheme,while 80%of the time costed in calculation is to solve the pressurecorrect equation.One more pressure correct equation is needed for PISO compare with SIMPLE,which shows the PISO scheme cost maximum time to simulate the steady lid-driven flow.

    Tab.1 Fast convergence for different method under different conditions

    Fig.2 Iterative process or the residual monitor for different scheme at Re=1 000,40*40 grids: UP(SIMPLE);RIGHT(PISO);LEFT(pseudo-compressibility)

    For the stability during iteration,SIMPLE and PISO are better than pseudo-compressibility as the corresponding residual monitor curve shown in Fig.2 for the case Re=1 000.

    It can be seen from Fig.3.that PISO is the most accurate scheme for simulating the velocities in the central line in the case Re=400 and Re=1 000,followed by pseudo-compressibility and then SIMPLE scheme.While for Re=5 000,the pseudo-compressibility scheme is themost accurate scheme,also the streamline for different methods in the case Re=5 000 in Fig.4 shows that the pseudo-compressibility scheme can simulate the secondary vortices that occur in the bottom right corner better and the curve of streamline matches the benchmark results by Ghia better than the SIMPLE and PISO.for simulating the lid-driven flow,followed by pseudo-compressibility and then SIMPLE.In the case of mid Re such as Re=5 000,pseudo-compressibility is thought to be the most accurate scheme for simulating the lid-driven flow.PISO is more accurate than SIMPLE scheme for simulating the lid-driven flow for all the Re number,since PISO has one more pressure correct step than SIMPLE.

    Fig.3 Non-dimensional horizontal(U)and vertical(V)velocity component profiles along the vertical(y)and horizontal(x)centerlines of a wall-driven square enclosure flow

    Fig.4 Streamline for different methods at Re=5 000Thus,in the case of low Re such as Re=400 and 1 000,PISO is the most accurate scheme

    Tab.2 The location of primary and the secondary vortices

    Tab.2 shows that the location of primary and the secondary vortices,when Re=400,the position deviation for the location of primary vortices compared with Ghia’s results for SIMPLE is(+0.003 5,+0.001 9),PISO is(+0.001 5,+0.002 1)and pseudo-compressibility is(+0.003 1, +0.002 5),which shows that the PISO is the most accurate scheme,followed by pseudo-compressibility and then SIMPLE in this case.Similar,when Re=5 000,the position deviation for SIMPLE is(+0.004 4,-0.012 9),for PISO is(+0.008 8,-0.001 7),for pseudo-compressibility is(+0.003 5,-0.000 2),which shows that the pseudo-compressibility is the most accuratescheme in this case.Similarly comparison can be performed to approve the conclusion reached last paragraph.

    3 Conclusions

    Three different numerical schemes applied to numerically simulate the low-medium Reynolds lid-driven cavity flow are presented in this paper,results are compared with benchmark solution reported by Ghia in 1982,difference among these schemes are analyzed and the results are as follows:

    (1)The convergence rate is the best for pseudo-compressibility in different cases,also the accuracy of this scheme is the best in the case of medium and high Reynolds.The iterate residual curve of SIMPLE and PISO schemes is smoother than pseudo-compressibility scheme.

    (2)In the cases of low Reynolds flow,PISO is found to be the most accurate scheme.However,the convergence rate of PISO is the worst among these schemes.It is always more accurate than SIMPLE in all cases.

    In this paper,for medium or high Reynolds like Re=5 000,the pseudo-compressibility is more accurate than the other schemes and for all Reynolds studied in the paper,the convergence rate of pseudo-compressibility is the best.The pseudo-compressibility scheme is considered to be the best choice for direct numerical simulation of low/medium Reynolds steady laminar or turbulence in the future.

    However,there are still some shortcomings for pseudo-compressibility scheme need to be overcome,for example,when come to the unsteady flow,the scheme needs to be re-designed. Besides,the key parameter c for different situations is always different and not easy to design.

    [1]Ghia U,Ghia K N,Shin C T.High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method[J].Journal of Computational Physics,1982,48(3):387-411.

    [2]Wang J,Xu M,Ge W,et al.GPU accelerated direct numerical simulation with SIMPLE arithmetic for single-phase flow [J].Chin Sci Bull,2010,55:1979-1986.

    [3]Patankar S V,Spalding D B.A calculation procedure for heat,mass and momentum transfer in three-dimensional parabolic flows[J].International Journal of Heat and Mass Transfer,1972,15(10):1787-1806.

    [4]Patankar S.Numerical heat transfer and fluid flow[M].CRC Press,1980.

    [5]Dousset V,Pothérat A.Formation mechanism of hairpin vortices in the wake of a truncated square cylinder in a duct[J]. Journal of Fluid Mechanics,2010,653:519-536.

    [6]Issa R I.Solution of the implicitly discretised fluid flow equations by operator-splitting[J].Journal of Computational Physics, 1986,62(1):40-65.

    [7]Skovorodko P A.Slip effects in compressible turbulent channel flow[J].arXiv preprint arXiv:1210.2152,2012.

    [8]Chorin A J.A numerical method for solving incompressible viscous flow problems[J].Journal of Computational Physics, 1967,2(1):12-26.

    [9]Harlow F H,Welch J E.Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface [J].Physics of Fluids,1965,8(12):2182.

    [10]Patankar S V.A calculation procedure for two-dimensional elliptic situations[J].Numerical Heat Transfer,1981,4(4): 409-425.

    [11]Van Doormaal J P,Raithby G D.Enhancements of the SIMPLE method for predicting incompressible fluid flows[J].Numerical Heat Transfer,1984,7(2):147-163.

    中低雷諾數(shù)流動(dòng)直接數(shù)值模擬的算法比較

    王建春,吳乘勝,王星
    (中國(guó)船舶科學(xué)研究中心,江蘇無(wú)錫214082)

    文章采用不同的算法對(duì)中低雷諾數(shù)方腔驅(qū)動(dòng)流動(dòng)進(jìn)行了直接數(shù)值模擬,所用算法分別是人工壓縮方法、SIMPLE算法以及PISO算法。三種算法均采用有限體積法基于交錯(cuò)網(wǎng)格技術(shù)離散N-S方程,時(shí)間項(xiàng)采用全隱格式離散,對(duì)流項(xiàng)采用QUICK格式離散,并將它們得到結(jié)果與Ghia發(fā)表的基準(zhǔn)解進(jìn)行了比對(duì)。文中分析了在同樣的收斂條件下,不同算法之間的穩(wěn)定性,收斂速率以及準(zhǔn)確性的差異,發(fā)現(xiàn)PISO算法在較低雷諾數(shù)Re=400和Re=1 000情況下最準(zhǔn)確,而人工壓縮算法在雷諾數(shù)為5 000時(shí)最準(zhǔn)確,在所有計(jì)算的不同Re數(shù)條件下,發(fā)現(xiàn)人工壓縮法達(dá)到收斂所需時(shí)間都是最少的,這可以使它成為中低雷諾數(shù)下研究直接數(shù)值模擬最好的算法之一。

    SIMPLE;PISO;人工壓縮方法;DNS;準(zhǔn)確性;收斂速度;穩(wěn)定性

    O35

    :A

    王建春(1989-),男,中國(guó)船舶科學(xué)研究中心碩士研究生;

    O35

    :A

    10.3969/j.issn.1007-7294.2017.06.001

    1007-7294(2017)06-0651-10

    吳乘勝(1976-),男,中國(guó)船舶科學(xué)研究中心研究員;

    date:2017-01-12

    Biography:WANG Jian-chun(1989-),male,master student,E-mail:664148138@qq.com; WU Cheng-sheng(1976-),male,researcher.

    王星(1988-),男,中國(guó)船舶科學(xué)研究中心工程師。

    猜你喜歡
    王星建春雷諾數(shù)
    LOCALIZED NODAL SOLUTIONS FOR SCHR?DINGER-POISSON SYSTEMS*
    陸建春油畫(huà)作品欣賞
    祖父瓷
    意林彩版(2022年1期)2022-05-03 10:25:07
    High-efficiency unidirectional wavefront manipulation for broadband airborne sound with a planar device
    過(guò)建春:慢加急性肝衰竭的中西醫(yī)結(jié)合診治
    肝博士(2020年4期)2020-09-24 09:21:12
    高壓旋噴樁在市政道路軟基處理中的質(zhì)量控制與常見(jiàn)病害防治
    基于Transition SST模型的高雷諾數(shù)圓柱繞流數(shù)值研究
    Computation of vortical flow and flow induced noise by large eddy simulation with FW-H acoustic analogy and Powell vortex sound theory*
    失穩(wěn)初期的低雷諾數(shù)圓柱繞流POD-Galerkin 建模方法研究
    基于轉(zhuǎn)捩模型的低雷諾數(shù)翼型優(yōu)化設(shè)計(jì)研究
    床上黄色一级片| 少妇熟女aⅴ在线视频| 看片在线看免费视频| 老司机福利观看| 秋霞在线观看毛片| 三级毛片av免费| 久久九九热精品免费| 亚洲欧美日韩高清专用| a级毛色黄片| 联通29元200g的流量卡| 女同久久另类99精品国产91| 久久精品久久久久久噜噜老黄 | 国产黄片美女视频| 搡女人真爽免费视频火全软件 | 亚洲三级黄色毛片| 免费在线观看影片大全网站| 国产成人91sexporn| 欧美zozozo另类| 欧美中文日本在线观看视频| 亚洲无线观看免费| 亚洲精品成人久久久久久| 乱人视频在线观看| 晚上一个人看的免费电影| 久久久久免费精品人妻一区二区| av在线观看视频网站免费| 国产一区二区激情短视频| 99久久无色码亚洲精品果冻| 欧美激情在线99| 校园人妻丝袜中文字幕| 亚洲熟妇中文字幕五十中出| 乱系列少妇在线播放| 免费观看人在逋| 狂野欧美激情性xxxx在线观看| 中文字幕熟女人妻在线| av视频在线观看入口| 亚洲五月天丁香| 男插女下体视频免费在线播放| 亚洲无线在线观看| 最近中文字幕高清免费大全6| 床上黄色一级片| 麻豆国产97在线/欧美| 国产男人的电影天堂91| 国产成人福利小说| 日韩欧美免费精品| 一夜夜www| 亚洲欧美日韩卡通动漫| 中国美女看黄片| 1024手机看黄色片| 国产69精品久久久久777片| 亚洲av电影不卡..在线观看| 又爽又黄a免费视频| 精品久久久噜噜| 国内精品久久久久精免费| 日本与韩国留学比较| 久久这里只有精品中国| a级毛片a级免费在线| 99久国产av精品国产电影| 成熟少妇高潮喷水视频| 床上黄色一级片| 亚洲成人久久性| 国产午夜福利久久久久久| 日韩精品青青久久久久久| 无遮挡黄片免费观看| 97在线视频观看| 男女边吃奶边做爰视频| 国产淫片久久久久久久久| 啦啦啦啦在线视频资源| 波多野结衣巨乳人妻| 日本黄色视频三级网站网址| 久久精品夜夜夜夜夜久久蜜豆| 国产亚洲91精品色在线| 最近手机中文字幕大全| 国产精品久久电影中文字幕| 欧美日韩国产亚洲二区| 波多野结衣高清无吗| 亚洲av.av天堂| 六月丁香七月| 午夜久久久久精精品| 欧美最新免费一区二区三区| 久久久久久久久大av| 一区二区三区四区激情视频 | 久久精品91蜜桃| 午夜a级毛片| 国产精品女同一区二区软件| 亚洲欧美精品综合久久99| 亚洲欧美成人精品一区二区| 国产男靠女视频免费网站| 亚洲熟妇熟女久久| 简卡轻食公司| 久久亚洲国产成人精品v| 亚洲精品亚洲一区二区| 天美传媒精品一区二区| 日本三级黄在线观看| 伊人久久精品亚洲午夜| 久久亚洲精品不卡| 99久久精品国产国产毛片| 国产色爽女视频免费观看| 国产亚洲精品久久久久久毛片| 日本 av在线| 免费看美女性在线毛片视频| 特大巨黑吊av在线直播| 变态另类成人亚洲欧美熟女| 波多野结衣高清作品| 在现免费观看毛片| 午夜视频国产福利| 欧美日韩在线观看h| 18禁在线播放成人免费| 免费黄网站久久成人精品| 老熟妇乱子伦视频在线观看| 看非洲黑人一级黄片| 校园人妻丝袜中文字幕| 国产乱人偷精品视频| 国产视频一区二区在线看| 91麻豆精品激情在线观看国产| 免费人成视频x8x8入口观看| 国内久久婷婷六月综合欲色啪| 国产精品一区二区三区四区免费观看 | 色噜噜av男人的天堂激情| 亚洲国产精品成人综合色| 精品午夜福利视频在线观看一区| av福利片在线观看| 男女边吃奶边做爰视频| 成人亚洲精品av一区二区| 老熟妇乱子伦视频在线观看| 亚洲av免费在线观看| 亚洲国产色片| 国产探花极品一区二区| 国产精品,欧美在线| 亚洲欧美日韩高清专用| 国产精品亚洲美女久久久| 国产 一区精品| 久久韩国三级中文字幕| av专区在线播放| 97碰自拍视频| 岛国在线免费视频观看| 亚洲人成网站高清观看| 无遮挡黄片免费观看| 有码 亚洲区| 哪里可以看免费的av片| 国产精品久久久久久久电影| 婷婷色综合大香蕉| 日本精品一区二区三区蜜桃| 亚洲内射少妇av| 一个人观看的视频www高清免费观看| 成年女人看的毛片在线观看| 欧美激情久久久久久爽电影| 日本与韩国留学比较| 国产精品爽爽va在线观看网站| 97热精品久久久久久| 性欧美人与动物交配| 国产激情偷乱视频一区二区| 精品一区二区三区视频在线观看免费| 五月伊人婷婷丁香| 亚洲七黄色美女视频| 午夜激情欧美在线| 真实男女啪啪啪动态图| 在线播放无遮挡| 女同久久另类99精品国产91| 五月伊人婷婷丁香| 中国国产av一级| 久久韩国三级中文字幕| 男女之事视频高清在线观看| av视频在线观看入口| 高清毛片免费观看视频网站| 韩国av在线不卡| 老女人水多毛片| 97超碰精品成人国产| 亚洲精品一卡2卡三卡4卡5卡| 1000部很黄的大片| 国产真实伦视频高清在线观看| 亚洲欧美成人综合另类久久久 | 联通29元200g的流量卡| 色噜噜av男人的天堂激情| 春色校园在线视频观看| 国产精品亚洲美女久久久| 久久久成人免费电影| 国产淫片久久久久久久久| 国产伦在线观看视频一区| 草草在线视频免费看| 99久国产av精品国产电影| 在线国产一区二区在线| 久久国产乱子免费精品| 国产淫片久久久久久久久| 国产精品亚洲美女久久久| 日本 av在线| 亚洲精品国产av成人精品 | 女生性感内裤真人,穿戴方法视频| 人妻少妇偷人精品九色| 免费av不卡在线播放| 长腿黑丝高跟| 性欧美人与动物交配| h日本视频在线播放| 久久人人爽人人爽人人片va| 精品99又大又爽又粗少妇毛片| 三级经典国产精品| 我要看日韩黄色一级片| 好男人在线观看高清免费视频| 十八禁网站免费在线| 波多野结衣高清无吗| 91av网一区二区| 最近视频中文字幕2019在线8| 国产精华一区二区三区| 老司机福利观看| 国产成人一区二区在线| 国产av在哪里看| 国产一区二区激情短视频| 久久九九热精品免费| 亚洲av成人精品一区久久| 成人亚洲欧美一区二区av| 国产伦精品一区二区三区视频9| 日本免费a在线| 国产精品美女特级片免费视频播放器| av在线老鸭窝| 国产老妇女一区| 九九久久精品国产亚洲av麻豆| 亚洲av一区综合| 美女高潮的动态| 国产伦在线观看视频一区| 三级国产精品欧美在线观看| 高清日韩中文字幕在线| 有码 亚洲区| 国产成人影院久久av| 日本黄色片子视频| 日韩大尺度精品在线看网址| 欧美日韩综合久久久久久| 亚洲av成人av| 精品午夜福利视频在线观看一区| 国产精品综合久久久久久久免费| 女人十人毛片免费观看3o分钟| 中文在线观看免费www的网站| 22中文网久久字幕| 午夜免费激情av| 国产激情偷乱视频一区二区| 99热只有精品国产| 欧美3d第一页| 国产爱豆传媒在线观看| 性色avwww在线观看| 国产亚洲精品av在线| 国产精品国产三级国产av玫瑰| 少妇人妻精品综合一区二区 | 狂野欧美白嫩少妇大欣赏| 久久久久免费精品人妻一区二区| 日产精品乱码卡一卡2卡三| 最后的刺客免费高清国语| 亚洲国产日韩欧美精品在线观看| 在线免费观看的www视频| 欧美色欧美亚洲另类二区| 精品不卡国产一区二区三区| 69人妻影院| 国产精品野战在线观看| 国产成人91sexporn| 非洲黑人性xxxx精品又粗又长| 成年版毛片免费区| 嫩草影院精品99| 久久久久精品国产欧美久久久| 欧美又色又爽又黄视频| 精品一区二区三区视频在线| 九九在线视频观看精品| av卡一久久| 尾随美女入室| 久久久久久大精品| 中文字幕人妻熟人妻熟丝袜美| 午夜福利高清视频| 日韩亚洲欧美综合| 免费观看在线日韩| 最后的刺客免费高清国语| 国产精品99久久久久久久久| 狂野欧美激情性xxxx在线观看| 精品久久久久久成人av| 国产乱人视频| 成人无遮挡网站| 一个人看视频在线观看www免费| 天堂动漫精品| 午夜精品国产一区二区电影 | 国产三级中文精品| 午夜激情福利司机影院| 变态另类成人亚洲欧美熟女| 丝袜美腿在线中文| 免费看光身美女| 国产精品爽爽va在线观看网站| 中文在线观看免费www的网站| 欧美日本亚洲视频在线播放| 可以在线观看的亚洲视频| 波野结衣二区三区在线| 一夜夜www| 人妻丰满熟妇av一区二区三区| 黄片wwwwww| 秋霞在线观看毛片| 国产高潮美女av| 一区二区三区免费毛片| 国产精品一区二区三区四区免费观看 | 国产69精品久久久久777片| 国产精品一区二区性色av| videossex国产| 一个人看视频在线观看www免费| 亚洲国产欧洲综合997久久,| 精品一区二区三区av网在线观看| 亚洲成人中文字幕在线播放| 97超级碰碰碰精品色视频在线观看| 国产精品亚洲一级av第二区| 免费观看人在逋| 天堂av国产一区二区熟女人妻| 日本 av在线| a级毛色黄片| 国产成人精品久久久久久| 色播亚洲综合网| 中国美白少妇内射xxxbb| 免费高清视频大片| 国产黄色视频一区二区在线观看 | 亚洲成av人片在线播放无| 亚洲一级一片aⅴ在线观看| 免费看av在线观看网站| 日本五十路高清| 国产淫片久久久久久久久| 日本黄色视频三级网站网址| 色综合站精品国产| 最近最新中文字幕大全电影3| 亚洲成人精品中文字幕电影| 国产美女午夜福利| 97碰自拍视频| 在线免费十八禁| 日本成人三级电影网站| 国模一区二区三区四区视频| 亚洲专区国产一区二区| 午夜福利在线观看吧| 日本熟妇午夜| 一夜夜www| 国产激情偷乱视频一区二区| 久久精品综合一区二区三区| 日韩一区二区视频免费看| 欧美精品国产亚洲| 免费观看精品视频网站| 婷婷精品国产亚洲av在线| 九九热线精品视视频播放| 麻豆国产av国片精品| 国产色婷婷99| av天堂在线播放| 最近中文字幕高清免费大全6| 日本撒尿小便嘘嘘汇集6| 少妇熟女aⅴ在线视频| 色综合亚洲欧美另类图片| 99热6这里只有精品| 亚洲精华国产精华液的使用体验 | 婷婷精品国产亚洲av在线| 亚洲av熟女| 国产又黄又爽又无遮挡在线| 久久欧美精品欧美久久欧美| 天美传媒精品一区二区| 久久久a久久爽久久v久久| 蜜臀久久99精品久久宅男| 性插视频无遮挡在线免费观看| 国产成人a区在线观看| 自拍偷自拍亚洲精品老妇| 日韩欧美精品免费久久| 赤兔流量卡办理| 色综合亚洲欧美另类图片| 一级黄片播放器| 男女啪啪激烈高潮av片| 热99re8久久精品国产| 我的老师免费观看完整版| 国产成人影院久久av| 在线观看免费视频日本深夜| 欧美成人a在线观看| 亚洲av五月六月丁香网| 久久韩国三级中文字幕| 欧美日韩综合久久久久久| videossex国产| 日本成人三级电影网站| 国产亚洲av嫩草精品影院| 国产熟女欧美一区二区| 99久国产av精品国产电影| 国产一级毛片七仙女欲春2| 亚洲精品国产av成人精品 | 老司机影院成人| 成年女人看的毛片在线观看| 亚洲欧美中文字幕日韩二区| 在线a可以看的网站| 国产亚洲91精品色在线| 3wmmmm亚洲av在线观看| 在线观看午夜福利视频| 国产 一区 欧美 日韩| 在线观看av片永久免费下载| 一个人观看的视频www高清免费观看| 日韩大尺度精品在线看网址| 国产不卡一卡二| 久久国内精品自在自线图片| 国产免费男女视频| 精品乱码久久久久久99久播| 国产美女午夜福利| 亚洲成人av在线免费| 我要看日韩黄色一级片| 国产色爽女视频免费观看| 亚洲成人中文字幕在线播放| 午夜爱爱视频在线播放| 色综合色国产| 综合色av麻豆| 日韩在线高清观看一区二区三区| 成人漫画全彩无遮挡| 欧美+日韩+精品| 日韩成人av中文字幕在线观看 | 听说在线观看完整版免费高清| 少妇的逼水好多| 久久久精品欧美日韩精品| 中文字幕av在线有码专区| or卡值多少钱| 熟妇人妻久久中文字幕3abv| 天天躁日日操中文字幕| 亚洲欧美精品自产自拍| 精品人妻熟女av久视频| 国产三级在线视频| 男人狂女人下面高潮的视频| 久久精品夜夜夜夜夜久久蜜豆| 午夜福利成人在线免费观看| 菩萨蛮人人尽说江南好唐韦庄 | 国产午夜精品久久久久久一区二区三区 | 一进一出抽搐动态| 此物有八面人人有两片| 蜜桃亚洲精品一区二区三区| 热99在线观看视频| 成人美女网站在线观看视频| 97在线视频观看| 亚洲无线观看免费| 99国产精品一区二区蜜桃av| 黄色日韩在线| 亚洲四区av| 一个人看的www免费观看视频| 九九热线精品视视频播放| 成人综合一区亚洲| 日日啪夜夜撸| 狠狠狠狠99中文字幕| 99久国产av精品| av在线蜜桃| 丝袜美腿在线中文| 久久久久久久久中文| 日韩精品有码人妻一区| 狂野欧美白嫩少妇大欣赏| 你懂的网址亚洲精品在线观看 | 国产av麻豆久久久久久久| 色综合亚洲欧美另类图片| 亚洲欧美精品综合久久99| 中文字幕av成人在线电影| 最近手机中文字幕大全| h日本视频在线播放| 91在线精品国自产拍蜜月| 日日摸夜夜添夜夜添av毛片| 久久精品影院6| 在线播放国产精品三级| 少妇人妻一区二区三区视频| 午夜激情福利司机影院| 日韩欧美 国产精品| 午夜老司机福利剧场| 熟妇人妻久久中文字幕3abv| 变态另类丝袜制服| 一级av片app| 久久久久久九九精品二区国产| 亚洲精品国产成人久久av| 天堂av国产一区二区熟女人妻| 国产精品免费一区二区三区在线| 成人亚洲精品av一区二区| 国产精品美女特级片免费视频播放器| 日韩在线高清观看一区二区三区| 男女下面进入的视频免费午夜| 99热全是精品| 寂寞人妻少妇视频99o| 卡戴珊不雅视频在线播放| 国产成人freesex在线 | 精品人妻一区二区三区麻豆 | 18禁黄网站禁片免费观看直播| 国产精华一区二区三区| 联通29元200g的流量卡| 午夜影院日韩av| 可以在线观看的亚洲视频| 亚洲一区二区三区色噜噜| 性色avwww在线观看| 人人妻人人澡人人爽人人夜夜 | 国产精品女同一区二区软件| 天堂av国产一区二区熟女人妻| 国产伦精品一区二区三区视频9| 狂野欧美白嫩少妇大欣赏| 亚洲第一区二区三区不卡| 午夜老司机福利剧场| 亚洲色图av天堂| 美女xxoo啪啪120秒动态图| 日韩欧美在线乱码| 国产av不卡久久| 日本一本二区三区精品| 免费电影在线观看免费观看| 九九爱精品视频在线观看| 亚洲精品成人久久久久久| 欧美色欧美亚洲另类二区| 波多野结衣高清无吗| 久久久久九九精品影院| 精品福利观看| 少妇猛男粗大的猛烈进出视频 | 欧美极品一区二区三区四区| 91av网一区二区| 秋霞在线观看毛片| 亚洲精品日韩在线中文字幕 | 美女cb高潮喷水在线观看| 99视频精品全部免费 在线| 美女内射精品一级片tv| h日本视频在线播放| 色播亚洲综合网| 熟妇人妻久久中文字幕3abv| 偷拍熟女少妇极品色| 欧美日本视频| a级毛片a级免费在线| 成人欧美大片| 男女边吃奶边做爰视频| 成人综合一区亚洲| 我的女老师完整版在线观看| 99热这里只有是精品50| 99久久精品热视频| 级片在线观看| 男人舔女人下体高潮全视频| 欧美色欧美亚洲另类二区| 国产av在哪里看| 夜夜夜夜夜久久久久| 91久久精品电影网| 1024手机看黄色片| 日本黄大片高清| 日韩亚洲欧美综合| 麻豆久久精品国产亚洲av| 亚洲五月天丁香| 黄色一级大片看看| 99国产精品一区二区蜜桃av| 特级一级黄色大片| 国产黄色小视频在线观看| 伊人久久精品亚洲午夜| 欧美一区二区亚洲| 久久鲁丝午夜福利片| 校园人妻丝袜中文字幕| 久久鲁丝午夜福利片| 少妇猛男粗大的猛烈进出视频 | 天堂网av新在线| 国产成人福利小说| 美女被艹到高潮喷水动态| 国国产精品蜜臀av免费| 国产欧美日韩精品一区二区| 久久人人爽人人爽人人片va| 午夜免费男女啪啪视频观看 | 成人综合一区亚洲| 丰满乱子伦码专区| 日韩欧美在线乱码| 日韩欧美免费精品| 国产精品人妻久久久久久| 亚洲性夜色夜夜综合| 国产伦一二天堂av在线观看| 成人特级av手机在线观看| 一级毛片aaaaaa免费看小| 91久久精品国产一区二区三区| 精品国内亚洲2022精品成人| 国产欧美日韩精品亚洲av| 免费一级毛片在线播放高清视频| 少妇的逼好多水| 久久久欧美国产精品| 免费大片18禁| 婷婷亚洲欧美| 一本久久中文字幕| 国产极品精品免费视频能看的| 男插女下体视频免费在线播放| 精品不卡国产一区二区三区| 麻豆国产av国片精品| 日本与韩国留学比较| 亚洲人成网站在线播| 一进一出好大好爽视频| 国产精品永久免费网站| 久久99热这里只有精品18| 亚洲图色成人| 亚洲精品色激情综合| 久久久欧美国产精品| 日本爱情动作片www.在线观看 | 18禁在线无遮挡免费观看视频 | 最后的刺客免费高清国语| 成人特级黄色片久久久久久久| 一个人观看的视频www高清免费观看| 免费看光身美女| 69av精品久久久久久| 亚洲,欧美,日韩| 天天躁日日操中文字幕| 国产高潮美女av| 晚上一个人看的免费电影| 精品乱码久久久久久99久播| 狂野欧美激情性xxxx在线观看| 欧美日韩国产亚洲二区| 亚洲精品久久国产高清桃花| 亚洲av二区三区四区| 国产成人影院久久av| 国产极品精品免费视频能看的| 国产亚洲av嫩草精品影院| 国产高潮美女av| 久久精品国产亚洲网站| 国产一区二区在线观看日韩| 丝袜喷水一区| 麻豆国产97在线/欧美| 伦精品一区二区三区| 一个人观看的视频www高清免费观看| 婷婷精品国产亚洲av| 国产精品嫩草影院av在线观看| ponron亚洲| 国产精品一二三区在线看| 久久精品夜夜夜夜夜久久蜜豆| 日韩欧美国产在线观看| 99在线人妻在线中文字幕| 国产伦精品一区二区三区四那| 我要看日韩黄色一级片| 老熟妇乱子伦视频在线观看| 国产精品久久视频播放| 国产熟女欧美一区二区| 最近的中文字幕免费完整| 国产一区二区在线观看日韩| 亚洲在线观看片| 亚洲高清免费不卡视频| 免费看a级黄色片| 真实男女啪啪啪动态图|