• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modified Backstepping Controller for Path Following of Marine Crafts with Actuator Dynamics

    2017-06-22 14:44:22YangHaixiangWenzhao
    船舶力學(xué) 2017年6期
    關(guān)鍵詞:武漢理工大學(xué)徐海循跡

    Qü Yang,Xü Hai-xiang,Yü Wen-zhao

    (a.Key Laboratory of High Performance Ship Technology of Ministry of Education;b.School of Transportation,Wuhan University of Technology,Wuhan 430063,China)

    Modified Backstepping Controller for Path Following of Marine Crafts with Actuator Dynamics

    Qü Yanga,b,Xü Hai-xianga,b,Yü Wen-zhaoa,b

    (a.Key Laboratory of High Performance Ship Technology of Ministry of Education;b.School of Transportation,Wuhan University of Technology,Wuhan 430063,China)

    A simple geometric method for generating curvature-continuous paths in a plan is presented.Based on the curvature-continuous paths,a line-of-sight(LOS)guidance law is utilized to minimize the cross-track error.To attenuate the oscillation of the control signal and obtain smooth control outputs,a modified backstepping controller with actuator dynamics is proposed for path following of overactuated marine crafts.It is worth mentioning that an integral action is added to adapt the slow-varying environmental forces of wind,wave and current forces.Numerical simulations demonstrate the validity of the proposed controller.

    path following;path planning;line-of-sight guidance;backstepping control; actuator dynamics

    0 Introduction

    In many applications,a marine ship has to move along a given path with a desired speed[1]. Different from trajectory tracking which requires the vessel to track pre-specified time functions of all state,path following removes temporal constraints and reduces the tracking problem to only a subset of states[2].The paths usually consist of a set of waypoints using Cartesian coordinate(xk,yk).In addition,each waypoint is usually connected by a circle before and after the waypoint[3].The path following problems can be summarized as following the desired path and obtaining the desired surge speed of the ship[4].

    In path following,the shape and properties of the path have a direct influence on the guidance system.The reason is that the path is defined by a set of ordered waypoints on the map and the discontinuous-curvature paths affect the heading angle commands.Connecting the waypoints can be achieved in many ways,with each one having its own advantages and disad vantages.Two main categories are using spines and combining straight lines and arcs.Dubins[5]showed that for a particle that moves forward with unity speed,the shortest path that meets a curvature bound between a starting point and a finishing point consists of the parts which is astraight line or an arc of a circle of radius R>0.Breivik and Fossen[6]designed paths of straight lines and circles for a fully actuated vessel to comply with the guidance commands.Shanmugavel and Tsourdos et al[7]used Dubins paths with clothoid arcs in the path planning of multiple UAVs to produce feasible paths.Different from Dubins paths,Lekkas and Dahl et al[8]proposed a method for path planning using Fermat’s spiral which has a zero curvature at its origin.Similar to the work of Lekkas and Dahl et al[8],Candeloro and Lekkas et al[9]proposed a two-dimensional curvature-continuous path planning algorithm based on Voronoi diagrams and Fermat’s spirals.The main objectives of the above publications are to find a smooth continuous-curvature path.

    For the controller design for path following,Yuh,Nie and Lee[10]and Sun and Cheah[11]used the adaptive control to stabilize the control system of path following in the presence of unmodelled dynamics and various noise;In Skjetne[12],three different controllers for the elliptical path following were designed,that is the adaptive backstepping procedure,sliding mode control and the nonlinear PID control,and the effectivenesses were compared among them based on experimental tests on the model ship CyberShip II.Based on the LOS guidance, Breivik[13]focused on the two-step backstepping control design for path following of marine crafts.However,these publications did not take into account the influence of actuator dynamics.Actuator dynamics are usually neglected by choosing the bandwidth of the control law sufficient low.As the actuators like propellers,thrusters and rudders have the bandwidth which is close to the bandwidth of most ship,the control signal will have oscillation and the actuator dynamics can not be neglected.Fossen and Berge[14]proposed a nonlinear vectorial backstepping controller for the marine crafts with the actuator dynamics added into the ship maneuvering model.For further research,Morishita and Souza[15]developed a backstepping controller with a passive observer and the actuator dynamics.But the obstacle of the methods proposed by Fossen and Berge[14]and Morishita and Souza[15]are that the controllers were designed for station keeping mode and cannot be applied to path following.

    The main contribution of this paper is twofold.First,a simple geometric method is used to generate the paths consisting of straight lines and arcs.This method allows the straight line to connect with the arc smoothly without curvature discontinuity.Second,the actuator dynamics have been included in the backstepping controller design for path following and the backstepping procedure was extended into three steps.

    The text is organized as follows:Chapter 1 mainly shows the procedure of the proposed path planing.Chapter 2 briefly presents the review of LOS guidance law.Chapter 3 gives a general ship maneuvering model with actuator dynamics in the inertial reference frame and body-fixed reference frame.Chapter 4 shows the proposed backstepping controller design in three steps using the Lyapunov stability analysis.Chapter 5 presents the simulation results.The paper ends with the conclusion.

    1 Continuous curvature path planning

    Path planning is a procedure to determine which route to be taken when moving from one location to another,given a certain number of waypoints to reach along the path.In path following,the line-of-sight angle is presented in the Path Parallel(PP)frame which rotates an angle relative to the inertial frame.The heading angle is determined by the line-of-sight angle and that rotated angle.Thus,discontinuous-curvature of the path will result in sharp variations of the desired heading angle.Here,we will use a simple geometric method to generate the path consisting of straight lines and arcs.

    1.1 The center of circle planning

    Let Pk(k=1,2,3…)denote the available waypoints.Assuming that all the radiuses are given and all the centers locate at the angle bisector of the nearby straight lines,the centers’locations can be easily achieved by the angle bisector theorem. Next,we will use nearby three waypoints to illustrate this problem shown in Fig.1.

    Fig.1 The center of circle planning

    where Rkis the radius of these circles.According to the angle bisector theorem:

    1.2 Path planning with clockwise or anti-clockwise motion

    In this part,the paths with clockwise or anti-clockwise motion will be defined by a mathematic method.For convenience,we will use 4 waypoints to illustrate this problem.The problem of the path planning for this case can be converted into the solving of the tangency points Ti,the central angles θiof arcs and the rotation directions as shown in Fig.2.

    Fig.2 Path planning with clockwise or anti-clockwise motion

    Firstly,we have to know whether the motion between the nearby two straight lines is clockwise or anti-clockwise.Here,we will utilize the concept of the cross product of vectors.

    where γiis the rotation angle and sgn is the sign function.CWi=1 represents the motion is clockwise and CWi=-1 represents the motion is anti-clockwise.The corresponding angular relations are formed as:

    Then,it is easy to solve the tangency point location problem for the beginning and finishing waypoints.

    2 LOS guidance law design

    2.1 LOS guidance law for general paths

    Fossen and Pettersen[16]showed that LOS guidance law for a ship is uniform semiglobal exponential stability(USGES)which is slightly weaker than global exponential stability(GES).Consider that a point particle moves in the two-dimensional plane.Let θ≥0 denotes the path variable.The paths can be parameterized as(xp(θ),yp(θ))by a set of given waypoints(xk,yk)for k=1,2,…as illustrated in Fig.3.In this section,a path parallel(PP)frame hasbeen used,which is rotated around an angle:

    Fig.3 LOS guidance law for a general path

    with respect to the North-East reference frame.For the particle located at the positionx,()y, the cross-track error can be computed as the orthogonal distance in the PP frame defined by the point(xp(θ),yp(θ)).Thus,we can put:

    Expanding Eq.(16)gives the normal form:

    According to Breivik and Fossen[6],the global minimized θ*subjected to Eq.(16)can be defined by:

    In Fossen[17],the kinematic equations can be expressed as the following form:

    Using Eqs.(15),(17),(20)and(21),the differentiation of Eq.(18)gives:

    here the look-ahead distance△can be time-varying using the following equation[18]:

    where ρ is the convergence rate of△.Inserting Eq.(24)into Eq.(23)gives:

    2.2 LOS guidance law for a straight line and a circle

    For a straight line,the PP frame is rotated around an angle α relative to the inertial North-East reference frame shown in Fig.4.Hence,the LOS guidance law in Eq.(24)can be computed as:

    For the circle having non-zero curvature,the LOS guidance law χcis time-varying.By analyzing Fig.5,this angle can be calculated as:

    Fig.4 LOS guidance law for a straight line

    Fig.5 LOS guidance law for a circle

    3 Dynamic position mathematical model

    Motivated by the actuator dynamics adopted by Morishita and Souza[15]and Fossen and Berge[14],the mathematical model for path following can be modified as:

    where η=[x,y,ψ]Tis the generalized position in the inertial reference frame;The body-fixed velocitiy is defined by the vector v=[u,υ,r]T;R(ψ)is the rotation matrix;M∈R3×3is the inertia matrix,D∈R3×3is the damping matrix,Bu∈R3×nis the configuration matrix with n actuators.up∈Rn×1is the return of the propeller thrusts;b∈R3×1is the slow varying environmental forces including wind,waves,currents as well as those induced by actuators;Tn∈Rn×nis a dialogue matrix of positive time constants;uc∈Rn×1is the vector of control outputs determined by the controller;Considering the saturation of the actuators,the control forces in surge,sway and yaw can be limited and represented as:

    where umax∈R3×1and umin∈R3×1are the vectors with maximum and minimum saturation values.Specially,the matrices used in the nonlinear maneuvering model can be given as:

    4 Control system design

    Breivik[19]proposed a two-step backstepping controller for path following without actuator dynamics.In this Chapter,the modified control system design with actuator dynamics will be separated into three parts using a backstepping control.The process of the control system design will be stated as follows.

    Defining the projection vector h:

    The first error variable z1is defined as:

    where ψdis the LOS guidance law angle χ given in Chapter 3.For a straight line,ψd=χsand ψd=χcfor a circle.Similarly,the second error variable z2can be defined as:

    Step 1:Defining the first Lyapunov Function(LF)as:

    The differentiation of Eq.(36)gives:

    Inserting Eq.(35)into Eq.(37)gives:

    Thus,the stabilizing function α13can be chosen as:

    where c1>0 and Eq.(38)will become:

    Step 2:Defining the second Lyapunov Function(LF)as:

    The differentiation of Eq.(41)gives:

    Based on Eqs.(30)and(35),we will have the following result:

    Thus Buupcan be chosen as the second stabilizing function α2.Hence,Eq.(42)can be rewritten as:

    The second stabilizing function can be designed as:

    where K2is a positive diagonal matrix and the adaptive integral action can be chosen as:

    Step 3:Defining the second error variable z3:

    The third Lyapunov Function(LF)can be expressed as:

    The differentiation of Eq.(48)with the insertion of Eqs.(31),(44)and(45)gives:

    Hence,the control law can be given by:

    where K3is a positive diagonal matrix.In path following,we want that the ship moves forward with the given surge speed udand also desire that the sway velocity of the vessel is kept at zero.For the heading angle control,the stabilizing function α13will be used.Thus,the stabilizing functions α1can be written as:

    5 Simulation results

    To evaluate the performance and robustness of this method,the computer simulation with the waypoints given in Tab.1 has been used.This work is based on an over-actuated offshore supply vessel model.The configurations of the actuators are shown in Tab.2.The vessel hydrodynamic coefficients of the matrices M and D used in Chapter 4 are calculated by Computational Fluid Dynamics(CFD)and given in Tab.3.To take into account the differences between the realistic model and the model used in Chapter 3,the vessel realistic model will be adopted in this simulation where the wind,current and wave forces are calculated separately(Appendix A).Therefore,the calculated matrices M and D will be used for controller design and the vessel realistic model in Appendix A will be adopted to represent the real ship motion. The matrices used in this paper are illustrated in Appendix B.The other parameters related to the controller,desired speed and initial states are displayed in Tab.4.

    Tab.2 The configurations of the actuators

    Tab.3 The used parameters for the model ship

    Tab.4 The other parameters used in the simulation

    To illustrate the validity of the proposed method,the simulation will be adopted in the computer.The results of path following and heading angle tracking are depicted in Fig.6 and Fig.7.Fig.6 shows the path planning with the given waypoints and the ship can follow the smoothpaths consisting of straight lines and circle arcs.Fig.7 presents the desired heading angle generated by the LOS guidance law and the actual ship heading angle.The sharp change heading angle demonstrates that the ship locates in the circle arcs and the almost constant heading angle represents the ship locates in the straight lines.

    Fig.6 Path following for the model ship

    Fig.7 Actual yaw angle tracks the desired LOS angle

    In order to demonstrate the advantages of including the actuators in the modified controller,the performances with actuator dynamics and without the inclusion of the actuator dynamics are compared shown in Fig.8(a)and Fig.8(b).Taking into account the actuator dynamics,the control outputs are smoother than those without actuator dynamics.The time lag between the control outputs and the real propeller forces caused by the actuator dynamics tends to retard the ship motion,and the controller without actuator dynamics will compensate for it by magnifying the control outputs.Thus,the control outputs without actuator dynamics have the sharp changes to the saturation values,which is impossible for the actuators to attain.As the bandwidth of the actuator dynamics is close to the bandwidth of the ship motion,the modified backstepping controller with actuator dynamics is suitable to have smoother control outputs.

    Fig.8 Control outputs with actuator dynamics(dashed)and without actuator dynamics(solid)

    Fig.9 shows the ship tracks the given surge speed udperfectly.Fig.10 indicates the results of the integral action.It is worth noting that the bigger elements in the gain matrix Γ will make the bigger oscillation of the adaption forces.

    Fig.9 Ship velocity

    Fig.10 Behavior of the integral action

    6 Conclusion

    This paper demonstrates the planning of a continuous-curvature path with straight lines and circles by using a simple geometric method.In order to attenuate the oscillation of the control signal caused by the time lag,a modified backstepping controller with actuator dynamics is proposed to obtain a smooth control outputs.Integral action is adopted to adapt the slow varying environmental forces consisting of wind,wave and current forces.The stability of the closed-loop system with actuator dynamics is assured through Lyapunov stability analysis. Simulation results exactly confirm the good performance of the LOS guidance law and the control system.

    [1]Fossen T I.Guidance and control of ocean vehicles[M].John Wiley&Sons,1994.

    [2]Peymani E,Fossen T I.A Lagrangian framework to incorporate positional and velocity constraints to achieve path-following control[C].In Proceedings of 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC),2011:3940-3945.

    [3]Fossen T I,Breivik M,Skjetne R.Line-of-sight path following of underactuated marine craft[C]//In Proceedings of the 6th IFAC MCMC.Spain,2003:244-249.

    [4]Skjetne R,Fossen T I,Kokotovic P.Output maneuvering for a class of nonlinear systems[C]//In Proceedings of 15th IFAC World Congress on Automatic Control.Spain,2002.

    [5]Dubins L E.On curves of minimal length with a constraint on average curvature,and with prescribed initial and terminal positions and tangents[J].American Journal of Mathematics,1957:497-516.

    [6]Breivik M,Fossen T I.Path following of straight lines and circles for marine surface vessels[C]//In Proceedings of the 6th IFAC CAMS.Italy,2004:65-70.

    [7]Shanmugavel M,Tsourdos A,White B,Zbikowski R.Co-operative path planning of multiple UAVs using Dubins paths with clothoid arcs[J].Control Engineering Practice,2010,18(9):1084-1092.

    [8]Lekkas A M,Dahl A R,Breivik M,Fossen T I.Continuous-curvature path planning using Fermat’s spiral[J].Modeling, Identification and Control,2013,34(4):183-198.

    [9]Candeloro M,Lekkas A M,Soerensen A,Fossen T I.Continuous curvature path planning using Voronoi diagrams and Fermat’s spirals[J].Control Applications in Marine Systems,2013,9(1):132-137.

    [10]Yuh J,Nie J,Lee C G.Experimental study on adaptive control of underwater robots[C].In Proceedings of IEEE International Conference on Robotics and Automation,1999,1:393-398.

    [11]Sun Y C,Cheah C C.Adaptive setpoint control for autonomous underwater vehicles[C].In Proceedings of 42nd IEEE Conference on Decision and Control,2003,2:1262-1267.

    [12]Skjetne R.The maneuvering problem[D].Ph.D.thesis,Norwegian University of Science and Technology,2005.

    [13]Breivik M.Topics in guided motion control of marine vehicles[D].Ph.D.thesis,Norwegian University of Science and Technology,2010.

    [14]Fossen T I,Berge S P.Nonlinear vectorial backstepping design for global exponential tracking of marine vessels in the presence of actuator dynamics[C].In Proceedings of the 36th IEEE Conference on Decision and Control,1997,5:4237-4242.

    [15]Morishita H M,Souza C E S.Modified observer backstepping controller for a dynamic positioning system[J].Control Engineering Practice,2014,33:105-114.

    [16]Fossen T I,Pettersen K Y.On uniform semiglobal exponential stability(USGES)of proportional line-of-sight guidance laws[J].Automatica,2014,50(11):2912-2917.

    [17]Fossen T I.Handbook of marine craft hydrodynamics and motion control[M].John Wiley&Sons,2011.

    [18]Lekkas A M,Fossen T I.A time-varying lookahead distance guidance law for path following[C]//In Proceedings of 9th IFAC Conference on Manoeuvring and Control of Marine Craft.Italy,2012.

    [19]Breivik M,Fossen T I.Path following for marine surface vessels[C]//In Proceedings of the OTO’04.Japan,2004:2282-2289.

    [20]Skjetne R.Smogeli O N,Fossen T I.A nonlinear ship manoeuvering model:identification and adaptive control with experiments for a model ship[J].Modeling,Identification and Control,2004,25(1):3-27.

    Appendix A:The realistic ship model

    The mathematical model proposed by Fossen[17]for the ship can be given as:

    where MRBis the rigid-body inertial matrix and MAis the added inertial matrix.The term τwindand τwaveare the wind and wave forces.For the detailed calculations of wind and wave forces, see Fossen,reference(P188-199)[17].The term vr∈R3×1is the relative speed vector with respect to the effect of currents.The relation between vrand v can be expressed as[20]:

    where Vcand βcare the current speed and direction in the inertial reference frame.

    Appendix B:Some matrices used in the simulation

    The following matrices are used in this paper:

    基于動態(tài)執(zhí)行機構(gòu)的船舶循跡反步積分控制

    瞿洋a,b,徐海祥a,b,余文曌a,b
    (武漢理工大學(xué)a.高性能船舶技術(shù)教育部重點實驗室;b.交通學(xué)院,武漢430063)

    文章針對連續(xù)曲率路徑,用一種簡單的幾何方法生成連續(xù)曲率的路徑?;谠搸缀畏椒ㄉ傻倪B續(xù)路徑,文中利用line-of-sight(LOS)引導(dǎo)律解決了循跡控制中橫向偏差最小的問題。為了減弱控制輸出的振蕩和獲得平滑的控制輸出,一種基于動態(tài)執(zhí)行機構(gòu)的改進反步積分控制器在過驅(qū)動船舶循跡控制中得到了應(yīng)用。值得注意的是,文中用積分操作來抵抗風(fēng)浪流環(huán)境力。數(shù)值分析結(jié)果展示了該控制器的有效性。

    循跡控制;路徑規(guī)劃;LOS引導(dǎo)律;反步積分控制;動態(tài)執(zhí)行機構(gòu)

    U674.38

    :A

    國家自然科學(xué)基金項目資助(61301279,51479158)

    瞿洋(1992-),男,武漢理工大學(xué)交通學(xué)院碩士;

    U674.38

    :A

    10.3969/j.issn.1007-7294.2017.06.004

    1007-7294(2017)06-0685-13

    徐海祥(1975-),男,武漢理工大學(xué)交通學(xué)院教授,博士生導(dǎo)師;

    date:2016-12-16

    Supported by the National Natural Science Foundation of China(61301279,51479158)

    Biography:Qü Yang(1991-),male,master candidate;Xü Hai-xiang(1975-),male,Ph.D,professor, corresponding author,E-mail:qukaiyang@163.com;Yü Wen-zhao(1989-),male,Ph.D.

    余文曌(1989-),男,武漢理工大學(xué)交通學(xué)院講師。

    猜你喜歡
    武漢理工大學(xué)徐海循跡
    Path Planning of UAV by Combing Improved Ant Colony System and Dynamic Window Algorithm
    基于DFT算法的電力巡檢無人機循跡檢測系統(tǒng)設(shè)計
    徐海根(徐海)藝術(shù)作品欣賞
    《武漢理工大學(xué)學(xué)報(交通科學(xué)與工程版)》征稿簡則
    《武漢理工大學(xué)學(xué)報(交通科學(xué)與工程版)》征稿簡則
    基于單片機的智能循跡小車的設(shè)計
    電子測試(2018年15期)2018-09-26 06:01:14
    智能差分循跡小車設(shè)計
    電子制作(2017年1期)2017-05-17 03:54:20
    基于MC9S12XS128處理器的智能循跡小車分析研究
    電子制作(2016年11期)2016-11-07 08:43:49
    Lanterne-volant
    A Brief Study Of The Interactive-oriented Language Teaching
    午夜日本视频在线| 亚洲内射少妇av| 国产在线一区二区三区精| 91久久精品国产一区二区成人| 哪个播放器可以免费观看大片| 亚洲av成人精品一区久久| a级一级毛片免费在线观看| 在线天堂最新版资源| 欧美bdsm另类| 美女福利国产在线 | 精品亚洲成国产av| 色网站视频免费| av免费观看日本| 久久ye,这里只有精品| 亚洲综合精品二区| 99久久人妻综合| 精品少妇黑人巨大在线播放| 一区在线观看完整版| 欧美另类一区| 久久久久性生活片| a级一级毛片免费在线观看| 大话2 男鬼变身卡| 国产国拍精品亚洲av在线观看| 欧美成人一区二区免费高清观看| 97在线人人人人妻| 亚洲国产高清在线一区二区三| 精品国产三级普通话版| 王馨瑶露胸无遮挡在线观看| av黄色大香蕉| 国产熟女欧美一区二区| 亚洲一级一片aⅴ在线观看| 在线观看免费高清a一片| 青春草国产在线视频| 亚洲丝袜综合中文字幕| 99热这里只有精品一区| 亚洲av成人精品一区久久| av天堂中文字幕网| freevideosex欧美| 亚洲av电影在线观看一区二区三区| 国产免费一区二区三区四区乱码| 欧美日韩亚洲高清精品| 国产欧美亚洲国产| 久久99热这里只有精品18| 亚洲色图综合在线观看| 老熟女久久久| 日本免费在线观看一区| 国产一区亚洲一区在线观看| 天天躁日日操中文字幕| 中文在线观看免费www的网站| 精品酒店卫生间| 国产一区二区三区av在线| 成人影院久久| 91精品国产九色| 欧美+日韩+精品| 国产精品成人在线| 一区二区三区四区激情视频| 国产在线一区二区三区精| 三级经典国产精品| 一本色道久久久久久精品综合| 丰满少妇做爰视频| 中文字幕久久专区| 亚洲精品日韩在线中文字幕| 天美传媒精品一区二区| 久久久久久人妻| 性高湖久久久久久久久免费观看| 亚洲av.av天堂| 亚洲婷婷狠狠爱综合网| 日本欧美视频一区| 日韩av不卡免费在线播放| 一边亲一边摸免费视频| 免费在线观看成人毛片| 高清视频免费观看一区二区| 黄片wwwwww| 校园人妻丝袜中文字幕| 国产深夜福利视频在线观看| 久久人妻熟女aⅴ| 日韩制服骚丝袜av| 欧美成人一区二区免费高清观看| 男人添女人高潮全过程视频| 只有这里有精品99| 久久国产亚洲av麻豆专区| 亚洲国产成人一精品久久久| 99视频精品全部免费 在线| 亚洲伊人久久精品综合| 高清欧美精品videossex| 国产精品麻豆人妻色哟哟久久| 国产有黄有色有爽视频| 国产精品欧美亚洲77777| 免费黄色在线免费观看| 久久毛片免费看一区二区三区| 久久精品人妻少妇| 日本av手机在线免费观看| 国产一级毛片在线| 插逼视频在线观看| 大片电影免费在线观看免费| 久久久久国产精品人妻一区二区| 国产探花极品一区二区| 草草在线视频免费看| 久久韩国三级中文字幕| 老师上课跳d突然被开到最大视频| 国产熟女欧美一区二区| 伦理电影免费视频| 欧美 日韩 精品 国产| 国产欧美亚洲国产| 亚洲自偷自拍三级| 久久久久性生活片| 人人妻人人澡人人爽人人夜夜| 99热网站在线观看| 国产成人aa在线观看| videos熟女内射| 国产有黄有色有爽视频| 男女国产视频网站| 国产一级毛片在线| 国产精品久久久久久久电影| a级毛片免费高清观看在线播放| 亚洲欧美一区二区三区国产| 亚洲国产日韩一区二区| 国产欧美另类精品又又久久亚洲欧美| 99热全是精品| 国产在线视频一区二区| 一级毛片 在线播放| 亚洲va在线va天堂va国产| 亚洲第一av免费看| 婷婷色麻豆天堂久久| 久久人人爽av亚洲精品天堂 | 日韩伦理黄色片| 男男h啪啪无遮挡| 欧美成人午夜免费资源| av在线蜜桃| 激情五月婷婷亚洲| 在线亚洲精品国产二区图片欧美 | 中文字幕人妻熟人妻熟丝袜美| 黑丝袜美女国产一区| 免费不卡的大黄色大毛片视频在线观看| 亚洲精品日本国产第一区| 久久这里有精品视频免费| 欧美亚洲 丝袜 人妻 在线| 精品少妇久久久久久888优播| 嘟嘟电影网在线观看| 成人亚洲精品一区在线观看 | 日本黄色片子视频| 精品少妇黑人巨大在线播放| 国产精品人妻久久久影院| 最近的中文字幕免费完整| 亚洲久久久国产精品| 亚洲欧洲国产日韩| 男人和女人高潮做爰伦理| av视频免费观看在线观看| 亚洲成人中文字幕在线播放| 毛片女人毛片| 精品一品国产午夜福利视频| 男人舔奶头视频| 观看美女的网站| 99久久人妻综合| 中文天堂在线官网| 91久久精品国产一区二区成人| 涩涩av久久男人的天堂| 成人毛片60女人毛片免费| 国产精品精品国产色婷婷| 国产欧美日韩一区二区三区在线 | 少妇高潮的动态图| 日本猛色少妇xxxxx猛交久久| 色视频www国产| 亚洲色图av天堂| xxx大片免费视频| 日本黄色片子视频| 全区人妻精品视频| 啦啦啦中文免费视频观看日本| 极品少妇高潮喷水抽搐| 只有这里有精品99| 国产老妇伦熟女老妇高清| 欧美成人午夜免费资源| 国产乱人视频| 性色avwww在线观看| 人妻 亚洲 视频| 亚洲av欧美aⅴ国产| 天美传媒精品一区二区| 在线观看人妻少妇| 交换朋友夫妻互换小说| 一区二区三区免费毛片| 国产午夜精品一二区理论片| 日韩大片免费观看网站| 久久精品久久久久久久性| 亚洲成色77777| 精品久久国产蜜桃| 国产日韩欧美亚洲二区| 欧美日韩视频精品一区| 男人爽女人下面视频在线观看| 91狼人影院| 国产精品一及| 日韩一区二区三区影片| 亚洲第一区二区三区不卡| 成人影院久久| 国产免费又黄又爽又色| 一区二区三区精品91| 一区二区三区免费毛片| 欧美激情国产日韩精品一区| 日韩av免费高清视频| 99热这里只有是精品在线观看| 亚洲经典国产精华液单| 精品一区在线观看国产| 亚洲人成网站高清观看| 在线观看一区二区三区| 麻豆乱淫一区二区| 国产免费福利视频在线观看| 午夜福利视频精品| 欧美日本视频| 日日撸夜夜添| 香蕉精品网在线| 寂寞人妻少妇视频99o| 日韩成人av中文字幕在线观看| 又黄又爽又刺激的免费视频.| 国产精品国产三级专区第一集| 国模一区二区三区四区视频| 91精品一卡2卡3卡4卡| 少妇人妻久久综合中文| 男人狂女人下面高潮的视频| 日韩一本色道免费dvd| 六月丁香七月| 久久久久久久久久成人| 各种免费的搞黄视频| 干丝袜人妻中文字幕| 免费观看在线日韩| 最近中文字幕高清免费大全6| 日韩视频在线欧美| 亚洲国产精品专区欧美| 美女视频免费永久观看网站| 在线看a的网站| 国产精品一区www在线观看| 日韩一区二区视频免费看| 日韩精品有码人妻一区| 欧美3d第一页| 欧美xxⅹ黑人| 男女边吃奶边做爰视频| 春色校园在线视频观看| 久久久久久久大尺度免费视频| 欧美97在线视频| 国产精品久久久久久久电影| 久久精品久久久久久噜噜老黄| 欧美国产精品一级二级三级 | 能在线免费看毛片的网站| 亚洲美女视频黄频| 中文精品一卡2卡3卡4更新| 99久久综合免费| 成年av动漫网址| 久久鲁丝午夜福利片| 我的老师免费观看完整版| 亚洲自偷自拍三级| 欧美 日韩 精品 国产| 久久久久久久久久久免费av| 人人妻人人添人人爽欧美一区卜 | 欧美精品一区二区免费开放| 精品一区二区三区视频在线| 亚洲国产高清在线一区二区三| 欧美日韩视频高清一区二区三区二| 国产成人a区在线观看| 观看av在线不卡| 日韩 亚洲 欧美在线| 免费av不卡在线播放| 国产精品精品国产色婷婷| 黄色欧美视频在线观看| 一区二区av电影网| 啦啦啦啦在线视频资源| 亚洲一区二区三区欧美精品| 国产精品一区www在线观看| 欧美日韩综合久久久久久| 欧美一区二区亚洲| 人妻 亚洲 视频| 十分钟在线观看高清视频www | 久久久a久久爽久久v久久| 国产 一区精品| 国产人妻一区二区三区在| .国产精品久久| 超碰av人人做人人爽久久| 黄色欧美视频在线观看| 精品一区二区免费观看| 国产乱来视频区| 麻豆成人av视频| 日本色播在线视频| 亚洲高清免费不卡视频| 在线 av 中文字幕| 精品亚洲成国产av| 永久免费av网站大全| 亚洲内射少妇av| 国产人妻一区二区三区在| 人人妻人人看人人澡| 永久网站在线| 成人国产av品久久久| 欧美日韩国产mv在线观看视频 | 亚洲欧洲国产日韩| 久久久久久久精品精品| 欧美高清性xxxxhd video| 国内少妇人妻偷人精品xxx网站| 欧美xxxx黑人xx丫x性爽| 一个人看视频在线观看www免费| 麻豆国产97在线/欧美| 又爽又黄a免费视频| 婷婷色综合大香蕉| 婷婷色av中文字幕| 免费人妻精品一区二区三区视频| 国产中年淑女户外野战色| 日本-黄色视频高清免费观看| 欧美成人a在线观看| 免费看光身美女| 91久久精品国产一区二区三区| 日本欧美视频一区| 自拍欧美九色日韩亚洲蝌蚪91 | 免费观看av网站的网址| 亚洲精品国产av成人精品| 成人免费观看视频高清| 91精品国产国语对白视频| 男的添女的下面高潮视频| av在线播放精品| 欧美老熟妇乱子伦牲交| 久久久久人妻精品一区果冻| 国产成人午夜福利电影在线观看| 亚洲精品国产色婷婷电影| 日韩电影二区| 日韩av免费高清视频| 亚洲人成网站高清观看| 久久精品国产自在天天线| 热re99久久精品国产66热6| 亚洲激情五月婷婷啪啪| 日韩 亚洲 欧美在线| 高清黄色对白视频在线免费看 | 精品99又大又爽又粗少妇毛片| 日韩一本色道免费dvd| 精品一区二区三区视频在线| 中文天堂在线官网| 欧美精品亚洲一区二区| 男女边摸边吃奶| a 毛片基地| 日本黄大片高清| 一本久久精品| 肉色欧美久久久久久久蜜桃| 婷婷色综合www| 色网站视频免费| 美女内射精品一级片tv| 最近中文字幕2019免费版| 国产成人免费无遮挡视频| 亚洲久久久国产精品| 成人漫画全彩无遮挡| 国产精品国产av在线观看| 夫妻午夜视频| 人妻 亚洲 视频| 麻豆国产97在线/欧美| 男人添女人高潮全过程视频| 一级片'在线观看视频| 国产成人a区在线观看| 一本色道久久久久久精品综合| 中文字幕人妻熟人妻熟丝袜美| 日本wwww免费看| 在线亚洲精品国产二区图片欧美 | 亚洲真实伦在线观看| 久久人人爽人人片av| 22中文网久久字幕| 男人爽女人下面视频在线观看| 日本黄大片高清| 久久国内精品自在自线图片| 男女免费视频国产| a 毛片基地| 久久久久久九九精品二区国产| 在线 av 中文字幕| 亚洲精品aⅴ在线观看| 麻豆成人午夜福利视频| av网站免费在线观看视频| 亚洲欧美中文字幕日韩二区| 1000部很黄的大片| 国产成人aa在线观看| 天天躁夜夜躁狠狠久久av| 亚洲欧美中文字幕日韩二区| 男人舔奶头视频| 秋霞在线观看毛片| 国产精品无大码| 国产69精品久久久久777片| av播播在线观看一区| 欧美3d第一页| 男女下面进入的视频免费午夜| 久久久久久久大尺度免费视频| 黄片wwwwww| 国产91av在线免费观看| 色婷婷av一区二区三区视频| 国产高清三级在线| 亚洲av福利一区| 欧美97在线视频| 免费久久久久久久精品成人欧美视频 | 婷婷色av中文字幕| 看非洲黑人一级黄片| 亚洲精品国产av蜜桃| 欧美bdsm另类| 精品亚洲成a人片在线观看 | 99re6热这里在线精品视频| 国产综合精华液| 不卡视频在线观看欧美| 一二三四中文在线观看免费高清| av天堂中文字幕网| 日本欧美国产在线视频| 欧美精品人与动牲交sv欧美| a级毛色黄片| 欧美精品一区二区免费开放| 精品99又大又爽又粗少妇毛片| 一区二区av电影网| 国产精品麻豆人妻色哟哟久久| 亚洲av福利一区| av专区在线播放| 亚洲精品国产成人久久av| 日日摸夜夜添夜夜添av毛片| 午夜免费鲁丝| 夫妻性生交免费视频一级片| 国产精品嫩草影院av在线观看| 三级国产精品欧美在线观看| 最近的中文字幕免费完整| 国产亚洲5aaaaa淫片| 免费看av在线观看网站| 免费播放大片免费观看视频在线观看| 精品亚洲成国产av| 色哟哟·www| 亚洲人成网站在线观看播放| 黄色怎么调成土黄色| 国产在线男女| 久久人人爽av亚洲精品天堂 | 日本欧美国产在线视频| 亚洲精品自拍成人| 免费看av在线观看网站| 草草在线视频免费看| 在线观看人妻少妇| 男女边吃奶边做爰视频| 在线精品无人区一区二区三 | 我的老师免费观看完整版| 51国产日韩欧美| 国产精品偷伦视频观看了| 欧美 日韩 精品 国产| 亚洲国产av新网站| 中文字幕久久专区| 99九九线精品视频在线观看视频| 人妻制服诱惑在线中文字幕| 97热精品久久久久久| 日本黄大片高清| 51国产日韩欧美| 深夜a级毛片| 国产欧美日韩一区二区三区在线 | 国产精品久久久久久久久免| 色婷婷久久久亚洲欧美| 大香蕉久久网| 有码 亚洲区| 九九爱精品视频在线观看| 国产精品偷伦视频观看了| 国产片特级美女逼逼视频| 插逼视频在线观看| 毛片一级片免费看久久久久| 欧美老熟妇乱子伦牲交| 免费久久久久久久精品成人欧美视频 | av又黄又爽大尺度在线免费看| 国产爽快片一区二区三区| 少妇人妻一区二区三区视频| 麻豆乱淫一区二区| 在线观看av片永久免费下载| 精品一区二区三区视频在线| 国产精品久久久久久久电影| 好男人视频免费观看在线| 亚洲国产日韩一区二区| 超碰av人人做人人爽久久| 97超碰精品成人国产| 亚洲欧洲日产国产| 最近最新中文字幕大全电影3| 日韩大片免费观看网站| 免费看不卡的av| 男的添女的下面高潮视频| 午夜精品国产一区二区电影| 在线观看av片永久免费下载| 在现免费观看毛片| 欧美三级亚洲精品| 午夜老司机福利剧场| 亚洲成色77777| 91久久精品国产一区二区成人| 伦精品一区二区三区| 亚洲av电影在线观看一区二区三区| 久久这里有精品视频免费| 欧美精品国产亚洲| 亚洲第一av免费看| 国产精品国产三级国产av玫瑰| 尤物成人国产欧美一区二区三区| 九九久久精品国产亚洲av麻豆| 国产爽快片一区二区三区| 美女主播在线视频| 天堂俺去俺来也www色官网| 亚洲激情五月婷婷啪啪| 国产精品一区www在线观看| 寂寞人妻少妇视频99o| 国产成人a∨麻豆精品| 亚洲,欧美,日韩| 成人18禁高潮啪啪吃奶动态图 | 亚洲一区二区三区欧美精品| 婷婷色综合www| 国产男女超爽视频在线观看| 天美传媒精品一区二区| 久久av网站| 久久久精品94久久精品| 久久精品熟女亚洲av麻豆精品| 亚洲av.av天堂| 国产精品蜜桃在线观看| 国产极品天堂在线| 亚洲国产色片| 欧美日韩综合久久久久久| 一区二区三区四区激情视频| 99国产精品免费福利视频| 少妇裸体淫交视频免费看高清| 大香蕉久久网| a 毛片基地| 黄片wwwwww| 男女无遮挡免费网站观看| 校园人妻丝袜中文字幕| 寂寞人妻少妇视频99o| 亚洲成人一二三区av| 丰满人妻一区二区三区视频av| 亚洲精品一二三| 欧美xxxx黑人xx丫x性爽| 亚洲激情五月婷婷啪啪| 直男gayav资源| 久久久精品94久久精品| 免费av不卡在线播放| 久久精品夜色国产| 精品久久久久久电影网| 久久久欧美国产精品| 一区二区三区免费毛片| 国产极品天堂在线| 乱码一卡2卡4卡精品| 舔av片在线| 精品国产一区二区三区久久久樱花 | 日韩视频在线欧美| 久久青草综合色| 身体一侧抽搐| 女的被弄到高潮叫床怎么办| 自拍欧美九色日韩亚洲蝌蚪91 | 国内揄拍国产精品人妻在线| 成人一区二区视频在线观看| 91精品国产国语对白视频| 国产爱豆传媒在线观看| 国产久久久一区二区三区| 亚洲欧洲日产国产| 亚洲av二区三区四区| 狂野欧美白嫩少妇大欣赏| 国产伦精品一区二区三区视频9| 欧美变态另类bdsm刘玥| 嫩草影院入口| 午夜福利在线在线| 老女人水多毛片| 丰满迷人的少妇在线观看| 高清午夜精品一区二区三区| 亚洲成人一二三区av| 欧美精品国产亚洲| 色综合色国产| 亚洲精品成人av观看孕妇| 精品国产乱码久久久久久小说| 久久久久久久久久久丰满| 亚洲精品色激情综合| 男人添女人高潮全过程视频| 少妇的逼好多水| 99久久精品一区二区三区| 激情 狠狠 欧美| 日韩国内少妇激情av| 亚洲,一卡二卡三卡| www.av在线官网国产| 一区二区三区乱码不卡18| 久久国产精品大桥未久av | 国产精品久久久久久av不卡| av福利片在线观看| 亚洲综合精品二区| 在线看a的网站| 狂野欧美白嫩少妇大欣赏| 国产精品成人在线| 嘟嘟电影网在线观看| 成人国产麻豆网| tube8黄色片| 自拍欧美九色日韩亚洲蝌蚪91 | 国产精品一区二区三区四区免费观看| 嫩草影院入口| 在线看a的网站| 日韩一区二区三区影片| 日韩中字成人| 丝袜喷水一区| 欧美另类一区| 不卡视频在线观看欧美| av国产久精品久网站免费入址| 欧美三级亚洲精品| 国产精品99久久99久久久不卡 | 麻豆乱淫一区二区| 美女主播在线视频| tube8黄色片| 国产高清国产精品国产三级 | av在线播放精品| 大陆偷拍与自拍| 国内精品宾馆在线| 成人毛片a级毛片在线播放| 一级黄片播放器| 少妇被粗大猛烈的视频| 国产高清三级在线| 91久久精品国产一区二区三区| 亚洲欧美日韩东京热| 一本久久精品| 亚洲精品日韩在线中文字幕| 中文字幕制服av| 国产精品人妻久久久影院| 国产毛片在线视频| 欧美日韩国产mv在线观看视频 | 少妇人妻精品综合一区二区| 成人黄色视频免费在线看| 中文在线观看免费www的网站| 亚洲在久久综合| 男男h啪啪无遮挡| 成年美女黄网站色视频大全免费 | 午夜福利高清视频| a级毛色黄片| 菩萨蛮人人尽说江南好唐韦庄| 美女中出高潮动态图|