• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sound Field Separation Technique Based on Acoustic Radiation Modes

    2017-06-22 14:44:18GUOLiangZHUHaihaoMAORongfuSUJunboCHENZhimin
    船舶力學(xué) 2017年6期
    關(guān)鍵詞:郭亮聲場單層

    GUO Liang,ZHU Hai-hao,MAO Rong-fu,SU Jun-bo,CHEN Zhi-min

    (a.Institute of Noise&Vibration;b.National Key Laboratory on Ship Vibration&Noise; c.Collegue of Power Engineering,Naval University of Engineering,Wuhan 430033,China)

    Sound Field Separation Technique Based on Acoustic Radiation Modes

    GUO Lianga,b,ZHU Hai-chaoa,b,MAO Rong-fua,b,SU Jun-boa,b,CHEN Zhi-minc

    (a.Institute of Noise&Vibration;b.National Key Laboratory on Ship Vibration&Noise; c.Collegue of Power Engineering,Naval University of Engineering,Wuhan 430033,China)

    To eliminate the influence of the disturbing acoustic noise on reconstruction precision of near-field acoustic holography,a sound field separation technique with single hologram is proposed. In case the target source and the disturbing source are coherent,a mathematical model for the radiation of sources is set up by means of acoustic radiation mode theory.Two groups of sub-data are obtained by resampling acoustic pressures on a monolayer array and mathematical formulas are constructed between each group of sub-data and the acoustic radiation mode of sources.Then the expansion coefficients of the corresponding acoustic radiation modes can be calculated.Finally,the sound field response of the target source is reconstructed to complete sound field separation.Two numerical simulations were done to validate the proposed technique.In the first case,a simply supported plate is used as the target source and a rigid pulsating ball as the disturbing source,and in the second case,two rigid pulsating balls are used as the target and disturbing source respectively.Five parameters that would affect the validity of the proposed method were investigated in detail.Both the results show that the proposed approach is feasible and effective.

    acoustic radiation modes;single layer array;sound field separation technique; near-field acoustic holography

    0 Introduction

    As a kind of noise source identification and location technology with high spatial resolution,near-field acoustical holography(NAH)has unparalleled technical advantages and extensive application prospects for sound visualization and sound field reconstruction[1-2].However, current NAH techniques require a free-field condition,meaning that all target sources should be located on the same side of the measurement surface and there should be no disturbing sources on the opposite side of the array.In reality,the free-field condition is not feasible in a measurement environment,which strongly influences the test accuracy and limits the application of NAH technology.

    To eliminate the influence of disturbances,the sound field separation technique(FST)is necessary.Typical FST in the structural acoustic field is set up by establishing a set of primary functions which represent the radiation sound waves from both sides of the measurementsurfaces,constructing certain space transformation formulas and obtaining the complex coefficients of the primary functions in order to separate two types of different sound waves in opposite directions.Such double measurement method based on equivalent source method,spherical harmonic superposition method,statistical optimal NAH and boundary element method have been developed for years[3-8].Later,FST based on measurement of both the sound pressure and the normal component of the particle velocity is also developed for the same purpose[9-11].However,the double measurement surfaces described above should be conformal and be positioned precisely parallel to each other,which should take very much time and require more accurate layout techniques.In addition,the special pressure-particle velocity sensors,which were used to measure both the sound pressure and the normal component of the particle velocity are too expensive to be widely used.

    A new method is proposed in this paper,reling on measurement of the sound pressure in a single layer based on acoustic radiation modes which are representing independent sound pressure distributions[12-15].Firstly,mathematical formalisms of the sound field are established by superposition of the acoustic field distribution modes.Secondly,the formulas for acoustic field separation are established based on these mathematical models.Thirdly,by resampling the acoustic pressures in a single array,two groups of sub-data are obtained and combined with the formulas to calculate the expansion coefficients of the corresponding acoustic radiation modes.Finally,the sound field response of the target source can be reconstructed to achieve sound field separation by multiplying the acoustic radiation modes with their expansion coefficients.

    1 Theory

    By letting the source structures be distributed inside the homogeneous fluid where ρ0is the mean density of the medium,ω is the angular frequency of the harmonic vibration of the surface S0enclosing the volume Vias shown in Fig.1,the sound pressure at the vector position r′in the sound field V0satisfies the Helmholtz equation in external domain, the Neumann equation at the boundary surface and the Sommerfeld equation at infinity. If the method is a valid formulation,the equations equivalent to the internal and external Helmholtz integral equation can be obtained:

    Fig.1 Schematic diagram of the vibrating structure

    where k is the wave-number,c0is the familiar expression for the sound speed and μ()ris the source strength density on the structure surface.Based on Eq.(2),the pressure can be expressed as follows:

    Then,the normal velocity at vector position r′in terms of the Rayleigh integral can be obtained:

    As the pressure and normal velocity are obtained,the radiated power from the source structure surface described above by a discrete number of velocity measurements can be found by the following relation in a matrix form[16].

    where R represents radiation resistance which is real and symmetric.In matrix form,

    where C is a vector of expansion coefficients.Each element in C represents the contribution of the individual eigenvectors in Φ to the vector μ.Substituting Eq.(7)into Eq.(3),the pressure matrix in the field can be obtained as follows:

    Generally,this will fail to reconstruct the target source directly when there are two sources on both sides of the hologram.Based on the idea of separation methods with double layer measurements,two groups of sub-data are obtained by resampling the pressure data on the hologram.As Fig.2 shows,the sub-data with the hollow tag is the first set of data,expressed as P1;and the sub-data with solid tag is the second set of data,expressed as P2,which can be considered to be the data measured with double layer measurements.

    Fig.2 The data grouping after sampling

    By combining Eqs.(9)and(10),we can obtain

    where‘+’means the pseudo inverse.Eq.(11)and Eq.(12)yield the coefficient vector C1,C2, based on which the pressure on the measurement can be obtained.When the condition numberof Ψ is larger,a regularization process is needed.In this study,Tikhonov regularization was used and the regularization parameter was chosen using L-curve method[19].By substituting the expansion coefficients C1,C2into Eq.(9),it can be obtained:

    As in expansion theory,the low-order terms represent the propagating wave,while the high-order terms represent the evanescent wave.The accuracy of separation at each measurement location gives the best fit to the number of acoustic radiation modes.Since inherent illconditioning difficulty exists in the process,if more expansion terms are selected than needed, the higher-order evanescent wave error sensitivity effect will be amplified.The actual value would be masked by the error data,leading to separation failure.If less expansions terms are selected than needed,the measurement information may be incomplete,which would also cause separation failure.Therefore,it is imperative to find the optimal number Jopwhich will minimize the separation error.

    The number of expansion terms is increased incrementally using J=J+1.The process described above is repeated to obtain the relative error under the condition J=J+1 again.

    A set of relative errors related to the truncation number of the expansion modes will befinally obtained by traversing J from 1 to N.The truncation number of the expansion modes corresponding to the minimum value of the relative errors should be chosen as the optimal expansion term Jop.Then,substituting Jopinto the above separation process,the optimal results of sound separation will be obtained.

    2 Numerical simulation

    2.1 Two rigid pulsating balls disposed oppositely around the measurements

    Simulations are carried out to investigate the validity of the proposed FST based on acoustic radiation modes.A test case with two rigid pulsating spheres not located at symmetrical positions was examined.As depicted in Fig.3,the centre of the rigid pulsating sphere as the target source was located at(0,0.05 m,0),whose radius and vibration velocity were 0.05 m and 0.08 m/s,respectively.The radius and vibration velocity of another rigid pulsating sphere located at(-0.05 m,0,0.3 m)were 0.05 m and 0.16 m/s,respectively.The pressure was measured in a grid of 6×6 points with 0.04 m interspacing at the hologram,centre of which was (0,0,0.1 m).In numerical calculations,the sound was transmitted through the air,and its velocity was set to 343 m/s.The theoretical values of the measurement plane were calculated according to the radiation induced by a rigid pulsating sphere[21].In order to obtain simulation results closer to the actual measurements,a random white noise with an intensity of 30 dB was added to the simulated an actual measurement.

    Fig.3 The spatial distribution diagram of the target source,disturbing source and hologram

    Fig.4 The first nine acoustic radiation modes of the rigid pulsating ball

    The acoustic radiation modes of the rigid pulsating ball are needed for initial calculations before the FST process.The results can be obtained using Eq.(6).When the exciting frequency is 546 Hz,the first nine acoustic radiation modes are shown in Fig.4.

    By performing the proposed separation method,the pressure radiated by the target source and disturbing source can be separated effectively.Considering the number of the measurement points is large,the pressure at the measurement points which are selected every two from the first one of the first column is compared.Fig.5 shows the amplitudes and phase of the total pressure,recovered free-field radiated pressure and theoretical pressure radiated by the targetsource on the measurement plane for f= 546 Hz.

    There is a large difference between the total pressure and the theoretical pressure,as depicted in Fig.5.After the separation process,the recovered free-field radiated pressure on the measurement plane shows good agreement with its theoretical values.According to Eq.(15),the relative errors between the amplitude and phase of the recovered pressure and theoretical pressure are just 2.46%and 3.5%, respectively.

    In order to further verify the universal applicability of the proposed method, the relative errors of the amplitudes corresponding to different frequencies(109.2 Hz to 982.6 Hz)were calculated.

    Fig.6 shows the relationship between the relative errors and frequency.The measurement errors are always above 80%,which demonstrates that the total pressure is seriously corrupted by the disturbing radiation,and therefore it cannot be used to replace the free-field radiated pressure.By performing the proposed separation step,the free-field pressure radiated by the target source was successfully recovered. Here,all of the separation errors are below 10%(some were even smaller,e.g.,the separation error at 464 Hz was 1.9%),which further demonstrates the validity of the proposed separation method.

    Fig.5 The amplitudes and phase of the total pressure, recovered pressure and theoretical pressure

    Fig.6 The relative errors of the amplitudes

    Fig.7 The relative errors with different distances between the sources and the measurement

    Fig.7 gives the relative errors as a function of distances between target source-to-hologram d1 and disturbing source-to-hologram d2.The spatial distribution diagram and other parameters,as shown in Fig.3 are used.Note that the measurement errors are so large(owing tothe influence of the disturbing source)that the separation errors are,in comparison,smaller. However,the distances are different,the separation error curves showed the similar tendency, which means the applicability of the proposed method in the general case.

    SNR(Signal to Noise Ratio,SNR)which illustrates the source strength comparison of the target source and the disturbing source is a key parameter influencing the separation accuracy.By changing the vibration velocities of the sources,relative errors with different SNR can be obtained,as shown in Fig.8.

    Fig.8 shows the separation errors as a function of SNR between the target source and the disturbing source.The results indicate that the errors increase as the parameter SNR decreases.This is not surprising,considering the fact that the interference of the disturbing source on the measurement plane is stronger when SNR becomes smaller.However,even SNR decreases to-8,somewhat ideal results still can be obtained which means the proposed method has good anti-disturbance property.

    Fig.8 The separation errors with different SNR

    Fig.9 The separation errors with different measurement intervals

    Fig.9 shows the overall separation errors as a function of the measurement interval between two nearby measurement points.As is known,smaller the measurement interval is,more likely the interval satisfies the sampling theorem and more accurate measurement information can be obtained.However,the interval becomes larger,the separation errors are still in the acceptable range.

    Fig.10 The separation errors with different measurement points

    Fig.11 The separation errors affected by a random white noise with different intensities

    Fig.10 illustrates the separation errors as a function of the measurement points.It shows when the measurement points are fewer,enough field information could not be measured whichleads to high separation errors.As more measurement points are used,the separation errors reduce rapidly.When the measurement points increase to 12×12,ideal results have been obtained and the separation errors would not vary obviously which means just 12×12 measurement points are needed to satisfy the measurement requirement.

    As the effect of a random white noise with intensity of 30 dB is considered in the foregoing studies,Fig.11 shows the separation errors affected by a random white noise with different intensities.It shows that the random white noise with low value of the intensity would affect the validity of the proposed separation method.However,as the value of the intensity is selected to 20 or over,the effect of the random noise would be eliminated availably by the proposed method.

    2.2 Plate disturbed by a rigid pulsating ball

    Two sources with different modal expansion are then studied for the universality of the proposed FST.The target source was a simple supported steel plate,dimensions of which are 0.5 m×0.5 m and 0.008 m thick,centered at the origin of coordinates.The disturbing source was a rigid pulsating ball with a radius of 0.05 m and a vibration velocity of 0.08 m/s,placed opposite to the target source,located at(0,0,0.14 m).The pressure was measured in a grid of 16×16 points at the hologram with the dimension(1 m×1 m),centered at(0,0,0.06 m).In the numerical calculation,the sound was transmitted through the air,and its velocity was set to 343 m/s.The excitation of the plate was a harmonic force with an amplitude 100 N.The exciting frequency for the plate is set at 600 Hz and the force is located at(0.125 m,0.125 m, 0)(corresponding modal frequency is 612 Hz).The theoretical values on the hologram radiated by the plate could be obtained using the Rayleigh integral method based on FFT[22].Random white noise was added to the simulated measurements with an intensity of 30 dB.

    Fig.12 shows the total pressure,theoretical pressure without disturbance,and the recovered pressure on the hologram for f=600 Hz.The total pressure as depicted in Fig.12(a)shows a large difference from the theoretical pressure as depicted in Fig.12(b).By performing the proposed method,the agreement between the separated results as depicted in Fig.12(c)and their theoretical values as depicted in Fig.12(b)is very good.The measurement error and separation error were 100.93%and 5.12%,respectively.

    Fig.12 Pressure in decibels on the hologram for f=600 Hz

    Tab.1 gives the relative errors,measurement errors and separation errors,for different exciting frequency,which demonstrates the ability of the separation procedure to recover the free field and to suppress the influences of the disturbing sources.Note that at the measurement errors are so large that the free-field radiated pressure is,in comparison,very small,which makes the relative error become relatively large in the presence of finite measurement noise.However,all the relative errors are below 10%

    3 Conclusions

    In this paper,the acoustic radiation modes were used for all these purposes in order to eliminate the influence of disturbances.By applying a sound field separation technique based on a single measurement plane,the pressures radiated by the target source and the disturbing source can be separated.As only one layer microphone array is needed,the measurement cost and time could be reduced visibly.Numerical simulations were carried out to test the method. Five parameters such as distances between target source-to-hologram and disturbing sourceto-hologram,source strength comparison of the target source and the disturbing source,measurement interval between two nearby measurement points,the number of measurement points and random white noise with different intensities which would affect the validity of the proposed method were investigated in details.All the results prove the effectiveness and accuracy of the proposed method.The satisfactory results obtained on simulations give hope for the characterization of real sources in non-free spaces.Measurements have been in progress and would be reported in the near future.

    Acknowledgments

    The authors gratefully thank the supports from Natural Science Foundation of China (grants 51305452),and express their thanks to the referees for their review of this manuscript.

    [1]Williams E G,Dardy H D,Fink R G.Nearfield acoustical holography using an underwater,automated scanner[J].J A-coust.Soc.Am.,1985,78(2):789-798.

    [2]Bi C X,Bolton J S.An equivalent source technique for recovering the free sound field in a noise environment[J].J A-coust.Soc.Am.,2012,131(2):1260-1270.

    [3]Cheng M T,Mann J A,Pate A.Sensitivity of the wave-number domain field separation methods for scattering[J].J A-coust.Soc.Am.,1996,99(6):3550-3557.

    [4]Bi C X,Hu D Y,Zhang Y B,et al.Reconstruction of the free-field radiation from a vibrating structure based on measurements in a noisy environment[J].J Acoust.Soc.Am.,2013,134(4):2823-2832.

    [5]Bi C X,Hu D Y,Xu L,et al.Recovery of the free field in a noisy environment by using the spherical wave superposition method[J].Acta Acust.,2014,39(3):339-346.

    [6]Jacobsen F,Chen X Y,Jaud V.A comparison of statistically optimized near field acoustic holography using single layer pressure-velocity measurements and using double layer pressure measurements[J].J Acoust.Soc.Am.,2008,123(4): 1842-1845.

    [7]Fernandez-Grande E,Jacobsen F.Sound field separation with a double layer velocity transducer array[J].J Acoust.Soc. Am.,2011,130(1):5-8.

    [8]Langrenne C,Melon M,Garcia A.Boundary element method for the acoustic characterization of a machine in bounded noisy environment[J].J Acoust.Soc.Am.,2007,121(5):2750-2757.

    [9]Jacobsen F,Jaud V.Statistically optimized near field acoustic holography using an array of pressure-velocity probes[J]. J Acoust.Soc.Am.,2007,121(3):1550-1558.

    [10]Zhang Y B,Chen X Z,Jacobsen F.A sound field separation technique based on measurements with pressure-velocity probes[J].J Acoust.Soc.Am.,2009,125(6):3518-3521.

    [11]Bi C X,Zhang Y B,Xu L,et al.An experimental investigation of planar nearfield acoustic holography using pressure and particle velocity measurements[J].Acta Phys.Sin.,2010,59(2):1108-1115.

    [12]Elliott S J.Radiation modes and the active control of sound power[J].J Acoust.Soc.Am.,1995,94(4):2194-2204.

    [13]Cunefare K A,Currey M N.On the exterior acoustic radiation modes of structure[J].J Acoust.Soc.Am.,1994,96(4): 2302-2312.

    [14]Borgiotti G V.The power radiated by a vibrating body in an acoustic fluid and its determination from boundary measurment[J].J Acoust.Soc.Am.,1990,88(4):1884-1893.

    [15]Williams E G.The nearfield acoustical holography(NAH)experimental method applied to vibration and radiation in light and heavy fluids[J].Comput.Struct.,1997,65(3):323-335.

    [16]Song L,Koopmann G H,Fahnline J B.Active control of the acoustic radiation of a vibrating structure using a superposition formulation[J].J Acoust.Soc.Am.,1991,89(6):2786-2792.

    [17]Cunefare K A.The minimum multimodal radiation efficiency of baffled finite beams[J].J Acoust.Soc.Am.,1991,90(5): 2521-2529.

    [18]Cunefare K A,Currey M N.On the exterior acoustic radiation modes of structure[J].J Acoust.Soc.Am.,1994,96(4): 2302-2312.

    [19]Hansen P C.Rank-Deficient and Discrete Ill-posed Problems.Numerical Aspects of Linear Inversion[M].Philadelphia: SIAM,1998:1-127.

    [20]Wu S F,Rayess N,Xiang Z.Visualization of acoustic radiation from a vibrating bowling ball[J].J Acoust.Soc.Am., 2000,109(6):2771-2779.

    [21]Wang Z,Wu S F.Helmholtz equation-least squares method for reconstructing the acoustic preesure field[J].J Acoust. Soc.Am.,1997,102(4):2020-2032.

    [22]Williams E G,Maynard J D.Numerical evaluation of the rayleigh integral for planar radiators using the FFT[J].J A-coust.Soc.Am.,1982,72(6):2020-2023.

    基于聲輻射模態(tài)理論的聲場分離技術(shù)

    郭亮a,b,朱海潮a,b,毛榮富a,b,蘇俊博a,b,陳志敏c
    (海軍工程大學(xué)a.船舶與噪聲研究所;b.船舶振動(dòng)噪聲重點(diǎn)實(shí)驗(yàn)室;c.動(dòng)力工程學(xué)院,武漢430033)

    為了消除復(fù)雜聲場中干擾噪聲對于近場聲全息重建精度的影響,該文提出了一種基于單層陣列測量的聲場分離技術(shù)。當(dāng)目標(biāo)聲源和干擾噪聲源為相干聲源時(shí),利用源強(qiáng)密度聲輻射模態(tài)分析理論建立了聲源與輻射聲場的數(shù)學(xué)關(guān)系模型,通過對單層陣列測量的聲壓數(shù)據(jù)進(jìn)行空間重采樣得到兩組子數(shù)據(jù),構(gòu)造各組子數(shù)據(jù)與目標(biāo)聲源和干擾噪聲源的聲輻射模態(tài)之間的數(shù)學(xué)公式,再求解公式中目標(biāo)聲源的各階聲輻射模態(tài)的展開系數(shù),可重構(gòu)目標(biāo)聲源在陣列處的聲場響應(yīng),達(dá)到聲場分離的目的。剛性脈動(dòng)球聲源與剛性脈動(dòng)球干擾源、平板聲源與剛性脈動(dòng)球干擾源的數(shù)值仿真及對影響該方法的相關(guān)參數(shù)進(jìn)行了詳細(xì)研究,相關(guān)結(jié)果表明該方法具有較好的有效性和正確性。

    聲輻射模態(tài);單層陣列;聲場分離技術(shù);近場聲全息

    O42

    :A

    國家自然科學(xué)基金資助項(xiàng)目(51305452)

    郭亮(1987-),男,海軍工程大學(xué)振動(dòng)與噪聲研究所博士研究生;

    O42

    :A

    10.3969/j.issn.1007-7294.2017.06.012

    1007-7294(2017)06-0779-12

    朱海潮(1963-),男,海軍工程大學(xué)振動(dòng)與噪聲研究所教授;

    毛榮富(1982-),男,海軍工程大學(xué)振動(dòng)與噪聲研究所講師;

    蘇俊博(1985-),男,海軍工程大學(xué)振動(dòng)與噪聲研究所博士研究生;

    陳志敏(1979-),男,海軍工程大學(xué)動(dòng)力工程學(xué)院講師。

    date:2017-01-27

    Supported by the National Natural Science Foundation of China(Grant No.51305452)

    Biography:GUO Liang(1987-),male,Ph.D.candidate,corresponding author,E-mail:hgliangg@163.com; ZHU Hai-chao(1963-),male,professor.

    猜你喜歡
    郭亮聲場單層
    郭亮:“甘愿為黨獻(xiàn)頭顱”
    愛國豈能怕掛頭 郭亮
    二維四角TiC單層片上的析氫反應(yīng)研究
    分子催化(2022年1期)2022-11-02 07:10:16
    郭亮:“有名的工人運(yùn)動(dòng)的組織者”
    基于BIM的鐵路車站聲場仿真分析研究
    基于PLC控制的立式單層包帶機(jī)的應(yīng)用
    電子制作(2019年15期)2019-08-27 01:12:04
    郭亮:“愛國豈能怕掛頭”
    探尋360°全聲場發(fā)聲門道
    單層小波分解下圖像行列壓縮感知選擇算法
    新型單層布置汽輪發(fā)電機(jī)的研制
    h日本视频在线播放| bbb黄色大片| 少妇的逼好多水| 亚洲综合色惰| 婷婷色综合大香蕉| 亚洲自拍偷在线| 国产午夜精品久久久久久一区二区三区 | 亚洲av中文字字幕乱码综合| 国产大屁股一区二区在线视频| 亚洲国产成人一精品久久久| 韩国高清视频一区二区三区| 在线 av 中文字幕| 亚洲国产最新在线播放| 午夜福利视频精品| 女人十人毛片免费观看3o分钟| 少妇裸体淫交视频免费看高清| 一级a做视频免费观看| 日韩大片免费观看网站| 又大又黄又爽视频免费| 欧美精品一区二区免费开放| 亚洲精品久久久久久婷婷小说| 亚洲精品视频女| 国产高潮美女av| 我的老师免费观看完整版| 欧美区成人在线视频| 大陆偷拍与自拍| 波野结衣二区三区在线| 久久鲁丝午夜福利片| 亚洲久久久国产精品| 亚洲精品一二三| 国产成人午夜福利电影在线观看| 一级毛片aaaaaa免费看小| 一级毛片aaaaaa免费看小| 久久这里有精品视频免费| 久久精品熟女亚洲av麻豆精品| av黄色大香蕉| 国产爽快片一区二区三区| 国产v大片淫在线免费观看| 欧美3d第一页| 午夜激情福利司机影院| 美女cb高潮喷水在线观看| 国产免费一区二区三区四区乱码| 亚洲aⅴ乱码一区二区在线播放| 深爱激情五月婷婷| 舔av片在线| 免费av中文字幕在线| 国产精品爽爽va在线观看网站| 一边亲一边摸免费视频| 亚洲精品乱久久久久久| 国产精品国产三级国产av玫瑰| 亚洲一级一片aⅴ在线观看| 日本vs欧美在线观看视频 | 日日啪夜夜撸| 午夜福利在线在线| 亚洲av国产av综合av卡| 亚洲精品视频女| 亚洲av国产av综合av卡| 国产精品福利在线免费观看| av播播在线观看一区| 免费人妻精品一区二区三区视频| 亚洲av中文av极速乱| 精品人妻偷拍中文字幕| 男女免费视频国产| 纵有疾风起免费观看全集完整版| 边亲边吃奶的免费视频| 我的老师免费观看完整版| 国产精品一区二区性色av| 国产永久视频网站| 亚洲精品自拍成人| 中文欧美无线码| 日日啪夜夜撸| 亚洲精品日韩av片在线观看| www.色视频.com| 成人国产av品久久久| 午夜免费观看性视频| 免费观看性生交大片5| 校园人妻丝袜中文字幕| 日本wwww免费看| 亚洲欧美成人综合另类久久久| 一本色道久久久久久精品综合| 高清毛片免费看| 91精品国产九色| 国产深夜福利视频在线观看| 国产大屁股一区二区在线视频| 99热这里只有是精品50| 久久久a久久爽久久v久久| 久久久久久久久久久丰满| 中文字幕人妻熟人妻熟丝袜美| 尤物成人国产欧美一区二区三区| 精品人妻一区二区三区麻豆| 99热这里只有是精品50| 小蜜桃在线观看免费完整版高清| 中文资源天堂在线| 伦理电影大哥的女人| 纵有疾风起免费观看全集完整版| 亚洲av中文av极速乱| freevideosex欧美| 久久99精品国语久久久| 精华霜和精华液先用哪个| 九九久久精品国产亚洲av麻豆| 国产成人91sexporn| 精品午夜福利在线看| 大码成人一级视频| 日韩强制内射视频| 成人18禁高潮啪啪吃奶动态图 | 国产一级毛片在线| 免费黄网站久久成人精品| 直男gayav资源| 亚洲国产毛片av蜜桃av| 日韩电影二区| 亚洲人成网站在线观看播放| 免费看光身美女| 国产精品久久久久久久电影| 1000部很黄的大片| 婷婷色麻豆天堂久久| 日本av免费视频播放| 亚洲欧美成人综合另类久久久| 又粗又硬又长又爽又黄的视频| 丰满乱子伦码专区| 啦啦啦中文免费视频观看日本| 亚洲国产最新在线播放| 亚洲国产精品成人久久小说| 亚洲av不卡在线观看| 在线观看一区二区三区激情| 中文资源天堂在线| 黑丝袜美女国产一区| 日韩av在线免费看完整版不卡| 少妇人妻一区二区三区视频| 99久久精品热视频| 夫妻午夜视频| 视频中文字幕在线观看| 欧美日韩国产mv在线观看视频 | 91狼人影院| 国产精品99久久久久久久久| 欧美最新免费一区二区三区| 夜夜看夜夜爽夜夜摸| 人妻夜夜爽99麻豆av| 一区二区三区精品91| av免费观看日本| 又大又黄又爽视频免费| 又粗又硬又长又爽又黄的视频| 久久综合国产亚洲精品| 欧美xxxx黑人xx丫x性爽| 熟女人妻精品中文字幕| 男人狂女人下面高潮的视频| 精品人妻一区二区三区麻豆| 亚洲丝袜综合中文字幕| 日韩国内少妇激情av| 最近中文字幕2019免费版| 亚洲精品乱码久久久久久按摩| 国产精品无大码| 少妇人妻 视频| 日韩av免费高清视频| 一级毛片久久久久久久久女| 日韩欧美精品免费久久| av女优亚洲男人天堂| 妹子高潮喷水视频| 国产在线一区二区三区精| 亚洲丝袜综合中文字幕| h日本视频在线播放| 99视频精品全部免费 在线| 日韩一本色道免费dvd| 美女主播在线视频| 免费不卡的大黄色大毛片视频在线观看| 一级a做视频免费观看| 亚洲,一卡二卡三卡| 中文乱码字字幕精品一区二区三区| 久久久久性生活片| 久久久久久久久久久丰满| 蜜桃在线观看..| 黑丝袜美女国产一区| 国产午夜精品久久久久久一区二区三区| 亚洲国产av新网站| 亚洲国产欧美在线一区| 偷拍熟女少妇极品色| 王馨瑶露胸无遮挡在线观看| 日韩 亚洲 欧美在线| 亚洲精品一区蜜桃| 一级毛片aaaaaa免费看小| 伦理电影大哥的女人| 亚洲精品视频女| 少妇人妻久久综合中文| 久久影院123| 免费观看的影片在线观看| 亚洲av综合色区一区| 欧美97在线视频| 亚洲经典国产精华液单| 成人影院久久| 中国国产av一级| 丰满少妇做爰视频| 色视频www国产| tube8黄色片| 99国产精品免费福利视频| 插逼视频在线观看| 黄片wwwwww| 夫妻午夜视频| 一级毛片我不卡| 啦啦啦啦在线视频资源| 国产日韩欧美在线精品| 性高湖久久久久久久久免费观看| 亚洲av欧美aⅴ国产| 亚洲综合色惰| 一级二级三级毛片免费看| 亚洲精品国产av成人精品| 99热这里只有是精品在线观看| 国产久久久一区二区三区| 91精品一卡2卡3卡4卡| 色网站视频免费| 欧美日韩精品成人综合77777| 日韩av免费高清视频| av卡一久久| 三级国产精品片| av在线老鸭窝| 免费大片黄手机在线观看| 三级国产精品欧美在线观看| 又大又黄又爽视频免费| 日本爱情动作片www.在线观看| av女优亚洲男人天堂| 国产色爽女视频免费观看| 欧美最新免费一区二区三区| 欧美日韩视频精品一区| 亚洲欧洲日产国产| 亚洲高清免费不卡视频| 男人狂女人下面高潮的视频| 美女中出高潮动态图| 亚洲中文av在线| 免费高清在线观看视频在线观看| 97超视频在线观看视频| 国产高清有码在线观看视频| 最近的中文字幕免费完整| 国产日韩欧美亚洲二区| 日韩成人伦理影院| 亚洲电影在线观看av| 亚洲欧美日韩无卡精品| 欧美国产精品一级二级三级 | 精品少妇久久久久久888优播| 免费观看的影片在线观看| 亚洲av不卡在线观看| 国产伦理片在线播放av一区| 天天躁夜夜躁狠狠久久av| 97超视频在线观看视频| 亚洲婷婷狠狠爱综合网| 如何舔出高潮| 国产成人一区二区在线| 亚洲精品自拍成人| 十分钟在线观看高清视频www | 日韩不卡一区二区三区视频在线| 搡老乐熟女国产| a 毛片基地| tube8黄色片| 三级经典国产精品| 亚洲真实伦在线观看| 一级a做视频免费观看| 一级毛片我不卡| 免费看日本二区| 亚洲,欧美,日韩| 亚洲精品日韩在线中文字幕| 成人特级av手机在线观看| 女性被躁到高潮视频| 国产在线一区二区三区精| 黄色配什么色好看| 欧美亚洲 丝袜 人妻 在线| 亚洲国产欧美人成| 性色avwww在线观看| 精品99又大又爽又粗少妇毛片| 一个人看视频在线观看www免费| 国产午夜精品久久久久久一区二区三区| 国产亚洲最大av| 水蜜桃什么品种好| 久久这里有精品视频免费| 男的添女的下面高潮视频| 国产国拍精品亚洲av在线观看| 成人无遮挡网站| 国产日韩欧美亚洲二区| 久久国产精品大桥未久av | 久久精品久久久久久噜噜老黄| 亚洲色图综合在线观看| 久久久久久久大尺度免费视频| 久久鲁丝午夜福利片| 五月伊人婷婷丁香| 色视频在线一区二区三区| 国产精品伦人一区二区| 精品少妇黑人巨大在线播放| av播播在线观看一区| 超碰av人人做人人爽久久| 免费看日本二区| 色综合色国产| 亚洲伊人久久精品综合| 18禁裸乳无遮挡免费网站照片| 欧美高清性xxxxhd video| 五月开心婷婷网| www.色视频.com| 99久国产av精品国产电影| tube8黄色片| av在线蜜桃| 麻豆国产97在线/欧美| 秋霞在线观看毛片| 麻豆成人av视频| 亚洲精品日韩av片在线观看| 日本爱情动作片www.在线观看| 晚上一个人看的免费电影| 看免费成人av毛片| 最新中文字幕久久久久| 91久久精品国产一区二区成人| 国产91av在线免费观看| 成人亚洲欧美一区二区av| 十分钟在线观看高清视频www | 中文字幕久久专区| 永久免费av网站大全| 日韩中文字幕视频在线看片 | 肉色欧美久久久久久久蜜桃| 自拍欧美九色日韩亚洲蝌蚪91 | 一级av片app| 欧美激情极品国产一区二区三区 | 亚洲精品色激情综合| 一区二区三区乱码不卡18| 国产亚洲av片在线观看秒播厂| 永久网站在线| 国产精品欧美亚洲77777| 妹子高潮喷水视频| 女人久久www免费人成看片| 精品人妻视频免费看| 成人漫画全彩无遮挡| 久久精品国产亚洲网站| 97超碰精品成人国产| 精品人妻视频免费看| 国产av国产精品国产| 国产乱人偷精品视频| 亚洲av日韩在线播放| 舔av片在线| 中文字幕免费在线视频6| 国产av码专区亚洲av| 大片电影免费在线观看免费| 国产淫片久久久久久久久| 精品视频人人做人人爽| 男女啪啪激烈高潮av片| 欧美一区二区亚洲| 亚洲精品456在线播放app| 亚洲成色77777| 大码成人一级视频| 五月天丁香电影| 国产伦精品一区二区三区四那| 男人舔奶头视频| 国产精品女同一区二区软件| 内地一区二区视频在线| 免费av不卡在线播放| 国产欧美另类精品又又久久亚洲欧美| 老司机影院成人| 日韩成人伦理影院| 精品国产乱码久久久久久小说| 好男人视频免费观看在线| 免费少妇av软件| 日产精品乱码卡一卡2卡三| 日韩成人av中文字幕在线观看| 久久久久久久久久久丰满| 成人毛片60女人毛片免费| av一本久久久久| 欧美3d第一页| 成人亚洲精品一区在线观看 | 日日摸夜夜添夜夜爱| av在线老鸭窝| 亚洲精品自拍成人| 天天躁日日操中文字幕| 国产亚洲av片在线观看秒播厂| 永久网站在线| 国产亚洲最大av| 美女视频免费永久观看网站| 色网站视频免费| 亚洲精品国产成人久久av| 色视频www国产| 亚洲成色77777| 2018国产大陆天天弄谢| 麻豆乱淫一区二区| 黑丝袜美女国产一区| 国产精品三级大全| 狠狠精品人妻久久久久久综合| 一级毛片黄色毛片免费观看视频| 欧美精品国产亚洲| 干丝袜人妻中文字幕| 一个人看的www免费观看视频| xxx大片免费视频| 亚洲人与动物交配视频| 不卡视频在线观看欧美| 一区二区av电影网| 一本久久精品| 18+在线观看网站| 亚洲美女视频黄频| 黄色视频在线播放观看不卡| 免费看光身美女| 一本—道久久a久久精品蜜桃钙片| 亚洲精品日本国产第一区| 欧美人与善性xxx| 一本—道久久a久久精品蜜桃钙片| 狂野欧美白嫩少妇大欣赏| 亚洲国产日韩一区二区| 五月玫瑰六月丁香| 麻豆精品久久久久久蜜桃| 九草在线视频观看| 777米奇影视久久| 亚洲精品中文字幕在线视频 | 极品少妇高潮喷水抽搐| 男女边摸边吃奶| 91精品伊人久久大香线蕉| 免费少妇av软件| 亚洲熟女精品中文字幕| 性色avwww在线观看| 欧美激情国产日韩精品一区| 久久久成人免费电影| 大香蕉97超碰在线| 中国美白少妇内射xxxbb| 一本—道久久a久久精品蜜桃钙片| 国产视频内射| 国产精品久久久久久久电影| 一级二级三级毛片免费看| 亚洲国产毛片av蜜桃av| 日产精品乱码卡一卡2卡三| 性色avwww在线观看| 国产又色又爽无遮挡免| 一区二区av电影网| 欧美xxxx性猛交bbbb| www.av在线官网国产| 爱豆传媒免费全集在线观看| 干丝袜人妻中文字幕| 亚洲av日韩在线播放| 啦啦啦中文免费视频观看日本| 青春草视频在线免费观看| 国产 一区精品| 亚洲国产精品成人久久小说| 一个人看视频在线观看www免费| 日韩中文字幕视频在线看片 | 黄片无遮挡物在线观看| 99久久综合免费| 欧美日本视频| 久久久成人免费电影| 国产亚洲一区二区精品| 免费av不卡在线播放| 青春草亚洲视频在线观看| 精品久久久噜噜| 精品国产三级普通话版| 黄色视频在线播放观看不卡| 色网站视频免费| 国产综合精华液| 夜夜爽夜夜爽视频| 99热国产这里只有精品6| 久久久久精品性色| 亚洲成人av在线免费| 观看美女的网站| 亚洲av男天堂| 免费黄色在线免费观看| 成人亚洲精品一区在线观看 | av国产久精品久网站免费入址| 人人妻人人看人人澡| 我的女老师完整版在线观看| 色视频www国产| 午夜福利网站1000一区二区三区| 99久久综合免费| 久久精品国产亚洲av涩爱| 一级毛片电影观看| 国产精品麻豆人妻色哟哟久久| 日本午夜av视频| 国产精品久久久久成人av| 国产精品.久久久| 伦理电影免费视频| 亚洲第一av免费看| 一区在线观看完整版| 最近2019中文字幕mv第一页| 你懂的网址亚洲精品在线观看| 亚洲成人手机| 成年av动漫网址| 99re6热这里在线精品视频| 有码 亚洲区| 国产日韩欧美亚洲二区| 欧美bdsm另类| 97精品久久久久久久久久精品| av.在线天堂| 免费观看无遮挡的男女| kizo精华| 啦啦啦在线观看免费高清www| 国产在线一区二区三区精| 婷婷色综合大香蕉| 久久精品国产亚洲网站| 国产高潮美女av| 春色校园在线视频观看| 十八禁网站网址无遮挡 | 亚洲欧洲日产国产| 精品亚洲成a人片在线观看 | 妹子高潮喷水视频| 人妻夜夜爽99麻豆av| 欧美xxxx黑人xx丫x性爽| 欧美激情国产日韩精品一区| 一级片'在线观看视频| 老熟女久久久| 国产黄色免费在线视频| 亚洲精品日本国产第一区| 夫妻性生交免费视频一级片| 少妇裸体淫交视频免费看高清| 久久久精品免费免费高清| 日韩中文字幕视频在线看片 | 日韩中字成人| 国产淫片久久久久久久久| 国产在线免费精品| 色婷婷av一区二区三区视频| 春色校园在线视频观看| videos熟女内射| 成人毛片a级毛片在线播放| 亚洲av福利一区| 最近手机中文字幕大全| 欧美一级a爱片免费观看看| 成年美女黄网站色视频大全免费 | 久久精品熟女亚洲av麻豆精品| 久久久成人免费电影| 久久久久久久大尺度免费视频| 2022亚洲国产成人精品| 国产淫片久久久久久久久| 免费观看av网站的网址| 午夜福利视频精品| 国产毛片在线视频| 搡老乐熟女国产| 午夜免费男女啪啪视频观看| 有码 亚洲区| 免费少妇av软件| 成人国产av品久久久| 国产成人91sexporn| 免费看日本二区| 亚洲精品久久久久久婷婷小说| 在现免费观看毛片| 免费观看在线日韩| 一区二区三区乱码不卡18| 国产男女超爽视频在线观看| 久久韩国三级中文字幕| 久久精品国产亚洲av涩爱| 国产亚洲最大av| a级一级毛片免费在线观看| 有码 亚洲区| 美女中出高潮动态图| 七月丁香在线播放| 国产乱人偷精品视频| 99热国产这里只有精品6| 18禁动态无遮挡网站| 黄片无遮挡物在线观看| 天堂俺去俺来也www色官网| 亚洲激情五月婷婷啪啪| 五月天丁香电影| 亚洲第一区二区三区不卡| 插阴视频在线观看视频| 国产av码专区亚洲av| 亚洲综合精品二区| 欧美日韩一区二区视频在线观看视频在线| 午夜福利视频精品| 亚洲经典国产精华液单| 欧美成人a在线观看| 一个人看的www免费观看视频| 男男h啪啪无遮挡| 亚洲成色77777| 大片免费播放器 马上看| 女人久久www免费人成看片| 国产综合精华液| 欧美+日韩+精品| 噜噜噜噜噜久久久久久91| 人人妻人人看人人澡| 噜噜噜噜噜久久久久久91| 亚洲无线观看免费| 在线观看国产h片| 亚洲欧美成人精品一区二区| a级毛片免费高清观看在线播放| 国产av一区二区精品久久 | 国产成人免费无遮挡视频| 成人高潮视频无遮挡免费网站| 国产高清有码在线观看视频| 国产成人精品福利久久| 亚洲欧美日韩卡通动漫| 看免费成人av毛片| 亚洲色图综合在线观看| 亚洲经典国产精华液单| 国语对白做爰xxxⅹ性视频网站| 在线天堂最新版资源| 99久国产av精品国产电影| 亚洲精品aⅴ在线观看| 丝袜脚勾引网站| 亚洲精品亚洲一区二区| 韩国高清视频一区二区三区| 日本av免费视频播放| 久久久久久久大尺度免费视频| 搡女人真爽免费视频火全软件| 亚洲精品一区蜜桃| 爱豆传媒免费全集在线观看| av在线老鸭窝| 亚洲内射少妇av| 国产午夜精品一二区理论片| 欧美一区二区亚洲| 美女福利国产在线 | 欧美亚洲 丝袜 人妻 在线| 久久久久性生活片| 精品人妻视频免费看| 欧美极品一区二区三区四区| 搡女人真爽免费视频火全软件| 国产日韩欧美亚洲二区| 一本色道久久久久久精品综合| 久久久a久久爽久久v久久| 国产亚洲91精品色在线| 久久这里有精品视频免费| 色哟哟·www| 男女无遮挡免费网站观看| a级毛片免费高清观看在线播放| 亚洲无线观看免费| 国产av国产精品国产| 国产精品一区二区在线观看99| 最后的刺客免费高清国语| 夜夜看夜夜爽夜夜摸| 精品人妻熟女av久视频| 日日啪夜夜撸| 一级av片app| 少妇人妻 视频| 中文字幕人妻熟人妻熟丝袜美| 97超视频在线观看视频|