• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    New Impulsive Factor in Representing Cabin Damage under External Air Explosion

    2017-06-22 14:44:17QIAOChiZHANGShilianWUShaoboZHENGYikan
    船舶力學(xué) 2017年6期
    關(guān)鍵詞:艙段上海交通大學(xué)沖擊

    QIAO Chi,ZHANG Shi-lian,WU Shao-bo,ZHENG Yi-kan

    (State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)

    New Impulsive Factor in Representing Cabin Damage under External Air Explosion

    QIAO Chi,ZHANG Shi-lian,WU Shao-bo,ZHENG Yi-kan

    (State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)

    Based on blast energy blocked by structure,a new impulsive factor is proposed.In order to assess its applicability in external air explosion condition,dynamic structural response of a threecabin ship under blast loads with various detonation position and explosive mass were simulated by CONWEP algorithm,and residual ultimate strength of the damaged cabins was obtained by the quasistatic loading approach.The results indicated that new impulsive factor is more suitable in representing overall structural damage under external explosive loading than the traditional one.For far-field detonation,maximum displacement of strength deck,cabin plastic energy and residual ultimate strength showed high consistency in the measure of new impulsive factor.In near-field detonation cases,results showed divergence due to local effects.

    external air explosion;impulsive factor;residual ultimate strength; CONWEP algorithm

    0 Introduction

    It is always a significant issue for navy to enhance vitality of damaged ships.Ships are subjected to attack of various kinds of anti-ship missiles in modern naval warfare.When detonation occurs above the ship,blast wave would cause large deformation and residue stress/ strain on strength deck,thus reducing its capacity in resisting longitudinal bending moment. Experiments are usually adopted to assess anti-explosion ability of ship during design stage. However,expense of ship experiment is so exorbitant that only a few detonation cases can be conducted.Model experiment,on the other hand,bears the shortage of conversion problem. Whether similarity relation from experiment results to practice holds is still under research.

    With the development of numerical simulation technique,dynamic response of ships under blast loads can be obtained through transit nonlinear software,which greatly reduces research cost.Nonetheless,numerical results would be reliable only when several requirements are satisfied.For instance,fluid-structure coupling algorithm should be adopted to simulate the condition where interaction between complex structure and fluid exists,such as cabin inner explosion.Furthermore,mesh size of Euler elements should be diminished and more componentsshould be coupled in order to improve calculation accuracy.All these requirements inevitably increase CPU time.A typical inner cabin explosion simulation using fluid-structure coupling may cost weeks or even several months under present computer hardware condition.Therefore, it is still hard for researchers to get anti-explosion ability of structure under different detonation cases in a short time.If structural damage can be measured by certain impulsive factor, conversion would be possible from structural response under several typical detonation cases to any other detonation cases,thus reducing experiment cost as well as workload of numerical simulation.

    Traditional impulsive factor is based on blast wave overpressure[1-2],and has been widely used in underwater explosion[3-6]as well as non-contact air explosion[7].Recently several new impulsive factors were proposed towards underwater explosion issue[8-10],which are more accurate in representing structural response under underwater blast load than traditional impulsive factor.

    This paper proposed a new impulsive factor based on blast energy blocked by structure. Residual ultimate strength and cabin plastic energy of different detonation cases show high consistency under new impulsive factor.Therefore it is more suitable than traditional impulsive factor to represent structural damage under external air blast loads.

    1 Impulsive factor

    Traditional impulsive factor C1is defined as shown in Eq.(1):

    where W is TNT equivalent mass in kilograms,R is the distance to the explosion’s origin in meters.

    Previous research has demonstrated that blast wave overpressure can be expressed in terms of C1as single parameter function.For example,Brode proposed overpressure empirical formula of TNT explosive as follows:

    Such empirical formula based on experiments shows high precision in a given point on structure.However,it cannot represent overall structural damage under blast loads.When detonation occurs with low explosive mass near the structure,traditional impulsive factor may equal to the condition where explosive mass is high meanwhile distance is far.The latter condition,nonetheless,generally causes more serious damage to the structure.Besides,given that detonation mass and height are fixed,damage is more severe when explosion occurs above the mid ship than occurs above the broadside,while the traditional impulsive factor is the same in these two conditions.

    In order to better reflect overall damage of structure,a new impulsive factor C2is proposed,which is based on blast energy blocked by structure.Blast wave caused by spherical TNT explosives can be simplified as a spherical wave,with explosive energy distributed evenly on the surface.When structure is subjected to the blast,only part of the energy applied to the structure,determined by the projected area of the structure on sphere surface:

    Total energy of explosive can be expressed as follows:

    where ρeis the chemical energy per unit explosives mass(approximately 1 060 cal/g for TNT explosive),ηeis the conversion rate from chemical energy to blast wave energy.

    Therefore,blast energy blocked by structure Escan be expressed as follows,by substituting Eq.(4)and Eq.(5)into Eq.(3):

    For specific explosive genre,ρeand ηeare constants.Thus blast energy blocked by structure would be the same as long as ηW remains constant.

    Define impulsive factor C2:

    2 Finite element modeling

    The subject of the research is a typical three-cabin structure with three decks and double bottom,as shown in Fig.1.The cabin is 40.5 m in length,17 m in breadth and 12 m in depth,separated by two transverse bulkheads equally.Nodes on the two sides of the cabin are combined with centroid of section through MPC.Simple supported boundary conditions were assumed throughout the research,with one of two independent points constrained as ux=uy=uz= rx=0,and the other independent point constrained as uy=uz=rx=0.Nonlinear program ABAQUS was adopted to simulate dynamic response of cabin structure under blast loads and calculate residual ultimate strength.

    CONWEP algorithm was used in simulating external detonation impact of spherical TNT charge on strength deck.This algorithm had been proved to have enough precision in external blast conditions[11].Viscous pressure was applied 0.5 second after detonation time to absorb kinetic energy and stabilize structure.Shell element S4 was chosen for modeling.The S4 element is a fully integrated,finite-membrane-strain shell element,which is not sensitive to element distortion,and avoids hourglass effect under transit loading.Johnson-Cook model with yield stress σy=345 MPa,Young’s modulus E=210 GPa and Poisson’s ratio μ=0.3 was chosen to describe the rate dependent stress strain relationship under transit dynamic loadings[12]and fracture strain was set as 0.18.The model for the von Mises flow stress,σ,is expressed as

    Deformation and residual stress/strain of the structure under blast wave were imported into the original model through restart file.Residual ultimate strength was then obtained by quasi-static loading approach.Shell element S4R was chosen to reduce CPU time.The S4R element is a 4-node,reduced integration shell element with hourglass control.The material was considered to behave in an elastic-perfectly plastic manner,with the same yield stress and fracture strain in the previous steps.

    Fig.1 Three-cabin model and explosive location

    3 Results and discussions

    Blast wave energy would be partly absorbed by structure,converted into plastic energy of structure components and leading to large deformation on strength deck,thus reducing residual ultimate strength of the damaged ship.Hence,three parameters were selected to depict cabin damage,namely maximum displacement of stabled strength deck Umax,total plastic energy ofthe cabin EP,and reduction factor of residual ultimate strength Rf=M/M0(M0is the intact ultimate strength of the cabin).Values of those parameters in different detonation cases were compared under impulsive factors C1and C2.

    3.1 Influence of explosive height Z

    Structural response curves with explosive position Y=0 m and different detonation height were compared shown in Fig.2 and Fig.3.Response curves with explosive position other than Y=0 m showed similar characteristic.

    Fig.2 Impulsive factor based on blast wave overpressure

    Fig.3 Impulsive factor based on detonation energy

    In Fig.2,plastic energy of cabin EP,reduction factor of residual ultimate strength Rf,and maximum displacement of strength deck Umaxshow low consistency in measure of traditional impulsive factor C1.With the increment of detonation height under the same C1,EPand Umaxincreases rapidly,while Rfdeclines drastically.Such inconsistency demonstrates limitation of C1in describing damage of structure under blast loads.For near-field detonation,overpressure value of mid-point of strength deck,which is right below explosive,is much higher than elsewhere.For far-field detonation,on the contrary,blast wave is more like a plane wave when it reaches strength deck,thus overpressure value is almost the same on the strength deck.Therefore,damage caused by far-field detonation would be severer than that of near-filed detonation under the same impulsive factor C1.

    Impulsive factor C2shows better consistency(shown in Fig.3).In EPcurves for detonationheight Z≥4 m,the data coincide quite well.For Z=1 m and Z=2 m,plastic energy curve shows a little divergence.Besides,cube root of plastic energy showed a linear relation with impulsive factor C2.Similar pattern can be found in Rfcurve:when Z≥4 m,Rfdata showed good coincidence and linear relationship,while for Z<4 m,Rfcurves diverge obviously,especially when impulsive factor C2is relatively low.Umaxcurves were not as coincide as EPcurves and Rfcurves,but still less divergent than that of impulsive factor C1as shown in Fig.2(c),especially for Z≥4 m and impulsive factor less than 8.

    Divergence shown in EPcurves and Rfcurves under impulsive factor C2can be explained by Fig.4.It shows the deformation of cabin mid-section with explosive mass W=400 kg.Solid line corresponding to detonation height Z=4 m and dash line represents Z=2 m.Impulsive factor C2of these two detonation cases is close,respectively 11.79 and 12.96.Deformation of strength deck near broadsides is similar,while distinct local deformation exists in the middle of the strength deck for Z=2 m.This local deformation counts for the divergence shown in EPcurve when Z<4 m.When detonation intensity is relatively low,such local deformation would lead to collapse of strength deck under longitudinal bending moment, corresponding to the obvious divergence in Rfcurve when Z<4 m.

    The divergence shown in Umaxcurves under C2indicates that this new impulsive factor is more suitable in representing overall structural damage.Although local deformation also exists in plastic energy and reduction factor of ultimate strength,the influence would be diminished by other unaffected area such as lower decks or double bottom.Umax,nevertheless,would be greatly influenced by local effect.

    3.2 Influence of lateral distance Y

    Structural response curves with detonation height Z=4 m and explosive position Y=0 m, 4 m,8 m were compared shown in Fig.5 and Fig.6.Response curves with detonation height other than Z=4 m had similar characteristic.

    Fig.4 Deformation of cabin mid-section under explosive mass W= 400 kg and detonation height Z=4 m(solid line)and Z=2 m (dash line)

    Fig.5 Impulsive factor based on blast wave overpressure

    Fig.6 Impulsive factor based on detonation energy

    Traditional impulsive factor C1remains constant for specific detonation height.The influenced area of blast wave,however,would be smaller when detonation occurs near the broadside.In Fig.5,the curve with Y=8 m demonstrates such difference,with plastic energy of the cabin on the lower side and Rfon the higher side.

    Impulsive factor C2takes explosive position into consideration.When detonation occurs near the broadside,the shielding rate would decrease,so the impulsive factor would also decrease.In Fig.6,different explosive position shows good consistency.

    4 Conclusions

    A new impulsive factor is derived based on blast energy blocked by structure.Three parameters depicting structural damage were selected to be measured by traditional impulsive factor C1and new impulsive factor C2,and the following conclusions can be drawn:

    (1)Traditional impulsive factor C1is based on blast wave overpressure.When used to measure structural damage,data show great divergence;

    (2)New impulsive factor C2is based on input energy from blast wave on structure.It takes into consideration explosive mass,detonation location and area of structure subjected to blast;

    (3)New impulsive factor C2performs better than traditional impulsive factor in representing structural damage.For far-field detonation cases,as long as impulsive factor C2equals, damage caused by blast loads would be similar.For near-field detonation,damage would be a little severer due to local effects.

    [1]Cole R H.Underwater explosions[M].New Jersey:LISA,ed.,1948.

    [2]Brode H L.Blast wave from a spherical charge[J].Phys Fluids,1959(2):217.

    [3]Yao Xiongliang,Xü Weijun,Liang Deli.The relationship of impulsive environment and impulsive factor on underwater explosion of ship[J].Journal of Harbin Engineering University,2004,25(1):6-12.

    [4]Yuan Jianhong,Zhu Xi,Zhang Zhenhua.Elastic-plastic response of a stiffened cylindrical shell subjected to underwater explosive loading[J].Journal of Vibration and Shock,2012,31(24):131-136.

    [5]Wu Ziqi,Wang Yaohui,Lü Shuai,et al.Numerical simulation study of box-girder ship shoc environment[J].Ship Science and Technology,2013,35(3):19-26.

    [6]Hu Junbo,Zhang Zhihua,Li Qingmin.Damage evaluation of underwater target by means of two explosions initiated successively with time delay based on umpulsive factor[J].Journal of Vibration and Shock,2010,29(10):206-210.

    [7]Wang Jiaying,Zhang Shilian,Peng Dawei.Ultimate bearing capacity analysis of longitudinal box girder of warship under non-contact explosion[J].Chinese Journal of Ship Research,2011,06(1):22-29.

    [8]Yao Xiongliang,Cao Yü,Guo Jun,et al.Research on the response of warships to impulsive factor of underwater explosions[J].Journal of Harbin Engineering University,2007,28(5):501-509.

    [9]Yao Xiongliang,Guo Jun,Cao Yu,et al.A new impulsive factor on the underwater shock load[J].Shipbuilding of China, 2008,49(2):52-60.

    [10]Hu Hongwei,Song Pu,Wang Jianling,et al.A new methof for shock factor of underwater explosion[J].Explosion and Shock Waves,2014,34(1):11-16.

    [11]Henchie T F,Chung Kim Yuen S,Nurick G N,et al.The response of circular plates to repeated uniform blast loads:An experimental and numerical study[J].International Journal of Impact Engineering,2014,74(1):36-45.

    [12]Yü Wenjing,Shi Jianyong,Zhao Jincheng.Research of dynamic mechanical behavior of Q345 steel[J].Building Structure, 2011,41(3):28-30.

    表征外部爆炸作用下艙段破壞的新型沖擊因子研究

    喬遲,張世聯(lián),武少波,鄭軼刊
    (上海交通大學(xué)海洋工程國(guó)家重點(diǎn)實(shí)驗(yàn)室,上海200240)

    基于結(jié)構(gòu)遮擋的沖擊波能量提出了一種新型沖擊因子。為驗(yàn)證該沖擊因子在外部爆炸問(wèn)題中的適用性,使用CONWEP算法對(duì)典型三艙段模型在不同裝藥工況下的響應(yīng)進(jìn)行非線性有限元數(shù)值仿真,并采用準(zhǔn)靜態(tài)法計(jì)算受損艙段的剩余極限強(qiáng)度。計(jì)算結(jié)果表明新型沖擊因子相比傳統(tǒng)沖擊因子更適合用于表征外部爆炸作用下結(jié)構(gòu)的整體破壞。對(duì)于遠(yuǎn)場(chǎng)爆炸工況,強(qiáng)力甲板最大位移、艙段塑形應(yīng)變能和剩余極限強(qiáng)度在新型沖擊因子衡量下均顯示出較高的一致性。在近場(chǎng)爆炸工況中,由于結(jié)構(gòu)局部變形的影響,計(jì)算結(jié)果存在一定的離散。

    外部爆炸;沖擊因子;剩余極限強(qiáng)度;CONWEP算法

    O389U661.4

    :A

    喬遲(1990-),男,上海交通大學(xué)碩士研究生;

    O389U661.4

    :A

    10.3969/j.issn.1007-7294.2017.06.010

    1007-7294(2017)06-0761-08

    張世聯(lián)(1952-),男,上海交通大學(xué)教授,博士生導(dǎo)師;

    date:2016-07-24

    Biography:QIAO Chi(1990-),male,master student of Shanghai Jiao Tong University,E-mail:joey@sjtu.edu.cn; ZHANG Shi-lian(1952-),male,professor/tutor,E-mail:slzhang@sjtu.edu.cn.

    武少波(1985-),男,上海交通大學(xué)博士研究生;

    鄭軼刊(1983-),男,上海交通大學(xué)博士研究生。

    猜你喜歡
    艙段上海交通大學(xué)沖擊
    空間站艙段運(yùn)輸專列
    上海交通大學(xué)
    上海交通大學(xué)參加機(jī)器人比賽
    基于TwinCAT的艙段數(shù)字化柔性自動(dòng)對(duì)接平臺(tái)控制系統(tǒng)設(shè)計(jì)
    水下航行器電池艙段溫度場(chǎng)數(shù)值模擬
    奧迪Q5換擋沖擊
    奧迪A8L換擋沖擊
    一汽奔騰CA7165AT4尊貴型車換擋沖擊
    巴菲特給我沖擊最大
    多艙段圓柱殼振動(dòng)特性研究
    亚洲国产日韩欧美精品在线观看| 直男gayav资源| 女同久久另类99精品国产91| 制服丝袜大香蕉在线| 日本成人三级电影网站| 国产又黄又爽又无遮挡在线| 日本 欧美在线| 日本色播在线视频| 老司机深夜福利视频在线观看| 禁无遮挡网站| or卡值多少钱| 99国产极品粉嫩在线观看| 午夜日韩欧美国产| 亚洲人与动物交配视频| 免费大片18禁| 婷婷色综合大香蕉| 熟女电影av网| 久久精品国产鲁丝片午夜精品 | 两个人视频免费观看高清| 国产主播在线观看一区二区| 久久热精品热| 亚洲av五月六月丁香网| 国内久久婷婷六月综合欲色啪| 一进一出抽搐动态| 最近中文字幕高清免费大全6 | 亚洲av.av天堂| 免费av不卡在线播放| 国产又黄又爽又无遮挡在线| 老司机午夜福利在线观看视频| 亚洲四区av| 日韩欧美三级三区| 天堂影院成人在线观看| 国内精品宾馆在线| 日本a在线网址| 我要看日韩黄色一级片| 99久久精品热视频| 999久久久精品免费观看国产| 国产探花极品一区二区| 免费观看的影片在线观看| 国产伦人伦偷精品视频| 亚洲一级一片aⅴ在线观看| 伊人久久精品亚洲午夜| 午夜久久久久精精品| 亚洲欧美日韩高清专用| 高清日韩中文字幕在线| 一区二区三区激情视频| 又黄又爽又刺激的免费视频.| 久久6这里有精品| av在线蜜桃| 波多野结衣巨乳人妻| 国产一区二区三区在线臀色熟女| 亚洲精品亚洲一区二区| 免费av不卡在线播放| 老熟妇乱子伦视频在线观看| aaaaa片日本免费| 美女 人体艺术 gogo| 亚洲黑人精品在线| 麻豆国产97在线/欧美| 美女大奶头视频| 韩国av一区二区三区四区| 又爽又黄无遮挡网站| a级毛片a级免费在线| 黄片wwwwww| 国产在线男女| 校园春色视频在线观看| 国产真实乱freesex| 精品乱码久久久久久99久播| 精品人妻1区二区| 精品人妻一区二区三区麻豆 | 日韩大尺度精品在线看网址| 三级毛片av免费| 亚洲aⅴ乱码一区二区在线播放| 欧美精品国产亚洲| 一区福利在线观看| 欧美一区二区精品小视频在线| 成人欧美大片| 午夜激情欧美在线| 精品久久国产蜜桃| 久久久午夜欧美精品| 网址你懂的国产日韩在线| 国产探花在线观看一区二区| 国产伦在线观看视频一区| 国产一级毛片七仙女欲春2| 91午夜精品亚洲一区二区三区 | 欧美黑人欧美精品刺激| 国产主播在线观看一区二区| 国产一区二区三区视频了| 又黄又爽又刺激的免费视频.| 男人狂女人下面高潮的视频| 亚洲成a人片在线一区二区| 无人区码免费观看不卡| 男人的好看免费观看在线视频| 国产精品,欧美在线| 人人妻,人人澡人人爽秒播| 99久久久亚洲精品蜜臀av| 波多野结衣高清无吗| 午夜福利高清视频| 神马国产精品三级电影在线观看| 男女下面进入的视频免费午夜| 五月伊人婷婷丁香| 久久精品综合一区二区三区| 亚洲黑人精品在线| 精品无人区乱码1区二区| 日本黄色片子视频| 观看免费一级毛片| 尾随美女入室| 亚洲中文字幕日韩| 免费在线观看影片大全网站| 日本色播在线视频| 十八禁网站免费在线| 久久久久久久午夜电影| 免费人成视频x8x8入口观看| 久久国内精品自在自线图片| 国内精品久久久久久久电影| 亚洲av电影不卡..在线观看| 国产在线男女| 国产毛片a区久久久久| 九九在线视频观看精品| 欧美色欧美亚洲另类二区| 国产中年淑女户外野战色| 夜夜夜夜夜久久久久| 成年免费大片在线观看| 国产淫片久久久久久久久| 99久久精品国产国产毛片| 国产人妻一区二区三区在| 在线看三级毛片| 日本三级黄在线观看| 欧美一级a爱片免费观看看| av天堂中文字幕网| 嫩草影视91久久| АⅤ资源中文在线天堂| 麻豆国产97在线/欧美| 嫩草影院精品99| 91久久精品国产一区二区成人| 少妇猛男粗大的猛烈进出视频 | 噜噜噜噜噜久久久久久91| 亚洲精品国产成人久久av| av在线天堂中文字幕| 岛国在线免费视频观看| 日韩 亚洲 欧美在线| 久久精品国产99精品国产亚洲性色| 久久久精品大字幕| 亚洲精华国产精华液的使用体验 | 超碰av人人做人人爽久久| 岛国在线免费视频观看| 亚洲aⅴ乱码一区二区在线播放| 国模一区二区三区四区视频| a在线观看视频网站| 亚洲四区av| 国产精品久久久久久久久免| 国产精品久久久久久久久免| 啦啦啦观看免费观看视频高清| 在线播放无遮挡| 久久香蕉精品热| 亚洲成人精品中文字幕电影| 人人妻,人人澡人人爽秒播| 亚洲精品日韩av片在线观看| 亚洲av美国av| 国产精品国产三级国产av玫瑰| 亚洲美女视频黄频| 亚洲一级一片aⅴ在线观看| 日韩欧美一区二区三区在线观看| 精品人妻视频免费看| 久久精品91蜜桃| 熟女电影av网| 欧美区成人在线视频| 动漫黄色视频在线观看| 亚洲 国产 在线| 人妻夜夜爽99麻豆av| 亚洲专区国产一区二区| 伦理电影大哥的女人| 国产伦精品一区二区三区四那| 在线观看舔阴道视频| 国产伦在线观看视频一区| 啦啦啦观看免费观看视频高清| 国产在线精品亚洲第一网站| 别揉我奶头 嗯啊视频| 免费观看精品视频网站| 日韩欧美国产在线观看| 女的被弄到高潮叫床怎么办 | 久久久久久久久中文| 国产午夜精品论理片| 久久久久久久久久成人| 国产探花极品一区二区| 国产av麻豆久久久久久久| 赤兔流量卡办理| av在线亚洲专区| 熟妇人妻久久中文字幕3abv| 日韩,欧美,国产一区二区三区 | 两人在一起打扑克的视频| 69av精品久久久久久| 久久6这里有精品| 国产伦人伦偷精品视频| a级毛片a级免费在线| 舔av片在线| 一夜夜www| 国产精华一区二区三区| 日本一二三区视频观看| 一本久久中文字幕| 中文字幕熟女人妻在线| 欧美性猛交╳xxx乱大交人| 久久久久久伊人网av| 日日撸夜夜添| 国产一区二区在线av高清观看| 国内揄拍国产精品人妻在线| 国内少妇人妻偷人精品xxx网站| 午夜福利在线观看免费完整高清在 | 亚洲真实伦在线观看| 日本黄色视频三级网站网址| 美女cb高潮喷水在线观看| 日日撸夜夜添| 高清日韩中文字幕在线| 日韩中字成人| 亚洲美女黄片视频| 久久久午夜欧美精品| 日韩欧美一区二区三区在线观看| 99久久中文字幕三级久久日本| 91午夜精品亚洲一区二区三区 | 日本色播在线视频| 亚洲av中文av极速乱 | 老熟妇仑乱视频hdxx| 在线国产一区二区在线| 天堂av国产一区二区熟女人妻| 91麻豆av在线| 国产色婷婷99| 欧美中文日本在线观看视频| 中文在线观看免费www的网站| 亚洲成av人片在线播放无| 免费av观看视频| 国产午夜福利久久久久久| 大型黄色视频在线免费观看| 色综合亚洲欧美另类图片| 露出奶头的视频| 亚洲精品粉嫩美女一区| a级毛片免费高清观看在线播放| 亚洲五月天丁香| 久99久视频精品免费| 亚洲欧美激情综合另类| 亚洲最大成人手机在线| 麻豆国产av国片精品| 国产69精品久久久久777片| 午夜久久久久精精品| 在线播放国产精品三级| 国产亚洲精品av在线| 在线观看免费视频日本深夜| 黄色配什么色好看| 国产白丝娇喘喷水9色精品| 国产视频一区二区在线看| 神马国产精品三级电影在线观看| 日本色播在线视频| 欧美黑人欧美精品刺激| 搡老妇女老女人老熟妇| 一个人观看的视频www高清免费观看| 乱系列少妇在线播放| 男人和女人高潮做爰伦理| 中文字幕免费在线视频6| 亚洲avbb在线观看| 搞女人的毛片| 九色国产91popny在线| 黄色欧美视频在线观看| 日韩精品中文字幕看吧| 国产免费一级a男人的天堂| 3wmmmm亚洲av在线观看| 亚洲av成人av| 夜夜爽天天搞| 国产真实乱freesex| 免费一级毛片在线播放高清视频| 亚洲av二区三区四区| 国产老妇女一区| 精品人妻视频免费看| 亚洲国产欧洲综合997久久,| 欧美性猛交黑人性爽| 禁无遮挡网站| 久久精品国产亚洲av天美| 中国美白少妇内射xxxbb| 亚洲第一区二区三区不卡| 国产三级中文精品| 久久久久久久久久黄片| 一级毛片久久久久久久久女| 成人性生交大片免费视频hd| 亚洲av不卡在线观看| 小蜜桃在线观看免费完整版高清| 国产精品乱码一区二三区的特点| 在线观看av片永久免费下载| 搡老岳熟女国产| 国产男人的电影天堂91| 亚洲内射少妇av| 亚洲四区av| 成人精品一区二区免费| 日本色播在线视频| 在线观看美女被高潮喷水网站| 欧美成人免费av一区二区三区| 国产探花极品一区二区| 欧美区成人在线视频| 最好的美女福利视频网| 少妇裸体淫交视频免费看高清| 国产真实乱freesex| 一级黄片播放器| 国产在线精品亚洲第一网站| 变态另类成人亚洲欧美熟女| 久久人人精品亚洲av| АⅤ资源中文在线天堂| 国模一区二区三区四区视频| 特大巨黑吊av在线直播| 日韩欧美在线乱码| 夜夜看夜夜爽夜夜摸| 久久国产乱子免费精品| 久久久久久国产a免费观看| 男人的好看免费观看在线视频| 成人二区视频| 亚洲第一电影网av| 看免费成人av毛片| 久久99热这里只有精品18| 校园人妻丝袜中文字幕| 亚洲欧美日韩高清专用| 亚洲欧美日韩高清在线视频| 国产精品一区二区三区四区免费观看 | 麻豆精品久久久久久蜜桃| 国产精品电影一区二区三区| 精品人妻1区二区| 欧美zozozo另类| 女人被狂操c到高潮| 天堂av国产一区二区熟女人妻| 中文字幕av成人在线电影| 性插视频无遮挡在线免费观看| 黄色欧美视频在线观看| 99久久久亚洲精品蜜臀av| 国产亚洲91精品色在线| 久久久久九九精品影院| 国产色婷婷99| 波多野结衣高清无吗| 欧美激情在线99| 午夜福利成人在线免费观看| 亚洲欧美日韩东京热| 2021天堂中文幕一二区在线观| 极品教师在线免费播放| 国内精品久久久久久久电影| 内射极品少妇av片p| 久久国产乱子免费精品| av在线天堂中文字幕| 美女cb高潮喷水在线观看| 午夜精品一区二区三区免费看| 欧美又色又爽又黄视频| 亚洲精华国产精华精| 又黄又爽又刺激的免费视频.| 不卡视频在线观看欧美| 久久欧美精品欧美久久欧美| 免费不卡的大黄色大毛片视频在线观看 | 欧美性猛交╳xxx乱大交人| 国产淫片久久久久久久久| 亚洲精品乱码久久久v下载方式| 国产精品人妻久久久久久| 午夜福利在线在线| 综合色av麻豆| 久久久国产成人精品二区| 中文字幕av在线有码专区| 精品久久久久久,| 91在线精品国自产拍蜜月| 欧美成人免费av一区二区三区| 天天一区二区日本电影三级| 亚洲欧美日韩无卡精品| 极品教师在线免费播放| 美女 人体艺术 gogo| 99热精品在线国产| 男女啪啪激烈高潮av片| 国内毛片毛片毛片毛片毛片| 欧美高清性xxxxhd video| 一级黄色大片毛片| 午夜a级毛片| 亚洲欧美日韩卡通动漫| 成人亚洲精品av一区二区| 国产精品一区二区三区四区免费观看 | 丝袜美腿在线中文| 中出人妻视频一区二区| 欧美不卡视频在线免费观看| 国产爱豆传媒在线观看| 国产精品三级大全| 熟女人妻精品中文字幕| 乱码一卡2卡4卡精品| 国产视频一区二区在线看| 亚洲自偷自拍三级| 男人和女人高潮做爰伦理| 国产高清三级在线| 亚洲成人久久性| 露出奶头的视频| xxxwww97欧美| 成年版毛片免费区| 亚洲欧美日韩无卡精品| 午夜福利在线观看吧| 国产又黄又爽又无遮挡在线| 亚洲一区二区三区色噜噜| 欧美精品国产亚洲| 国产中年淑女户外野战色| 中文字幕av在线有码专区| 免费看a级黄色片| 男女视频在线观看网站免费| 国内久久婷婷六月综合欲色啪| 黄色一级大片看看| 国产三级在线视频| 丝袜美腿在线中文| 国产综合懂色| 一进一出抽搐gif免费好疼| 美女黄网站色视频| 午夜免费激情av| 亚洲天堂国产精品一区在线| 国产精品一区二区三区四区免费观看 | 日本欧美国产在线视频| 成人亚洲精品av一区二区| 国产探花极品一区二区| 神马国产精品三级电影在线观看| 国产男人的电影天堂91| 亚洲精品久久国产高清桃花| 久久国产精品人妻蜜桃| 日本黄大片高清| 色综合站精品国产| 久9热在线精品视频| 真人做人爱边吃奶动态| 国产精品无大码| 日日干狠狠操夜夜爽| 精品午夜福利视频在线观看一区| 国产白丝娇喘喷水9色精品| 婷婷六月久久综合丁香| 日本 欧美在线| 久久久久久久亚洲中文字幕| 婷婷亚洲欧美| 欧美日韩瑟瑟在线播放| 97人妻精品一区二区三区麻豆| 午夜福利在线观看吧| 黄色欧美视频在线观看| 亚洲精品一区av在线观看| 美女xxoo啪啪120秒动态图| 久久久久久久亚洲中文字幕| 国产男靠女视频免费网站| 久久久久久国产a免费观看| 人妻少妇偷人精品九色| 国产探花在线观看一区二区| 久久欧美精品欧美久久欧美| 夜夜爽天天搞| 精品久久久久久久久久免费视频| 成人国产一区最新在线观看| 国内精品久久久久久久电影| 99久久成人亚洲精品观看| 波野结衣二区三区在线| 有码 亚洲区| 免费黄网站久久成人精品| 国产高清视频在线播放一区| 国产黄色小视频在线观看| 午夜日韩欧美国产| 国产精品伦人一区二区| 亚洲无线观看免费| 亚洲精品亚洲一区二区| 久久亚洲真实| 国内精品久久久久精免费| 中文字幕av成人在线电影| 91久久精品国产一区二区成人| 亚洲av成人精品一区久久| 免费看a级黄色片| 欧美zozozo另类| 99久久精品一区二区三区| 亚洲成人中文字幕在线播放| 性插视频无遮挡在线免费观看| 精品久久久久久久久久免费视频| 日本免费一区二区三区高清不卡| 在线观看美女被高潮喷水网站| 欧美极品一区二区三区四区| 1000部很黄的大片| 国产精品爽爽va在线观看网站| 成人亚洲精品av一区二区| 久久久久久九九精品二区国产| 日本a在线网址| 真实男女啪啪啪动态图| 村上凉子中文字幕在线| 给我免费播放毛片高清在线观看| 在线观看舔阴道视频| 久久精品影院6| 麻豆av噜噜一区二区三区| 999久久久精品免费观看国产| 亚洲欧美日韩卡通动漫| 精品久久久久久久久久久久久| 美女大奶头视频| 一进一出抽搐动态| 一个人看的www免费观看视频| 欧美黑人欧美精品刺激| 午夜激情福利司机影院| 黄色日韩在线| 亚洲18禁久久av| 老司机午夜福利在线观看视频| 日韩精品中文字幕看吧| 精品久久国产蜜桃| av黄色大香蕉| 日韩欧美国产一区二区入口| 亚洲最大成人手机在线| 特级一级黄色大片| 国产欧美日韩精品亚洲av| 亚洲avbb在线观看| 国产av在哪里看| 禁无遮挡网站| 色综合色国产| 极品教师在线免费播放| 亚洲中文日韩欧美视频| 91麻豆精品激情在线观看国产| 男人狂女人下面高潮的视频| 日日啪夜夜撸| 美女cb高潮喷水在线观看| 伦精品一区二区三区| 97超视频在线观看视频| 欧美极品一区二区三区四区| 三级国产精品欧美在线观看| 久久久久久久精品吃奶| 国产伦精品一区二区三区四那| 色综合亚洲欧美另类图片| 最新在线观看一区二区三区| 一区二区三区高清视频在线| 亚洲精品久久国产高清桃花| 亚洲性久久影院| 国产黄a三级三级三级人| 又爽又黄a免费视频| 少妇人妻一区二区三区视频| 午夜福利视频1000在线观看| 国产精品乱码一区二三区的特点| 国产精品自产拍在线观看55亚洲| 亚洲欧美日韩高清在线视频| 黄色女人牲交| 91麻豆av在线| 国产av在哪里看| 韩国av在线不卡| 22中文网久久字幕| 嫁个100分男人电影在线观看| 欧美人与善性xxx| 国产av不卡久久| 国产在线精品亚洲第一网站| 日本 av在线| 精品久久久久久成人av| 欧美日韩精品成人综合77777| 日本黄色片子视频| 精品一区二区三区人妻视频| 天天躁日日操中文字幕| 国产伦一二天堂av在线观看| 日韩欧美免费精品| 亚洲午夜理论影院| 亚洲国产欧美人成| 亚洲三级黄色毛片| 亚洲av成人av| 国产精品野战在线观看| 精品久久国产蜜桃| 啦啦啦观看免费观看视频高清| 一a级毛片在线观看| 欧美中文日本在线观看视频| 日韩精品青青久久久久久| 午夜精品久久久久久毛片777| 99视频精品全部免费 在线| 久久久久久久精品吃奶| 亚洲最大成人中文| 观看美女的网站| 国产精品99久久久久久久久| 国内毛片毛片毛片毛片毛片| 日日摸夜夜添夜夜添av毛片 | 夜夜夜夜夜久久久久| 一区福利在线观看| 中文在线观看免费www的网站| 在线免费观看的www视频| 十八禁国产超污无遮挡网站| 亚洲熟妇熟女久久| 在线播放无遮挡| 超碰av人人做人人爽久久| 国产午夜精品论理片| 女人十人毛片免费观看3o分钟| 精品不卡国产一区二区三区| 国产亚洲精品久久久com| 悠悠久久av| 国产成人aa在线观看| 国产男靠女视频免费网站| 女人被狂操c到高潮| 五月伊人婷婷丁香| 色尼玛亚洲综合影院| 97超视频在线观看视频| 久久久精品大字幕| 九九热线精品视视频播放| 免费av观看视频| 狠狠狠狠99中文字幕| 看十八女毛片水多多多| 久久久久国内视频| 中文亚洲av片在线观看爽| 日本欧美国产在线视频| 12—13女人毛片做爰片一| 在线看三级毛片| 久久久久久大精品| 久久久久久久久久久丰满 | 亚洲精品久久国产高清桃花| 久久久久久九九精品二区国产| 国产视频内射| 精华霜和精华液先用哪个| 久久精品国产亚洲av天美| 国产精品国产三级国产av玫瑰| 亚洲欧美日韩高清在线视频| a级毛片免费高清观看在线播放| 久久精品国产亚洲av涩爱 | 国产成人a区在线观看| 欧美性猛交黑人性爽| 伦精品一区二区三区| 欧美zozozo另类| 国产亚洲精品久久久久久毛片| 成人av在线播放网站| 91午夜精品亚洲一区二区三区 | 男人舔奶头视频| aaaaa片日本免费| 热99在线观看视频| 亚洲av成人精品一区久久| 成年女人永久免费观看视频| 国产激情偷乱视频一区二区| 麻豆国产97在线/欧美| 国产伦在线观看视频一区| 欧美成人一区二区免费高清观看| 精品人妻偷拍中文字幕| 亚洲人成网站在线播|