• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mechanical Behavior Analysis for Unbonded Umbilical under Axial Loads

    2017-06-22 14:44:18GUOYousongCHENXiqiaFUShixiaoWANGDe
    船舶力學(xué) 2017年6期
    關(guān)鍵詞:上海交通大學(xué)臍帶徑向

    GUO You-song,CHEN Xi-qia,FU Shi-xiao,WANG De-yü

    (1.State Key Laboratory of Ocean Engineering,Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration,Shanghai Jiao Tong University,Shanghai 200240,China;2.Tianjin Branch, CNOOC Ltd,Tianjin 300452,China)

    Mechanical Behavior Analysis for Unbonded Umbilical under Axial Loads

    GUO You-song1,CHEN Xi-qia2,FU Shi-xiao1,WANG De-yü1

    (1.State Key Laboratory of Ocean Engineering,Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration,Shanghai Jiao Tong University,Shanghai 200240,China;2.Tianjin Branch, CNOOC Ltd,Tianjin 300452,China)

    To investigate the mechanical behavior of the unbonded umbilical and to improve the structural design,an analytical model to predict the tension behavior is proposed.The governing equation of the model provides the solution for the tension load-elongation relationship considering the effect of diameter reduction of armor layers.A finite element model of a given unbonded umbilical is established to supply the value of armor diameter reduction for analytical model and to determine the stress distribution in the umbilical.Tension stiffness tests of the given unbonded umbilical are carried out and a good agreement among analytical model,finite element model and experimental results is shown.Based on the analytical model,a parametric study is conducted to understand the effect of radial reduction on the tension stiffness.Furthermore,the fatigue analysis of the unbonded umbilical under design tension loading cases is also conducted.

    unbonded umbilical;tension;stiffness tests;effect of radial reduction; numerical model;fatigue

    0 Introduction

    Multi-layered unbonded umbilicals are widely used in offshore production,conveying fluid,signals and power between well-heads and offshore rigs.In their serving life,unbounded umbilicals have to undergo load combinations induced by current,waves,vortex-induced vibrations and the motion of floating vessels.To ensure their safety,it is indispensable to accurately assess the load conditions,the stress distribution and the fatigue life of the umbilicals at the design stage.Hence,an analytical model and a finite element model to predict the tension stiffness and stress distribution are of great importance.

    The problems of predicting the structural response in similar multilayer structures have been dealt with by many researchers.KNapp[1]derived a stiffness matrix for multi-layered cables subjected to tension and torsion.Feret and Bournazel[2]took each layer of flexible pipeas an independent element and formulated the governing equations of flexible pipe axisymmtric behavior.Ramos and Pesce[3]extended Feret’s model and provided a more general one for flexible pipe subjected to combined loads.Ramos et al[4]presented axial-torsional behavior tests of flexible pipe to validate the proposed analytical model and good agreements have been shown.Witz and Tan[5]presented expressions to predict axial-torsional behavior expression for multi-layered structural based on Love’s curved beam theory and discussed a case study. Claydon et al[6]studied the unbonded flexible pipe response under cyclic loading conditions. As mentioned above,many theoretical models are presented in the literature to predict the behavior of flexible pipes under tension load,but few of them can provide accurate estimation for umbilicals due to the effect of armor layer diameter reduction.The diameter reduction caused by core compression and filling of the cusp space is difficult to calculate analytically and should be obtained from finite element analysis or experiment tests.

    The proposed analytical models are quite complicated and their range of application is limited by the simplified assumptions on which they are based.This motivated researchers to develop refined finite element model.Zhang and Tuohy[7]studied the application of FEM in the analysis of large diameter unbounded flexible riser.They utilized an equivalent material and geometric properties to model the contact between layers,but the contact surface friction and end-fitting effects were not considered in the model.Bahtui et al[8]developed a finite element model to study the response of unbounded flexible riser under axial tension.The numerical results had compared with the analytical results obtained from several analytical methods and a good agreement had been found.Vaz and Rizzo[9]developed an axisymmetric model to estimate the critical instability and failure modes.The model was constructed by employing a complex combination of beam and spring elements.Although researchers have conducted a significant amount of research on the finite element analysis of flexible pipe,few of them extended it to umbilicals.

    Taking the radial reduction of armor layer into consideration,an analytical model is presented to predict the tension behavior of unbounded umbilical.The governing equation provides the tension load-elongation relationship and a parametric study of radial reduction is conducted based on it.A finite element model of a given unbounded umbilical is established in general software to supply the value of radial reduction for the analytical model.Prototype tests of the tension stiffness of the given unbounded umbilical were carried out to validate the analytical and the finite element model.Finally,the fatigue analysis of the given umbilical under design loads is conducted and it is found that the design tension loads contribute little to the fatigue damage of the umbilical.

    1 Analytical model

    Umbilical is a complex structural composed by different components,among them,tensile armors are in helical configuration,which makes it difficult to analyze the tension behav-ior for the whole structural.Taking the tensile armors as the analysis objects,the structural axial strain is derived and then the tension stiffness is obtained based on Hook’s law.Several assumptions must be made to develop the analytical model.

    (1)All of the layers have the same elongation under tension load.

    (2)All of the materials are assumed to respond in the linear elastic range.

    (3)There is no gap between adjacent layers.

    (4)All the deformation of the components is assumed to be small.

    (5)The axial strain and stress of all the components are assumed to distribute uniformly.

    Unfolding the helical laying tensile armor,the geometric relations between the axial elongation and radial reduction are shown in Fig.1.

    According to the geometric relationship between the original and deformed shapes as illustrated in Fig.1,the axial strain in the elongated helical armor can be written as

    Fig.1 Helical geometry of a helical armor

    where a and a′are the length of the helical armor before and after the elongation respectively,and can be expressed as:

    According to Fig.1,the lay angle after the elongation can be expressed as

    where l denotes the length of the umbilical;R and△R denote the lay radius and radius reduction of the helical armor,respectively.

    Substituting Eqs.(2)-(4)into Eq.(1),we have

    Neglecting the second-order strain quantities,Eq.(5)can be linearized as

    According to the Hooke’s law,we have

    where σ,F and E denote the axial stress,axial force and the material elastic modulus of the helical armor,respectively.

    Projecting the axial force of the helical armor onto the axes of the umbilical,the force contribution from the helical armor to the total axial force of the umbilical can be further deduced.

    Combing the expressions of the straight component axial force with Eq.(9),the total axial force F of the umbilical can be deduced.

    where EiAidenotes the axial stiffness of helical armor i;αidenotes the lay angle of helical armor i;n denotes the number of helical armors;EjAjdenotes the axial stiffness of straight component j;m denotes the number of straight components.

    The axial stiffness K of the umbilical can further be derived from Eq.(10)as

    where ν denotes the ratio of radial reduction,which can be expressed as

    2 Finite element model

    A very detailed finite element model of a given umbilical is developed in general finite element software to obtain the structural behavior under tension loads and to provide the value of radial reduction of armor layer for the analytical model.

    As shown in the Fig.2,the 1.8 m model consists of 6 separate cylindrical components, located one into another as layers of the umbilical.There are two tube layers,two sheath layers and two armor layers.The geometric parameters and material properties are listed in the Tab.1.

    Fig.2 Finite element model of the given unbounded umbilical

    The umbilical is modeled by 3D,8-node linear brick,reduced integration elements with hourglass control,which allows much more accurate contact analysis.Contact elements are defined between each layer and the contact analysis is based on the Coulomb friction model to-gether with the general contact algorithm. The coefficient of friction between layers is assumed to be 0.1,as given in the experimental results[10].A well distributed mesh containing 307 246 elements and 446 863 nodes is utilized to keep the artificial energy well below 5%of the stain energy.

    The ends of each side of all layers are connected rigidly to two reference nodes at the centre of each cross section.All boundary conditions for both ends are then applied to these two reference nodes only,as shown in Fig.3. In order to obtain stable solution for such complicated contact problems,the explicit solver is used with 5e-7sec time increment.

    Tab.1 Geometric parameters and material properties of the given unbounded umbilical

    Fig.3 The schematic diagram of boundary and load conditions

    As illustrated above,the finite element analysis is conducted and the stress contour plot of the umbilical is shown in Fig.4.

    As shown in Fig.4,the stress in each layer distributes uniformly,which proves the validity of assumption 5.The stress in the tube layer is much larger than that in armor layer,which can be accounted for by the fact the lay angle of tube layer is larger than the armor layer’s and the stress response is larger with bigger lay angle,as illustrated by Eq.(7).

    Comparing the stress in the two armor layers with the same lay angle,the stress in the inner layer is larger than that of outer layer.The fact is because that the radial reduction of outer layer is more notable than the inner layer’s and the radial reduction can reduce the stress response as shown by Eq.(7).As the axial force is dominated by the cross-section area and the axial stress,the tension stiffness contributed from inner layer is bigger than that from the outer layer.And we candraw a conclusion that the radial reduction not only affects the value of the stiffness but also changes the distribution of stiffness in the umbilcial.

    Fig.4 Axial-stress contour plot for the whole given umbilical

    Extract the node locations of armor layers before and after deformation,the radial reduction of the two armor layers can be calculated in the coordinated system of Fig.3

    where xiand yidenote the x and y node coordinate of initial configuration;xdand yddenote the x and y node coordinate of deformed configuration.

    The curves of relationship between the axial strain and average value of radial reduction of inner armor and outer armor are shown in Fig.5.

    As shown in Fig.5,the axial strain and the radial reduction are in linear relation.The radial reduction of outer armor layer is lager than that of inner armor layer,which can explain the fact that the stress in the inner layer is larger than that of outer layer.The results of the calculated radial reduction can be applied to the analytical model for further stiffness analysis.

    Fig.5 The relationship curves between the axial strain and the radial reduction

    3 Verification and sensitive analysis of the model

    Tension behavior tests of the given umbilical were carried out to verify the developed analytical model and finite element model in this paper.The average results of the tests are shown in Fig.6,compared with the analytical and FEM results.

    From the figure,we can see that the FEM results agree well with the experiment results, from which we can draw a conclusion that the FEM can provide a good prediction of the tension behavior for the umbilical and this FEM can be used to conduct fatigue analysis of the umbilical.

    Comparing the analytical results without radial reduction with the experiment results,we can find out that the analytical results overestimate the tension stiffness of the umbilical,being almost 2.7 times of the experiment results.Taking the radial reduction results in Fig.5 into Eq.(11),the modified analytical results satisfy well with the experiment results,which prove the fact that the radial reduction has a great effect on the tension stiffness and cannot be neglected.

    Fig.6 The comparison of tension stiffness results

    Based on the developed analytical model,the sensitive analysis of radial reduction on the tension stiffness is conducted.According to Eq.(11),the tension stiffness can be expressed as a function of the radial reduction as shown in Eq.(13)

    For convenience to analysis,assuming that both the two armor layers are of the same radial reduction,then the values of the umbilical tension stiffness with different radial reduction ratio are calculated and listed in Tab.2.

    From the calculated results,we can find out that the stiffness of the whole umbilical decreases with the increasing radial reduction and the main stiffness contribution transfers from armor layers to tube and sheath layers.Without radial reduction,most of the umbilical tension stiffness is provided by armor layers.However,with 4.5 radial reduction ratio,the tube and sheath layers contributed much more than the armor layers to.The above facts illustrated that the radial reduction affects the load distribution ratio and attention should be paid to when conducting stress analysis on certain layer.

    Tab.2 The calculated tension stiffness with different radial reduction ratio

    The relationship between the tension stiffness and the lay angle with and without radial reduction ration is shown in Fig.7.Different lay angles from 0°to 25°are set in this model.

    As shown in Fig.7,the tension stiffness results with and without radial reduction decrease with the increasing lay angle,which prove that the stiffness is a decreasing function of the lay angle.Comparing the two relationship curves,we can find out that the influence of radial reduction on the tension stiffness becomes less with smaller lay angle.

    4 Fatigue analysis

    Based on the developed FEM,the fatigue analysis of the given umbilical is conducted.Thedesign fatigue tension load in 0.5 hour is shown in Fig.8 according to Ref.[11].

    Fig.7 The relationship curves between the lay angle and the tension stiffness

    As shown in Fig.8,the horizontal and vertical coordinates stand for minimum and maximum tension load respectively.The tension range of a certain point is the difference between its vertical and horizontal coordinate.The counted cycles of certain tension range is represented by the color in the figure.Among the data in the figure,the minimum tension range is at (233.4,233.5)to be 0.1 kN and the maximum tension range is at(230.1,236.4)to be 6.3 kN. The cycles of tension range decrease from 194 to 1with the increasing tension range.

    Fig.8 The tension load ranges and their cycles

    Taking the load conditions in Fig.8 into the developed FEM,the fatigue stress in the inner armor layer can be calculated and listed in Fig.9.

    Fig.9 The calculated fatigue stress ranges and their cycles

    As shown in Fig.8,the horizontal and vertical coordinates stand for minimum and maximum fatigue stress,respectively.The mean fatigue stress and fatigue stress range are the sum and the difference of the vertical and horizontal coordinates.The maximum fatigue stress under design load conditions is 151 MPa much smaller than the material yield stress,hence,theumbilical will not occur ultimate failure.As the stress is calculated based on the results in Fig.8,the data distribution in Fig.9 is almost the same as that in Fig.8.The maximum fatigue stress range is at(144,148)to be 4 MPa and the minimum fatigue stress range is at(146.7, 147)to be 0.3 MPa.The cycles of tension range decrease from 194 to 1with the increasing fatigue stress range.

    The S-N curve is adopted in fatigue life prediction of the umbilical;and for the case in this paper,the following S-N curve is used according to Ref.[13].

    To consider the mean stress level effects on the fatigue damages,the obtained stress ranges should be further corrected by Goodman line

    where△σf,△σ,σutand σmare the equivalent fatigue stress range,the calculated fatigue stress range,the ultimate stress and the mean stress,respectively.

    With the chosen S-N curve,the fatigue damage in one year of fatigue stress range i can be calculated by

    where νidenotes fatigue damage of fatigue stress range σi,and nidenotes the cycles of fatigue stress range σiin one year and Nidenotes the cycles-to-failure of fatigue stress range σi.The corresponding results for the case in this paper are shown in Fig.10.

    Fig.10 Fatigue damage of each stress range in one year

    Fig.10 indicates that the largest fatigue damage is from the stress rang 1.5-2 MPa,whereas the 4-4.5 MPa stress range is the smallest part.Stress range between 1 to 3 MPa will serve as the primary contribution to the fatigue damage.Summing all of the fatigue damages induced by each stress range,the fatigue damage ν in one year can then be obtained as

    According to Ref.[12],the fatigue damage produced by bending load is 2.67e-03.Comparing the fatigue damage of tension loads with that of bending loads,we can draw a conclusion that the tension load ranges hardly deduce fatigue damage to the umbilical and can be neglected in the fatigue analysis.

    5 Conclusions

    Taking the radial reduction of armor layer into consideration,the analytical model of tension stiffness is firstly deduced.And a very detailed FEM is developed to obtain the structural behavior under tension loads and to apply the value of radial reduction for the analytical model.To prove the validity of the analytical model and FEM,a prototype test result is presented. Based on the analytical model,a parameter study is conducted to investigate the effect of radial reduction on tension stiffness.Finally,the fatigue analysis of umbilical under deign tension load is carried out.Conclusions about umbilical tension behavior can be drawn as follows:

    (1)The developed FEM can provide a good prediction of the tension behavior for the umbilical.

    (2)The analytical model without the radial reduction overestimates the tension stiffness of the umbilical,the effect of the radial reduction on tension stiffness cannot be neglected.

    (3)The radial reduction not only affects the value of the stiffness but also changes the distribution of the stiffness.

    (4)The influence of radial reduction on the tension stiffness becomes less with smaller lay angle.

    (5)The tension load ranges hardly deduce fatigue damage to the umbilical and can be neglected in the fatigue analysis.

    [1]KNapp R H.Derivation of a new stiffness matrix for helically armored cables considering tension and torsion[J].International Journal for Numerical Methods in Engineering,1979,14:512-529.

    [2]Feret J J,Bournazel C L.Calculation of stress and slip in structural layers of un-bonded flexible pipes[J].Journal of Offshore Mechanics and Arctic Engineering,1987,109:263-269.

    [3]Ramos J R,Pesce C P.A consistent analytical model to predict the structural behavior of flexible risers subjected to combined loads[J].Journal of Offshore Mechanics and Arctic Engineering,2004,126:141-146.

    [4]Ramos J R,Clovis A M,et al.A case study on the axial-torsional behavior of flexible riser[C].Proceedings of Offshore Mechanics and Arctic Engineering,2008.

    [5]Witz J A,Tan Z.On the axial-tortional structural behavior of flexible pipes,umbilical and marine cables[J].Marine Structures,1992,5:205-227.

    [6]Claydon P,Cook P,et al.A theoretical approach to perdition of service life of unbonded flexible pipes under dynamic loading conditions[J].Marine Structures,1992,5:399-429.

    [7]Zhang W,Tuohy J.Application of finite element modeling in the qualification of large diameter unbonded flexible risers [C].Proceedings of Offshore Mechanics and Arctic Engineering,2002.

    [8]Bahtui A,Bahai H,Alfano G.A finite element analysis for unbonded flexible risers under axial tension[C].Proceedings of Offshore Mechanics and Arctic Engineering,2008.

    [9]Vaz M A,Rizzo N S A.A finite element model for flexible pipe armor wire instability[J].Marine Structures,2011,24: 275-291.

    [10]Saevik S,Berge S.Correlation between theoretical predictions and testing of two-4-inch flexible pipes[C]//Energy-Sources Technology Conference and Exhibition.Houston,TX,ASME Petroleum Div.,PD,1993,51:63-78.

    [11]CNOOC report.The fatigue analysis report of the unbonded umbilical[R].10,2012.

    [12]DNV-RP-C203.Fatigue design of offshore steel structures[S].2010.

    無粘接臍帶纜軸對稱響應(yīng)與疲勞特性分析研究

    郭有松1,陳希恰2,付世曉1,王德禹1
    (1.上海交通大學(xué)海洋工程國家重點實驗室,高新船舶與深海開發(fā)裝備協(xié)同創(chuàng)新中心,上海200240;2.中海石油(中國)有限公司天津分公司渤海石油研究院,天津300452)

    為了提高對臍帶纜力學(xué)特性的研究,便于設(shè)計,文中提出了一種臍帶纜拉伸載荷作用下的理論模型。在總體控制方程中對拉伸過程中骨架層的徑向縮減。針對給定的無粘結(jié)臍帶纜臍,建立了有限元模型,模擬分析了骨架層的徑向縮減對應(yīng)力分布的影響。通過對拉伸剛度試驗對比,理論分析與試驗吻合度較高。基于解析模型,分析了徑向縮減對拉伸剛度的影響。此外,在應(yīng)力分析的基礎(chǔ)上,對無粘結(jié)臍帶纜在拉伸載荷作用下的的疲勞特性進行了研究。

    無粘結(jié)臍帶纜;拉伸;剛度試驗;徑向縮減影響;數(shù)值模型;疲勞

    O35

    :A

    國家自然科學(xué)基金資助(51239007)

    郭有松(1974-),男,上海交通大學(xué)博士研究生;

    O35

    :A

    10.3969/j.issn.1007-7294.2017.06.008

    1007-7294(2017)06-0739-11

    陳希?。?988-),男,中海石油(中國)有限公司天津分公司渤海石油研究院工程師;

    date:2016-12-06

    Supported by the National Natural Science Foundation of China(51239007)

    Biography:GUO You-song(1974-),male,Ph.D.candidate of Shanghai Jiao Tong University,E-mail: guoyousong@sjtu.edu.cn;CHEN Xi-qia(1988-),male,engineer of Tianjin Branch, CNOOC Ltd,E-mail:chenxq33@cnooc.com.cn.

    付世曉(1976-),男,上海交通大學(xué)教授;

    王德禹(1963-),男,上海交通大學(xué)教授,博士生導(dǎo)師。

    猜你喜歡
    上海交通大學(xué)臍帶徑向
    上海交通大學(xué)
    電氣自動化(2022年2期)2023-01-07 03:51:56
    淺探徑向連接體的圓周運動
    RN上一類Kirchhoff型方程徑向?qū)ΨQ正解的存在性
    胎兒臍帶繞頸,如何化險為夷
    基于PID+前饋的3MN徑向鍛造機控制系統(tǒng)的研究
    重型機械(2020年3期)2020-08-24 08:31:40
    臍帶先露與臍帶脫垂對胎兒有影響嗎
    健康博覽(2019年10期)2019-12-02 04:48:51
    一類無窮下級整函數(shù)的Julia集的徑向分布
    上海交通大學(xué)參加機器人比賽
    胎兒臍帶繞頸,如何化險為夷
    臍帶繞頸怎么辦
    欧美激情在线99| 高清毛片免费看| 日韩一区二区视频免费看| 高清午夜精品一区二区三区| 日本wwww免费看| 日韩成人av中文字幕在线观看| av网站免费在线观看视频| 亚洲欧美精品专区久久| 亚洲av一区综合| 久久精品夜色国产| 欧美日本视频| 神马国产精品三级电影在线观看| 欧美精品国产亚洲| 国产亚洲av嫩草精品影院| 精品亚洲乱码少妇综合久久| 成人亚洲欧美一区二区av| 又大又黄又爽视频免费| 日韩强制内射视频| 亚洲欧美日韩另类电影网站 | 亚洲国产成人一精品久久久| 搞女人的毛片| 亚洲成人中文字幕在线播放| 精品一区在线观看国产| 性色av一级| 97超碰精品成人国产| 日韩欧美 国产精品| 中国三级夫妇交换| 国产精品熟女久久久久浪| av黄色大香蕉| 天堂中文最新版在线下载 | 成人二区视频| 五月开心婷婷网| 亚洲精品成人久久久久久| 青青草视频在线视频观看| 亚洲精品第二区| 亚洲av中文字字幕乱码综合| 午夜福利在线在线| 天美传媒精品一区二区| 久久精品国产亚洲av天美| 九草在线视频观看| 亚洲怡红院男人天堂| 免费观看无遮挡的男女| 涩涩av久久男人的天堂| 永久免费av网站大全| 国产欧美另类精品又又久久亚洲欧美| 国产精品久久久久久精品电影小说 | 在线免费十八禁| 国产高清三级在线| 精品国产一区二区三区久久久樱花 | 国内少妇人妻偷人精品xxx网站| 午夜激情久久久久久久| 熟女人妻精品中文字幕| 欧美潮喷喷水| 亚洲真实伦在线观看| 丰满乱子伦码专区| 女人被狂操c到高潮| 内射极品少妇av片p| 国产亚洲5aaaaa淫片| 久久ye,这里只有精品| 狂野欧美白嫩少妇大欣赏| 成年女人在线观看亚洲视频 | 男人狂女人下面高潮的视频| 国产精品.久久久| 少妇丰满av| 亚洲国产精品成人综合色| 国产精品久久久久久久久免| 波野结衣二区三区在线| 免费av毛片视频| 国模一区二区三区四区视频| 久久精品熟女亚洲av麻豆精品| 大话2 男鬼变身卡| 精品午夜福利在线看| 国产老妇伦熟女老妇高清| 国产色婷婷99| 2022亚洲国产成人精品| 日日摸夜夜添夜夜爱| 九九爱精品视频在线观看| 国产精品.久久久| www.色视频.com| 一个人观看的视频www高清免费观看| 黄色视频在线播放观看不卡| 久久人人爽人人片av| 精华霜和精华液先用哪个| 亚洲av免费在线观看| 啦啦啦中文免费视频观看日本| 少妇熟女欧美另类| 国产综合懂色| 九草在线视频观看| 只有这里有精品99| 亚州av有码| 午夜免费鲁丝| 五月天丁香电影| 久久久久性生活片| 中文字幕制服av| 99热这里只有是精品50| 18+在线观看网站| 三级经典国产精品| 男女边摸边吃奶| 久久99蜜桃精品久久| 九九久久精品国产亚洲av麻豆| 成人特级av手机在线观看| 美女内射精品一级片tv| 狂野欧美白嫩少妇大欣赏| 亚洲人成网站在线播| 国产伦精品一区二区三区四那| 女人久久www免费人成看片| 男女啪啪激烈高潮av片| 免费观看性生交大片5| 亚洲久久久久久中文字幕| av天堂中文字幕网| 久久久久久国产a免费观看| 97精品久久久久久久久久精品| 国产精品不卡视频一区二区| 美女国产视频在线观看| 最近2019中文字幕mv第一页| 亚洲无线观看免费| 亚洲伊人久久精品综合| 狂野欧美白嫩少妇大欣赏| 高清视频免费观看一区二区| 国产精品久久久久久精品电影| 毛片女人毛片| 亚洲无线观看免费| 国产精品国产三级国产av玫瑰| 中文乱码字字幕精品一区二区三区| 欧美潮喷喷水| 久久99精品国语久久久| 亚洲aⅴ乱码一区二区在线播放| 亚洲精品一区蜜桃| 日日啪夜夜撸| 免费观看无遮挡的男女| 可以在线观看毛片的网站| 国产白丝娇喘喷水9色精品| 高清日韩中文字幕在线| 国产中年淑女户外野战色| 国产伦理片在线播放av一区| 我的女老师完整版在线观看| 三级国产精品片| 日本熟妇午夜| 一级毛片 在线播放| 亚洲国产色片| 久久久久久久久久久免费av| 精品一区在线观看国产| 如何舔出高潮| 亚洲av欧美aⅴ国产| 久久综合国产亚洲精品| 国产精品麻豆人妻色哟哟久久| 国产永久视频网站| 毛片一级片免费看久久久久| 另类亚洲欧美激情| 菩萨蛮人人尽说江南好唐韦庄| 久久久久九九精品影院| 日韩在线高清观看一区二区三区| 亚洲伊人久久精品综合| 色视频www国产| h日本视频在线播放| 国产亚洲91精品色在线| 18禁动态无遮挡网站| 成年女人看的毛片在线观看| 一区二区三区四区激情视频| 一级毛片aaaaaa免费看小| 日韩av不卡免费在线播放| 亚洲精品国产成人久久av| 狂野欧美激情性bbbbbb| 激情 狠狠 欧美| av网站免费在线观看视频| 激情 狠狠 欧美| 国产精品久久久久久久久免| 色5月婷婷丁香| av在线观看视频网站免费| 汤姆久久久久久久影院中文字幕| 色视频在线一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 别揉我奶头 嗯啊视频| 麻豆成人av视频| 蜜臀久久99精品久久宅男| 肉色欧美久久久久久久蜜桃 | 在现免费观看毛片| 99久久精品一区二区三区| 天天躁夜夜躁狠狠久久av| 久久99蜜桃精品久久| 国产综合精华液| 18禁动态无遮挡网站| av福利片在线观看| 亚洲一级一片aⅴ在线观看| 亚洲综合精品二区| 亚洲人成网站高清观看| 制服丝袜香蕉在线| 自拍欧美九色日韩亚洲蝌蚪91 | 黑人高潮一二区| 亚洲综合精品二区| 男女那种视频在线观看| 你懂的网址亚洲精品在线观看| 各种免费的搞黄视频| 男插女下体视频免费在线播放| 高清毛片免费看| 99精国产麻豆久久婷婷| 成人国产av品久久久| videossex国产| 久久久久久久大尺度免费视频| 麻豆成人av视频| 午夜福利高清视频| 国产一区亚洲一区在线观看| 日韩强制内射视频| 人妻系列 视频| 18+在线观看网站| 亚洲欧美精品专区久久| 日韩成人av中文字幕在线观看| 欧美 日韩 精品 国产| 一级毛片aaaaaa免费看小| 全区人妻精品视频| 自拍欧美九色日韩亚洲蝌蚪91 | 免费观看在线日韩| 亚洲美女视频黄频| 亚洲婷婷狠狠爱综合网| 国产91av在线免费观看| 大香蕉久久网| 国产真实伦视频高清在线观看| 97在线视频观看| 久久久久网色| 免费黄频网站在线观看国产| 免费av不卡在线播放| 日韩中字成人| 最近中文字幕高清免费大全6| 韩国高清视频一区二区三区| 赤兔流量卡办理| 亚洲激情五月婷婷啪啪| 国产亚洲最大av| 青春草国产在线视频| 国产精品人妻久久久久久| 久久久亚洲精品成人影院| 亚洲精品国产色婷婷电影| 狂野欧美白嫩少妇大欣赏| 人妻 亚洲 视频| 色哟哟·www| 欧美xxxx性猛交bbbb| 亚洲成人av在线免费| 亚洲av电影在线观看一区二区三区 | 国内少妇人妻偷人精品xxx网站| 一二三四中文在线观看免费高清| 人妻一区二区av| 大码成人一级视频| 又爽又黄a免费视频| av播播在线观看一区| 老司机影院成人| 黄色一级大片看看| 视频中文字幕在线观看| 成人午夜精彩视频在线观看| xxx大片免费视频| 在线亚洲精品国产二区图片欧美 | 18禁动态无遮挡网站| av网站免费在线观看视频| 久久午夜福利片| 欧美日本视频| 久久久精品94久久精品| 久久久久久久久大av| 啦啦啦啦在线视频资源| 在线观看av片永久免费下载| 男人和女人高潮做爰伦理| 岛国毛片在线播放| 偷拍熟女少妇极品色| 成人综合一区亚洲| 七月丁香在线播放| 久久精品国产a三级三级三级| 久久99精品国语久久久| 黄色视频在线播放观看不卡| 国产精品一区二区性色av| 少妇猛男粗大的猛烈进出视频 | 在线观看免费高清a一片| 欧美高清成人免费视频www| 色吧在线观看| 又爽又黄a免费视频| 成人黄色视频免费在线看| 国产精品99久久99久久久不卡 | 久久精品国产亚洲网站| 国产乱人视频| 国产片特级美女逼逼视频| 欧美最新免费一区二区三区| 视频中文字幕在线观看| 色5月婷婷丁香| 日本猛色少妇xxxxx猛交久久| 97在线人人人人妻| 九九久久精品国产亚洲av麻豆| 超碰97精品在线观看| 亚洲av欧美aⅴ国产| 亚洲综合精品二区| 精品国产一区二区三区久久久樱花 | 麻豆国产97在线/欧美| 国产爽快片一区二区三区| 国产精品偷伦视频观看了| 亚洲国产精品成人久久小说| 亚洲欧美精品自产自拍| 美女cb高潮喷水在线观看| 色综合色国产| 国精品久久久久久国模美| 国产午夜精品一二区理论片| 国产精品一及| 九九爱精品视频在线观看| 精品人妻视频免费看| 狂野欧美白嫩少妇大欣赏| 制服丝袜香蕉在线| 日本欧美国产在线视频| 一级毛片黄色毛片免费观看视频| 成人无遮挡网站| 国产成人freesex在线| 丰满乱子伦码专区| 99久久精品一区二区三区| 国产精品人妻久久久影院| 亚洲美女搞黄在线观看| 久久精品国产自在天天线| 99热这里只有是精品在线观看| 久久久久久九九精品二区国产| 日韩免费高清中文字幕av| 一个人看的www免费观看视频| 嫩草影院新地址| 少妇的逼水好多| 高清av免费在线| 久久久a久久爽久久v久久| 国产伦精品一区二区三区视频9| 欧美 日韩 精品 国产| 日本与韩国留学比较| 国产黄色视频一区二区在线观看| 交换朋友夫妻互换小说| 乱系列少妇在线播放| 日本-黄色视频高清免费观看| 好男人视频免费观看在线| 国产探花极品一区二区| 一级毛片久久久久久久久女| 欧美人与善性xxx| a级毛片免费高清观看在线播放| 国产色婷婷99| 日本猛色少妇xxxxx猛交久久| 国产免费又黄又爽又色| 2018国产大陆天天弄谢| 可以在线观看毛片的网站| 中文精品一卡2卡3卡4更新| 高清在线视频一区二区三区| 日日撸夜夜添| 又黄又爽又刺激的免费视频.| 久久久久久久久大av| 亚洲图色成人| 精品久久久久久电影网| 亚洲精品一区蜜桃| 色吧在线观看| 欧美一级a爱片免费观看看| 97超视频在线观看视频| 国产日韩欧美在线精品| 大码成人一级视频| 一级毛片aaaaaa免费看小| 啦啦啦在线观看免费高清www| 国产色爽女视频免费观看| 久久99热这里只有精品18| 欧美高清性xxxxhd video| 99热国产这里只有精品6| 91精品国产九色| 97人妻精品一区二区三区麻豆| 干丝袜人妻中文字幕| 欧美亚洲 丝袜 人妻 在线| 秋霞在线观看毛片| 亚洲激情五月婷婷啪啪| 麻豆精品久久久久久蜜桃| 一级毛片黄色毛片免费观看视频| 久久99热这里只频精品6学生| 看黄色毛片网站| 大片电影免费在线观看免费| 特大巨黑吊av在线直播| 国产精品国产三级专区第一集| 97精品久久久久久久久久精品| 久久久亚洲精品成人影院| 日韩 亚洲 欧美在线| 中文字幕av成人在线电影| 国产黄色视频一区二区在线观看| 亚洲精品久久久久久婷婷小说| 秋霞在线观看毛片| 欧美日韩在线观看h| 亚洲人与动物交配视频| 大陆偷拍与自拍| 欧美性感艳星| 国产精品一区www在线观看| 日本黄色片子视频| 国产69精品久久久久777片| 国产白丝娇喘喷水9色精品| 一级毛片电影观看| 精品人妻一区二区三区麻豆| 精品久久久久久久久亚洲| 99热6这里只有精品| 你懂的网址亚洲精品在线观看| 深爱激情五月婷婷| 又黄又爽又刺激的免费视频.| 欧美日韩精品成人综合77777| 热99国产精品久久久久久7| 久久亚洲国产成人精品v| 99热国产这里只有精品6| 最近2019中文字幕mv第一页| 成人亚洲精品一区在线观看 | 国产精品一区二区三区四区免费观看| 成人特级av手机在线观看| 极品少妇高潮喷水抽搐| 2021天堂中文幕一二区在线观| 日本一二三区视频观看| 国产成人freesex在线| 大片电影免费在线观看免费| 久久精品国产亚洲av天美| av在线观看视频网站免费| 国产亚洲av嫩草精品影院| 99久久九九国产精品国产免费| 久久影院123| 日韩视频在线欧美| 丰满人妻一区二区三区视频av| 在线观看人妻少妇| 国产国拍精品亚洲av在线观看| 亚洲欧美精品自产自拍| 成年人午夜在线观看视频| 亚洲av日韩在线播放| 国产精品熟女久久久久浪| 边亲边吃奶的免费视频| a级毛色黄片| 黄片无遮挡物在线观看| 在线亚洲精品国产二区图片欧美 | 日本猛色少妇xxxxx猛交久久| 美女被艹到高潮喷水动态| 日韩强制内射视频| 欧美日本视频| 少妇猛男粗大的猛烈进出视频 | 在线免费观看不下载黄p国产| 只有这里有精品99| 亚洲久久久久久中文字幕| 少妇人妻久久综合中文| 又爽又黄a免费视频| 成人国产av品久久久| 国产亚洲91精品色在线| 免费av观看视频| 激情 狠狠 欧美| 国产一区二区三区综合在线观看 | av黄色大香蕉| 日本猛色少妇xxxxx猛交久久| 免费人成在线观看视频色| 97在线视频观看| 伦精品一区二区三区| 一区二区三区四区激情视频| 一级毛片黄色毛片免费观看视频| 国产精品99久久99久久久不卡 | 夜夜爽夜夜爽视频| 国产精品国产三级国产av玫瑰| 男人添女人高潮全过程视频| 99九九线精品视频在线观看视频| 亚洲色图av天堂| 久久韩国三级中文字幕| 精品国产露脸久久av麻豆| 国产片特级美女逼逼视频| 神马国产精品三级电影在线观看| 中文字幕亚洲精品专区| 国产精品国产三级国产av玫瑰| 久久久久久久久久久丰满| 国产精品成人在线| 亚洲久久久久久中文字幕| 国产精品国产三级国产av玫瑰| av专区在线播放| 少妇裸体淫交视频免费看高清| 一个人看的www免费观看视频| 亚洲最大成人手机在线| 国产精品国产三级专区第一集| 在线亚洲精品国产二区图片欧美 | 高清视频免费观看一区二区| 国产免费一区二区三区四区乱码| 国产女主播在线喷水免费视频网站| 国产乱来视频区| eeuss影院久久| 精品人妻一区二区三区麻豆| 久久久精品94久久精品| 人人妻人人爽人人添夜夜欢视频 | 免费不卡的大黄色大毛片视频在线观看| 欧美潮喷喷水| 啦啦啦中文免费视频观看日本| 插逼视频在线观看| 在线 av 中文字幕| 自拍偷自拍亚洲精品老妇| 亚洲精品国产av蜜桃| 97超视频在线观看视频| 欧美日本视频| 97热精品久久久久久| 91久久精品电影网| 特大巨黑吊av在线直播| xxx大片免费视频| 日韩成人伦理影院| 性插视频无遮挡在线免费观看| 国产精品一区二区性色av| 日本黄色片子视频| 七月丁香在线播放| 免费av观看视频| 一个人观看的视频www高清免费观看| 国产成人精品久久久久久| 三级国产精品片| 日本wwww免费看| 成人欧美大片| 69人妻影院| 亚洲欧美精品自产自拍| 又爽又黄无遮挡网站| 久久久久久久久大av| 赤兔流量卡办理| 卡戴珊不雅视频在线播放| 麻豆久久精品国产亚洲av| 又爽又黄无遮挡网站| 日韩大片免费观看网站| 免费看不卡的av| 亚洲国产精品成人综合色| 两个人的视频大全免费| 国产精品蜜桃在线观看| av又黄又爽大尺度在线免费看| 亚洲欧美成人精品一区二区| 国产免费一区二区三区四区乱码| 亚洲精品视频女| 成年av动漫网址| 国产成人福利小说| 少妇高潮的动态图| av女优亚洲男人天堂| 欧美日韩视频精品一区| 免费少妇av软件| 天美传媒精品一区二区| 女人久久www免费人成看片| 亚洲精品影视一区二区三区av| 欧美最新免费一区二区三区| 美女cb高潮喷水在线观看| 成人毛片60女人毛片免费| 在线免费观看不下载黄p国产| 成人黄色视频免费在线看| 日本三级黄在线观看| 18禁裸乳无遮挡动漫免费视频 | 日韩av免费高清视频| 亚洲丝袜综合中文字幕| av一本久久久久| 亚洲精品一二三| 午夜亚洲福利在线播放| 国产成人freesex在线| 亚洲,一卡二卡三卡| 成人亚洲精品一区在线观看 | av一本久久久久| 97超碰精品成人国产| 视频中文字幕在线观看| 国产成人freesex在线| 丝袜美腿在线中文| 成年版毛片免费区| 一个人观看的视频www高清免费观看| .国产精品久久| 久久国内精品自在自线图片| 国内精品美女久久久久久| 禁无遮挡网站| 国产午夜福利久久久久久| 色婷婷久久久亚洲欧美| 国产乱人视频| 青春草国产在线视频| 免费观看a级毛片全部| 亚洲精品乱码久久久v下载方式| 色吧在线观看| 国产一区有黄有色的免费视频| 久久影院123| 熟女电影av网| 美女视频免费永久观看网站| 九色成人免费人妻av| 黄色一级大片看看| 最近的中文字幕免费完整| 日韩制服骚丝袜av| 日韩欧美一区视频在线观看 | 色视频在线一区二区三区| 国产成人精品久久久久久| 特大巨黑吊av在线直播| 97在线视频观看| 色网站视频免费| 啦啦啦啦在线视频资源| 一级片'在线观看视频| 成年版毛片免费区| 免费在线观看成人毛片| 成人国产av品久久久| 亚洲精品影视一区二区三区av| 亚洲一区二区三区欧美精品 | 亚洲最大成人av| av.在线天堂| 一级av片app| 精品久久国产蜜桃| 欧美日韩综合久久久久久| 免费看av在线观看网站| 日韩av免费高清视频| 波野结衣二区三区在线| 美女高潮的动态| 高清av免费在线| .国产精品久久| 热re99久久精品国产66热6| 一级片'在线观看视频| 亚洲成色77777| 国产精品国产三级国产专区5o| 国产精品国产三级国产av玫瑰| 国产成人freesex在线| 国产美女午夜福利| 亚洲av男天堂| 麻豆成人av视频| 国产人妻一区二区三区在| 国产精品av视频在线免费观看| 国产又色又爽无遮挡免| 少妇熟女欧美另类| 各种免费的搞黄视频| 国产精品一区二区三区四区免费观看| 少妇人妻精品综合一区二区| 日韩大片免费观看网站| 国产毛片a区久久久久| 麻豆乱淫一区二区| 国产成年人精品一区二区| 亚洲色图av天堂| 久久精品久久久久久久性| 有码 亚洲区| 国产高清不卡午夜福利| 男人狂女人下面高潮的视频| 久久精品综合一区二区三区| 欧美区成人在线视频| 久久久久久久大尺度免费视频| 国产高清国产精品国产三级 | 最近最新中文字幕免费大全7|