• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Simulation of Nonlinear Sloshing Waves in Three-dimensional Tank based on DBIEM

    2017-06-22 14:44:16GangMAXiaojianLIUYongtaoZHURenqing
    船舶力學(xué) 2017年6期
    關(guān)鍵詞:徐剛液艙工程學(xué)院

    Xü Gang,MA Xiao-jian,LIU Yong-tao,ZHU Ren-qing

    (School of Naval Architecture and Ocean Engineering,Jiangsu University of Science and Technology,Zhenjiang 212003,China)

    Numerical Simulation of Nonlinear Sloshing Waves in Three-dimensional Tank based on DBIEM

    Xü Gang,MA Xiao-jian,LIU Yong-tao,ZHU Ren-qing

    (School of Naval Architecture and Ocean Engineering,Jiangsu University of Science and Technology,Zhenjiang 212003,China)

    Based on the fully nonlinear velocity potential theory,the liquid sloshing in a three-dimensional tank is studied.The governing Laplace equation with fully nonlinear boundary conditions on the moving free surface is solved by using the indirect desingularized boundary integral equation method(DBIEM).The fourth-order predictor-corrector Adams-Bashforth-Moulton scheme(ABM4) and mixed Eulerian-Lagrangian(MEL)method are used for the time-stepping integration of the free surface boundary conditions.A smoothing scheme,B-spline curve,is applied to both the longitudinal and transverse directions of the tank to eliminate the possible saw-tooth instabilities.When the tank is undergoing horizontal regular motion of small amplitude,the calculated results are in very good agreement with linear analytical solution.

    sloshing waves;DBIEM;fully nonlinear

    0 Introduction

    Sloshing motions of liquid are associated with various engineering problems,such as liquid cargo in a LNG carrier,the liquid oscillations in large storage tanks caused by earthquakes, the motions of liquid fuel in aircraft and spacecraft,the liquid motions in containers and the water flow on the decks of ships.As the motion can become large or even violent when resonance occurs,the liquid load can cause structural damage on the container and/or lead to loss of stability of the liquid carrier such as a ship.

    Since sloshing has important implications in engineering,it has been extensively studied over the past years.Abramson[1]used a linear theory to simulate small amplitude sloshing in a container,Solaas and Faltinsen[2]employed a perturbation theory.Wu[3]considered the second-order resonance conditions in a rectangular tank.Firouz-Abadi et al[4]used BEM model to investigate second-order analysis of sloshing in tanks with arbitrary shapes under both horizontal and vertical excitations.For large amplitude sloshing,Faltinsen[5]adopted the boundaryelement method to simulate fluid motion in a 2D rectangular container subjected to a horizontal excitation.Cho and Lee[6]presented a non-linear finite element method for the simulation of large amplitude sloshing in a rectangular baffled tank,subjected to horizontal forced excitation.They performed parameter studies on the effects of the baffle on the non-linear liquid sloshing.Chen and Nokes[7]applied Navier-Stokes equations to study 2D sloshing motion (surge,heave and pitch)in a tank via coordinate transformation.Wu et al[8]used the finite element method(FEM)and analyzed 3D sloshing waves through the fully nonlinear velocity potential theory.Liu and Lin[9]used the spatially averaged Navier-Stokes equations to study 3D nonlinear liquid sloshing.Frandsen[10]conducted a series of numerical experiment in a 2D tank which is moved both horizontally and vertically via σ-coordinate transformation.Wu and Chen[11]used 3D finite difference method to solve the wave sloshing in a 3D tank excited by coupled surge and sway motions.For random sloshing,Wang and Khoo[12]adopted FEM and considered the 2D nonlinear sloshing problem in a tank under random excitation.Sriram et al[13]performed the finite element analysis of non-linear sloshing in a rectangular tank under both horizontal and vertical random excitations.

    In the present study,the desingularized boundary integral equation method(DBIEM)is selected for simulating 3D sloshing wave.The method has been successfully used previously in solving nonlinear water wave problems,such as in the work by Beck[14],Kim et al[15],Celebi[16], Kara et al[17]and Zhang et al[18].The main advantage of DBIEM,compared with FEM,lies in having only to discretize the surface of fluid domain.When the boundary of the fluid domain is confined and the number of the discretized elements is limited,the DBIEM may offer a better computational efficiency and less memory requirement,even its matrix is fully populated.Compared with the conventional BEM,The integral kernels of the DBIEM are no longer singular as the singularities are placed slightly outside the fluid domain.This is particularly advantageous when the direct differentiation is applied to the integral equation to obtain the velocity.

    In this study,we shall focus on the 3D sloshing problem in a rectangular tank.Similar problems have been considered by Wu et al[8]and Kara et al[17].Here the DBIEM is employed to solve the boundary value problem at each time step.The fourth-order predictor-corrector ABM4 scheme and mixed Eulerian-Lagrangian(MEL)method are used for the time-stepping integration of the free surface boundary conditions.Since wave breaking is not considered in this work,the position of the nodes on free surface is tracked by applying semi-Lagrangian approach(Zhang et al[19];Zhang et al[20];Khoo and Kim[21]),in which the nodes on free surface are allowed to move only in vertical direction,with the horizontal motion of the nodes on the free surface held fixed.This approach has the advantage of avoiding the task of re-gridding the free surface at each time step.For stable time-step simulation,a B-spline smoothing scheme is applied in both longitudinal and transverse directions of the tank to prevent saw-tooth instability,and the smoothing scheme is used at every three time steps.Numerical results obtained show that the present desingularized model is effective in the simulation for 3D sloshing waves.

    1 Mathematical formulation

    A Cartesian co-ordinate system oxyz is defined for 3D sloshing waves.The origin is at the centre of the undisturbed free surface,as shown in Fig.1.x and y are in the longitudinal and transverse directions of the rectangular tank,z points vertically upwards.

    Based on potential flow theory,the velocity potential φ in computational fluid domain D satisfies the Laplace equation:

    Fig.1 The co-ordinate system and the sloshing tank

    where U is the velocity of the tank and n is outward normal vector of the surfaces of the tank wall and bottom.

    On the instantaneous free surface ΓF,the dynamic and kinematic conditions can be written as:

    where t and g denote time and gravitational acceleration,respectively.The initial conditions may be expressed as

    2 Desingularized boundary integral equation method

    In this study,the indirect DBIEM is employed to solve the boundary value problem for the unknown velocity potential φ( x,y,z,t)at each time step.This method obtains the solution by distributing Rankine sources over a surface S outside the fluid domain D.This surface is at a small distance away from the corresponding real boundary of the fluid.The velocity potential in the fluid domain D can be written as follows:

    For the problem considered in this work,we construct the solution using a constantstrength source point within each element over the integration boundary SFand a constantstrength source point over the integration surface SW,where SFis the integration surface above the free surface ΓF,and SWis the integration surface outside the real boundary ΓWof the tank. That is

    By applying the boundary conditions,we obtain boundary integral equations for the unknown strength of the singularities,σF(q,t)and σW(q,t),respectively:

    In the desingularized method,the source distribution is outside the fluid domain so that the source points never coincide with the field points(control or collocation points)and therefore the integrals are non-singular.In addition,because of the desingularization,we can use simple isolated Rankine sources and obtain the equivalent accuracy.This greatly reduces the complexity of the form of the influence coefficients that make up the elements of the kernel matrix(Zhang et al[19]).Then the integral equations in Eq.(10)and Eq.(11)can be replaced by a discrete summation of N-isolated singularities located at a small distance away from the corresponding nodal point on the free surface and body,

    The desingularized distance between isolated source point and corresponding nodal point is given by

    where ldand β are constants and Dmis a measure of the local mesh size(typically the square root of the local mesh area).The accuracy and convergence of the solutions are sensitive to the choices of ldand β.Therefore,appropriate ldand β values need to be determined after numerical test.The recommended values are ld=0.5-1.0 and β=0.5.A detailed study with regard tothe performance of DBIEM with the desingularization parameters was reported by Cao et al22].

    Once the above integral equations using isolated Rankine source are solved at each time step,the fluid velocity in Eq.(3)and Eq.(4)can be calculated from direct derivatives,

    3 Time-stepping integration scheme

    In order to obtain the velocity potential and free surface elevation at each time step,the fourth-order predictor-corrector Adams-Bashforth-Moulton scheme(ABM4)and mixed Eulerian-Lagrangian(MEL)method are used.Integrating Eq.(3)and Eq.(4)by ABM4 and MEL is called time marching.Using the total derivative δ/δt=?/?t+v→·▽,the fully nonlinear free surface conditions can be modified as follows in Lagrangian frame,

    In the semi-Lagrangian approach,a time-stepping integration procedure must be employed to obtain the values of velocity potential and wave elevation on the instantaneous free surface.After solving the boundary value problem and obtaining the fluid velocity on the free surface at each time step,the free surface boundary conditions can be treated as ordinary differential equations to be marched in time.The general form of the dynamic and kinematic boundary conditions Eq.(18)and Eq.(19)can be rewritten as

    ABM4 scheme(Zhang et al[19])is selected for integrating Eq.(20)and Eq.(21)with time.It is a fourth-order predictor and corrector method which only requires two evaluations of the functions g( η,φ,t)and f( η,φ,t)at each time step.In the ABM4 scheme,the velocity potential and wave elevation are firstly predicted by Adams-Bashforth method as follows:

    and then these are iteratively corrected by Adams-Moulton algorithm,

    where△t is the time step.

    4 Linearised solution of wave elevation

    For the periodic oscillation,i.e.U=Aωsinωt,Wu[3]gave the linearized analytical solution for wave elevation η:

    where kn=nπ/L,L is the length of the tank.If only the motion of the tank in x direction will be considered,then

    If we further consider the problem with coupled surge and sway motions,i.e.Ux=Axωxsinωxt and Uy=Ayωysinωyt,the 3D linearized analytical solution of free surface elevation can be given as follows:

    where B is the breadth of the tank,

    It should be noted that the natural frequencies in the 3D cases are(Liu and Lin,2008):

    5 Numerical results and discussions

    5.1 One-directional periodic oscillation

    We first consider one directional periodic oscillation with

    Fig.2 Mesh on the surface of rectangular tank(lower),mesh on the free surface(upper)

    where ω is excitation frequency.

    In the study,the dimensions of the tank are chosen as L=1.0 m,B=0.5 m and h=0.5 m where L,B and h are the length,the width and the water depth,respectively.A typical initial mesh is illustrated in Fig.2.

    Fig.3 Comparison of free surface elevation at(-0.476 2 m,0,0)in an excited tank between the present fully nonlinear solution(red dotted line)and analytical solution(black line)

    Fig.4 Free surface profiles for ωx=0.999ω0x(t=2.5~25.0 s,interval is 5 s) due to one-directional motion

    5.2 Two-directional motions

    The case with the motions in both x direction and y direction has been considered.ωx= 0.5ω0x,ωy=0.5ω0yand ωx=0.9ω0x,ωy=0.9ω0yare chosen as excitation frequency,where ω0xand ω0yare the lowest frequency of fluid in the tank due to the x-directional and y-directional motion,respectively.Ax=Ay=0.01 m and Ax=Ay=0.000 5 m are chosen as amplitude in surge and sway modes,respectively.Fig.5 presents the time history of free surface elevation at (-0.476 2 m,-0.227 3 m,0).Comparison between analytical solution and numerical results shows that they are also in good agreement.Fig.6 shows the snapshots of the free surface pro-files between t=2.5 s and t=25.0 s,at the intervals equal to 2.5 s,for the case of ωx=0.9ω0x, ωy=0.9ω0yand Ax=Ay=0.000 5 m.

    Fig.5 Comparison of free surface elevation at(-0.476 2 m,-0.227 3 m,0)in an excited tank between the present fully nonlinear solution(red dotted line)and analytical solution(black line)

    Fig.6 Free surface profiles at different time(t=2.5~25.0 s,interval is 5 s)due to two-directional motions(ωx=0.9ω0x,ωy=0.9ω0y,Ax=Ay=0.000 5 m)

    5.3 Three-directional motions

    The case with the motions in x,y and z directions has been considered finally.ωx=0.5ω0x, ωy=0.5ω0y,ωz=0.5ω0xand ωx=0.9ω0x,ωy=0.9ω0y,ωz=0.9ω0xare chosen as excitation frequency,where Ax=Ay=Az=0.01 m and Ax=Ay=Az=0.000 5 m are chosen as amplitude in surge, sway and heave modes,respectively.Fig.7 presents the time history of free surface elevation at the four corners of the tank.

    Fig.7 Wave elevation history at four corners

    6 Conclusions

    In this paper,DBIEM coupled with MEL time marching scheme is applied to simulate sloshing waves in a 3D tank undergoing specified horizontal motion.The fourth-order predictor-corrector ABM4 scheme is used for the time-stepping integration of the free surface bound-ary conditions.The position of instantaneous free surface is tracked by applying semi-Lagrangian approach.The saw-tooth instability is overcome by applying B-spline smoothing scheme to both the longitudinal and transverse directions during the simulation.The model is validated by available linear theory and checking the conversation of fluid mass.All the numerical results agree fairly with the linear analytical solution for small amplitude cases.It is our interest in future works that the present model is extended to development of 3D sloshing wave in Liquefied Natural Gas Carrier.

    [1]Abramson H N.The dynamic behavior of liquid in moving containers[R].NASA Report,SP 106,1996.

    [2]Solaas F,Faltinsen O M.Combined numerical solution for sloshing in two-dimensional tanks of general shape[J].J Ship Res.,1997,41:118-129.

    [3]Wu G X.Second-order resonance of sloshing in a tank[J].Ocean Eng.,2007,34:2345-2349.

    [4]Firouz-Abadi R D,Ghasemi M,Haddadpour H.A modal approach to second-order analysis of sloshing using boundary element method[J].Ocean Eng.,2011,38:11-21.

    [5]Faltinsen O M.A numerical non-linear method of sloshing in tanks with two-dimensional flow[J].J Ship Res.,1978,22: 193-202.

    [6]Cho J R,Lee H W.Numerical study on liquid sloshing in baffled tank by nonlinear finite element method[J].Comput. Methods.Appl.Mech.Eng.,2004,193:2581-2598.

    [7]Chen Bang-Fuh,Nokes R.Time-independent finite difference analysis of fully non-linear and viscous fluid sloshing in a rectangular tank[J].J Comput.Phys.,2005,209:47-81.

    [8]Wu G X,Ma Q W,Eatock Taylor R.Numerical simulation of sloshing waves in a 3D tank based on a finite element method[J].Appl.Ocean Res.,1998,20:337-355.

    [9]Liu D M,Lin P Z.A numerical study of three-dimensional liquid sloshing in tanks[J].J Comput.Phys.,2008,227: 3921-3939.

    [10]Frandsen Jannette B.Sloshing motions in excited tanks[J].J Comput.Phys.,2004,196:53-87.

    [11]Wu Chih-Hua,Chen Bang-Fuh.Sloshing waves and resonance modes of fluid in a 3D tank by a time-independent finite difference method[J].Ocean Eng.,2009,36:500-510.

    [12]Wang C Z,Khoo B C.Finite element analysis of two-dimensional nonlinear sloshing problems in random excitations[J]. Ocean Eng.,2005,32:107-133.

    [13]Sriram V,Sannasiraj S A,Sundar V.Numerical simulation of 2D sloshing waves due to horizontal and vertical random excitation[J].Appl.Ocean Res.,2006,28:19-32.

    [14]Beck R F.Time-domain computations for floating bodies[J].Appl.Ocean Res.,1994,16:267-282.

    [15]Kim M H,Celebi M S,Kim D J.Fully nonlinear interactions of waves with a three-dimensional body in uniform currents[J].Appl.Ocean Res.,1998,20:309-321.

    [16]Celebi M S.Nonlinear transient wave-body interactions in steady uniform currents[J].Comput.Methods.Appl.Mech. Eng.,2001,190:5149-5172.

    [17]Kara F,Tang C H,Vassalors D.Time domain three-dimensional fully nonlinear computations of steady body-wave interaction problem[J].Ocean Eng.,2007,34:776-789.

    [18]Zhang X S,Bandyk P,Beck Robert F.Seakeeping computations using double-body basis flows[J].Appl.Ocean Res., 2010,32:471-482.

    [19]Zhang X T,Khoo B C,Lou J.Wave propagation in a fully nonlinear numerical wave tank:a desingularized method[J]. Ocean Eng.,2006,33:2310-2331.

    [20]Zhang X T,Khoo B C,Lou J.Application of desingularized approach to water wave propagation over three-dimensional topography[J].Ocean Eng.,2007,34:1449-1458.

    [21]Koo W C,Kim M H.Fully nonlinear wave-body interactions with surface-piercing bodies[J].Ocean Eng.,2007,34: 1000-1012.

    [22]Cao Y,Schultz W W,Beck R F.Three dimensional desingularized boundary integral methods for potential problems[J]. Int.J Numer.Methods.Fluids,1991,12:785-803.

    基于無奇異邊界元法模擬三維全非線性液艙晃蕩

    徐剛,馬小劍,劉永濤,朱仁慶
    (江蘇科技大學(xué)船舶與海洋工程學(xué)院,江蘇鎮(zhèn)江212003)

    文章基于全非線性勢流理論對三維液艙晃蕩進(jìn)行了數(shù)值模擬,其控制方程由無奇異邊界積分方程法(Desingularized Boundary Integral Equation Method,DBIEM)進(jìn)行離散求解,在求解全非線性的自由面微分方程時(shí),文中采用混合歐拉—拉格朗日法(Mixed Eulerian-Lagrangian,MEL)和四階Adams-Bashforth-Moulton(ABM4)預(yù)報(bào)—修正方法,為了避免結(jié)果發(fā)散即增強(qiáng)數(shù)值穩(wěn)定性,文中采用B樣條法來光順自由面。在微幅水平激勵(lì)下,該文中得到的結(jié)果與解析解吻合較好。

    聲輻射模態(tài);單層陣列;聲場分離技術(shù);近場聲全息

    O35

    :A

    國家自然科學(xué)基金資助(51309125,51409128,51379094,51179077);

    徐剛(1981-),男,博士,江蘇科技大學(xué)船舶與海洋工程學(xué)院副教授;

    O35

    :A

    10.3969/j.issn.1007-7294.2017.06.002

    1007-7294(2017)06-0661-11

    江蘇高校優(yōu)勢學(xué)科建設(shè)工程資助項(xiàng)目資助

    馬小劍(1982-),男,博士,江蘇科技大學(xué)船舶與海洋工程學(xué)院講師;

    date:2016-12-28

    Supported by the National Natural Science Foundation of China(Grant Nos.51309125, 51409128,51379094,51179077)and the Project Founded by Priority Academic Program Development of Jiangsu Higher Education Institutions

    Biography:XU Gang(1981-),male,Ph.D.associate prof.,E-mail:me_xug@qq.com;

    MA Xiao-jian(1982-),make,Ph.D.,lecturer.

    劉永濤(1977-),男,博士,江蘇科技大學(xué)船舶與海洋工程學(xué)院副教授;

    朱仁慶(1965-),男,博士,江蘇科技大學(xué)船舶與海洋工程學(xué)院教授。

    猜你喜歡
    徐剛液艙工程學(xué)院
    徐剛書法作品選登
    B型LNG液艙支座縱骨趾端處表面裂紋擴(kuò)展計(jì)算
    福建工程學(xué)院
    福建工程學(xué)院
    Universal quantum circuit evaluation on encrypted data using probabilistic quantum homomorphic encryption scheme*
    基于CFD的大型船舶液艙晃蕩研究
    福建工程學(xué)院
    福建工程學(xué)院
    冬夜
    考慮晃蕩效應(yīng)的獨(dú)立B型LNG液艙結(jié)構(gòu)多目標(biāo)優(yōu)化
    海洋工程(2016年2期)2016-10-12 05:08:07
    av专区在线播放| 人妻少妇偷人精品九色| 国产三级在线视频| 岛国毛片在线播放| 亚洲18禁久久av| 久久久精品94久久精品| 精品人妻熟女av久视频| 国产av麻豆久久久久久久| 日本黄色视频三级网站网址| 免费不卡的大黄色大毛片视频在线观看 | 精品日产1卡2卡| 国产激情偷乱视频一区二区| 午夜福利在线观看免费完整高清在 | 在线免费十八禁| 久久人妻av系列| 国产精品一区二区三区四区免费观看| 3wmmmm亚洲av在线观看| 亚洲国产精品成人综合色| 夜夜夜夜夜久久久久| a级一级毛片免费在线观看| 夜夜看夜夜爽夜夜摸| 亚洲欧洲国产日韩| 69av精品久久久久久| 成人鲁丝片一二三区免费| 国产午夜精品一二区理论片| 2022亚洲国产成人精品| 在线观看美女被高潮喷水网站| 51国产日韩欧美| 啦啦啦韩国在线观看视频| 全区人妻精品视频| 黄片wwwwww| 午夜亚洲福利在线播放| 亚洲久久久久久中文字幕| 熟妇人妻久久中文字幕3abv| 欧美bdsm另类| 能在线免费看毛片的网站| 九九爱精品视频在线观看| 亚洲欧美日韩东京热| 日韩欧美精品v在线| 99在线人妻在线中文字幕| 久久九九热精品免费| 精品人妻一区二区三区麻豆| 午夜福利在线观看免费完整高清在 | 69人妻影院| 国产精品麻豆人妻色哟哟久久 | 日本-黄色视频高清免费观看| 夫妻性生交免费视频一级片| 你懂的网址亚洲精品在线观看 | 色综合色国产| a级一级毛片免费在线观看| 天堂网av新在线| 成人欧美大片| 国产av麻豆久久久久久久| 亚洲精华国产精华液的使用体验 | 免费看美女性在线毛片视频| 91在线精品国自产拍蜜月| 少妇裸体淫交视频免费看高清| 青春草亚洲视频在线观看| 国产一区二区三区在线臀色熟女| 黄色视频,在线免费观看| 男女视频在线观看网站免费| 中国美女看黄片| 色视频www国产| 成人一区二区视频在线观看| av在线观看视频网站免费| 舔av片在线| 麻豆乱淫一区二区| 少妇高潮的动态图| 久久久久久久久大av| 亚洲va在线va天堂va国产| 国产又黄又爽又无遮挡在线| 悠悠久久av| 亚洲内射少妇av| 亚洲四区av| 国产精品麻豆人妻色哟哟久久 | 日本熟妇午夜| 99热网站在线观看| 欧美成人a在线观看| 亚洲第一电影网av| 国产免费一级a男人的天堂| 国产成人精品婷婷| 秋霞在线观看毛片| 久久精品国产亚洲av涩爱 | 观看免费一级毛片| 日本免费一区二区三区高清不卡| 一夜夜www| 国产精品蜜桃在线观看 | 超碰av人人做人人爽久久| 夜夜夜夜夜久久久久| 搞女人的毛片| 男女做爰动态图高潮gif福利片| 亚洲高清免费不卡视频| 日韩视频在线欧美| 2021天堂中文幕一二区在线观| 欧美一区二区亚洲| 99久久人妻综合| av福利片在线观看| 丰满乱子伦码专区| 99热这里只有精品一区| 亚洲一区二区三区色噜噜| 免费不卡的大黄色大毛片视频在线观看 | 国产亚洲av片在线观看秒播厂 | 久久这里只有精品中国| 国产黄a三级三级三级人| 欧美zozozo另类| a级毛色黄片| 99热精品在线国产| 久久鲁丝午夜福利片| av国产免费在线观看| 国产精品一区二区三区四区久久| 亚洲av一区综合| 自拍偷自拍亚洲精品老妇| 在线天堂最新版资源| 婷婷六月久久综合丁香| 国产一区二区亚洲精品在线观看| 欧美zozozo另类| 免费在线观看成人毛片| 直男gayav资源| kizo精华| 一级黄色大片毛片| 久久99精品国语久久久| 搡女人真爽免费视频火全软件| 中国国产av一级| 好男人视频免费观看在线| 亚洲欧美日韩高清专用| 精品久久久久久成人av| 一级毛片aaaaaa免费看小| 中文资源天堂在线| 久久久午夜欧美精品| 日韩欧美一区二区三区在线观看| 久久久精品94久久精品| 久久久色成人| 九九爱精品视频在线观看| 午夜免费男女啪啪视频观看| 国产午夜福利久久久久久| 久久精品久久久久久噜噜老黄 | 丰满乱子伦码专区| 亚洲aⅴ乱码一区二区在线播放| 国产老妇伦熟女老妇高清| 欧美极品一区二区三区四区| 日韩欧美在线乱码| 国产午夜福利久久久久久| 26uuu在线亚洲综合色| 观看美女的网站| 日韩亚洲欧美综合| 国产av一区在线观看免费| 看免费成人av毛片| 亚洲精品自拍成人| 亚洲美女视频黄频| 国产黄色小视频在线观看| 禁无遮挡网站| 午夜精品国产一区二区电影 | 免费在线观看成人毛片| 成人美女网站在线观看视频| 久久精品91蜜桃| 久久九九热精品免费| 狂野欧美白嫩少妇大欣赏| 最近手机中文字幕大全| a级毛色黄片| 国产成人a区在线观看| 一个人看视频在线观看www免费| 不卡视频在线观看欧美| 精品人妻偷拍中文字幕| 少妇人妻一区二区三区视频| 国产一区二区三区在线臀色熟女| 欧美性感艳星| 最近2019中文字幕mv第一页| 51国产日韩欧美| 国产探花在线观看一区二区| 一个人看的www免费观看视频| 欧美又色又爽又黄视频| 天堂√8在线中文| 久久午夜福利片| 成熟少妇高潮喷水视频| 国产激情偷乱视频一区二区| av福利片在线观看| 国产一区二区三区av在线 | 国产在视频线在精品| 91精品一卡2卡3卡4卡| 国产熟女欧美一区二区| 草草在线视频免费看| 久久精品影院6| 欧美xxxx黑人xx丫x性爽| 国产视频内射| 男女那种视频在线观看| 黄色一级大片看看| 又粗又爽又猛毛片免费看| 亚洲av免费在线观看| 日本免费a在线| 欧美xxxx性猛交bbbb| 99久久成人亚洲精品观看| 欧美最黄视频在线播放免费| 人妻制服诱惑在线中文字幕| 一进一出抽搐gif免费好疼| 黄片wwwwww| 五月玫瑰六月丁香| 亚洲国产精品成人综合色| 免费观看的影片在线观看| 美女高潮的动态| 观看免费一级毛片| 亚洲在久久综合| 亚洲av中文av极速乱| 深夜精品福利| 99国产精品一区二区蜜桃av| 在线免费十八禁| 亚洲人成网站高清观看| 国产精品1区2区在线观看.| 亚洲激情五月婷婷啪啪| 日韩制服骚丝袜av| 成人特级av手机在线观看| 亚洲婷婷狠狠爱综合网| 最近2019中文字幕mv第一页| 国内精品久久久久精免费| 色5月婷婷丁香| 色哟哟哟哟哟哟| 91麻豆精品激情在线观看国产| 男女视频在线观看网站免费| 国产人妻一区二区三区在| 久久精品国产鲁丝片午夜精品| 综合色丁香网| 乱系列少妇在线播放| 日韩高清综合在线| 毛片女人毛片| 一本一本综合久久| 精品99又大又爽又粗少妇毛片| 亚洲成av人片在线播放无| 欧美+亚洲+日韩+国产| 日本五十路高清| 亚洲精品日韩av片在线观看| 男人舔女人下体高潮全视频| 麻豆国产97在线/欧美| 日本免费a在线| 啦啦啦啦在线视频资源| 中文字幕人妻熟人妻熟丝袜美| 国产在线精品亚洲第一网站| 亚洲人成网站在线播放欧美日韩| 男人舔奶头视频| a级毛片a级免费在线| 亚洲精品国产av成人精品| 国产69精品久久久久777片| 亚洲图色成人| 两性午夜刺激爽爽歪歪视频在线观看| 2021天堂中文幕一二区在线观| 国产精品精品国产色婷婷| 亚洲婷婷狠狠爱综合网| 深爱激情五月婷婷| 国产成人aa在线观看| 国产av麻豆久久久久久久| 人人妻人人看人人澡| 18+在线观看网站| 少妇熟女aⅴ在线视频| 亚洲精品亚洲一区二区| 亚洲无线在线观看| 最近手机中文字幕大全| 国产探花在线观看一区二区| 欧美日韩一区二区视频在线观看视频在线 | 熟女电影av网| 久久久午夜欧美精品| 中国国产av一级| 美女高潮的动态| 久久久久久久久久久丰满| 99热这里只有是精品50| 亚洲在线自拍视频| 波多野结衣巨乳人妻| 免费av不卡在线播放| 波多野结衣高清作品| 性欧美人与动物交配| 国产精品1区2区在线观看.| 99热只有精品国产| 国模一区二区三区四区视频| 国产在视频线在精品| 99视频精品全部免费 在线| 亚洲欧洲国产日韩| 日日摸夜夜添夜夜爱| 久久精品国产99精品国产亚洲性色| 中文资源天堂在线| 22中文网久久字幕| 欧美精品国产亚洲| 午夜福利在线观看吧| 99久久人妻综合| 黄色一级大片看看| 在线观看一区二区三区| 日本一二三区视频观看| 婷婷精品国产亚洲av| 免费看美女性在线毛片视频| 日韩欧美在线乱码| a级毛片a级免费在线| 中文字幕久久专区| 日韩欧美三级三区| 国产又黄又爽又无遮挡在线| www.色视频.com| 男人狂女人下面高潮的视频| 国产av在哪里看| 亚洲国产色片| 亚洲一区二区三区色噜噜| 一区二区三区免费毛片| 免费av不卡在线播放| а√天堂www在线а√下载| 人人妻人人看人人澡| 中文精品一卡2卡3卡4更新| 高清在线视频一区二区三区 | 亚洲成人中文字幕在线播放| 青春草国产在线视频 | 日韩高清综合在线| 白带黄色成豆腐渣| 岛国在线免费视频观看| 国内精品一区二区在线观看| 岛国在线免费视频观看| 99精品在免费线老司机午夜| 村上凉子中文字幕在线| 亚洲七黄色美女视频| 男人和女人高潮做爰伦理| 亚洲av中文字字幕乱码综合| 精华霜和精华液先用哪个| 久久久久久久久久黄片| 亚洲熟妇中文字幕五十中出| 超碰av人人做人人爽久久| 日本欧美国产在线视频| 啦啦啦啦在线视频资源| 中文资源天堂在线| 日本-黄色视频高清免费观看| 欧美日韩精品成人综合77777| 少妇的逼好多水| 青春草亚洲视频在线观看| 成年免费大片在线观看| 国产乱人偷精品视频| 国产一级毛片七仙女欲春2| 天堂√8在线中文| 国产精品一区www在线观看| 18+在线观看网站| 五月伊人婷婷丁香| 嫩草影院入口| 日韩视频在线欧美| 国产极品天堂在线| 亚洲七黄色美女视频| 中文字幕制服av| 免费av不卡在线播放| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 观看美女的网站| 亚洲第一电影网av| 欧美精品一区二区大全| 综合色av麻豆| 蜜桃久久精品国产亚洲av| 1000部很黄的大片| 禁无遮挡网站| 亚洲一区高清亚洲精品| 国产乱人视频| 久久人人爽人人片av| 日韩av不卡免费在线播放| 人妻少妇偷人精品九色| 久久精品人妻少妇| 午夜激情福利司机影院| 波多野结衣高清无吗| 亚洲欧美中文字幕日韩二区| 一区二区三区高清视频在线| 国产麻豆成人av免费视频| 国内少妇人妻偷人精品xxx网站| 国产片特级美女逼逼视频| 国产一级毛片七仙女欲春2| 高清毛片免费观看视频网站| 国产一级毛片七仙女欲春2| 99久久精品国产国产毛片| 国产亚洲精品久久久久久毛片| 欧美xxxx黑人xx丫x性爽| 夫妻性生交免费视频一级片| 免费人成视频x8x8入口观看| 亚洲成人av在线免费| 成人无遮挡网站| 在线观看66精品国产| 性插视频无遮挡在线免费观看| 国产精品.久久久| а√天堂www在线а√下载| 不卡视频在线观看欧美| 国产成人a∨麻豆精品| 大香蕉久久网| 日韩欧美精品免费久久| 九九在线视频观看精品| 亚洲av免费高清在线观看| 不卡一级毛片| 国产麻豆成人av免费视频| 国产三级中文精品| 美女cb高潮喷水在线观看| 国产大屁股一区二区在线视频| 韩国av在线不卡| 特级一级黄色大片| 久久亚洲精品不卡| 国产69精品久久久久777片| 欧美三级亚洲精品| 激情 狠狠 欧美| 国产精品永久免费网站| 不卡一级毛片| 乱人视频在线观看| 99热这里只有精品一区| 一进一出抽搐gif免费好疼| 国产精品久久视频播放| 国产成人午夜福利电影在线观看| 久久精品国产亚洲av香蕉五月| 午夜爱爱视频在线播放| 欧美人与善性xxx| eeuss影院久久| 欧美色视频一区免费| 国产午夜精品论理片| 黑人高潮一二区| 成人鲁丝片一二三区免费| 悠悠久久av| 天天躁日日操中文字幕| 欧美高清成人免费视频www| 国产精品一及| 国产一级毛片在线| 日本-黄色视频高清免费观看| 久久6这里有精品| 看黄色毛片网站| 免费不卡的大黄色大毛片视频在线观看 | 欧美变态另类bdsm刘玥| 噜噜噜噜噜久久久久久91| 国产伦一二天堂av在线观看| 99久久无色码亚洲精品果冻| 久久精品91蜜桃| 国产淫片久久久久久久久| 天天躁夜夜躁狠狠久久av| 青春草国产在线视频 | 好男人在线观看高清免费视频| 国内精品美女久久久久久| 熟女人妻精品中文字幕| 国产精品无大码| 午夜精品国产一区二区电影 | 国产91av在线免费观看| 99久久中文字幕三级久久日本| 国产成人a区在线观看| 男女边吃奶边做爰视频| 欧美+日韩+精品| av在线播放精品| av福利片在线观看| 久久久久网色| 午夜福利在线在线| 99热这里只有精品一区| 国产高清视频在线观看网站| 18+在线观看网站| 国产黄片视频在线免费观看| 一级黄色大片毛片| 午夜爱爱视频在线播放| 国产真实伦视频高清在线观看| 成人亚洲精品av一区二区| 久久久成人免费电影| 黄色欧美视频在线观看| 成人特级av手机在线观看| 欧美人与善性xxx| 99久久无色码亚洲精品果冻| 日本黄大片高清| 少妇熟女欧美另类| eeuss影院久久| 国产亚洲av片在线观看秒播厂 | 亚洲av中文av极速乱| 久99久视频精品免费| 寂寞人妻少妇视频99o| 日韩,欧美,国产一区二区三区 | 欧美精品一区二区大全| 国产成人精品婷婷| av在线亚洲专区| 少妇猛男粗大的猛烈进出视频 | 99久国产av精品国产电影| 国产爱豆传媒在线观看| 干丝袜人妻中文字幕| 久久精品久久久久久噜噜老黄 | 国产免费一级a男人的天堂| 久久久久性生活片| 一区福利在线观看| 欧美最黄视频在线播放免费| 午夜亚洲福利在线播放| 九九在线视频观看精品| 一级黄片播放器| av免费观看日本| 中文在线观看免费www的网站| 亚洲18禁久久av| 国产亚洲精品av在线| 狠狠狠狠99中文字幕| 你懂的网址亚洲精品在线观看 | 欧美高清成人免费视频www| 99国产精品一区二区蜜桃av| 不卡一级毛片| 婷婷色av中文字幕| 在线免费观看的www视频| 国产午夜精品一二区理论片| 卡戴珊不雅视频在线播放| 国产老妇女一区| 一进一出抽搐动态| avwww免费| 久久久久久久亚洲中文字幕| 色综合站精品国产| 亚洲色图av天堂| 久久久国产成人免费| 欧美日韩在线观看h| 日本三级黄在线观看| 天堂√8在线中文| 亚洲在久久综合| 亚洲精品国产av成人精品| 两个人的视频大全免费| 人妻少妇偷人精品九色| 婷婷精品国产亚洲av| 久久久久久九九精品二区国产| 免费搜索国产男女视频| 国产成人一区二区在线| 欧美性猛交╳xxx乱大交人| 中国美白少妇内射xxxbb| 一边亲一边摸免费视频| 真实男女啪啪啪动态图| 99热网站在线观看| 亚洲天堂国产精品一区在线| 18禁黄网站禁片免费观看直播| 国产白丝娇喘喷水9色精品| 天美传媒精品一区二区| 久久亚洲国产成人精品v| 男女边吃奶边做爰视频| 国产日韩欧美在线精品| 丰满的人妻完整版| 国产精品久久久久久久久免| 深夜a级毛片| 久久99热6这里只有精品| 蜜臀久久99精品久久宅男| 51国产日韩欧美| 精品人妻偷拍中文字幕| 好男人在线观看高清免费视频| 成年女人看的毛片在线观看| 日本一二三区视频观看| 九九在线视频观看精品| 18禁在线无遮挡免费观看视频| 亚洲国产精品合色在线| 亚洲av免费高清在线观看| 亚洲成人精品中文字幕电影| 国产成人精品一,二区 | av在线亚洲专区| 一本久久中文字幕| 国产午夜精品久久久久久一区二区三区| 国产av一区在线观看免费| 久久久久久大精品| 女同久久另类99精品国产91| 久久99热6这里只有精品| 99久久中文字幕三级久久日本| 中文资源天堂在线| 免费观看的影片在线观看| 欧美日韩在线观看h| 亚洲人成网站高清观看| 国产精品爽爽va在线观看网站| 国产高清不卡午夜福利| 亚洲成a人片在线一区二区| 丰满人妻一区二区三区视频av| 国产伦在线观看视频一区| 国产亚洲精品久久久com| 国产真实伦视频高清在线观看| 亚洲在线自拍视频| 两个人视频免费观看高清| 91久久精品电影网| 蜜桃久久精品国产亚洲av| 丰满乱子伦码专区| 在线观看免费视频日本深夜| 啦啦啦啦在线视频资源| 国产精品一区二区三区四区久久| www.av在线官网国产| 1024手机看黄色片| 精品国产三级普通话版| 亚洲精华国产精华液的使用体验 | 亚洲精品久久久久久婷婷小说 | 久久久欧美国产精品| 一级毛片我不卡| 人人妻人人澡欧美一区二区| 久久人妻av系列| 精品免费久久久久久久清纯| 国产精品综合久久久久久久免费| 亚洲图色成人| 一级二级三级毛片免费看| 夜夜看夜夜爽夜夜摸| 极品教师在线视频| 精品久久国产蜜桃| 一级黄色大片毛片| 免费看av在线观看网站| 久久精品影院6| 国语自产精品视频在线第100页| 午夜激情福利司机影院| 99热只有精品国产| 欧美激情久久久久久爽电影| 热99re8久久精品国产| 久久久久久久久大av| 特级一级黄色大片| 成人性生交大片免费视频hd| 亚洲欧美成人综合另类久久久 | 中文欧美无线码| 最近最新中文字幕大全电影3| 日本爱情动作片www.在线观看| 欧美一区二区精品小视频在线| 久久精品国产鲁丝片午夜精品| 欧美一区二区亚洲| 一区二区三区高清视频在线| 国产av一区在线观看免费| 欧美日韩乱码在线| 日本免费一区二区三区高清不卡| 天堂影院成人在线观看| 日本爱情动作片www.在线观看| 日韩人妻高清精品专区| 99久久成人亚洲精品观看| 欧美日韩乱码在线| 日韩人妻高清精品专区| 国产亚洲av片在线观看秒播厂 | 久久这里只有精品中国| 久久久久免费精品人妻一区二区| 麻豆国产av国片精品| www.色视频.com| 不卡视频在线观看欧美| 久久精品夜色国产| 黑人高潮一二区| 久久久久久久久久久免费av| 日本黄色片子视频| 国产精品三级大全| 你懂的网址亚洲精品在线观看 | 日韩一区二区三区影片| 99热这里只有精品一区|