• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Path Planning of UAV by Combing Improved Ant Colony System and Dynamic Window Algorithm

    2023-12-28 08:49:50XUHaiqin徐海芹XINGHaoxiang邢浩翔LIUYang
    關(guān)鍵詞:徐海

    XU Haiqin(徐海芹), XING Haoxiang(邢浩翔), LIU Yang(劉 洋)

    College of Information Sciences and Technology, Donghua University, Shanghai 201620, China

    Abstract:A fusion algorithm is proposed to enhance the search speed of an ant colony system (ACS) for the global path planning and overcome the challenges of the local path planning in an unmanned aerial vehicle (UAV). The ACS search efficiency is enhanced by adopting a 16-direction 24-neighborhood search way, a safety grid search way, and an elite hybrid strategy to accelerate global convergence. Quadratic planning is performed using the moving average (MA) method. The fusion algorithm incorporates a dynamic window approach (DWA) to deal with the local path planning, sets a retracement mechanism, and adjusts the evaluation function accordingly. Experimental results in two environments demonstrate that the improved ant colony system (IACS) achieves superior planning efficiency. Additionally, the optimized dynamic window approach (ODWA) demonstrates its ability to handle multiple dynamic situations. Overall, the fusion optimization algorithm can accomplish the mixed path planning effectively.

    Key words:ant colony system(ACS); dynamic window approach (DWA); path planning; dynamic obstacle

    0 Introduction

    An unmanned aerial vehicle (UAV)[1]is a type of aerobat that can be controlled through telecommunication systems or artificial intelligence and is widely used in aerial images[2], electric patrol[3], and other fields[4]. Path planning[5]is an important research field of the UAV, and consists of the global path planning and the local path planning. Global path planning involves finding the optimal path in a static environment to reach the destination from the starting point. Guletal.[6]modified grey wolf optimization based on frequency to speed up the global search safely. Zhouetal.[7]dynamically adjusted the pheromone heuristic and heuristic function factors in the ant colony system (ACS) algorithm to avoid falling into local optimization.

    Local path planning[8]involves planning paths in real time to avoid dynamic obstacles in a local environment. Various algorithms are commonly used, including the D*algorithm[9], the dynamic window approach (DWA)[10], and others. Shietal.[11]improved a simulated annealing algorithm by introducing initial path selection and deletion operation for dynamic path planning. Hanetal.[12]achieved dynamic path planning of unmanned surface vehicles by carrying out global path planning based on non-uniform Theta*and dynamically selected DWA local target points. While these algorithms have been improved, they still have performance limitations in the mixed path planning which includes both global and local path planning. This paper proposes the fusion algorithm based on the improved ant colony system (IACS) and the optimized dynamic window approach (ODWA) to achieve the mixed path planning[13].

    The following sections are structured as follows. Section 1 provides an introduction to ACS, DWA, and the moving average (MA) method. Section 2 addresses the limitations of ACS and optimizes DWA to handle dynamic obstacles. Section 3 outlines the environment settings and algorithm flow. Section 4 showcases the evaluation metrics, experiments, and analyses. Finally, conclusions are given in section 5.

    1 Basic Algorithm

    1.1 ACS

    The concept of ACS[14]is inspired by the foraging behavior of ants and is applied in practical problem-solving research. Ants use a pseudo-random state transition strategy to select the next grid point:

    (1)

    (2)

    whereJdenotes a random value selected;qandq0refer to the probability and pre-defined probability threshold, respectively, andq0∈ [0,1];τijandηijindicate the amount of pheromone concentration and heuristic information from gridito gridj, withdijrepresenting the distance from gridito gridj, andηij= 1/dij;sis a grid not visited by ants;Cdenotes the set of possible next grid point sets that can be selected;αandβdenote the pheromone heuristic and heuristic function factor, respectively;pijdenotes the transition probability between two points whenqis greater thanq0.

    Updates the local pheromones ofτijwhen ants transition from gridito gridj:

    τij(t+1)=(1-ρL)τij(t)+ρLτ0.

    (3)

    Once all the ants have finished path exploration, the pheromone for the contemporary is updated:

    τij(t+1)=(1-ρG)τij(t)+ρGΔτij,

    (4)

    (5)

    whereτ0denotes the initial pheromone value ofτij;Qdenotes the pheromone enhancement coefficient;ρLandρGdenote the local and global pheromone volatilization rates;Lmsignifies the total length of the best path globally from the beginning of the run.

    1.2 DWA

    The central concept of DWA involves optimizing the speed within the dynamic window to find the best solution for the feasible region. This is achieved by assuming an extremely short interval Δt, where adjacent Δtmoves at a consistent speed, and defining the motion trajectory:

    (6)

    wherevxandvyrespectively represent the UAV horizontal and vertical velocities in a two-dimensional(2D) environment;ωis the angular velocity;θtdenotes the heading angle; DWA samples these parameters to determine the velocity space at the next moment. The constraints are categorized into three specific categories.

    Speed limit:

    vs={(v,w)|v∈[vmin,vmax],ω∈[ωmin,ωmax]},

    (7)

    wherevsis the speed limit range;vminandvmaxdenote the minimum and the maximum linear speeds, respectively;ωminandωmaxdenote the minimum and the maximum angular accelerations, respectively.

    Acceleration limit:

    (8)

    wherevddenotes the achievable speed range;avminandavmaxdenote the minimum and the maximum linear accelerations, respectively;aωminandaωmaxdenote the minimum and the maximum angular accelerations, respectively.

    Obstacle constraint:

    (9)

    wheredrepresents the distance between the robot and the nearest obstacle;avandaωare the accelerations for breakage, respectively;vais the set of velocities which allow the UAV to stop without colliding with an obstacle.

    vr=vs∩vd∩va.

    (10)

    Dynamic windows refer to sets of speedsvrthat meet the three constraints above. Any speed within the window can be selected.

    1.3 MA method

    The MA[15]method is used to smooth out the track. It involves replacing the original value with the average ofmadjacent data points for a sequence calledyk:

    (11)

    wherem= 2n+1;Nis the number of sequence points.

    2 Improved Algorithm

    This section discusses how ACS and DWA algorithms can be improved. The ACS algorithm involves adjusting the search and utilizing the elite hybrid strategy to update pheromones. Meanwhile, the DWA algorithm can be enhanced by implementing a retracement mechanism and adding a distance guidance subfunction into the evaluation function.

    2.1 IACS

    2.1.1Adjustsearchway

    Instead of exploration step-by-step, ants use the 16-direction 24-neighborhood search way[16]illustrated in Fig.1 to directly access any grid within the current red grid 24-neighborhood.

    Fig.1 Diagram of 16-direction 24-neighborhood search way

    In order to enhance search security, a rule has been established where four adjacent grids of one grid can be considered valid passing and subgoal points for ant colony exploration if they do not have any obstacles. These grids are marked as safety grids and are depicted as white in Fig.2. However, the four neighboring regions of the gray grid have obstacles and can only be used as valid passing points for path exploration.

    Fig.2 Safety grids

    Fig.3 Grid environment

    2.1.2Elitehybridstrategy

    During initialization of the pheromone, the grid map is contacted to decrease blind searching in the early stages.ρdenotes the pheromone volatilization factor that is dynamically adjusted, which reduces confused pheromone accumulation in the early stages:

    (12)

    whereGdenotes the current iteration number;Gmdenotes the maximum number of iterations.

    The ACS local update strategy has been abandoned to update only the optimal path of each generation globally.Lcis the contemporary optimal path.Lcis compared withLm(from section 1.1) to enhance the pheromones guidance to improve the algorithm’s search quality. This is called the elite hybrid strategies in pheromone operation:

    τij(t+1)=(1-ρ)τij(t)+Δτij+τe,

    (13)

    (14)

    where Δτijis the pheromone of the optimal historical path;τedenotes the elite mixed pheromone;η1andη2are the weighting factors.

    2.2 ODWA

    2.2.1Modifyevaluationfunction

    When DWA performs speed sampling, in order to solve the issue that returns to global path planning after finishing local planning, we have introduced a guide sub-functionL(v,ω) to improve position guidance and to calculate the distance between the current location and the local target point. The speed combination for the robot’s next positionG(v,ω) is defined by

    G(v,ω)=αH(v,ω)+βD(v,ω)+γV(v,ω)+ηL(v,ω),

    (15)

    H(v,ω)=180-θ,

    (16)

    (17)

    (18)

    whereH(v,ω),D(v,ω) andV(v,ω) are the subfunctions for the heading angle, distance from the nearest obstacle and velocity, respectively;α,β,γandηare the subfunction’s weights;θis the angle between the target and predicted position;dis the calculated length;dminanddmaxare the set length thresholds;sgandscdenote the current location and the local target point, respectively.

    2.2.2Addretracementmechanism

    The UAV activates the retracement mechanism when it encounters dynamic obstacles in an adjacent grid. The mechanism makes the UAV return to its previous position and resumes the local path planning while maintaining a safety margin.

    3 Algorithm Fusion

    3.1 Environment model

    Figure 3 displays the environment established through the grid method[17]. The white grid allows free movement, while the black and the red grids represent static and dynamic obstacles. The relationship between theith grid in the grid map and its corresponding 2D coordinates is

    (19)

    whereadenotes the grid length;Ndenotes the grid level;mod(·) is the complementary function;ceil(·) is the top integral function.

    3.2 Algorithm flow

    It is worth noting that ACS has certain limitations. It can only identify the best path in static environments, and handling dynamic obstacles is difficult. Fortunately, these limitations can be addressed through the use of DWA. The combination of IACS and ODWA enables the algorithm to respond autonomously to environment changes, efficiently avoiding static and dynamic obstacles. The fusion algorithm uses global path planning data to attain the local target point for ODWA. This results in a more effective mixed path planning approach towards the intended destination. A visual representation of the algorithm flow is shown in Fig.4.

    Fig.4 Algorithm flow chart

    Fig.5 Path planning of 40×40 grid map

    Fig.6 Convergence curve of 40×40 grid map

    Fig.7 Path planning of 100×100 grid map

    Fig.8 Convergence curve of 100×100 grid map

    4 Experiments and Numerical Analysis

    The simulation configuration used in this work was the following, Windows 10 64-bit, processor, Intel (R) Core (TM) i7-7700HQ, clocked 2.8 GHz, on-board RAM 8.00 GB, and simulation software Matlab R2021b.

    Experimental data are uniformly reserved to 2 digits after the decimal point. ACS algorithm parameters in the experiment are shown in Table 1, and kinematic parameters of DWA are shown in Table 2.

    Table 1 ACS algorithm parameters

    Table 2 Kinematic parameters of DWA

    (Table 2 continued)

    4.1 Performance analysis of IACS

    In 40×40 and 100×100 grid maps, IACS proposed in this paper, ACS, and the improved algorithm called MACA in Ref. [18] are compared and analyzed.

    4.1.1Experimentalsimulationin40×40gridmap

    The experimental results shown in Table 3 verify that IACS has better performance in terms of the convergence iteration (3 <5), path length (55.36 <57.50), and runtime (0.51 s< 1.10 s). It is shown in Figs.5 and 6 that the path of IACS is smoother and converges earlier.

    Table 3 Simulation data of 40×40 grid map

    4.1.2Experimentalsimulationin100×100gridmap

    From the experimental results shown in Table 4, it can be found that the proposed IACS has the highest efficiency. IACS generates the least path length (142.76 <150.55 <171.42), the smallest convergence iterations (8 <10 <25), and the shortest runtime (3.70 s <7.26 s <8.70 s). Path planning in a 100×100 grid map still converges swiftly, as shown in Figs.7 and 8.

    Table 4 Simulation data of 100×100 grid map

    IACS can obtain a safe and smooth optimization path in two different environments, better than ACS in terms of the convergence speed and the global search ability, achieving the expected goal of IACS.

    4.2 Performance analysis of ODWA

    ODWA uses a retracement mechanism to prevent issues in terms of potential deadlock situations. The specific process of the retracement mechanism is shown in Fig.9(b). The sign of grid colors in the map is shown in Table 5.

    PointAand pointCare the starting point and the dynamic obstacle for the local path planning, respectively. PointBis the waypoint for the local path planning.

    UAV starts local path planning from pointA, and when runs to pointB, and the fusion algorithm has detected a risk of collision at pointC. Currently, the fusion algorithm calls the retracement mechanism to make UAV withdraw from pointBto pointAand continue the local path planning.

    4.3 Dynamic obstacle avoidance analysis of the fusion algorithm

    The fusion algorithm’s global path planning and local path planning abilities for the mixed path planning are tested, and various dynamic obstacles are placed within a 20×20 grid map.

    The path planning task is accomplished by the fusion algorithm in a global path planning as shown in Fig.10. When faced with dynamic obstacles, the algorithm depends on IACS to gather navigation information and determine the start and the goal points for local planning. This results in a mixed path-planning approach as illustrated in Fig.11.

    Fig.10 Grid environment without dynamic obstacles

    Fig.11 Grid environment with two dynamic obstacles

    In Fig.12, the mixed path planning concrete process is displayed. The first stage involves global path planning carried out by IACS as shown in Fig.12(a). ODWA of the fusion algorithm is called, and responsible for the local path planning as shown in Figs. 12(b) and 12(c), which involves dodging dynamic obstacles and exploring the path. Once the local path planning is completed as shown in Fig.12(d), IACS is called upon to complete the global path planning for the second segment in the third stage, after which the task is finished.

    Fig.12 Mixed path planning process with three dynamic obstacles: (a) end of the first global path planning; (b) local path planning; (c) end of local path planning; (d) the second global path planning

    The fusion algorithm’s performance was tested 100 times under dynamic obstacle scenarios. The results of these operations are shown in Table 6.

    Based on Table 6, the fusion algorithm of IACS and ODWA, as proposed in this paper, can complete the mixed path planning in a mixed environment. However, the results also reveal that the success rate of the fusion algorithm decreases as the number of dynamic obstacles increases. This is due to the complexity of the environment where multiple dynamic obstacles move randomly simultaneously. The algorithm may cause errors in the judgment of multiple adjacent dynamic obstacles, sometimes resulting in algorithm planning failures.

    5 Conclusions

    This study presents the fusion algorithm that combines IACS and ODWA to address the inefficiency and difficulty of planning in a mixed environment. The algorithm includes a 16-direction 24-neighborhood search way and a safety grid to enhance the path search speed. Additionally, an elite hybrid strategy is introduced to boost global optimum. DWA is incorporated to tackle the inability of IACS in the local path planning. Two different environment experiments are conducted and the effectiveness of IACS is validated. Further, ODWA is tested in various dynamic obstacles. The experimental results confirm the effectiveness of the fusion algorithm in the mixed path planning.

    The fusion algorithm should be further improved, as its success rate in completing the mixed path planning needs to be 100%. When faced with complex dynamic environments, the algorithm may sometimes encounter a deadlock that cannot calculate the next safe position with the adjacent grid having multiple dynamic obstacles. It requires further investigation in future research to improve the fusion algorithm program for handling dynamic obstacles. Furthermore, expanding into three-dimensional space is an essential aspect of the fusion algorithm’s scope.

    猜你喜歡
    徐海
    Effects of plasma radiation on the nonlinear evolution of neo-classical tearing modes in tokamak plasmas
    鎮(zhèn)原啊 我的母親
    徐海根(徐海)藝術(shù)作品欣賞
    中美小學(xué)數(shù)學(xué)教材研究
    Asymmetric Features for Two Types of ENSO
    A Brief Study Of The Interactive-oriented Language Teaching
    A Brief Study Of The Interactiveoriented Language Teaching
    徐海:課堂內(nèi)外“柯南迷”
    徐海星:毫不費(fèi)勁減十斤
    優(yōu)雅(2014年8期)2014-08-12 07:37:18
    FDTD Simulations on Plasmonic Properties of End-to-End and Side-by-Side Assembled Au Nanorods*
    久久久久久久精品精品| 王馨瑶露胸无遮挡在线观看| 亚洲国产欧美日韩在线播放| 制服人妻中文乱码| 操美女的视频在线观看| 精品久久久久久久毛片微露脸 | 国产欧美亚洲国产| 久久久久国内视频| 国产精品欧美亚洲77777| 丝袜美足系列| 99久久人妻综合| 热99久久久久精品小说推荐| 色精品久久人妻99蜜桃| svipshipincom国产片| 亚洲成人手机| 黄色 视频免费看| 91麻豆精品激情在线观看国产 | 在线 av 中文字幕| videos熟女内射| 午夜免费观看性视频| 午夜福利免费观看在线| 亚洲人成电影免费在线| 高潮久久久久久久久久久不卡| 夫妻午夜视频| 日韩视频一区二区在线观看| 高清欧美精品videossex| 亚洲欧美成人综合另类久久久| 美女大奶头黄色视频| 国内毛片毛片毛片毛片毛片| 国产av精品麻豆| 国产av精品麻豆| 久久精品国产亚洲av高清一级| 美女主播在线视频| 淫妇啪啪啪对白视频 | 亚洲国产毛片av蜜桃av| 天堂中文最新版在线下载| 国产一区二区在线观看av| 久久青草综合色| 国产精品国产三级国产专区5o| 亚洲av成人不卡在线观看播放网 | 18禁国产床啪视频网站| 欧美久久黑人一区二区| 男人操女人黄网站| 成年人黄色毛片网站| 中文欧美无线码| 高清黄色对白视频在线免费看| 国产一区二区激情短视频 | 欧美精品一区二区大全| 亚洲av美国av| 欧美黑人欧美精品刺激| 日韩,欧美,国产一区二区三区| 国产又色又爽无遮挡免| 国产亚洲精品第一综合不卡| 777久久人妻少妇嫩草av网站| 亚洲国产欧美网| 黑人操中国人逼视频| 午夜福利影视在线免费观看| 咕卡用的链子| 午夜两性在线视频| 精品亚洲乱码少妇综合久久| 狠狠精品人妻久久久久久综合| 丝袜在线中文字幕| 91成人精品电影| 欧美97在线视频| 欧美午夜高清在线| 精品国产一区二区三区久久久樱花| 国产熟女午夜一区二区三区| 日本av手机在线免费观看| 亚洲国产欧美网| 韩国高清视频一区二区三区| 久久精品国产a三级三级三级| 免费黄频网站在线观看国产| 午夜福利视频在线观看免费| 精品一品国产午夜福利视频| 91精品三级在线观看| 满18在线观看网站| 热99re8久久精品国产| 高潮久久久久久久久久久不卡| 亚洲精品一卡2卡三卡4卡5卡 | 免费高清在线观看日韩| 在线观看免费午夜福利视频| 国产亚洲欧美精品永久| 日日夜夜操网爽| 午夜激情av网站| 不卡一级毛片| 国产精品久久久av美女十八| 欧美黑人欧美精品刺激| 在线看a的网站| 嫁个100分男人电影在线观看| 国产国语露脸激情在线看| 正在播放国产对白刺激| 亚洲国产成人一精品久久久| av有码第一页| 色综合欧美亚洲国产小说| 精品国产国语对白av| 下体分泌物呈黄色| 狠狠精品人妻久久久久久综合| 久久久久久久大尺度免费视频| 欧美97在线视频| 91精品三级在线观看| av超薄肉色丝袜交足视频| 人人妻人人澡人人看| 2018国产大陆天天弄谢| 亚洲精品久久午夜乱码| 久久久久久久国产电影| 成在线人永久免费视频| 亚洲国产中文字幕在线视频| 99精品久久久久人妻精品| 亚洲av电影在线观看一区二区三区| 一级a爱视频在线免费观看| 久久毛片免费看一区二区三区| 满18在线观看网站| 欧美少妇被猛烈插入视频| 亚洲国产欧美网| 性色av一级| 国产一区有黄有色的免费视频| 国产日韩欧美在线精品| 亚洲国产精品999| 99国产综合亚洲精品| 在线观看免费日韩欧美大片| 老司机福利观看| 在线十欧美十亚洲十日本专区| 欧美在线黄色| 丝袜人妻中文字幕| 午夜福利视频精品| 亚洲国产毛片av蜜桃av| 汤姆久久久久久久影院中文字幕| 亚洲精品久久午夜乱码| av线在线观看网站| 99国产精品一区二区蜜桃av | 日韩熟女老妇一区二区性免费视频| 王馨瑶露胸无遮挡在线观看| 中文字幕高清在线视频| 国产精品熟女久久久久浪| 水蜜桃什么品种好| 三上悠亚av全集在线观看| 午夜福利一区二区在线看| 欧美日韩亚洲综合一区二区三区_| 免费人妻精品一区二区三区视频| 成人国产av品久久久| 国产日韩一区二区三区精品不卡| 韩国高清视频一区二区三区| 亚洲av电影在线进入| 久久这里只有精品19| 国产亚洲精品一区二区www | 99国产精品99久久久久| 巨乳人妻的诱惑在线观看| 日本a在线网址| 亚洲国产中文字幕在线视频| 欧美成人午夜精品| 90打野战视频偷拍视频| 自拍欧美九色日韩亚洲蝌蚪91| 99久久99久久久精品蜜桃| 伊人久久大香线蕉亚洲五| 日韩熟女老妇一区二区性免费视频| 如日韩欧美国产精品一区二区三区| 中文字幕最新亚洲高清| 欧美亚洲日本最大视频资源| 国产精品自产拍在线观看55亚洲 | 男人添女人高潮全过程视频| www.999成人在线观看| 汤姆久久久久久久影院中文字幕| 国产精品欧美亚洲77777| 国产成人精品久久二区二区免费| 日韩 欧美 亚洲 中文字幕| 亚洲一区二区三区欧美精品| 啦啦啦在线免费观看视频4| 老熟妇仑乱视频hdxx| 黑丝袜美女国产一区| 国产男人的电影天堂91| 久热爱精品视频在线9| 99精品欧美一区二区三区四区| 中文字幕人妻丝袜制服| 伦理电影免费视频| 国产在线一区二区三区精| 色94色欧美一区二区| 亚洲欧美成人综合另类久久久| 国产免费视频播放在线视频| 久久久久久人人人人人| 亚洲性夜色夜夜综合| 精品久久蜜臀av无| 久久久久久久国产电影| 欧美xxⅹ黑人| av天堂久久9| 乱人伦中国视频| 欧美精品人与动牲交sv欧美| 午夜福利视频精品| 国产真人三级小视频在线观看| 久久精品成人免费网站| 国产成人a∨麻豆精品| 久久精品熟女亚洲av麻豆精品| 亚洲精品日韩在线中文字幕| 中文字幕av电影在线播放| 国产xxxxx性猛交| 亚洲天堂av无毛| 王馨瑶露胸无遮挡在线观看| 精品视频人人做人人爽| av福利片在线| 在线 av 中文字幕| 国产在线免费精品| 成人影院久久| 天天影视国产精品| 人人妻人人澡人人看| 欧美日韩精品网址| 99国产综合亚洲精品| 欧美大码av| 亚洲精品一区蜜桃| 大香蕉久久成人网| 老熟妇乱子伦视频在线观看 | 午夜成年电影在线免费观看| 精品亚洲乱码少妇综合久久| 久久精品亚洲av国产电影网| a 毛片基地| 十八禁网站网址无遮挡| 一级片'在线观看视频| 午夜两性在线视频| 欧美精品一区二区大全| 热re99久久国产66热| av欧美777| 三级毛片av免费| 狂野欧美激情性bbbbbb| 老司机影院毛片| 一级毛片电影观看| 精品人妻1区二区| 亚洲精品日韩在线中文字幕| 亚洲欧美清纯卡通| 日韩熟女老妇一区二区性免费视频| 最近最新中文字幕大全免费视频| 啦啦啦中文免费视频观看日本| tube8黄色片| 欧美亚洲 丝袜 人妻 在线| 久久国产亚洲av麻豆专区| av欧美777| 国产麻豆69| 亚洲精品成人av观看孕妇| 国产在线免费精品| 久久久久精品国产欧美久久久 | 国产成人影院久久av| 18禁国产床啪视频网站| 亚洲伊人久久精品综合| 国产精品1区2区在线观看. | 女人高潮潮喷娇喘18禁视频| 精品熟女少妇八av免费久了| 天堂俺去俺来也www色官网| 黑丝袜美女国产一区| 欧美久久黑人一区二区| h视频一区二区三区| 国产精品成人在线| av电影中文网址| 国产精品二区激情视频| 久久久久精品国产欧美久久久 | 久久久国产成人免费| 岛国在线观看网站| 国内毛片毛片毛片毛片毛片| 午夜日韩欧美国产| 国产伦理片在线播放av一区| 亚洲第一欧美日韩一区二区三区 | 国产亚洲精品第一综合不卡| 亚洲欧美成人综合另类久久久| 国产精品免费视频内射| 亚洲一码二码三码区别大吗| 国产成+人综合+亚洲专区| 国产一区二区三区综合在线观看| 久久久久精品国产欧美久久久 | 最黄视频免费看| 国产精品免费视频内射| 满18在线观看网站| 老司机深夜福利视频在线观看 | 国产在视频线精品| 日韩,欧美,国产一区二区三区| 中文精品一卡2卡3卡4更新| 蜜桃国产av成人99| 人成视频在线观看免费观看| 国产亚洲精品一区二区www | 蜜桃在线观看..| 成年女人毛片免费观看观看9 | 高潮久久久久久久久久久不卡| 日本欧美视频一区| 首页视频小说图片口味搜索| 十八禁高潮呻吟视频| 国产熟女午夜一区二区三区| 婷婷色av中文字幕| 大型av网站在线播放| 亚洲av片天天在线观看| 国产欧美亚洲国产| 国产精品一区二区免费欧美 | 国产精品一区二区免费欧美 | 黄色怎么调成土黄色| 午夜影院在线不卡| 桃花免费在线播放| 三上悠亚av全集在线观看| 一区二区三区精品91| 老司机深夜福利视频在线观看 | 老司机影院成人| 色94色欧美一区二区| 我的亚洲天堂| 亚洲av美国av| 欧美另类一区| 搡老岳熟女国产| 亚洲国产av新网站| 中文字幕制服av| 亚洲精华国产精华精| 中文字幕精品免费在线观看视频| 在线天堂中文资源库| 成人影院久久| 久久中文看片网| 日本猛色少妇xxxxx猛交久久| 成人国产一区最新在线观看| 免费在线观看黄色视频的| 性色av一级| 天天操日日干夜夜撸| 天天躁日日躁夜夜躁夜夜| 国产在线免费精品| 国产1区2区3区精品| 欧美黄色片欧美黄色片| 青春草亚洲视频在线观看| 国产精品麻豆人妻色哟哟久久| 久久香蕉激情| 老熟妇仑乱视频hdxx| 成年人黄色毛片网站| 午夜两性在线视频| 国产精品成人在线| 国产精品国产三级国产专区5o| 男女免费视频国产| 欧美性长视频在线观看| 国产av精品麻豆| 午夜日韩欧美国产| 国产成人精品在线电影| 欧美中文综合在线视频| 免费在线观看影片大全网站| 国产精品一区二区精品视频观看| 丝瓜视频免费看黄片| 免费观看人在逋| 午夜久久久在线观看| 亚洲三区欧美一区| 日本精品一区二区三区蜜桃| 免费不卡黄色视频| 丝袜脚勾引网站| 亚洲 欧美一区二区三区| 精品少妇内射三级| 国产成人系列免费观看| 欧美日韩成人在线一区二区| 91精品国产国语对白视频| 美女午夜性视频免费| 欧美亚洲 丝袜 人妻 在线| 一级毛片精品| 考比视频在线观看| 人人妻人人澡人人看| 国产精品1区2区在线观看. | 成人黄色视频免费在线看| 欧美精品啪啪一区二区三区 | 亚洲欧美日韩高清在线视频 | 日韩大码丰满熟妇| 一区二区三区激情视频| 麻豆国产av国片精品| 欧美日韩黄片免| 亚洲五月婷婷丁香| 国产精品久久久久久精品古装| 久久久久国内视频| 久久久久久免费高清国产稀缺| 亚洲精华国产精华精| 国产精品一区二区精品视频观看| 亚洲精品中文字幕一二三四区 | 国产精品麻豆人妻色哟哟久久| 国产一区二区在线观看av| 黑人巨大精品欧美一区二区蜜桃| 日韩有码中文字幕| 日韩制服丝袜自拍偷拍| 在线观看免费午夜福利视频| 99久久人妻综合| 99热国产这里只有精品6| 蜜桃国产av成人99| 久久精品久久久久久噜噜老黄| 黄网站色视频无遮挡免费观看| 一级,二级,三级黄色视频| a 毛片基地| 最近最新免费中文字幕在线| 秋霞在线观看毛片| 电影成人av| 高清欧美精品videossex| 一二三四社区在线视频社区8| 国产欧美日韩综合在线一区二区| 一级,二级,三级黄色视频| 精品国产乱子伦一区二区三区 | 超色免费av| 久久国产亚洲av麻豆专区| 欧美午夜高清在线| 日本一区二区免费在线视频| 欧美成人午夜精品| 男女下面插进去视频免费观看| 黄片大片在线免费观看| 精品国产国语对白av| 欧美午夜高清在线| 老司机福利观看| 91字幕亚洲| 最近最新免费中文字幕在线| av国产精品久久久久影院| 另类精品久久| 日本a在线网址| av在线播放精品| 男人添女人高潮全过程视频| 亚洲av欧美aⅴ国产| 亚洲九九香蕉| 欧美少妇被猛烈插入视频| 三上悠亚av全集在线观看| 国产黄色免费在线视频| 久久青草综合色| 国产精品麻豆人妻色哟哟久久| 欧美精品一区二区大全| 国产免费视频播放在线视频| 欧美变态另类bdsm刘玥| 黄色片一级片一级黄色片| 激情视频va一区二区三区| 亚洲七黄色美女视频| 一区二区三区四区激情视频| 欧美97在线视频| 国产极品粉嫩免费观看在线| 一区二区三区激情视频| 亚洲国产欧美一区二区综合| 国产成人av激情在线播放| 一本久久精品| 黄片小视频在线播放| 黑人猛操日本美女一级片| 精品人妻一区二区三区麻豆| 国产黄频视频在线观看| 热99国产精品久久久久久7| 美女高潮喷水抽搐中文字幕| av网站在线播放免费| 午夜免费成人在线视频| 青草久久国产| 黑人巨大精品欧美一区二区mp4| 日本一区二区免费在线视频| 国产成人免费无遮挡视频| 国产免费av片在线观看野外av| 日本wwww免费看| 欧美日韩黄片免| 久久精品亚洲av国产电影网| 侵犯人妻中文字幕一二三四区| 欧美日韩亚洲综合一区二区三区_| 在线观看免费高清a一片| 亚洲,欧美精品.| 成人影院久久| 国产伦理片在线播放av一区| 亚洲精品国产色婷婷电影| 国产精品香港三级国产av潘金莲| 亚洲第一欧美日韩一区二区三区 | 亚洲色图综合在线观看| 亚洲,欧美精品.| 久久ye,这里只有精品| 国产主播在线观看一区二区| 夫妻午夜视频| 无遮挡黄片免费观看| 亚洲伊人久久精品综合| 亚洲 国产 在线| 最黄视频免费看| 久久久久久久国产电影| 亚洲一卡2卡3卡4卡5卡精品中文| 韩国高清视频一区二区三区| 丝袜人妻中文字幕| 亚洲精品成人av观看孕妇| 啪啪无遮挡十八禁网站| 国产精品久久久久成人av| 中文字幕人妻丝袜制服| 咕卡用的链子| 欧美激情高清一区二区三区| 午夜91福利影院| 最近中文字幕2019免费版| 免费一级毛片在线播放高清视频 | 搡老岳熟女国产| 各种免费的搞黄视频| 12—13女人毛片做爰片一| 免费人妻精品一区二区三区视频| 九色亚洲精品在线播放| 亚洲av欧美aⅴ国产| 午夜日韩欧美国产| 国产在线免费精品| 国产av国产精品国产| 99re6热这里在线精品视频| 黑人猛操日本美女一级片| 国产免费av片在线观看野外av| 91麻豆av在线| avwww免费| 美女扒开内裤让男人捅视频| 亚洲国产看品久久| 最新在线观看一区二区三区| www.自偷自拍.com| 日本撒尿小便嘘嘘汇集6| 老熟女久久久| 黄色片一级片一级黄色片| 亚洲全国av大片| 美女主播在线视频| 少妇 在线观看| 永久免费av网站大全| 午夜91福利影院| 欧美日韩中文字幕国产精品一区二区三区 | 天堂8中文在线网| 久久亚洲精品不卡| 黑人猛操日本美女一级片| 日韩精品免费视频一区二区三区| 日本wwww免费看| 欧美 日韩 精品 国产| 黄片大片在线免费观看| 侵犯人妻中文字幕一二三四区| 欧美xxⅹ黑人| 中文字幕高清在线视频| 大香蕉久久网| 中文字幕av电影在线播放| 亚洲精品国产精品久久久不卡| 人人澡人人妻人| 1024香蕉在线观看| 亚洲国产精品一区三区| 欧美老熟妇乱子伦牲交| av一本久久久久| 国产主播在线观看一区二区| 欧美中文综合在线视频| 国产真人三级小视频在线观看| 欧美日韩视频精品一区| 99国产精品一区二区三区| 狠狠狠狠99中文字幕| 国产精品熟女久久久久浪| 国产精品av久久久久免费| 日日夜夜操网爽| 日韩熟女老妇一区二区性免费视频| 青青草视频在线视频观看| av视频免费观看在线观看| 国产人伦9x9x在线观看| 欧美老熟妇乱子伦牲交| 伦理电影免费视频| 久久中文看片网| 日本av手机在线免费观看| 午夜福利,免费看| 少妇猛男粗大的猛烈进出视频| 男女之事视频高清在线观看| 动漫黄色视频在线观看| 中文字幕色久视频| 日本精品一区二区三区蜜桃| 热99国产精品久久久久久7| 一区二区三区精品91| 每晚都被弄得嗷嗷叫到高潮| 亚洲avbb在线观看| 亚洲av日韩精品久久久久久密| 天天躁日日躁夜夜躁夜夜| 嫁个100分男人电影在线观看| 成年av动漫网址| 久久久精品94久久精品| 国产男女超爽视频在线观看| 狂野欧美激情性bbbbbb| 久久精品久久久久久噜噜老黄| 久久国产精品男人的天堂亚洲| 久久午夜综合久久蜜桃| a级片在线免费高清观看视频| 日日爽夜夜爽网站| 中亚洲国语对白在线视频| 伊人久久大香线蕉亚洲五| 欧美另类一区| 成人免费观看视频高清| 下体分泌物呈黄色| 在线观看免费午夜福利视频| 在线观看免费视频网站a站| 亚洲成人手机| 免费人妻精品一区二区三区视频| 日本五十路高清| www.熟女人妻精品国产| 久久国产精品大桥未久av| 国产精品一二三区在线看| 久久久久视频综合| 欧美激情 高清一区二区三区| 黑人操中国人逼视频| 国产精品偷伦视频观看了| 男女午夜视频在线观看| 人人澡人人妻人| 最近最新中文字幕大全免费视频| 国产无遮挡羞羞视频在线观看| 日韩大片免费观看网站| 欧美激情 高清一区二区三区| 天天躁日日躁夜夜躁夜夜| 欧美成狂野欧美在线观看| 亚洲第一av免费看| 在线观看免费高清a一片| av网站免费在线观看视频| 久久久久久久国产电影| 法律面前人人平等表现在哪些方面 | 最黄视频免费看| av视频免费观看在线观看| 人妻人人澡人人爽人人| 久9热在线精品视频| 80岁老熟妇乱子伦牲交| 中文字幕高清在线视频| 国产精品偷伦视频观看了| 一个人免费看片子| 久久青草综合色| 久久天躁狠狠躁夜夜2o2o| 免费黄频网站在线观看国产| 人人澡人人妻人| av网站免费在线观看视频| 久久人人97超碰香蕉20202| 中国国产av一级| 成年美女黄网站色视频大全免费| 国产精品久久久久久精品古装| 精品欧美一区二区三区在线| 美女高潮到喷水免费观看| 国产日韩欧美视频二区| 少妇的丰满在线观看| 女性生殖器流出的白浆| 午夜两性在线视频| 久久久国产一区二区| 亚洲精品美女久久av网站| 午夜激情av网站| 18禁裸乳无遮挡动漫免费视频| 十八禁网站免费在线| 国产精品免费视频内射| 国产成人欧美在线观看 | 欧美黑人精品巨大| 黑人操中国人逼视频| 国产熟女午夜一区二区三区|