• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Path Planning of UAV by Combing Improved Ant Colony System and Dynamic Window Algorithm

    2023-12-28 08:49:50XUHaiqin徐海芹XINGHaoxiang邢浩翔LIUYang
    關(guān)鍵詞:徐海

    XU Haiqin(徐海芹), XING Haoxiang(邢浩翔), LIU Yang(劉 洋)

    College of Information Sciences and Technology, Donghua University, Shanghai 201620, China

    Abstract:A fusion algorithm is proposed to enhance the search speed of an ant colony system (ACS) for the global path planning and overcome the challenges of the local path planning in an unmanned aerial vehicle (UAV). The ACS search efficiency is enhanced by adopting a 16-direction 24-neighborhood search way, a safety grid search way, and an elite hybrid strategy to accelerate global convergence. Quadratic planning is performed using the moving average (MA) method. The fusion algorithm incorporates a dynamic window approach (DWA) to deal with the local path planning, sets a retracement mechanism, and adjusts the evaluation function accordingly. Experimental results in two environments demonstrate that the improved ant colony system (IACS) achieves superior planning efficiency. Additionally, the optimized dynamic window approach (ODWA) demonstrates its ability to handle multiple dynamic situations. Overall, the fusion optimization algorithm can accomplish the mixed path planning effectively.

    Key words:ant colony system(ACS); dynamic window approach (DWA); path planning; dynamic obstacle

    0 Introduction

    An unmanned aerial vehicle (UAV)[1]is a type of aerobat that can be controlled through telecommunication systems or artificial intelligence and is widely used in aerial images[2], electric patrol[3], and other fields[4]. Path planning[5]is an important research field of the UAV, and consists of the global path planning and the local path planning. Global path planning involves finding the optimal path in a static environment to reach the destination from the starting point. Guletal.[6]modified grey wolf optimization based on frequency to speed up the global search safely. Zhouetal.[7]dynamically adjusted the pheromone heuristic and heuristic function factors in the ant colony system (ACS) algorithm to avoid falling into local optimization.

    Local path planning[8]involves planning paths in real time to avoid dynamic obstacles in a local environment. Various algorithms are commonly used, including the D*algorithm[9], the dynamic window approach (DWA)[10], and others. Shietal.[11]improved a simulated annealing algorithm by introducing initial path selection and deletion operation for dynamic path planning. Hanetal.[12]achieved dynamic path planning of unmanned surface vehicles by carrying out global path planning based on non-uniform Theta*and dynamically selected DWA local target points. While these algorithms have been improved, they still have performance limitations in the mixed path planning which includes both global and local path planning. This paper proposes the fusion algorithm based on the improved ant colony system (IACS) and the optimized dynamic window approach (ODWA) to achieve the mixed path planning[13].

    The following sections are structured as follows. Section 1 provides an introduction to ACS, DWA, and the moving average (MA) method. Section 2 addresses the limitations of ACS and optimizes DWA to handle dynamic obstacles. Section 3 outlines the environment settings and algorithm flow. Section 4 showcases the evaluation metrics, experiments, and analyses. Finally, conclusions are given in section 5.

    1 Basic Algorithm

    1.1 ACS

    The concept of ACS[14]is inspired by the foraging behavior of ants and is applied in practical problem-solving research. Ants use a pseudo-random state transition strategy to select the next grid point:

    (1)

    (2)

    whereJdenotes a random value selected;qandq0refer to the probability and pre-defined probability threshold, respectively, andq0∈ [0,1];τijandηijindicate the amount of pheromone concentration and heuristic information from gridito gridj, withdijrepresenting the distance from gridito gridj, andηij= 1/dij;sis a grid not visited by ants;Cdenotes the set of possible next grid point sets that can be selected;αandβdenote the pheromone heuristic and heuristic function factor, respectively;pijdenotes the transition probability between two points whenqis greater thanq0.

    Updates the local pheromones ofτijwhen ants transition from gridito gridj:

    τij(t+1)=(1-ρL)τij(t)+ρLτ0.

    (3)

    Once all the ants have finished path exploration, the pheromone for the contemporary is updated:

    τij(t+1)=(1-ρG)τij(t)+ρGΔτij,

    (4)

    (5)

    whereτ0denotes the initial pheromone value ofτij;Qdenotes the pheromone enhancement coefficient;ρLandρGdenote the local and global pheromone volatilization rates;Lmsignifies the total length of the best path globally from the beginning of the run.

    1.2 DWA

    The central concept of DWA involves optimizing the speed within the dynamic window to find the best solution for the feasible region. This is achieved by assuming an extremely short interval Δt, where adjacent Δtmoves at a consistent speed, and defining the motion trajectory:

    (6)

    wherevxandvyrespectively represent the UAV horizontal and vertical velocities in a two-dimensional(2D) environment;ωis the angular velocity;θtdenotes the heading angle; DWA samples these parameters to determine the velocity space at the next moment. The constraints are categorized into three specific categories.

    Speed limit:

    vs={(v,w)|v∈[vmin,vmax],ω∈[ωmin,ωmax]},

    (7)

    wherevsis the speed limit range;vminandvmaxdenote the minimum and the maximum linear speeds, respectively;ωminandωmaxdenote the minimum and the maximum angular accelerations, respectively.

    Acceleration limit:

    (8)

    wherevddenotes the achievable speed range;avminandavmaxdenote the minimum and the maximum linear accelerations, respectively;aωminandaωmaxdenote the minimum and the maximum angular accelerations, respectively.

    Obstacle constraint:

    (9)

    wheredrepresents the distance between the robot and the nearest obstacle;avandaωare the accelerations for breakage, respectively;vais the set of velocities which allow the UAV to stop without colliding with an obstacle.

    vr=vs∩vd∩va.

    (10)

    Dynamic windows refer to sets of speedsvrthat meet the three constraints above. Any speed within the window can be selected.

    1.3 MA method

    The MA[15]method is used to smooth out the track. It involves replacing the original value with the average ofmadjacent data points for a sequence calledyk:

    (11)

    wherem= 2n+1;Nis the number of sequence points.

    2 Improved Algorithm

    This section discusses how ACS and DWA algorithms can be improved. The ACS algorithm involves adjusting the search and utilizing the elite hybrid strategy to update pheromones. Meanwhile, the DWA algorithm can be enhanced by implementing a retracement mechanism and adding a distance guidance subfunction into the evaluation function.

    2.1 IACS

    2.1.1Adjustsearchway

    Instead of exploration step-by-step, ants use the 16-direction 24-neighborhood search way[16]illustrated in Fig.1 to directly access any grid within the current red grid 24-neighborhood.

    Fig.1 Diagram of 16-direction 24-neighborhood search way

    In order to enhance search security, a rule has been established where four adjacent grids of one grid can be considered valid passing and subgoal points for ant colony exploration if they do not have any obstacles. These grids are marked as safety grids and are depicted as white in Fig.2. However, the four neighboring regions of the gray grid have obstacles and can only be used as valid passing points for path exploration.

    Fig.2 Safety grids

    Fig.3 Grid environment

    2.1.2Elitehybridstrategy

    During initialization of the pheromone, the grid map is contacted to decrease blind searching in the early stages.ρdenotes the pheromone volatilization factor that is dynamically adjusted, which reduces confused pheromone accumulation in the early stages:

    (12)

    whereGdenotes the current iteration number;Gmdenotes the maximum number of iterations.

    The ACS local update strategy has been abandoned to update only the optimal path of each generation globally.Lcis the contemporary optimal path.Lcis compared withLm(from section 1.1) to enhance the pheromones guidance to improve the algorithm’s search quality. This is called the elite hybrid strategies in pheromone operation:

    τij(t+1)=(1-ρ)τij(t)+Δτij+τe,

    (13)

    (14)

    where Δτijis the pheromone of the optimal historical path;τedenotes the elite mixed pheromone;η1andη2are the weighting factors.

    2.2 ODWA

    2.2.1Modifyevaluationfunction

    When DWA performs speed sampling, in order to solve the issue that returns to global path planning after finishing local planning, we have introduced a guide sub-functionL(v,ω) to improve position guidance and to calculate the distance between the current location and the local target point. The speed combination for the robot’s next positionG(v,ω) is defined by

    G(v,ω)=αH(v,ω)+βD(v,ω)+γV(v,ω)+ηL(v,ω),

    (15)

    H(v,ω)=180-θ,

    (16)

    (17)

    (18)

    whereH(v,ω),D(v,ω) andV(v,ω) are the subfunctions for the heading angle, distance from the nearest obstacle and velocity, respectively;α,β,γandηare the subfunction’s weights;θis the angle between the target and predicted position;dis the calculated length;dminanddmaxare the set length thresholds;sgandscdenote the current location and the local target point, respectively.

    2.2.2Addretracementmechanism

    The UAV activates the retracement mechanism when it encounters dynamic obstacles in an adjacent grid. The mechanism makes the UAV return to its previous position and resumes the local path planning while maintaining a safety margin.

    3 Algorithm Fusion

    3.1 Environment model

    Figure 3 displays the environment established through the grid method[17]. The white grid allows free movement, while the black and the red grids represent static and dynamic obstacles. The relationship between theith grid in the grid map and its corresponding 2D coordinates is

    (19)

    whereadenotes the grid length;Ndenotes the grid level;mod(·) is the complementary function;ceil(·) is the top integral function.

    3.2 Algorithm flow

    It is worth noting that ACS has certain limitations. It can only identify the best path in static environments, and handling dynamic obstacles is difficult. Fortunately, these limitations can be addressed through the use of DWA. The combination of IACS and ODWA enables the algorithm to respond autonomously to environment changes, efficiently avoiding static and dynamic obstacles. The fusion algorithm uses global path planning data to attain the local target point for ODWA. This results in a more effective mixed path planning approach towards the intended destination. A visual representation of the algorithm flow is shown in Fig.4.

    Fig.4 Algorithm flow chart

    Fig.5 Path planning of 40×40 grid map

    Fig.6 Convergence curve of 40×40 grid map

    Fig.7 Path planning of 100×100 grid map

    Fig.8 Convergence curve of 100×100 grid map

    4 Experiments and Numerical Analysis

    The simulation configuration used in this work was the following, Windows 10 64-bit, processor, Intel (R) Core (TM) i7-7700HQ, clocked 2.8 GHz, on-board RAM 8.00 GB, and simulation software Matlab R2021b.

    Experimental data are uniformly reserved to 2 digits after the decimal point. ACS algorithm parameters in the experiment are shown in Table 1, and kinematic parameters of DWA are shown in Table 2.

    Table 1 ACS algorithm parameters

    Table 2 Kinematic parameters of DWA

    (Table 2 continued)

    4.1 Performance analysis of IACS

    In 40×40 and 100×100 grid maps, IACS proposed in this paper, ACS, and the improved algorithm called MACA in Ref. [18] are compared and analyzed.

    4.1.1Experimentalsimulationin40×40gridmap

    The experimental results shown in Table 3 verify that IACS has better performance in terms of the convergence iteration (3 <5), path length (55.36 <57.50), and runtime (0.51 s< 1.10 s). It is shown in Figs.5 and 6 that the path of IACS is smoother and converges earlier.

    Table 3 Simulation data of 40×40 grid map

    4.1.2Experimentalsimulationin100×100gridmap

    From the experimental results shown in Table 4, it can be found that the proposed IACS has the highest efficiency. IACS generates the least path length (142.76 <150.55 <171.42), the smallest convergence iterations (8 <10 <25), and the shortest runtime (3.70 s <7.26 s <8.70 s). Path planning in a 100×100 grid map still converges swiftly, as shown in Figs.7 and 8.

    Table 4 Simulation data of 100×100 grid map

    IACS can obtain a safe and smooth optimization path in two different environments, better than ACS in terms of the convergence speed and the global search ability, achieving the expected goal of IACS.

    4.2 Performance analysis of ODWA

    ODWA uses a retracement mechanism to prevent issues in terms of potential deadlock situations. The specific process of the retracement mechanism is shown in Fig.9(b). The sign of grid colors in the map is shown in Table 5.

    PointAand pointCare the starting point and the dynamic obstacle for the local path planning, respectively. PointBis the waypoint for the local path planning.

    UAV starts local path planning from pointA, and when runs to pointB, and the fusion algorithm has detected a risk of collision at pointC. Currently, the fusion algorithm calls the retracement mechanism to make UAV withdraw from pointBto pointAand continue the local path planning.

    4.3 Dynamic obstacle avoidance analysis of the fusion algorithm

    The fusion algorithm’s global path planning and local path planning abilities for the mixed path planning are tested, and various dynamic obstacles are placed within a 20×20 grid map.

    The path planning task is accomplished by the fusion algorithm in a global path planning as shown in Fig.10. When faced with dynamic obstacles, the algorithm depends on IACS to gather navigation information and determine the start and the goal points for local planning. This results in a mixed path-planning approach as illustrated in Fig.11.

    Fig.10 Grid environment without dynamic obstacles

    Fig.11 Grid environment with two dynamic obstacles

    In Fig.12, the mixed path planning concrete process is displayed. The first stage involves global path planning carried out by IACS as shown in Fig.12(a). ODWA of the fusion algorithm is called, and responsible for the local path planning as shown in Figs. 12(b) and 12(c), which involves dodging dynamic obstacles and exploring the path. Once the local path planning is completed as shown in Fig.12(d), IACS is called upon to complete the global path planning for the second segment in the third stage, after which the task is finished.

    Fig.12 Mixed path planning process with three dynamic obstacles: (a) end of the first global path planning; (b) local path planning; (c) end of local path planning; (d) the second global path planning

    The fusion algorithm’s performance was tested 100 times under dynamic obstacle scenarios. The results of these operations are shown in Table 6.

    Based on Table 6, the fusion algorithm of IACS and ODWA, as proposed in this paper, can complete the mixed path planning in a mixed environment. However, the results also reveal that the success rate of the fusion algorithm decreases as the number of dynamic obstacles increases. This is due to the complexity of the environment where multiple dynamic obstacles move randomly simultaneously. The algorithm may cause errors in the judgment of multiple adjacent dynamic obstacles, sometimes resulting in algorithm planning failures.

    5 Conclusions

    This study presents the fusion algorithm that combines IACS and ODWA to address the inefficiency and difficulty of planning in a mixed environment. The algorithm includes a 16-direction 24-neighborhood search way and a safety grid to enhance the path search speed. Additionally, an elite hybrid strategy is introduced to boost global optimum. DWA is incorporated to tackle the inability of IACS in the local path planning. Two different environment experiments are conducted and the effectiveness of IACS is validated. Further, ODWA is tested in various dynamic obstacles. The experimental results confirm the effectiveness of the fusion algorithm in the mixed path planning.

    The fusion algorithm should be further improved, as its success rate in completing the mixed path planning needs to be 100%. When faced with complex dynamic environments, the algorithm may sometimes encounter a deadlock that cannot calculate the next safe position with the adjacent grid having multiple dynamic obstacles. It requires further investigation in future research to improve the fusion algorithm program for handling dynamic obstacles. Furthermore, expanding into three-dimensional space is an essential aspect of the fusion algorithm’s scope.

    猜你喜歡
    徐海
    Effects of plasma radiation on the nonlinear evolution of neo-classical tearing modes in tokamak plasmas
    鎮(zhèn)原啊 我的母親
    徐海根(徐海)藝術(shù)作品欣賞
    中美小學(xué)數(shù)學(xué)教材研究
    Asymmetric Features for Two Types of ENSO
    A Brief Study Of The Interactive-oriented Language Teaching
    A Brief Study Of The Interactiveoriented Language Teaching
    徐海:課堂內(nèi)外“柯南迷”
    徐海星:毫不費(fèi)勁減十斤
    優(yōu)雅(2014年8期)2014-08-12 07:37:18
    FDTD Simulations on Plasmonic Properties of End-to-End and Side-by-Side Assembled Au Nanorods*
    自拍欧美九色日韩亚洲蝌蚪91 | 久久久久网色| 亚洲高清免费不卡视频| 免费观看无遮挡的男女| 日本爱情动作片www.在线观看| 免费大片18禁| 日本av手机在线免费观看| 久久精品久久精品一区二区三区| 国产综合精华液| 嫩草影院新地址| 久久韩国三级中文字幕| 久久6这里有精品| 国产黄片视频在线免费观看| 嫩草影院新地址| 亚洲高清免费不卡视频| 最后的刺客免费高清国语| 大片免费播放器 马上看| 性色avwww在线观看| 亚洲欧美清纯卡通| 日本欧美国产在线视频| 99久久精品国产国产毛片| 老司机影院成人| 亚洲人与动物交配视频| 韩国高清视频一区二区三区| 嘟嘟电影网在线观看| 亚洲美女搞黄在线观看| 国产日韩欧美亚洲二区| 真实男女啪啪啪动态图| 精品久久久噜噜| 成人欧美大片| 97超碰精品成人国产| 内射极品少妇av片p| 国产精品.久久久| 精品国产露脸久久av麻豆| 免费观看在线日韩| 男的添女的下面高潮视频| 2022亚洲国产成人精品| 国产精品偷伦视频观看了| 国产 一区精品| 精品久久久久久久久亚洲| 国产伦精品一区二区三区视频9| av免费在线看不卡| 中文精品一卡2卡3卡4更新| 欧美少妇被猛烈插入视频| 一级毛片久久久久久久久女| 欧美激情在线99| 精品久久久久久久末码| 毛片女人毛片| 亚洲精品第二区| 特大巨黑吊av在线直播| av在线app专区| 欧美97在线视频| 91精品一卡2卡3卡4卡| 亚洲欧美日韩东京热| 国产高清不卡午夜福利| 三级国产精品欧美在线观看| 国产乱人视频| 久久国产乱子免费精品| 亚洲国产av新网站| 亚洲国产欧美在线一区| 丰满乱子伦码专区| 少妇裸体淫交视频免费看高清| 色播亚洲综合网| 日本欧美国产在线视频| 韩国高清视频一区二区三区| 亚洲图色成人| 久久精品熟女亚洲av麻豆精品| av在线亚洲专区| 成人免费观看视频高清| 日本-黄色视频高清免费观看| 男人舔奶头视频| av国产免费在线观看| 一级毛片 在线播放| 国产成人精品婷婷| 成人漫画全彩无遮挡| 性插视频无遮挡在线免费观看| 高清欧美精品videossex| 男人舔奶头视频| 国产 一区精品| 亚洲精品乱久久久久久| 男女国产视频网站| 日本爱情动作片www.在线观看| 丰满少妇做爰视频| 国产成人aa在线观看| 国产精品久久久久久久久免| 涩涩av久久男人的天堂| a级一级毛片免费在线观看| 十八禁网站网址无遮挡 | 亚洲人与动物交配视频| 香蕉精品网在线| 真实男女啪啪啪动态图| 国产成人午夜福利电影在线观看| 国产精品.久久久| 日韩欧美 国产精品| 美女主播在线视频| 亚洲av免费在线观看| 超碰av人人做人人爽久久| 欧美xxxx黑人xx丫x性爽| 国产精品一区www在线观看| 亚洲精品中文字幕在线视频 | 亚洲真实伦在线观看| 亚洲欧美成人综合另类久久久| 最近最新中文字幕免费大全7| 综合色av麻豆| 亚洲精品影视一区二区三区av| 精品人妻熟女av久视频| 欧美日韩亚洲高清精品| 亚洲三级黄色毛片| 免费大片黄手机在线观看| 国产精品一区二区性色av| 国产 一区精品| 国产欧美另类精品又又久久亚洲欧美| 国产高清国产精品国产三级 | 禁无遮挡网站| 性色av一级| 日本一本二区三区精品| 国产伦理片在线播放av一区| 国产高清不卡午夜福利| 汤姆久久久久久久影院中文字幕| 国产精品av视频在线免费观看| 亚洲欧洲日产国产| 亚洲国产精品成人综合色| 精品人妻熟女av久视频| 内地一区二区视频在线| 国产伦精品一区二区三区四那| 三级经典国产精品| 精品人妻偷拍中文字幕| 在线观看一区二区三区| 国产国拍精品亚洲av在线观看| 最近中文字幕高清免费大全6| 亚洲最大成人手机在线| 欧美成人精品欧美一级黄| 午夜精品一区二区三区免费看| 免费看光身美女| 交换朋友夫妻互换小说| 国内揄拍国产精品人妻在线| a级毛片免费高清观看在线播放| 亚洲高清免费不卡视频| 国产视频内射| 在线观看人妻少妇| 国产探花极品一区二区| 午夜福利高清视频| 精品久久久久久电影网| 青春草亚洲视频在线观看| 国内精品宾馆在线| 国产91av在线免费观看| 日韩欧美一区视频在线观看 | 久久人人爽人人片av| 久久久a久久爽久久v久久| 成人高潮视频无遮挡免费网站| 中文天堂在线官网| 美女主播在线视频| 男女国产视频网站| 性色avwww在线观看| 国产精品伦人一区二区| 国产欧美日韩精品一区二区| 亚洲av二区三区四区| 日本与韩国留学比较| 五月玫瑰六月丁香| 亚洲欧美日韩卡通动漫| 少妇熟女欧美另类| 男女那种视频在线观看| 黄色配什么色好看| 亚洲精品日韩在线中文字幕| 18禁裸乳无遮挡动漫免费视频 | 内射极品少妇av片p| 午夜福利高清视频| 中国三级夫妇交换| 女人十人毛片免费观看3o分钟| 熟女人妻精品中文字幕| 又爽又黄a免费视频| 国产一区二区三区综合在线观看 | 久久精品国产亚洲av涩爱| 久久久久久九九精品二区国产| 亚洲美女视频黄频| 久久人人爽av亚洲精品天堂 | 国产精品久久久久久久久免| 赤兔流量卡办理| 永久网站在线| 少妇人妻久久综合中文| 国产黄片视频在线免费观看| 狂野欧美白嫩少妇大欣赏| 一级爰片在线观看| 人人妻人人澡人人爽人人夜夜| 国产精品精品国产色婷婷| 大香蕉97超碰在线| 蜜桃久久精品国产亚洲av| 国产成人一区二区在线| 国产女主播在线喷水免费视频网站| 久久精品久久久久久噜噜老黄| 国产精品精品国产色婷婷| 下体分泌物呈黄色| 久久久a久久爽久久v久久| 黄色日韩在线| 国产精品偷伦视频观看了| 男女边吃奶边做爰视频| 丰满少妇做爰视频| 熟妇人妻不卡中文字幕| 国产又色又爽无遮挡免| 欧美精品一区二区大全| 成人国产av品久久久| 欧美三级亚洲精品| 日本wwww免费看| 亚洲,一卡二卡三卡| 色视频www国产| 成人午夜精彩视频在线观看| 免费观看在线日韩| 国产成人91sexporn| 国产免费视频播放在线视频| 美女视频免费永久观看网站| kizo精华| 久久热精品热| 国产男人的电影天堂91| 能在线免费看毛片的网站| 国产爽快片一区二区三区| 日韩,欧美,国产一区二区三区| 亚洲欧美精品专区久久| 我要看日韩黄色一级片| 国产美女午夜福利| 成人综合一区亚洲| 一级毛片黄色毛片免费观看视频| 国产伦精品一区二区三区视频9| 日日摸夜夜添夜夜爱| 免费在线观看成人毛片| 人妻 亚洲 视频| 男的添女的下面高潮视频| 一级片'在线观看视频| 高清欧美精品videossex| 亚洲天堂国产精品一区在线| av福利片在线观看| 最新中文字幕久久久久| 最近中文字幕高清免费大全6| 女人被狂操c到高潮| 麻豆成人av视频| 街头女战士在线观看网站| 一级二级三级毛片免费看| 99热6这里只有精品| 久久久精品免费免费高清| 22中文网久久字幕| 有码 亚洲区| 亚洲欧美中文字幕日韩二区| 又黄又爽又刺激的免费视频.| 欧美区成人在线视频| 亚洲av.av天堂| 最后的刺客免费高清国语| 国产综合懂色| 波野结衣二区三区在线| 精品一区二区免费观看| 18禁在线无遮挡免费观看视频| 欧美成人午夜免费资源| 国产精品一区二区在线观看99| 亚洲美女视频黄频| 六月丁香七月| 伊人久久国产一区二区| 99视频精品全部免费 在线| 国产成人91sexporn| 18禁裸乳无遮挡免费网站照片| 亚洲精品一区蜜桃| 人体艺术视频欧美日本| 久久久久久伊人网av| 插阴视频在线观看视频| 国产亚洲av片在线观看秒播厂| 一级毛片黄色毛片免费观看视频| 一本色道久久久久久精品综合| 一本久久精品| 男女那种视频在线观看| 成人亚洲欧美一区二区av| 日韩大片免费观看网站| 热99国产精品久久久久久7| 大又大粗又爽又黄少妇毛片口| 22中文网久久字幕| 日韩强制内射视频| 超碰97精品在线观看| 国产欧美亚洲国产| 国产精品秋霞免费鲁丝片| 国语对白做爰xxxⅹ性视频网站| 99热这里只有是精品50| 亚洲av日韩在线播放| 国产一区二区亚洲精品在线观看| 亚洲欧美一区二区三区国产| 中文资源天堂在线| 久久国产乱子免费精品| 亚洲aⅴ乱码一区二区在线播放| av线在线观看网站| 日本-黄色视频高清免费观看| 高清av免费在线| 99热全是精品| 不卡视频在线观看欧美| 亚洲av成人精品一二三区| 好男人视频免费观看在线| 日本一本二区三区精品| 精品人妻偷拍中文字幕| 成人漫画全彩无遮挡| 亚洲av不卡在线观看| 大陆偷拍与自拍| 一边亲一边摸免费视频| 久久人人爽人人片av| 伊人久久精品亚洲午夜| 99久久精品热视频| 好男人在线观看高清免费视频| 精品久久久久久久人妻蜜臀av| 国产午夜精品久久久久久一区二区三区| 国产av国产精品国产| 伊人久久国产一区二区| 麻豆久久精品国产亚洲av| 噜噜噜噜噜久久久久久91| 欧美3d第一页| .国产精品久久| 久久人人爽人人爽人人片va| 一级黄片播放器| 精品酒店卫生间| 各种免费的搞黄视频| 麻豆乱淫一区二区| 高清视频免费观看一区二区| 视频区图区小说| 美女cb高潮喷水在线观看| 久久久精品免费免费高清| 深夜a级毛片| 一本久久精品| 波多野结衣巨乳人妻| 亚洲成人精品中文字幕电影| 在线观看免费高清a一片| tube8黄色片| 日韩一本色道免费dvd| 亚洲av一区综合| 别揉我奶头 嗯啊视频| 成年女人看的毛片在线观看| 97超视频在线观看视频| 黄色视频在线播放观看不卡| av专区在线播放| 我的老师免费观看完整版| 岛国毛片在线播放| 国产亚洲5aaaaa淫片| 亚洲av电影在线观看一区二区三区 | 视频中文字幕在线观看| 亚洲精品成人av观看孕妇| 黄色一级大片看看| 久久国产乱子免费精品| 国产免费一区二区三区四区乱码| 熟妇人妻不卡中文字幕| 欧美xxⅹ黑人| 国产男人的电影天堂91| 婷婷色综合www| av在线老鸭窝| 午夜福利在线观看免费完整高清在| av一本久久久久| 韩国av在线不卡| 人人妻人人澡人人爽人人夜夜| 国产一区二区在线观看日韩| 美女xxoo啪啪120秒动态图| 久久久久久久大尺度免费视频| 成人高潮视频无遮挡免费网站| 各种免费的搞黄视频| 国产亚洲av嫩草精品影院| kizo精华| 欧美亚洲 丝袜 人妻 在线| 午夜福利视频精品| 亚洲美女搞黄在线观看| 在线精品无人区一区二区三 | 联通29元200g的流量卡| 日本熟妇午夜| 精品人妻视频免费看| 又粗又硬又长又爽又黄的视频| 欧美3d第一页| 人妻一区二区av| 七月丁香在线播放| 毛片女人毛片| 国产成人一区二区在线| 亚洲精品日韩av片在线观看| 精品久久久久久久末码| 国产 一区 欧美 日韩| 亚洲真实伦在线观看| 狂野欧美激情性xxxx在线观看| 国产美女午夜福利| 九草在线视频观看| 99久久精品热视频| 51国产日韩欧美| 另类亚洲欧美激情| 又大又黄又爽视频免费| 卡戴珊不雅视频在线播放| 黄色欧美视频在线观看| 午夜福利高清视频| 国产黄a三级三级三级人| 美女视频免费永久观看网站| 国产精品一区二区三区四区免费观看| 国产成人免费观看mmmm| 男人爽女人下面视频在线观看| 亚洲欧美日韩东京热| 男女下面进入的视频免费午夜| 免费大片18禁| 又爽又黄a免费视频| .国产精品久久| 欧美另类一区| 成年免费大片在线观看| .国产精品久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久久久网色| 国产淫语在线视频| 国产免费一级a男人的天堂| 九色成人免费人妻av| 亚洲精品456在线播放app| 看十八女毛片水多多多| 国内精品美女久久久久久| 天美传媒精品一区二区| 日日啪夜夜爽| 日本与韩国留学比较| 少妇猛男粗大的猛烈进出视频 | 国产真实伦视频高清在线观看| 免费大片18禁| 成人亚洲精品av一区二区| 色5月婷婷丁香| 成人国产av品久久久| 精品久久国产蜜桃| av线在线观看网站| 国产免费福利视频在线观看| 视频中文字幕在线观看| av线在线观看网站| 日本与韩国留学比较| 国产av国产精品国产| 另类亚洲欧美激情| 少妇被粗大猛烈的视频| 熟女人妻精品中文字幕| 亚洲精华国产精华液的使用体验| 汤姆久久久久久久影院中文字幕| 美女cb高潮喷水在线观看| 午夜视频国产福利| 亚洲一级一片aⅴ在线观看| av女优亚洲男人天堂| 亚洲成色77777| 亚州av有码| 狠狠精品人妻久久久久久综合| 你懂的网址亚洲精品在线观看| 黄色怎么调成土黄色| 午夜精品国产一区二区电影 | 爱豆传媒免费全集在线观看| 五月天丁香电影| 夫妻性生交免费视频一级片| 亚洲国产欧美在线一区| 精品99又大又爽又粗少妇毛片| 亚洲第一区二区三区不卡| 啦啦啦中文免费视频观看日本| 亚洲图色成人| 国产 精品1| 91狼人影院| 精品久久久久久久久av| 亚洲精品中文字幕在线视频 | 99久久中文字幕三级久久日本| 91精品国产九色| 91久久精品电影网| 日韩成人av中文字幕在线观看| 丝瓜视频免费看黄片| 大香蕉久久网| 大片电影免费在线观看免费| 国产乱人偷精品视频| 久久久久久九九精品二区国产| 亚洲综合精品二区| 亚洲性久久影院| 久久久精品94久久精品| 国产精品伦人一区二区| 国产午夜精品一二区理论片| 日韩大片免费观看网站| 日本黄色片子视频| 久久热精品热| 国产成人免费无遮挡视频| 免费看不卡的av| 亚洲伊人久久精品综合| 特大巨黑吊av在线直播| 永久网站在线| 能在线免费看毛片的网站| 少妇的逼水好多| 一级片'在线观看视频| 大香蕉97超碰在线| 亚洲欧美成人精品一区二区| 国产黄a三级三级三级人| 香蕉精品网在线| 国产精品国产三级专区第一集| 亚洲高清免费不卡视频| 天天一区二区日本电影三级| 午夜激情久久久久久久| 免费黄频网站在线观看国产| 中文欧美无线码| 韩国av在线不卡| 黄色一级大片看看| 观看美女的网站| 欧美潮喷喷水| 国产男人的电影天堂91| 国产精品麻豆人妻色哟哟久久| av网站免费在线观看视频| 91精品伊人久久大香线蕉| 成人高潮视频无遮挡免费网站| 各种免费的搞黄视频| av在线app专区| 自拍偷自拍亚洲精品老妇| 中文乱码字字幕精品一区二区三区| 精品少妇黑人巨大在线播放| 国产亚洲最大av| 精品久久国产蜜桃| 男女无遮挡免费网站观看| 日韩一本色道免费dvd| 深爱激情五月婷婷| 久久亚洲国产成人精品v| 麻豆久久精品国产亚洲av| 免费av毛片视频| 中文字幕制服av| 亚洲av二区三区四区| 欧美zozozo另类| 欧美潮喷喷水| 少妇的逼好多水| 嘟嘟电影网在线观看| 国产精品无大码| 国产黄片视频在线免费观看| 高清视频免费观看一区二区| 中国三级夫妇交换| 国产综合懂色| 制服丝袜香蕉在线| 在线观看美女被高潮喷水网站| 中国美白少妇内射xxxbb| eeuss影院久久| 国产欧美日韩一区二区三区在线 | 麻豆乱淫一区二区| 波野结衣二区三区在线| 大片免费播放器 马上看| 色综合色国产| 一级毛片电影观看| 另类亚洲欧美激情| 国产欧美另类精品又又久久亚洲欧美| 在线观看人妻少妇| 亚洲成人中文字幕在线播放| 极品教师在线视频| 日韩欧美 国产精品| 亚洲四区av| 亚洲经典国产精华液单| 毛片一级片免费看久久久久| 日韩成人伦理影院| 欧美日韩视频高清一区二区三区二| 性色av一级| 永久免费av网站大全| 久久午夜福利片| 久久久久久久亚洲中文字幕| 久久久久精品久久久久真实原创| 亚洲不卡免费看| 久久久久久久久大av| 男人狂女人下面高潮的视频| 精华霜和精华液先用哪个| 午夜激情福利司机影院| 亚洲精品久久久久久婷婷小说| 久久午夜福利片| 国产有黄有色有爽视频| 亚洲aⅴ乱码一区二区在线播放| 国产精品.久久久| 久久人人爽av亚洲精品天堂 | 尤物成人国产欧美一区二区三区| 国产精品国产三级专区第一集| 天堂俺去俺来也www色官网| 1000部很黄的大片| 97精品久久久久久久久久精品| 高清午夜精品一区二区三区| 99久国产av精品国产电影| 九草在线视频观看| 嫩草影院入口| 精品少妇黑人巨大在线播放| 夫妻午夜视频| 亚洲性久久影院| 丝袜美腿在线中文| 在线精品无人区一区二区三 | 国产国拍精品亚洲av在线观看| 日本三级黄在线观看| 国产精品久久久久久精品电影| 国产精品久久久久久精品古装| 26uuu在线亚洲综合色| av线在线观看网站| 亚洲精品日韩av片在线观看| 午夜精品国产一区二区电影 | 国产熟女欧美一区二区| 日韩亚洲欧美综合| 亚洲一区二区三区欧美精品 | 伦理电影大哥的女人| 狂野欧美白嫩少妇大欣赏| 汤姆久久久久久久影院中文字幕| 嘟嘟电影网在线观看| 亚洲国产精品专区欧美| 中文字幕久久专区| 久久久精品欧美日韩精品| 十八禁网站网址无遮挡 | 亚洲在线观看片| 亚洲国产精品专区欧美| 国产成人精品一,二区| 国产精品福利在线免费观看| 18禁动态无遮挡网站| 国产成人91sexporn| 亚洲国产成人一精品久久久| 亚洲av.av天堂| 日日啪夜夜爽| 久久人人爽人人爽人人片va| 久久久久久久久久久丰满| 大码成人一级视频| 人妻 亚洲 视频| 亚洲欧洲日产国产| 在线精品无人区一区二区三 | 亚洲精品成人久久久久久| 99热这里只有精品一区| 亚洲欧美日韩无卡精品| 丝瓜视频免费看黄片| 日本色播在线视频| 又爽又黄a免费视频| 又粗又硬又长又爽又黄的视频| 亚洲在线观看片| 我要看日韩黄色一级片| 成年女人在线观看亚洲视频 | 毛片女人毛片| 日产精品乱码卡一卡2卡三| 成人亚洲精品av一区二区| 精品久久久久久久久亚洲| 日日啪夜夜爽| 亚洲精品成人久久久久久|