• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of plasma radiation on the nonlinear evolution of neo-classical tearing modes in tokamak plasmas

    2022-06-01 07:55:44ShuaiJIANG姜帥WeikangTANG湯煒康LaiWEI魏來(lái)TongLIU劉桐HaiwenXU徐海文andZhengxiongWANG王正洶
    Plasma Science and Technology 2022年5期
    關(guān)鍵詞:王正徐海

    Shuai JIANG (姜帥), Weikang TANG (湯煒康)Lai WEI (魏來(lái)),Tong LIU (劉桐), Haiwen XU (徐海文) and Zhengxiong WANG (王正洶)

    Key Laboratory of Materials Modification by Beams of the Ministry of Education, School of Physics,Dalian University of Technology, Dalian 116024, People’s Republic of China

    Abstract The effects of plasma radiation on the nonlinear evolution of neo-classical tearing modes are investigated based on a set of reduced magnetohydrodynamic equations.It is found that the radiation can reduce the pressure near the rational surface.During the nonlinear evolution, the magnitude of perturbed bootstrap current is drastically enhanced in the presence of the radiation.Besides, the radiation can increase the growth rate of the magnetic islands by diminishing the pressure,such that the magnetic islands do not saturate compared with that without radiation.On the other hand, with the increase of the ratio of parallel to perpendicular transport coefficientthe reduction of pressure can further increase the growth rate of magnetic islands in the presence of plasma radiation.Finally, the mechanisms of the destabilizing effects driven by the radiation are discussed in detail as well.

    Keywords: neo-classical tearing mode, radiation, MHD instability

    1.Introduction

    The macroscale magnetohydrodynamic (MHD) instabilities have been continually concerned to ensure steady-state operation in tokamak plasmas [1-10].The neoclassical tearing mode(NTM),one kind of MHD instabilities driven by the loss of bootstrap current inside the seeded magnetic islands,can greatly degrade the confinement and even lead to major disruptions [11-20].In the [13], it is indicated that (2, 1)NTM is potentially the most serious one as it always results in severe energy confinement degradation and can lead to disruptions.It is therefore significant to determine the scaling behavior for the(2,1)mode of NTMs in tokamak[4,12,13].On the other hand, the NTM has been observed in many experiment devices such as TFTR [14], ASDEX Upgrade[21] and DIII-D [22].These experiments have demonstrated that the NTM can affect the heat transport and equilibrium of plasma, reducing the confinement time of plasma energy in the nuclear fusion, which is extremely detrimental during the discharge[13,14,21-23].In short,the NTM is greatly prone to being produced and results in deleterious consequences.

    During tokamak discharge,plasma radiation is one of the most crucial mechanisms of plasma energy loss, and plays significant roles in the development of MHD instabilities[24, 25].In general, there are three principal types of radiation, namely the bremsstrahlung radiation, the electron cyclotron radiation and the impurity radiation[26-28].In the experiments, furthermore, the radial and poloidal evolutions of the impurity radiation are observed in JET.Then the mechanism on how the impurity radiation influences the MHD instabilities has been attempted [26].It is worth emphasizing that the heat flux generated by the auxiliary heating from the core plasmas is shielded by the magnetic islands, such that the heat flux of the auxiliary heating only flows outside the magnetic islands along the X-point [27].Consequently, the energy in the magnetic islands primarily depends on the Ohmic heating and the radiation cooling.In particular, some disruptions are the result of the plasma radiation, and hence the explorations on disruptions have been carried out [28, 29].Suttrop et al observed the current contraction phase beginning with the growth of (3,1)islands due to the cooling effect of the carbon impurity radiation at the high-q density limit in ASDEX Upgrade [30].Teng et al studied the thermal perturbations inside and outside magnetic islands and found that the large magnetic islands at the density limit can be induced by the impurity radiation [31, 32].However, it should be mentioned that the electron cyclotron radiation is not taken into account in the work of Teng et al[32].Perkins and Hulse analytically investigated the effect of the ratio of the radiated power to the Ohmic heating[33].The density limit disruptions caused by the impurity radiation are practically coincident with the current decay at the safety factorq=2 in JET[26].A radiation-drivenm=2 magnetic island near the density limit is observed in EAST, and anm=1 sideband mode is also driven in the meanwhile,which brings about an internal crash appearing as a large change of the temperature [34].Them=2 magnetic island grows so that the whole cross section is gradually filled and eventually the disruption event occurs [35].A numerical simulation of the radiation driven tearing modes is conducted by using the 3D toroidal geometry MHD code CLT [24].It is found that the width of the magnetic islands increased over 20% of the minor radius (disruption scale).Generally, the plasma radiation, as one of the most important energy loss mechanisms,can destabilize the MHD instabilities and critically destroy the long pulse discharge of tokamak.Despite that the radiation effects have been extensively investigated,it remains a crucial concern in tokamak to understand the roles of radiation effects on the NTMs.

    In this work, we study the radiation effects during the nonlinear evolution of NTMs with different bootstrap current proportions by using a reduced MHD model.It is clearly demonstrated that with increasing the plasma radiation, the pressure is reduced and then perturbation of pressure near the rational surface is increased.At the same time, the radiation can increase the width of magnetic islands and furthermore greatly destroy the quasi-steady-state of tokamak operation.In section 2, the modeling equations are introduced.The results of numerical simulations are presented and the relevant physical mechanisms are discussed in section 3.1.Furthermore, section 3.2 shows the effects of the ratio of transport coefficientsunder the plasma radiation.Finally, a summary of these relevant conclusions in this paper and the prospect of the next work are presented.

    2.Modeling equations

    The nonlinear evolution of the NTMs with the existence of radiation, is investigated by reduced MHD equations in the cylindrical geometry(r,θ,z) .The normalized three-field equations, including the equation of the vorticity field, the equation of the magnetic flux and the equation of the pressure,are as follows:

    withR0being the major radius of the tokamak.

    In the last term in equation(3)Pradis the radiation power density, including the bremsstrahlung radiationPband the electron cyclotron radiationPc.By using the Born approximation, the bremsstrahlung radiation and the electron cyclotron radiation are expressed as follows [36]

    Figure 1.(a) Initial equilibrium pressure profile, (b) safety factor q profile.

    whereWb,Wc,ni,ne,B,Tare the power loss of the bremsstrahlung radiation and the electron cyclotron radiation,ion densities (including background ions and impurities),electron densities, the normalized magnetic field and the temperature, respectively.In the case of more than one ion species, ionic charge is written asTherefore, the larger the charge number of impurities is, the greater proportion of the bremsstrahlung is.Here, the conversion relationship between the temperature T and the pressure p is p =nkT,wherek is the Boltzmann constant.

    It can be measured that certain kinds of impurities are produced in tokamak edge during the discharge.Impurity radiation is one of the main energy sources of the radiation cooling and mainly originated from the magnetic islands[26].Obviously, the impurity accumulation at O-point of the magnetic islands is the maximal,while it is the minimal at the boundary.Thus, it is assumed that the impurity is Gaussian distribution in the magnetic islands [24]:

    wherenim, nim0andψminare the impurity density, the impurity density at the O-point in magnetic islands and magnetic flux at O-point of magnetic islands,respectively.In this work, the radiation of O-point of the magnetic islands is calculated through equations (6)-(8), and then it is assumed that the radiation in the magnetic islands is Gaussian distribution:

    where Prad0is the radiation at the O-point in magnetic islands.(r0, χ0)is the center of the Gaussian distribution.Δrdis the half deposition width in the radial direction andΔχis the half deposition width in the helical angle direction during this model.In fact,we make two assumptions in the model:one is that the densities of impurities present the Gaussian distribution in the magnetic island, and another is that the radiation distribution in the magnetic island also presents Gaussian distribution.Since the impurity radiation is dominant in all radiation,the distribution of radiation in the whole space is basically Gaussian distribution according to the first assumption, which is the reason for making the second hypothesis.If the radiation distribution is truncated around the magnetic island, numerical instability will appear in the calculation.Therefore,we can only take out the real radiation value of O-point in the magnetic island, and then reverse the approximate Gaussian distribution in the magnetic island through equation (9).

    Equations(1)-(3)can be solved by an initial value code:MDC (MHD @ Dalian Code) [11, 15-19].The two-step predictor-corrector method is applied in the time advancement.To solve these equations(1)-(3),two different methods are used in different directions.In the radial direction, the finite difference method is employed, while the pseudospectral method is used for the poloidal and the toroidal directions.The initial pressure and safety factor q profiles are chosen as

    and the plasma rotation is considered by setting

    Up to now,it has been planned to choose tungsten as the upper and lower divertor materials of EAST [37, 38].In the future tokamak,moreover,tungsten will be selected as the first wall material in ITER [39], and then tungsten impurities must inevitably be produced during the sputtering process.Therefore,tungsten is necessarily studied as the source of the impurity radiation in this work.

    Figure 2.Typical contours of (a) magnetic flux att = 50 τA,(b) radiation att = 50 τA,(c) magnetic flux att = 170 τA,(d) radiation at t =170τ Awith fb =0.3.

    3.Numerical results

    3.1.Effects of radiation

    In this section, the effects of the plasma radiation on the NTMs are discussed.Particularly, tungsten is chosen as the main source of the impurity radiation and we take nim0= 10-4neto calculate the effects of the impurity radiation.As shown in figure 2, the radiation only appears inside the magnetic islands,which is consistent with that mentioned in[27].It is prerequisite that the spatial scale of the radiation region expands correspondingly with the growth of the magnetic islands.Furthermore, the radiation region rotates along with the plasma rotation.Accordingly, MDC can ensure that the radiation is consistent with the change of magnetic islands, as shown in figures 2(b) and (d).

    The typical contour plots of the plasma pressure with and without radiation are shown in figure 3.It can be observed that, in the presence of radiation, the pressure reduces drastically inside the magnetic islands and presents a concave structure,which can be observed obviously at325 τA.Besides,the pressure in the core region significantly decays at325Aτ with the plasma radiation.Obviously, the pressure on the resonant surface with radiation is smaller than that without radiation because the radiation cooling can lead to the energy loss near the rational surface.Moreover, it can also be seen qualitatively from the equation (3) that the presence of the radiation can reduce the pressure, and the transformation of the pressure depends on the spatial scale of the radiation cooling.Consequently, the plasma radiation has a significant effect on the evolution of the pressure,decreasing the pressure nearby the rational surface domain substantially.

    The eigenmode structures of m /n = 2 / 1 for the perturbation of pressure with fb= 0.3at t =245τAare shown in figure 4, where m andn are the poloidal mode number and toroidal mode number, respectively.It is found that in the presence of the radiation,the amplitude of the perturbation of pressure with m /n = 2 /1on the rational surface is larger than that without radiation.Moreover, as shown in figure 5, the magnitude of the bootstrap current perturbation inside the magnetic islands is enhanced due to the radiation, which indicates that the total perturbation of current increases.In other words, the plasma radiation can increase the perturbation of pressure inside the magnetic islands,and thus increase the perturbation of bootstrap current, resulting in the enhancement of instabilities.

    Figure 3.Typical contours of pressure with fb = 0.3att = 325 τA:(a) without radiation, (b) with radiation.

    Figure 4.The eigenmode structures of m /n = 2 /1 for the perturbation of pressure with fb = 0.3att =245τ Awith/without radiation.

    The temporal evolution of the magnetic island width of differentfbvalues with and without radiation is shown in figure 6.For the case without radiation, the raise of the bootstrap current perturbation leads to the increase of the magnetic island growth rate, and the width of saturated magnetic islands also increases.Furthermore, the larger the bootstrap current fraction is, the earlier the magnetic island width reaches saturation.However,with the plasma radiation,the magnetic islands keep growing in the nonlinear phase and do not saturate which indicates that the NTM instability can be further promoted by the plasma radiation.As shown in figure 5, the perturbation of bootstrap current inside the magnetic islands increases, which promotes a gradual increase of the magnetic island width under the action of plasma radiation.Therefore, it is found that the radiation can keep destabilizing the NTMs through increasing the magnetic island width in tokamak plasmas.

    The above numerical simulation results show that the plasma radiation can destabilize the NTMs.In addition, such a result can be further explained by the theoretical analysis.White et al modified the Rutherford equation comprehensively in [40]:

    wherewandrsare the width of the magnetic islands and the position of rational surface in the radial direction, respectively.Δ′(w),andare the classical effects, the current perturbation effects caused by neo-classical or other current perturbation effects, the island asymmetry effect,respectively.Here

    wherewFis the Fitzpatrick’s critical island width.The bracket indicates integrating over the island interior, andδj1is the perturbation of current.As a result, the raise of the perturbation of bootstrap current,leading to the enhancement of the closed integral of current perturbation over the magnetic islands, can increase the growth rate of the magnetic islands and then broaden the width of the magnetic islands.

    3.2.Effects of χ‖ /χ⊥with radiation

    Figure 5.Typical contours of m /n = 2 /1for the perturbation of bootstrap current with fb = 0.3att = 325 τA:(a)without radiation,(b)with radiation.

    Figure 6.Temporal evolution of magnetic island width under fb = 0.1,0.2 and 0.3 with/without radiation.

    Figure 7.Temporal evolution of magnetic island width with= 2 ×10 6,5 × 106and 1 × 107at fb = 0.3with/without radiation.

    Figure 8.The eigenmode structures of m /n = 2 /1 for the perturbation of pressure= 2 ×10 6,5 × 106and 1 × 107at fb = 0.3,t =250τ A with radiation.

    This section presents the influence of the heat transport coefficients on the NTMs with the plasma radiation.There is no doubt that the energy confinement time in tokamak is inversely proportional to the heat transport coefficients, so it is significantly important in the field of magnetic confinement to further understand the physical mechanism of the heat transport coefficients in the presence of the plasma radiation.It can be found that the growth rate of the magnetic islands decreases with the decline of the ratioin figure 7 whether there is radiation or not.For the case without radiation,the raise of the ratiocan lead to the growth of the magnetic islands and eventually the width of magnetic islands tends to saturate.However, the magnetic islands do not saturate due to the existence of the radiation,but keep in a growing state.As shown in figure 8, the magnitude of eigenmode structures for the perturbation of pressure increases with the increase of the ratioby taking= 2 ×106,5 × 106and 1 × 107atfb= 0.3in the presence of the plasma radiation.Furthermore, the influence of the parallel thermal transport termon the NTMs is destabilizing, whereas that of perpendicular termis opposite, as indicated in equation(3).As seen from figures 7 and 8, when the ratio of parallel to perpendicular transport coefficient,is large, the pressure inside the magnetic islands is lower than that outside the magnetic islands,which causes the increase of pressure perturbation and then the incessant growth of the magnetic islands.Accordingly,simulations show that the presence of the radiation can still enhance the destabilizing effects of the increase ofon NTMs.

    4.Summary and discussions

    The numerical results reported in this work reveal the effects of the radiation on the NTMs, based on a set of reduced MHD equations.The main results can be summarized as follows.First of all, the plasma radiation can reduce the pressure near the rational surface,resulting in the increase of the perturbation of pressure inside the magnetic islands, such that the plasma pressure forms a concave structure.Particularly, the effects of radiation can lead to the increase of the perturbation of bootstrap current inside the magnetic islands, so that the magnetic islands do not saturate and keep growing.In addition, the perturbation of pressure can also be enhanced and then the magnetic islands are destabilized by increasing the ratio ofin the presence of the plasma radiation.Consequently, the effects of plasma radiation can greatly destabilize the NTMs.In experiments, the electron cyclotron current drive (ECCD)can compensate the loss of the bootstrap current thus it is usually used to suppress the NTM islands.When the effects of plasma radiation on NTMs are taken into account, the effectiveness of ECCD may be weakened.These effects will be investigated in our future work.

    Acknowledgments

    The authors thank Dr Huishan CAI for stimulating discussions on this work.This work is supported by the National Magnetic Confinement Fusion Energy R&D Program of China (Nos.2019YFE03090300 and 2017YFE0301100), National Natural Science Foundation of China (Nos.11925501 and 12075048),the Fundamental Research Funds for the Central Universities(Nos.DUT21GJ204 and DUT21LK28).

    ORCID iDs

    猜你喜歡
    王正徐海
    Path Planning of UAV by Combing Improved Ant Colony System and Dynamic Window Algorithm
    Effects of plasma radiation on the nonlinear evolution of neo-classical tearing modes in tokamak plasmas with reversed magnetic shear
    Analysis of anomalous transport based on radial fractional diffusion equation
    A brief review: effects of resonant magnetic perturbation on classical and neoclassical tearing modes in tokamaks
    Interaction between energetic-ions and internal kink modes in a weak shear tokamak plasma
    Machine learning of turbulent transport in fusion plasmas with neural network
    金昌浩、王正油畫(huà)作品選
    徐海根(徐海)藝術(shù)作品欣賞
    Asymmetric Features for Two Types of ENSO
    A Brief Study Of The Interactive-oriented Language Teaching
    久久久久久伊人网av| 天美传媒精品一区二区| 久久人人爽人人片av| 久热久热在线精品观看| 久久亚洲国产成人精品v| 国产av码专区亚洲av| 国产免费一级a男人的天堂| 色婷婷av一区二区三区视频| 嫩草影院入口| 国产深夜福利视频在线观看| 久久国产精品大桥未久av| 成人手机av| 搡女人真爽免费视频火全软件| 18禁观看日本| 国产日韩欧美亚洲二区| 久久这里有精品视频免费| 伊人久久精品亚洲午夜| 日本免费在线观看一区| 永久免费av网站大全| 国产一区二区三区av在线| 一级毛片 在线播放| 亚洲欧洲精品一区二区精品久久久 | 91精品三级在线观看| 熟女电影av网| 久久免费观看电影| 3wmmmm亚洲av在线观看| 美女国产视频在线观看| 亚洲精品乱久久久久久| 一级,二级,三级黄色视频| 日韩伦理黄色片| 七月丁香在线播放| 黑人高潮一二区| 在线观看三级黄色| 激情五月婷婷亚洲| 啦啦啦视频在线资源免费观看| 丝袜美足系列| 亚洲精品日本国产第一区| 亚洲精品成人av观看孕妇| 嘟嘟电影网在线观看| 老女人水多毛片| 97超碰精品成人国产| 亚洲精品美女久久av网站| 在线天堂最新版资源| 一级,二级,三级黄色视频| 久久精品国产自在天天线| 日韩中文字幕视频在线看片| 91久久精品国产一区二区三区| 亚洲精品国产色婷婷电影| 亚洲精品av麻豆狂野| 日韩亚洲欧美综合| 99热全是精品| 如何舔出高潮| 亚洲精品中文字幕在线视频| 亚洲少妇的诱惑av| 国产日韩欧美在线精品| 国产毛片在线视频| 黑丝袜美女国产一区| 纵有疾风起免费观看全集完整版| 国产精品国产三级专区第一集| 亚洲一级一片aⅴ在线观看| 黑人欧美特级aaaaaa片| 亚洲,一卡二卡三卡| 中文字幕精品免费在线观看视频 | 在线 av 中文字幕| 亚洲成人一二三区av| 中文字幕制服av| 青春草视频在线免费观看| 日韩成人伦理影院| 波野结衣二区三区在线| 91午夜精品亚洲一区二区三区| 少妇人妻 视频| 日本猛色少妇xxxxx猛交久久| 91在线精品国自产拍蜜月| 高清欧美精品videossex| 久久精品国产亚洲网站| 十八禁高潮呻吟视频| 在线播放无遮挡| 九九在线视频观看精品| 欧美精品人与动牲交sv欧美| 视频在线观看一区二区三区| 五月伊人婷婷丁香| 91久久精品国产一区二区三区| 热re99久久国产66热| a级毛片黄视频| 嘟嘟电影网在线观看| 午夜免费观看性视频| 波野结衣二区三区在线| 国产精品偷伦视频观看了| 18禁裸乳无遮挡动漫免费视频| 国产精品免费大片| 一区二区三区四区激情视频| 色婷婷久久久亚洲欧美| 少妇 在线观看| 国产亚洲精品第一综合不卡 | 日韩一区二区视频免费看| 欧美人与善性xxx| 大话2 男鬼变身卡| 视频区图区小说| 亚洲综合色网址| 天堂8中文在线网| 成人无遮挡网站| 久久人人爽人人片av| 久久久久久久久久久丰满| 精品一区二区三卡| www.av在线官网国产| 国产av精品麻豆| freevideosex欧美| 99热网站在线观看| 男女高潮啪啪啪动态图| 免费观看性生交大片5| 97精品久久久久久久久久精品| 国产色爽女视频免费观看| 国产精品不卡视频一区二区| 狠狠婷婷综合久久久久久88av| 成人手机av| 亚洲内射少妇av| 91精品伊人久久大香线蕉| 少妇人妻精品综合一区二区| 乱码一卡2卡4卡精品| a级毛片黄视频| 久久精品国产鲁丝片午夜精品| kizo精华| 日本黄大片高清| 亚洲欧洲国产日韩| 国产亚洲最大av| 日本欧美国产在线视频| 国产爽快片一区二区三区| 国产精品不卡视频一区二区| 欧美精品人与动牲交sv欧美| 精品一区二区免费观看| 色视频在线一区二区三区| 亚洲欧美日韩另类电影网站| 免费少妇av软件| 日韩熟女老妇一区二区性免费视频| 高清黄色对白视频在线免费看| 菩萨蛮人人尽说江南好唐韦庄| 青青草视频在线视频观看| 中文乱码字字幕精品一区二区三区| 久热久热在线精品观看| 久久亚洲国产成人精品v| 精品人妻偷拍中文字幕| 亚洲欧洲国产日韩| 色视频在线一区二区三区| 亚洲欧美一区二区三区国产| 精品一区二区三卡| 狠狠婷婷综合久久久久久88av| 人成视频在线观看免费观看| 又大又黄又爽视频免费| 丰满迷人的少妇在线观看| 日韩 亚洲 欧美在线| 久久久久久久久久久丰满| 五月开心婷婷网| 91国产中文字幕| 91久久精品国产一区二区三区| 99久国产av精品国产电影| av在线app专区| 老司机影院毛片| 成人手机av| 男女高潮啪啪啪动态图| 曰老女人黄片| 蜜桃久久精品国产亚洲av| 亚洲精品一二三| 国产成人精品无人区| 久久久久久久久大av| 久久精品久久精品一区二区三区| 麻豆精品久久久久久蜜桃| 精品视频人人做人人爽| 高清午夜精品一区二区三区| 婷婷色综合大香蕉| av一本久久久久| 最近的中文字幕免费完整| 夜夜爽夜夜爽视频| 免费观看av网站的网址| 国产极品粉嫩免费观看在线 | 国产欧美日韩一区二区三区在线 | 久久综合国产亚洲精品| 99热全是精品| 国产不卡av网站在线观看| 亚洲精品亚洲一区二区| 伦理电影免费视频| 国产在视频线精品| 九九爱精品视频在线观看| 欧美老熟妇乱子伦牲交| 美女大奶头黄色视频| 亚洲国产欧美在线一区| 亚洲高清免费不卡视频| 狠狠精品人妻久久久久久综合| 伦精品一区二区三区| 视频在线观看一区二区三区| √禁漫天堂资源中文www| 亚洲国产色片| 久久久久久久亚洲中文字幕| 久久国产精品大桥未久av| 亚洲国产av新网站| 黄色毛片三级朝国网站| 美女中出高潮动态图| 男的添女的下面高潮视频| xxxhd国产人妻xxx| 久久这里有精品视频免费| 成人手机av| 国产高清有码在线观看视频| 热re99久久精品国产66热6| 国产淫语在线视频| 免费观看av网站的网址| 免费av中文字幕在线| 国产精品嫩草影院av在线观看| 男女无遮挡免费网站观看| 亚洲精品自拍成人| 桃花免费在线播放| 男男h啪啪无遮挡| 秋霞在线观看毛片| 日韩一区二区视频免费看| 高清黄色对白视频在线免费看| 亚州av有码| 国产亚洲精品久久久com| 又黄又爽又刺激的免费视频.| 欧美日韩一区二区视频在线观看视频在线| 精品一区二区免费观看| 日日摸夜夜添夜夜爱| 国产爽快片一区二区三区| 国产免费现黄频在线看| 成人国产麻豆网| 国产精品久久久久久av不卡| 如何舔出高潮| 2022亚洲国产成人精品| 在线 av 中文字幕| 国产有黄有色有爽视频| 国精品久久久久久国模美| 青春草视频在线免费观看| 国产极品粉嫩免费观看在线 | 九九在线视频观看精品| 精品少妇久久久久久888优播| 亚洲av成人精品一区久久| 亚洲色图 男人天堂 中文字幕 | 亚洲av综合色区一区| 男女免费视频国产| av电影中文网址| 人人妻人人爽人人添夜夜欢视频| 日韩三级伦理在线观看| 自线自在国产av| av网站免费在线观看视频| 亚洲色图综合在线观看| kizo精华| 国国产精品蜜臀av免费| 亚洲av成人精品一区久久| 少妇被粗大猛烈的视频| 99热这里只有是精品在线观看| 日本-黄色视频高清免费观看| av在线观看视频网站免费| 777米奇影视久久| 国内精品宾馆在线| 久久婷婷青草| 亚洲精品久久久久久婷婷小说| 亚洲精品国产色婷婷电影| 秋霞在线观看毛片| 欧美日本中文国产一区发布| 欧美人与性动交α欧美精品济南到 | 97精品久久久久久久久久精品| 国产精品99久久久久久久久| 美女主播在线视频| 一区二区三区乱码不卡18| 成年女人在线观看亚洲视频| 制服诱惑二区| 王馨瑶露胸无遮挡在线观看| 欧美一级a爱片免费观看看| 最新的欧美精品一区二区| 黄色毛片三级朝国网站| 中国美白少妇内射xxxbb| 日韩三级伦理在线观看| 老女人水多毛片| 久久精品国产自在天天线| 秋霞在线观看毛片| 久久久亚洲精品成人影院| 亚洲欧美清纯卡通| 亚洲精品美女久久av网站| 精品一区在线观看国产| 91成人精品电影| 亚洲色图 男人天堂 中文字幕 | 女的被弄到高潮叫床怎么办| 日本av免费视频播放| 国产黄色视频一区二区在线观看| 亚洲欧美一区二区三区黑人 | 久久人人爽av亚洲精品天堂| 亚洲人成网站在线观看播放| 多毛熟女@视频| 又黄又爽又刺激的免费视频.| 久久久久精品久久久久真实原创| 久久久久久久大尺度免费视频| 男女啪啪激烈高潮av片| 亚洲国产色片| 亚洲精品aⅴ在线观看| 亚洲婷婷狠狠爱综合网| 久久久久久久久久成人| 久久久精品94久久精品| 国产色婷婷99| 黑人高潮一二区| 亚洲av在线观看美女高潮| 成人手机av| 免费黄色在线免费观看| 亚洲av欧美aⅴ国产| 午夜老司机福利剧场| 久久鲁丝午夜福利片| 91久久精品国产一区二区三区| 精品久久久噜噜| 久久久久精品久久久久真实原创| 亚洲精品国产av蜜桃| 亚洲精品,欧美精品| 久久狼人影院| 日韩av在线免费看完整版不卡| 色婷婷久久久亚洲欧美| 我的老师免费观看完整版| 精品少妇内射三级| 国产精品.久久久| 天堂8中文在线网| 国产精品人妻久久久久久| 一级毛片 在线播放| 九九爱精品视频在线观看| 哪个播放器可以免费观看大片| 国产乱来视频区| 亚洲国产精品一区二区三区在线| 老司机亚洲免费影院| 免费av不卡在线播放| 亚洲精品久久午夜乱码| 伦精品一区二区三区| 久久ye,这里只有精品| 久久久国产欧美日韩av| 国产一区二区在线观看av| 亚洲精品中文字幕在线视频| 亚洲精品日韩av片在线观看| 天堂俺去俺来也www色官网| 亚洲成色77777| 黄色毛片三级朝国网站| 成人亚洲精品一区在线观看| 王馨瑶露胸无遮挡在线观看| 最近中文字幕2019免费版| 嫩草影院入口| 亚洲成色77777| 在线观看免费高清a一片| 欧美97在线视频| freevideosex欧美| 亚洲国产最新在线播放| 亚洲精品中文字幕在线视频| 久久久a久久爽久久v久久| 国产成人精品无人区| 久久人人爽av亚洲精品天堂| 18禁动态无遮挡网站| 不卡视频在线观看欧美| 观看av在线不卡| 色婷婷久久久亚洲欧美| 精品人妻熟女毛片av久久网站| 97超视频在线观看视频| 欧美3d第一页| 国产有黄有色有爽视频| 人人澡人人妻人| 亚洲三级黄色毛片| 在线观看免费日韩欧美大片 | 久久精品人人爽人人爽视色| 91久久精品国产一区二区三区| 涩涩av久久男人的天堂| 成人手机av| 国产精品熟女久久久久浪| 黄色一级大片看看| 一级毛片电影观看| 香蕉精品网在线| 美女大奶头黄色视频| 91精品伊人久久大香线蕉| 国产午夜精品一二区理论片| 交换朋友夫妻互换小说| 日韩强制内射视频| 亚洲精品国产av蜜桃| 母亲3免费完整高清在线观看 | a级片在线免费高清观看视频| 日日撸夜夜添| 欧美 日韩 精品 国产| 日韩一本色道免费dvd| 在线观看免费高清a一片| 国产精品人妻久久久久久| 国产精品人妻久久久影院| 蜜桃久久精品国产亚洲av| 欧美亚洲 丝袜 人妻 在线| a级毛片黄视频| 亚洲人成77777在线视频| 色吧在线观看| 久久久久久久大尺度免费视频| av网站免费在线观看视频| 亚洲国产最新在线播放| 欧美+日韩+精品| 七月丁香在线播放| 国产一级毛片在线| 大陆偷拍与自拍| 搡老乐熟女国产| 精品亚洲成a人片在线观看| 国产一区二区在线观看日韩| 大香蕉97超碰在线| 亚洲成色77777| 免费观看性生交大片5| 考比视频在线观看| 婷婷色综合大香蕉| 久久久久国产精品人妻一区二区| 美女脱内裤让男人舔精品视频| 男女国产视频网站| 国产日韩欧美在线精品| videos熟女内射| 天天躁夜夜躁狠狠久久av| 91精品国产国语对白视频| 日韩在线高清观看一区二区三区| 18禁裸乳无遮挡动漫免费视频| 亚洲国产欧美日韩在线播放| 午夜福利网站1000一区二区三区| 嫩草影院入口| 欧美人与善性xxx| √禁漫天堂资源中文www| 国产日韩欧美亚洲二区| 久久精品国产自在天天线| 狂野欧美激情性bbbbbb| 全区人妻精品视频| 中文乱码字字幕精品一区二区三区| 精品人妻偷拍中文字幕| 亚洲av综合色区一区| 99热国产这里只有精品6| 国产乱人偷精品视频| 亚洲av男天堂| 成人综合一区亚洲| 国产日韩一区二区三区精品不卡 | 啦啦啦在线观看免费高清www| 人妻 亚洲 视频| 激情五月婷婷亚洲| 十八禁网站网址无遮挡| 最后的刺客免费高清国语| 九九在线视频观看精品| 熟女人妻精品中文字幕| 制服诱惑二区| 国产乱人偷精品视频| 精品午夜福利在线看| 考比视频在线观看| 人人妻人人添人人爽欧美一区卜| 免费高清在线观看日韩| 老司机影院成人| 久久久久久久久久久久大奶| a级毛色黄片| 3wmmmm亚洲av在线观看| 国产高清三级在线| 久久ye,这里只有精品| 伊人久久精品亚洲午夜| 一本久久精品| 亚洲一区二区三区欧美精品| 丰满饥渴人妻一区二区三| 久久精品久久久久久噜噜老黄| 老熟女久久久| 国产精品免费大片| 精品人妻熟女毛片av久久网站| 99久久综合免费| 亚洲av日韩在线播放| 国产黄色视频一区二区在线观看| 哪个播放器可以免费观看大片| 99久久人妻综合| 国产欧美另类精品又又久久亚洲欧美| 18+在线观看网站| 国产av国产精品国产| 人人妻人人澡人人爽人人夜夜| 大香蕉97超碰在线| 久久99精品国语久久久| 亚洲人成网站在线播| 国产成人免费观看mmmm| 欧美变态另类bdsm刘玥| 国产成人免费无遮挡视频| 黑丝袜美女国产一区| 久久国内精品自在自线图片| 永久网站在线| 三级国产精品片| 国产国语露脸激情在线看| 国产亚洲精品第一综合不卡 | 亚洲欧美日韩另类电影网站| 最新中文字幕久久久久| 国产一区有黄有色的免费视频| 男女国产视频网站| videosex国产| 国产老妇伦熟女老妇高清| freevideosex欧美| 老熟女久久久| 国国产精品蜜臀av免费| 精品酒店卫生间| 日韩免费高清中文字幕av| 男的添女的下面高潮视频| 亚洲精品456在线播放app| 桃花免费在线播放| 国产不卡av网站在线观看| 在线观看免费高清a一片| 在线看a的网站| a级毛色黄片| 国产一区二区在线观看av| 国产免费又黄又爽又色| 色视频在线一区二区三区| 国产熟女欧美一区二区| 国产乱来视频区| 亚洲国产av影院在线观看| 午夜免费观看性视频| 国产高清有码在线观看视频| 亚洲国产精品一区二区三区在线| 免费看av在线观看网站| 七月丁香在线播放| 熟女av电影| 国产免费一区二区三区四区乱码| 亚洲激情五月婷婷啪啪| 高清毛片免费看| 日本猛色少妇xxxxx猛交久久| 欧美+日韩+精品| 亚洲精品国产av成人精品| 超色免费av| 高清在线视频一区二区三区| 国产精品国产三级国产av玫瑰| 精品亚洲成国产av| 18禁裸乳无遮挡动漫免费视频| 黄色欧美视频在线观看| 中文精品一卡2卡3卡4更新| 国产免费又黄又爽又色| 精品久久久久久久久av| 男人添女人高潮全过程视频| 男女边吃奶边做爰视频| 性高湖久久久久久久久免费观看| 在线 av 中文字幕| 最黄视频免费看| 一级爰片在线观看| 青春草亚洲视频在线观看| 亚洲成人av在线免费| 水蜜桃什么品种好| 精品国产一区二区久久| 99久久精品一区二区三区| 一二三四中文在线观看免费高清| 人妻夜夜爽99麻豆av| 如何舔出高潮| 国产精品免费大片| 伦理电影大哥的女人| 精品人妻熟女av久视频| 一区二区av电影网| 免费看不卡的av| 99久久综合免费| 午夜日本视频在线| av线在线观看网站| 男女高潮啪啪啪动态图| 国产男女超爽视频在线观看| 人妻系列 视频| 少妇人妻久久综合中文| av视频免费观看在线观看| 91久久精品国产一区二区成人| av网站免费在线观看视频| 成年av动漫网址| 一级毛片电影观看| 99精国产麻豆久久婷婷| 久久久精品区二区三区| 五月玫瑰六月丁香| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 日韩精品有码人妻一区| 考比视频在线观看| 亚洲国产最新在线播放| 街头女战士在线观看网站| 老女人水多毛片| 日本av手机在线免费观看| 亚洲欧美一区二区三区黑人 | 麻豆精品久久久久久蜜桃| 最近最新中文字幕免费大全7| 亚洲欧美成人精品一区二区| 日韩欧美精品免费久久| 如日韩欧美国产精品一区二区三区 | 成人亚洲欧美一区二区av| 麻豆精品久久久久久蜜桃| 97超视频在线观看视频| 午夜视频国产福利| 色视频在线一区二区三区| 色94色欧美一区二区| 国产精品熟女久久久久浪| 亚洲激情五月婷婷啪啪| 国产一级毛片在线| 日韩大片免费观看网站| 国产成人freesex在线| a 毛片基地| 亚洲欧美成人综合另类久久久| 免费看不卡的av| 99久久精品国产国产毛片| 欧美日韩精品成人综合77777| 久久这里有精品视频免费| 国模一区二区三区四区视频| 国产午夜精品久久久久久一区二区三区| 久久国产精品男人的天堂亚洲 | 狠狠精品人妻久久久久久综合| a级毛片免费高清观看在线播放| 伦精品一区二区三区| 王馨瑶露胸无遮挡在线观看| 人妻夜夜爽99麻豆av| 久久久精品区二区三区| 国产国语露脸激情在线看| 午夜福利视频在线观看免费| 国产综合精华液| 亚洲av日韩在线播放| 亚洲精品乱码久久久v下载方式| 中国国产av一级| 久久99一区二区三区| 黑人巨大精品欧美一区二区蜜桃 | 成年人午夜在线观看视频| 国产黄色免费在线视频| 飞空精品影院首页| 亚洲av男天堂| 日韩欧美一区视频在线观看| 一区二区三区四区激情视频| 99视频精品全部免费 在线| 一本一本综合久久| 亚洲精品自拍成人| 一边摸一边做爽爽视频免费| 亚洲美女黄色视频免费看| 十八禁高潮呻吟视频| 欧美国产精品一级二级三级| 成人午夜精彩视频在线观看| 国产综合精华液| 高清午夜精品一区二区三区| 国产av一区二区精品久久|