• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Prompt acceleration of a μ+ beam in a toroidal wakefield driven by a shaped steeprising-front Laguerre-Gaussian laser pulse

    2022-06-01 07:56:18XiaonanWANG王曉南XiaofeiLAN蘭小飛YongshengHUANG黃永盛YougeJIANG蔣又歌
    Plasma Science and Technology 2022年5期
    關(guān)鍵詞:張昊春雷

    Xiaonan WANG (王曉南), Xiaofei LAN (蘭小飛),*,Yongsheng HUANG (黃永盛), Youge JIANG (蔣又歌),

    Chunlei ZHANG (張春雷)2, Hao ZHANG (張昊)5 and Tongpu YU (余同普)5

    1 School of Physics and Astronomy,China West Normal University,Nanchong 637009,People's Republic of China

    2 Key Laboratory of Beam Technology of Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China

    3 School of Science,Shenzhen Campus of Sun Yat-sen University,Shenzhen 518107,People's Republic of China

    4 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China

    5 Department of Physics, National University of Defense Technology, Changsha 410073, People's Republic of China

    Abstract Recent experimental data for anomalous magnetic moments strongly indicates the existence of new physics beyond the Standard Model.Energetic μ+ bunches are relevant to μ+ rare decay,spin rotation, resonance and relaxation (μSR) technology, future muon colliders, and neutrino factories.In this paper, we propose prompt μ+ acceleration in a nonlinear toroidal wakefield driven by a shaped steep-rising-front Laguerre-Gaussian (LG) laser pulse.An analytical model is described,which shows that a μ+beam can be focused by an electron cylinder at the centerline of a toroidal bubble and accelerated by the front part of the longitudinal wakefield.A shaped LG laser with a short rise time can push plasma electrons,generating a higher-density electron sheath at the front of the bubble,which can enhance the acceleration field.The acceleration field driven by the shaped steep-rising-front LG laser pulse is about four times greater than that driven by a normal LG laser pulse.Our simulation results show that a 300 MeV μ+bunch can be accelerated to 2 GeV and its transverse size is focused from an initial value of w0=5 μm to w=2 μm in the toroidal bubble driven by the shaped steep-rising-front LG laser pulse with a normalized amplitude of a=22.

    Keywords: plasma wakefield acceleration, muon source, laser shaping

    1.Introduction

    Recently,there has been increasing interest in the exploration of new physics beyond the Standard Model using the μ+rare decay[1-3]and the anomalous magnetic moment[4-6].The unstable particle, μ+(μ-) with a rest mass mμ=207meand a rest lifetime τ=2.2 μs has been applied in many fields(meis the rest mass of the electron).Energetic μ+(μ-) bunches can be used to make future neutrino factories [7, 8] and muon colliders[9,10]become a reality.In the field of spin rotation,resonance, and relaxation (μSR) technology [11-14], an energetic μ+beam can pass through the wall of a container toprobe materials in complex environments.The two available types of μ+(μ-)are low-flux GeV cosmic muons[15,16]and low-energy muon sources produced by traditional accelerators[17-19].The cosmic muons are too low-flux and the muon sources produced by traditional accelerators are too shortlived to explore new physics.

    Plasma-based accelerators [20-23] can offer extremely high acceleration fields of several hundred GV/m and can be applied to the study of high-energy physics and particle sources.Recently, a μ-beam was accelerated to GeV or 10 GeV in a plasma wakefield [24, 25].However, the acceleration of a μ+beam in a laser plasma wakefield has not been explored.A μ+beam would be defocused by the transverse field in a regular bubble driven by a Gaussian laser pulse.

    Using three-dimensional (3D) particle-in-cell (PIC)simulations performed by Epoch3D [26], we propose a prompt μ+acceleration scheme in a nonlinear toroidal wakefield [27-29] driven by a shaped Laguerre-Gaussian(LG) laser pulse [30].A collimated muon bunch with a peak energy of several hundred MeV was recently produced by a GeV electron beam interacting with a high-Z target [31, 32].In our simulations, we focus on μ+acceleration and assume that the required μ+beam has been injected into the wakefield.An analytical model is given, which shows that a μ+beam can be focused by an electron cylinder at the centerline of the toroidal bubble and accelerated in the front part of the longitudinal wakefield Ex.The simulation results show that in the wakefield driven by a LG laser pulse, the transverse size of the μ+beam is focused from an initial value of w0=5 μm to w=2 μm within several picoseconds.In addition,the peak energy of the accelerated μ+bunch, which had an initial energy of 300 MeV, is about 500 MeV.A LG laser pulse shaped by a near-critical-density plasma has a shorter rise time.The shaped steep-rising-front LG laser pushes plasma electrons forward, causing an electron sheath with largerσe≡nshΔxnshto be formed at the front of the toroidal bubble,where nshandΔxnshare the density and width of the electron sheath, respectively.The acceleration field Exis proportional to σe.The simulation results show that in the toroidal wakefield driven by a shaped steep-rising-front LG laser, the peak energy of the accelerated μ+bunch with an initial energy of 300 MeV is about 2 GeV, and the transverse size of the μ+bunch is also focused from an initial value of w0=5 μm to w=2 μm within several picoseconds.

    In cylindrical coordinates, the transverse distribution of the normalized amplitude of an LG laser can be expressed as:

    where a0is the maximum normalized amplitude, cl,pis the normalizing factor, w is the laser spot size, andis the generalized Laguerre polynomial.In our simulations, the Gaussian model of the laser pulse used is the LG1,0model,which can be expressed as:

    where c1,0≈1.67w.Equation (2) shows that the laser intensity at r=0 is zero.Due to the ponderomotive force of the LG laser pulse, plasma electrons are squeezed into the center axis and form an electron cylinder.This center electron cylinder has a higher density than that of the background electrons.The ponderomotive force of the LG laser pulse can also exclude nearby plasma electrons.Plasma protons can be considered as unmovable.The homogeneous protons pull the excluded electrons back to the center axis.Therefore, a toroidal bubble is formed.

    A μ+beam can be accelerated and focused in a nonlinear toroidal wakefield [33, 34] driven by an LG laser pulse.Figure 1(a) shows a transverse density slice of a toroidal bubble.The red arrow in figure 1(a) shows the direction of the transverse electric field produced by the central electron cylinder.The transverse electric field of the central electron cylinder forms a focusing field for the μ+beam.In figure 1(b),negative momentum means that the central electrons are moving in the negative x direction.Therefore, their magnetic field is a focusing field.The toroidal wakefields shown in figures 1(c), (e) were driven by the same LG laser pulse at different plasma densities of ne=5×1024m-3and ne=1×1025m-3, and look like two spherical bubbles.Figure 1(c)shows that in a nonlinear scheme, the two spherical wakefields have overlapping ranges.Figure 1(d)shows that the longitudinal wakefield Exhardly varies with r,i.e.?Ex/?r ?0.Figure 1(e)shows that at the onset of the nonlinear scheme, the two spherical wakefields have no overlap.The longitudinal wakefield Exis close to zero at r=0, as shown in figure 1(f).Only the nonlinear toroidal wakefield can accelerate and focus the μ+beam.

    Figure 1.Simulation results illustrating focusing (a), (b) and acceleration (c), (d) fields for a μ+ beam in a nonlinear toroidal wakefield.(a)shows a transverse slice of the toroidal wakefield as shown in(c)at x=60 μm.(b)shows plots of the momentum in the x direction of the electrons and μ+at the centerline of the toroidal wakefield.(c)shows a longitudinal slice of the electron density at z=0 μm in a plasma with a density of ne=5×1024 m-3.(d) shows the longitudinal wakefield Ex corresponding to (c).(e) shows a longitudinal slice of the toroidal wakefield at z=0 μm in a plasma with a higher density of ne=1×1025 m-3.(f) shows the Ex corresponding to (e).

    2.A physical model

    We propose a simple physical model shown in figure 2 to illustrate the focusing and accelerating of the μ+beam in the nonlinear toroidal wakefield driven by a LG laser.The blue arrows is the direction of the focusing force.The red arrow is the direction of the longitudinal wakefield.nshis the density of the electron sheath at the front of the wakefield.Δxnshis the width of this electron sheath.The σeis defined asσe≡nshΔxnsh.The longitudinal wakefield Exis equal to zero at x=0, x0.For 0 <x <x1, the longitudinal wakefield Exis the acceleration field for positive particles.In the range of 0 <x <x1, y <y1and y >y0, the plasma electron density is close to zero.The electron cylinder at the centerline of the toroidal provides the focusing force for positive particles and the electron sheath at the front of the toroidal provides the acceleration field.In the wakefield coordinate, the acceleration field can be considered as a static electric field.The acceleration field in the wakefield coordinate is equal to that in the laboratory coordinate.The Gauss’s law for the static electric field can be expressed as:

    Figure 2.A physical model of the focusing and accelerating of a μ+beam in a toroidal wakefield driven by a LG laser pulse.The physical model is in the range of the red dotted line as shown in(c).The center red rectangle represents the center electron cylinder.The right red rectangle represents the electron sheath at the front of the toroidal wakefield.

    where ∮sis the integral of the closed surface S,is the electric field,q is the charge inner the closed surface S,ε0is the vacuum permittivity.The six surfaces of the blue cuboid form the closed surfaceS=s1+s1′ +s2+s2′ +s3+s3′.We assume that s1ands1′are infinitesimal,which causes the electric field on s2and s3almost equal to that ons2′ands3′,respectively.The electric field ons1′ is equal to zero.Therefore in the range of 0 <x <x0, y <y1and y >y0, the acceleration field on s1can be expressed as:

    where neis the electron density,npis the proton density and considered as a constant, e is the elementary charge.It is assumed that the density of the electron sheath at the front of the toroidal is a constant nsh.The σeis defined asσe≡nshΔxnsh.In the range of 0 <x <x0, y <y1and y >y0,the acceleration field Excan be simplified as:

    equation (5) shows that for a given position on the x-axis,the acceleration field Exis proportional to σe.

    3.Three-dimensional simulations of the μ+acceleration in a toroidal wakefield driven by a LG laser pulse

    We implement PIC simulations to explore the focusing and accelerating of a μ+beam in a toroidal wakefield driven by a LG laser pulse.Those simulation results as shown in figure 3 are obtained using a LG laser with the spot size, w=15 μm, normalized amplitude, a0=22, and pulse width, τ=25 fs.At the beginning of the simulation, a 300 MeV μ+beam is placed at the front part of the acceleration field where the LG laser pulse also exists as shown in figures 3(a) and (g).Compared with positrons,μ+has a slower response to the oscillating field of the LG laser pulse.Therefore,the μ+beam and the LG laser pulse can be placed at the same position in the toroidal wakfield,which ensures that the μ+beam can be accelerated with a longer acceleration length.Detailed simulation parameters are shown in configuration A of table 1.The Gauss(x, x0, w) function as shown in table 1 calculate a Gaussian profile in variable x centred on x0with a characteristic width w and be expressed as:

    The snapshots shown in figure 3 are taken at the beginning, middle, and end of the acceleration, corresponding to simulation times of t=0.2 ps, t=2.0 ps, and t=5.0 ps.Figures 3(a)-(c) show that an LG laser pulse can be selfguided,which is attributed to the distribution of the refractive index at the front of the toroidal wakefield.Figures 3(d)-(f)show that the toroidal wakefield propagates stably within 5 ps, and provides continuous acceleration and focusing fields for the μ+beam.The acceleration field is separated at five picoseconds, since the central electron cylinder retroacts on the LG laser pulse.Figures 3(g)-(i) show that the transverse size of the μ+bunch is focused from a value of w0=5 μm to w=2 μm within several picoseconds by the central electron cylinder.During the acceleration process the μ+bunch always moves back toward the rear edge of the toroidal wakefield and finally enters the decelerating field at five picoseconds.The final peak energy of the μ+beam is about 500 MeV.The energy spread iswhere △E is the full width at half maximum (FWHM) and E is the peak energy.

    Figure 3.The μ+acceleration in a toroidal wakefield driven by a LG laser pulse.(a)-(i)show the longitudinal slices of the simulation box at the plane of z=0 μm.(a)-(c)show the evolution of the laser pulse.(d)-(f)show the longitudinal structure of the toroidal wakefield.(g)-(i)show the longitudinal wakefield Ex and the density of the μ+ bunch.(j)-(l) are the energy spectrum of the μ+ bunch.

    4.The stronger acceleration field driven by a shaped steep-rising-front LG laser for positive particle

    Table 1.Detailed simulation parameters for three configurations:(A),(B),and(C).We only list the parameters of configurations B and C that differ from those of configuration A.

    The shaping of a Gaussian laser pulse was proposed by H W Wang and coworkers [35].They demonstrate that as relativistic self-focusing (RSF) [36, 37], relativistic self-phase modulation (RSPM) [38, 39], and relativistic transparency occur in the interaction between a laser pulse and a nearcritical plasma,three shaping effects take place:laser intensity enhancement, laser profile steepening, and absorption of the nonrelativistic prepulse.Our simulation results show that an LG laser pulse can also be shaped by a near-critical plasma.The shaping effect is controlled by the length of the nearcritical plasma.Figure 4 shows the transverse oscillating electric fields of LG laser pulses shaped by near-criticaldensity plasmas with lengths of 1 μm, 5 μm and 10 μm,respectively.The rise time of the shaped LG laser pulse shown in figure 4(a) is longer compared with that of the shaped LG laser pulse shown in figure 4(b), which limits the maximum transversal wakefield driven by this shaped LG laser pulse.Figure 4(c) shows that if the length of the nearcritical plasma is 10 μm, the maximum amount of LG laser pulse energy is consumed by the near-critical plasma.Therefore, in our simulations, the length of the near-critical plasma is set to 5 μm.Figure 5 shows the influences of the shaping of the LG laser pulse and the plasma density on the acceleration field.The simulation results in figures 5(a), (b),and (c) are obtained using the parameters shown in configurations A, B, and C, respectively.Compared with the blue line in figure 5(a), the blue line in figure 5(b) shows that the electron sheath generated by the shaped laser pulse has a larger σe.Furthermore,the blue line in figure 5(c)shows that in a higher-density plasma, σeis larger.Corresponding to those black lines,the red lines in figure 5 show the theoretical results of equation(5).The electron density neof equation(5)is represented by the blue lines.The theoretical results agree with the simulation results.The red line in figure 5(c) shows that in a higher-density plasma, the acceleration field driven by a shaped steep-rising-front LG laser is the largest and can reach about 2.4 TV/m.

    Figure 4.Comparison of LG laser pulses shaped by near-critical-density plasmas with different lengths: 1 μm, 5 μm, and 10 μm.Figures 4(a)-(c) are all one-dimensional simulation results located at y=0 μm, z=10 μm in the three-dimensional simulation box.

    Figure 5.Comparison of the wakefields driven by an LG laser pulse (a) and a shaped LG laser pulse (b)-(c), illustrating that the shaped steep-rising-front LG laser can stimulate a higher acceleration gradient.The blue lines represent the simulated results for the electron density.The black and red lines represent the simulated and theoretical results for the acceleration field Ex.The blue and black lines are located at y=0 μm, z=10 μm in the three-dimensional simulation box.

    5.Three-dimensional simulations of μ+ acceleration in a toroidal wakefield driven by a shaped steeprising-front LG laser pulse

    Figure 6 shows the evolution of the μ+acceleration process in a toroidal wakefield driven by a shaped steep-rising-front LG laser.The laser parameters are the same as those of figure 3.A μ+bunch with an initial energy of 300 MeV can be located at the front part of the wakefield by adjusting its injection time.The detailed simulation parameters are listed in configuration C of table 1.Figure 6 shows that in a plasma with a density of ne=1×1025m-3, a shaped steep-rising-front LG laser pulse can drive the acceleration field at the centerline of the toroidal bubble for positive particles.Although the central electron cylinder is unstable during acceleration, the transverse size of the μ+beam is also focused.The snapshots shown in figure 6 are taken at the beginning, middle, and end of the acceleration corresponding to simulation times of t=0.1 ps, t=1.5 ps,and t=3.0 ps.Figure 6(a) shows that an LG laser pulse is shaped by a near-critical-density plasma.The shaped LG laser has a shorter rise time of tr=13 fs and a higher amplitude of Ey=5×1013V/m,compared to the LG laser shown in figure 3(a) with a rise time of tr=33 fs and an amplitude of Ey=4×1013V/m.Figures 6(b)and(c)show that the LG laser pulse is self-guided.A large proportion of the laser energy is depleted at t=3 ps.Figures 6(e),(f),(h),and (i) show that the acceleration field is stable within 3 ps and at up to 4×1012V/m.Figures 6(g)-(i) show that the transverse size of the μ+bunch is focused from the initial value of w0=5 μm to w=2 μm within several picoseconds by the central electron cylinder.At the beginning of the acceleration,the μ+bunch with an initial energy of 300 MeV moves backward relative to the toroidal bubble and is simultaneously accelerated.When the velocity of the μ+bunch is larger than that of the toroidal wakefield,it moves forward relative to the toroidal bubble and finally overtakes the acceleration field.In the toroidal wakefield driven by a shaped steep-rising-front LG laser pulse, the final peak energy of an accelerated μ+bunch with an initial energy of 300 MeV is about 2 GeV.The energy spread is

    Figure 6.The acceleration process of a μ+ beam in a toroidal wakefield driven by a shaped steep-rising-front LG laser pulse.(a)-(i) show longitudinal slices of the simulation box at the plane z=0 μm.The scaling factor for (d) is ×10.The scaling factor for the other figures is×1.(a)shows the shaping of an LG laser pulse in a near-critical-density plasma.(b),(c)show the evolution of the laser pulse.(d)shows the density distribution of a near-critical-density plasma.(e), (f) show the longitudinal structure of a toroidal bubble.(g) shows the initial density distribution of the μ+beam.(h),(i)show the longitudinal field Ex and the density distribution of the μ+beam.(j)-(l)show the energy spectrum of the μ+ beam.

    6.Comparison of the peak energies of the accelerated muon beam for three different simulation configurations

    Figure 7 mainly shows the influences of the shaping of the LG laser pulse and the plasma density on the peak energy of the accelerated μ+bunch.The circles, triangles, and squares represent simulation times of 3 ps,4.5 ps,and 5 ps,using the simulation parameters shown in configurations(A),(B),and(C)of table 1,respectively.For the red circles shown in figure 7,the maximum LG laser pulse energy was consumed at a simulation time of t=3 ps.When the initial energy is 100 MeV, most muons cannot catch up with the focusing and acceleration fields.With an initial energy increase from 100 MeV to 300 MeV, the peak energy and number of muons in the accelerated μ+bunch both increase.When the initial energy increases from 300 MeV to 450 MeV, the number of muons still increases, but the peak energy decreases; the reason for this is that with a higher initial energy,the μ+bunch overtakes the wakefield earlier and has a shorter acceleration time.For the green triangles, the wakefield collapsed at the simulated time of t=4.5 ps.When the initial energy is increased, the peak energy and the number of muons in the accelerated μ+bunch also both increase.For the blue squares, the wakefield collapsed at a simulated time of t=5 ps.When the initial energy is increased, the peak energy of the accelerated μ+bunch increases and the number of muons almost remains constant due to the stable focusing field driven by a normal LG laser pulse.Compared with the blue solid line shown in figure 7, the red solid line shows that in the toroidal wakefield driven by a shaped steep-rising-front LG laser pulse, the peak energy of the μ+beam can be increased by three to four times compared to that of a μ+beam accelerated in a toroidal wakefield driven by a normal LG laser pulse.

    Figure 7.The initial energy E0 of the μ+ bunch versus the peak energy Eacc and the total number of muons after the μ+ bunch is accelerated.The solid lines represent the peak energy Eacc of the accelerated μ+bunch.The y error bars only represent the FWHM of the energy spectrums.The dashed lines represent the total number of the muons at the corresponding moment.

    7.Discussion

    We also considered the synchronization of the laser and muon beam.In PIC simulations, synchronization can be realized by controlling the injection times of the laser and the muon beam.However, in experiments, the synchronization will be very complicated.Here, we propose the preliminary time control system as shown in figure 8 to realize synchronization.We assume that the time of muon beam injection into the plasma accelerator from the muon source,tμ,is fixed.The time of the laser pulse injection into the plasma accelerator is modulated by the distance between the upper and lower mirrors, L, as shown in figure 8.When L is changed by 0.15 μm, the timing of the laser pulse injected into the plasma accelerator is altered by 1 fs.The main difficulty in realizing the synchronization is finding a way to precisely confirm tμ, which will be included in our next work plan.

    Figure 8.A preliminary time control system to realize the synchronization of the laser and muon beam.Here, tμ is the time at which the muon beam is injected into the plasma accelerator by the muon source.L is the distance between the upper and lower mirrors.The time control system is in the blue dotted box.

    8.Conclusions

    In conclusion, based on our PIC simulations, we propose an analytical physical model to illustrate the acceleration and focusing of μ+bunches in a donut wakefield driven by a LG laser or a shaped steep-rising-front LG laser.The transverse electric field and the magnetic field of the central electron cylinder are both focusing fields for positive particles.The acceleration field Exis proportional to the σeof the pushed electron sheath at the front of the donut bubble.An LG laser pulse can be shaped by a near-critical-density plasma.A shaped LG laser pulse with a shorter rise time can push plasma electrons,generating a electron sheath with a larger σeat the front of the donut bubble.A donut bubble driven by an LG laser can provide a stable focusing field but a lower acceleration field.The acceleration field driven by a shaped steep-rising-front LG laser pulse is four times higher than that driven by an unshaped LG laser pulse.Although the central electron cylinder generated by a shaped LG laser pulse is unstable during the acceleration process,the transverse size of the μ+beam is also focused.The μ+beam is accelerated from 300 MeV to 2 GeV in the donut wakefield driven by a shaped steep-rising-front LG laser pulse with a normalized amplitude of a=22.In 2017,a laser pulse with a wavelength of 800 nm,an output energy of 300 J,a maximum peak power of 10 PW and a pulse width of 21 fs was obtained at the Shanghai Superintense Ultrafast Laser Facility[40],which supports the feasibility of the compact prompt acceleration scheme.This new compact prompt acceleration scheme for μ+beams will provide higher-energy muon sources than those of traditional accelerators.An energetic μ+source will be an attractive way to realize future muon colliders and neutrino factories and has the potential to unlock new physics beyond the Standard Model.

    Acknowledgments

    Our work was supported in part by the National Key R&D Program of China (No.2018YFA0404802), National Natural Science Foundation of China (No.11 875 319), the Hunan Provincial Science and Technology Program (No.2020RC4020), Innovation Project of IHEP (Nos.542 017IHEPZZBS11820, 542 018IHEPZZBS12427), the CAS Center for Excellence in Particle Physics (CCEPP), the Meritocracy Research Funds of China West Normal University (No.17YC504).

    ORCID iDs

    猜你喜歡
    張昊春雷
    春雷響
    幼兒100(2024年11期)2024-03-27 08:32:56
    Quantum correlation enhanced bound of the information exclusion principle
    惜物
    做人與處世(2022年2期)2022-05-26 22:34:53
    花事
    愛情順風車
    一道考題
    My Dream Weekends
    豐 碑
    春雷
    春雷乍響活驚蟄
    日韩三级伦理在线观看| av福利片在线观看| 国产精品久久久久久久久免| 国产欧美日韩一区二区精品| 亚洲aⅴ乱码一区二区在线播放| 成人午夜高清在线视频| а√天堂www在线а√下载| 欧美性猛交╳xxx乱大交人| 亚洲国产欧洲综合997久久,| 97超视频在线观看视频| 免费高清视频大片| 日韩欧美一区二区三区在线观看| 久久精品国产亚洲av香蕉五月| 菩萨蛮人人尽说江南好唐韦庄 | 一进一出抽搐gif免费好疼| 99视频精品全部免费 在线| 波野结衣二区三区在线| 99久久九九国产精品国产免费| 在线播放无遮挡| 久久久久免费精品人妻一区二区| 国产在线男女| 久久亚洲国产成人精品v| 欧美高清成人免费视频www| 精品久久久噜噜| 啦啦啦观看免费观看视频高清| 国内精品久久久久精免费| 精品久久久噜噜| 国产精品电影一区二区三区| 成人精品一区二区免费| 尾随美女入室| 精品少妇黑人巨大在线播放 | 美女cb高潮喷水在线观看| 亚洲va在线va天堂va国产| 国产成人影院久久av| 久久久色成人| 国产麻豆成人av免费视频| 国产精品一区www在线观看| 51国产日韩欧美| 欧美xxxx性猛交bbbb| 99热6这里只有精品| 亚洲一区高清亚洲精品| 欧美中文日本在线观看视频| 免费黄网站久久成人精品| 级片在线观看| 国产精品永久免费网站| 亚洲第一电影网av| 国产成人a区在线观看| 联通29元200g的流量卡| 在线国产一区二区在线| 少妇熟女aⅴ在线视频| 熟女电影av网| 成人av一区二区三区在线看| 久久热精品热| 亚洲真实伦在线观看| 一a级毛片在线观看| 久久精品国产清高在天天线| 免费高清视频大片| 久久久精品94久久精品| a级毛片免费高清观看在线播放| 黄色视频,在线免费观看| 亚洲欧美日韩卡通动漫| 18禁裸乳无遮挡免费网站照片| 国产片特级美女逼逼视频| 国产成人aa在线观看| aaaaa片日本免费| 夜夜夜夜夜久久久久| 欧美成人精品欧美一级黄| 午夜久久久久精精品| 国产伦精品一区二区三区四那| 久久久久免费精品人妻一区二区| 亚洲av二区三区四区| 国产老妇女一区| 国产熟女欧美一区二区| 国产午夜福利久久久久久| 在线天堂最新版资源| 熟女电影av网| ponron亚洲| 亚洲精品日韩在线中文字幕 | 日本-黄色视频高清免费观看| 亚洲色图av天堂| 黄色一级大片看看| 国产熟女欧美一区二区| 日韩欧美 国产精品| 亚洲中文字幕一区二区三区有码在线看| 免费在线观看影片大全网站| 男女啪啪激烈高潮av片| 波多野结衣高清无吗| 午夜福利18| 久久亚洲精品不卡| 免费不卡的大黄色大毛片视频在线观看 | 麻豆乱淫一区二区| 色av中文字幕| 一本精品99久久精品77| 国产在线精品亚洲第一网站| 国内精品久久久久精免费| 久久久精品大字幕| 赤兔流量卡办理| 亚洲,欧美,日韩| 成人高潮视频无遮挡免费网站| 九九在线视频观看精品| 悠悠久久av| 欧美日本亚洲视频在线播放| eeuss影院久久| 国产一区二区在线观看日韩| 3wmmmm亚洲av在线观看| 久久精品国产亚洲av香蕉五月| 久久久久久久久大av| 亚洲精品色激情综合| 久久精品影院6| 九九热线精品视视频播放| 卡戴珊不雅视频在线播放| 久久天躁狠狠躁夜夜2o2o| 久久久久九九精品影院| 毛片女人毛片| 成人av在线播放网站| 女人被狂操c到高潮| 一卡2卡三卡四卡精品乱码亚洲| 欧美高清性xxxxhd video| 真实男女啪啪啪动态图| 国内精品久久久久精免费| 精品久久久久久久人妻蜜臀av| 91狼人影院| 亚洲色图av天堂| 12—13女人毛片做爰片一| 深夜a级毛片| 男女做爰动态图高潮gif福利片| 精品国产三级普通话版| 日韩欧美三级三区| 亚洲精品粉嫩美女一区| 久久综合国产亚洲精品| 国产成人a∨麻豆精品| 一级毛片我不卡| 熟女人妻精品中文字幕| 麻豆av噜噜一区二区三区| 久久精品国产亚洲网站| 99热这里只有是精品在线观看| 久久精品国产亚洲网站| 精品日产1卡2卡| 国产又黄又爽又无遮挡在线| 国内精品久久久久精免费| av专区在线播放| 内射极品少妇av片p| 精品不卡国产一区二区三区| 亚洲欧美精品自产自拍| 日日啪夜夜撸| 美女大奶头视频| 国产一区亚洲一区在线观看| 国产成人福利小说| 亚洲性夜色夜夜综合| 欧美zozozo另类| 性插视频无遮挡在线免费观看| 麻豆国产av国片精品| 国产精品美女特级片免费视频播放器| 欧美xxxx性猛交bbbb| 国产v大片淫在线免费观看| 国产在视频线在精品| 小蜜桃在线观看免费完整版高清| 欧美绝顶高潮抽搐喷水| 日韩,欧美,国产一区二区三区 | 综合色丁香网| 午夜老司机福利剧场| 97超级碰碰碰精品色视频在线观看| 国产精品久久电影中文字幕| 97超碰精品成人国产| 三级男女做爰猛烈吃奶摸视频| 又粗又爽又猛毛片免费看| 日韩中字成人| 亚洲熟妇熟女久久| 嫩草影院新地址| 国内精品宾馆在线| 久久精品国产99精品国产亚洲性色| 精品人妻一区二区三区麻豆 | 午夜福利在线观看免费完整高清在 | 淫妇啪啪啪对白视频| 欧美日本视频| 精品福利观看| av在线蜜桃| 久久这里只有精品中国| 国产一区二区激情短视频| 夜夜爽天天搞| 久久99热6这里只有精品| 国产久久久一区二区三区| 人妻丰满熟妇av一区二区三区| 国产毛片a区久久久久| 22中文网久久字幕| 黄片wwwwww| 国产黄a三级三级三级人| 夜夜爽天天搞| 久久久国产成人精品二区| 成人一区二区视频在线观看| 我的老师免费观看完整版| 日本三级黄在线观看| av在线亚洲专区| 此物有八面人人有两片| 国产精品日韩av在线免费观看| 最近手机中文字幕大全| 性欧美人与动物交配| 日韩大尺度精品在线看网址| 精品福利观看| 欧美+亚洲+日韩+国产| 五月玫瑰六月丁香| 国产精品久久视频播放| 精品日产1卡2卡| 亚洲国产日韩欧美精品在线观看| 亚洲中文字幕日韩| 亚洲欧美日韩无卡精品| 在线观看美女被高潮喷水网站| 可以在线观看的亚洲视频| 人妻丰满熟妇av一区二区三区| 国产精品亚洲一级av第二区| 精品一区二区免费观看| 国产成人影院久久av| 亚洲av电影不卡..在线观看| 亚洲欧美成人精品一区二区| 国产老妇女一区| 99久久中文字幕三级久久日本| 亚洲国产精品成人综合色| 欧美色欧美亚洲另类二区| 国产亚洲精品综合一区在线观看| 久久精品91蜜桃| 无遮挡黄片免费观看| 日韩制服骚丝袜av| 免费人成视频x8x8入口观看| 国产美女午夜福利| 欧美一级a爱片免费观看看| 欧美最新免费一区二区三区| 欧美bdsm另类| 亚洲国产精品成人综合色| 老司机福利观看| 内射极品少妇av片p| 日日啪夜夜撸| 亚洲国产欧美人成| 精品一区二区三区视频在线| a级毛色黄片| 国产日本99.免费观看| 嫩草影院精品99| 国产精品福利在线免费观看| 成人性生交大片免费视频hd| 国产色爽女视频免费观看| 精品无人区乱码1区二区| 亚洲最大成人中文| 午夜影院日韩av| 亚洲七黄色美女视频| 国产单亲对白刺激| 麻豆一二三区av精品| 男女啪啪激烈高潮av片| 久久久精品94久久精品| 97超级碰碰碰精品色视频在线观看| 搡老熟女国产l中国老女人| 亚洲欧美日韩无卡精品| 久久综合国产亚洲精品| 99热这里只有是精品在线观看| 欧美+日韩+精品| 国产 一区精品| 欧美日韩乱码在线| 啦啦啦啦在线视频资源| 亚洲欧美成人精品一区二区| 午夜福利18| 我要搜黄色片| 中出人妻视频一区二区| 国产成人一区二区在线| 在线观看一区二区三区| 欧美成人a在线观看| 亚洲美女搞黄在线观看 | 舔av片在线| 欧美中文日本在线观看视频| 伦精品一区二区三区| 少妇人妻一区二区三区视频| 在线观看美女被高潮喷水网站| 性欧美人与动物交配| 91在线观看av| 自拍偷自拍亚洲精品老妇| 免费搜索国产男女视频| 亚洲国产精品久久男人天堂| 人人妻人人澡人人爽人人夜夜 | www.色视频.com| 最近手机中文字幕大全| 黄色欧美视频在线观看| 悠悠久久av| 亚洲无线在线观看| 99热全是精品| 国产精品乱码一区二三区的特点| 国产伦精品一区二区三区视频9| 国产成人a∨麻豆精品| 中文字幕人妻熟人妻熟丝袜美| 免费在线观看影片大全网站| 免费大片18禁| 特大巨黑吊av在线直播| 成人亚洲欧美一区二区av| 免费电影在线观看免费观看| 男插女下体视频免费在线播放| 精品国内亚洲2022精品成人| 天天躁夜夜躁狠狠久久av| 最近视频中文字幕2019在线8| 晚上一个人看的免费电影| 精品福利观看| 97超视频在线观看视频| 欧美xxxx性猛交bbbb| 亚洲性久久影院| 久久国产乱子免费精品| 一区二区三区四区激情视频 | 丝袜喷水一区| 波多野结衣高清无吗| а√天堂www在线а√下载| av黄色大香蕉| av在线蜜桃| 亚洲国产欧美人成| 成人鲁丝片一二三区免费| 人妻制服诱惑在线中文字幕| 菩萨蛮人人尽说江南好唐韦庄 | 日韩,欧美,国产一区二区三区 | 少妇熟女欧美另类| 日韩在线高清观看一区二区三区| 少妇人妻一区二区三区视频| 久久午夜福利片| 大又大粗又爽又黄少妇毛片口| 人人妻人人澡欧美一区二区| av视频在线观看入口| 级片在线观看| 12—13女人毛片做爰片一| 天堂动漫精品| 精品无人区乱码1区二区| 99久久九九国产精品国产免费| 久久中文看片网| 美女 人体艺术 gogo| 国产精品亚洲美女久久久| 一进一出好大好爽视频| 国产欧美日韩一区二区精品| 国产在线男女| eeuss影院久久| 久久久色成人| 赤兔流量卡办理| 97人妻精品一区二区三区麻豆| 午夜福利在线观看吧| 久久久精品大字幕| 神马国产精品三级电影在线观看| 一级毛片久久久久久久久女| 亚洲美女搞黄在线观看 | 国内精品宾馆在线| 18+在线观看网站| 日韩精品有码人妻一区| 日韩高清综合在线| 免费一级毛片在线播放高清视频| 亚洲自拍偷在线| 午夜福利视频1000在线观看| 尤物成人国产欧美一区二区三区| 全区人妻精品视频| 我要看日韩黄色一级片| 国产精品久久久久久久久免| 欧美日韩综合久久久久久| 免费高清视频大片| 欧美中文日本在线观看视频| 国内少妇人妻偷人精品xxx网站| 在线观看午夜福利视频| 欧美+日韩+精品| 免费电影在线观看免费观看| 97超级碰碰碰精品色视频在线观看| 你懂的网址亚洲精品在线观看 | 中文亚洲av片在线观看爽| 男女边吃奶边做爰视频| 国产精品伦人一区二区| 身体一侧抽搐| 俄罗斯特黄特色一大片| 国内久久婷婷六月综合欲色啪| 久久欧美精品欧美久久欧美| 18禁在线无遮挡免费观看视频 | 色哟哟·www| 精品午夜福利视频在线观看一区| 免费在线观看影片大全网站| 一个人观看的视频www高清免费观看| 黄色欧美视频在线观看| 亚洲精品日韩av片在线观看| 一边摸一边抽搐一进一小说| 在线播放无遮挡| 日日撸夜夜添| 久久精品国产亚洲网站| 变态另类成人亚洲欧美熟女| 久久精品综合一区二区三区| 高清毛片免费看| 亚洲激情五月婷婷啪啪| 亚洲高清免费不卡视频| 波多野结衣巨乳人妻| 九九久久精品国产亚洲av麻豆| 国产成人aa在线观看| 国产精品一区二区三区四区免费观看 | 91久久精品国产一区二区成人| 亚洲三级黄色毛片| 国产 一区精品| 久久久国产成人免费| 人人妻人人澡人人爽人人夜夜 | 丰满乱子伦码专区| 校园春色视频在线观看| 1000部很黄的大片| 少妇裸体淫交视频免费看高清| 午夜精品一区二区三区免费看| 亚洲乱码一区二区免费版| 一边摸一边抽搐一进一小说| 国产亚洲精品av在线| 丰满的人妻完整版| 非洲黑人性xxxx精品又粗又长| 亚洲人成网站在线播放欧美日韩| 美女xxoo啪啪120秒动态图| 最近最新中文字幕大全电影3| 午夜影院日韩av| 久久午夜亚洲精品久久| 久久久久国产网址| 少妇的逼好多水| 别揉我奶头 嗯啊视频| 亚洲精品一区av在线观看| 亚洲欧美清纯卡通| 久久精品国产亚洲av涩爱 | 亚洲性夜色夜夜综合| 十八禁国产超污无遮挡网站| 91av网一区二区| 国产淫片久久久久久久久| 婷婷亚洲欧美| 日韩强制内射视频| 亚洲天堂国产精品一区在线| 国产午夜精品久久久久久一区二区三区 | 亚洲国产精品成人综合色| 日日摸夜夜添夜夜添小说| 精品一区二区免费观看| 国产精品伦人一区二区| 成人av一区二区三区在线看| 一级毛片久久久久久久久女| 国产在线精品亚洲第一网站| 少妇被粗大猛烈的视频| 51国产日韩欧美| 夜夜看夜夜爽夜夜摸| 偷拍熟女少妇极品色| 成人一区二区视频在线观看| 国产蜜桃级精品一区二区三区| 日本黄色片子视频| 国内精品美女久久久久久| 欧美成人a在线观看| 尾随美女入室| 精品久久久久久久久av| 九九爱精品视频在线观看| 亚洲乱码一区二区免费版| 欧美色视频一区免费| 亚洲专区国产一区二区| 我要搜黄色片| a级一级毛片免费在线观看| 美女黄网站色视频| 免费黄网站久久成人精品| 2021天堂中文幕一二区在线观| 亚洲欧美日韩高清专用| 精品福利观看| 嫩草影院新地址| 欧美高清成人免费视频www| 国产欧美日韩精品亚洲av| 欧美国产日韩亚洲一区| 五月伊人婷婷丁香| 久久久国产成人精品二区| 伦精品一区二区三区| 亚洲色图av天堂| 美女xxoo啪啪120秒动态图| 国产激情偷乱视频一区二区| 免费av毛片视频| 男人狂女人下面高潮的视频| 欧美一区二区精品小视频在线| 天天躁日日操中文字幕| 免费av观看视频| 国产精品一区二区三区四区久久| 日本三级黄在线观看| 成人三级黄色视频| 国产麻豆成人av免费视频| 日韩欧美 国产精品| 99久国产av精品国产电影| 成人亚洲欧美一区二区av| 亚洲av熟女| 内射极品少妇av片p| 激情 狠狠 欧美| 成人欧美大片| 久久久久久久久久黄片| 亚洲美女搞黄在线观看 | 免费在线观看成人毛片| 精品一区二区三区人妻视频| 美女内射精品一级片tv| 色综合色国产| 亚洲欧美日韩卡通动漫| 成人永久免费在线观看视频| 亚洲精品色激情综合| av黄色大香蕉| 成人国产麻豆网| 91精品国产九色| 国产三级在线视频| 成人性生交大片免费视频hd| 日本黄色视频三级网站网址| 毛片一级片免费看久久久久| 久久久久国产网址| 亚洲av一区综合| 欧美高清成人免费视频www| 黑人高潮一二区| 久久久久精品国产欧美久久久| 久久精品国产自在天天线| 麻豆av噜噜一区二区三区| 日韩一本色道免费dvd| 午夜免费激情av| 变态另类成人亚洲欧美熟女| 卡戴珊不雅视频在线播放| 成人永久免费在线观看视频| 日韩强制内射视频| 日韩一区二区视频免费看| 久久精品影院6| 天堂网av新在线| 少妇丰满av| 啦啦啦啦在线视频资源| 欧美又色又爽又黄视频| 在线免费观看不下载黄p国产| 身体一侧抽搐| 午夜福利视频1000在线观看| 日本成人三级电影网站| 六月丁香七月| 亚洲av二区三区四区| 成人午夜高清在线视频| 国产精品乱码一区二三区的特点| 一级毛片久久久久久久久女| 国产精品亚洲美女久久久| 亚洲性夜色夜夜综合| 日韩成人伦理影院| av在线天堂中文字幕| 欧美日本视频| 18禁在线播放成人免费| 国产亚洲精品av在线| 偷拍熟女少妇极品色| 熟妇人妻久久中文字幕3abv| 69人妻影院| 国产成人freesex在线 | 免费看光身美女| 精品免费久久久久久久清纯| 成人高潮视频无遮挡免费网站| 天天躁日日操中文字幕| 在线观看免费视频日本深夜| 一本久久中文字幕| 一级黄色大片毛片| 亚洲欧美清纯卡通| av在线蜜桃| 午夜爱爱视频在线播放| 欧美一区二区精品小视频在线| 精品人妻熟女av久视频| 亚洲精品亚洲一区二区| 日本撒尿小便嘘嘘汇集6| 最好的美女福利视频网| 欧美中文日本在线观看视频| 精品人妻视频免费看| 在线看三级毛片| 村上凉子中文字幕在线| 女人被狂操c到高潮| 3wmmmm亚洲av在线观看| 亚洲美女搞黄在线观看 | 亚洲久久久久久中文字幕| 亚洲欧美成人综合另类久久久 | 日本精品一区二区三区蜜桃| 99热这里只有是精品50| 亚洲自偷自拍三级| 日韩大尺度精品在线看网址| 国产黄a三级三级三级人| 亚洲av中文字字幕乱码综合| 成人漫画全彩无遮挡| 又黄又爽又免费观看的视频| 嫩草影院入口| 免费av不卡在线播放| 久久天躁狠狠躁夜夜2o2o| 亚洲精品一卡2卡三卡4卡5卡| 国产成人a∨麻豆精品| 变态另类成人亚洲欧美熟女| 最后的刺客免费高清国语| 1000部很黄的大片| 精品无人区乱码1区二区| 自拍偷自拍亚洲精品老妇| 又爽又黄无遮挡网站| 少妇被粗大猛烈的视频| 日本三级黄在线观看| 国产私拍福利视频在线观看| 中文在线观看免费www的网站| 深夜精品福利| 一级毛片aaaaaa免费看小| 国产精品爽爽va在线观看网站| 色5月婷婷丁香| 丝袜美腿在线中文| 你懂的网址亚洲精品在线观看 | 亚洲精品成人久久久久久| 精品久久久久久成人av| 国产成人91sexporn| 啦啦啦观看免费观看视频高清| 九九热线精品视视频播放| 久久久欧美国产精品| а√天堂www在线а√下载| 黄色日韩在线| 一本一本综合久久| 网址你懂的国产日韩在线| 99久久精品国产国产毛片| 天天躁夜夜躁狠狠久久av| 欧美中文日本在线观看视频| 最新中文字幕久久久久| 久久久a久久爽久久v久久| 国产精品日韩av在线免费观看| 国产精品99久久久久久久久| 午夜福利在线观看吧| 麻豆久久精品国产亚洲av| 国产视频内射| 国产伦精品一区二区三区视频9| 男女那种视频在线观看| 亚洲无线在线观看| 欧美人与善性xxx| 欧美xxxx黑人xx丫x性爽| 三级国产精品欧美在线观看| 欧美丝袜亚洲另类| 日本色播在线视频| 级片在线观看| 麻豆国产97在线/欧美| 国产探花极品一区二区| 97热精品久久久久久| 悠悠久久av|