• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Prompt acceleration of a μ+ beam in a toroidal wakefield driven by a shaped steeprising-front Laguerre-Gaussian laser pulse

    2022-06-01 07:56:18XiaonanWANG王曉南XiaofeiLAN蘭小飛YongshengHUANG黃永盛YougeJIANG蔣又歌
    Plasma Science and Technology 2022年5期
    關(guān)鍵詞:張昊春雷

    Xiaonan WANG (王曉南), Xiaofei LAN (蘭小飛),*,Yongsheng HUANG (黃永盛), Youge JIANG (蔣又歌),

    Chunlei ZHANG (張春雷)2, Hao ZHANG (張昊)5 and Tongpu YU (余同普)5

    1 School of Physics and Astronomy,China West Normal University,Nanchong 637009,People's Republic of China

    2 Key Laboratory of Beam Technology of Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China

    3 School of Science,Shenzhen Campus of Sun Yat-sen University,Shenzhen 518107,People's Republic of China

    4 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China

    5 Department of Physics, National University of Defense Technology, Changsha 410073, People's Republic of China

    Abstract Recent experimental data for anomalous magnetic moments strongly indicates the existence of new physics beyond the Standard Model.Energetic μ+ bunches are relevant to μ+ rare decay,spin rotation, resonance and relaxation (μSR) technology, future muon colliders, and neutrino factories.In this paper, we propose prompt μ+ acceleration in a nonlinear toroidal wakefield driven by a shaped steep-rising-front Laguerre-Gaussian (LG) laser pulse.An analytical model is described,which shows that a μ+beam can be focused by an electron cylinder at the centerline of a toroidal bubble and accelerated by the front part of the longitudinal wakefield.A shaped LG laser with a short rise time can push plasma electrons,generating a higher-density electron sheath at the front of the bubble,which can enhance the acceleration field.The acceleration field driven by the shaped steep-rising-front LG laser pulse is about four times greater than that driven by a normal LG laser pulse.Our simulation results show that a 300 MeV μ+bunch can be accelerated to 2 GeV and its transverse size is focused from an initial value of w0=5 μm to w=2 μm in the toroidal bubble driven by the shaped steep-rising-front LG laser pulse with a normalized amplitude of a=22.

    Keywords: plasma wakefield acceleration, muon source, laser shaping

    1.Introduction

    Recently,there has been increasing interest in the exploration of new physics beyond the Standard Model using the μ+rare decay[1-3]and the anomalous magnetic moment[4-6].The unstable particle, μ+(μ-) with a rest mass mμ=207meand a rest lifetime τ=2.2 μs has been applied in many fields(meis the rest mass of the electron).Energetic μ+(μ-) bunches can be used to make future neutrino factories [7, 8] and muon colliders[9,10]become a reality.In the field of spin rotation,resonance, and relaxation (μSR) technology [11-14], an energetic μ+beam can pass through the wall of a container toprobe materials in complex environments.The two available types of μ+(μ-)are low-flux GeV cosmic muons[15,16]and low-energy muon sources produced by traditional accelerators[17-19].The cosmic muons are too low-flux and the muon sources produced by traditional accelerators are too shortlived to explore new physics.

    Plasma-based accelerators [20-23] can offer extremely high acceleration fields of several hundred GV/m and can be applied to the study of high-energy physics and particle sources.Recently, a μ-beam was accelerated to GeV or 10 GeV in a plasma wakefield [24, 25].However, the acceleration of a μ+beam in a laser plasma wakefield has not been explored.A μ+beam would be defocused by the transverse field in a regular bubble driven by a Gaussian laser pulse.

    Using three-dimensional (3D) particle-in-cell (PIC)simulations performed by Epoch3D [26], we propose a prompt μ+acceleration scheme in a nonlinear toroidal wakefield [27-29] driven by a shaped Laguerre-Gaussian(LG) laser pulse [30].A collimated muon bunch with a peak energy of several hundred MeV was recently produced by a GeV electron beam interacting with a high-Z target [31, 32].In our simulations, we focus on μ+acceleration and assume that the required μ+beam has been injected into the wakefield.An analytical model is given, which shows that a μ+beam can be focused by an electron cylinder at the centerline of the toroidal bubble and accelerated in the front part of the longitudinal wakefield Ex.The simulation results show that in the wakefield driven by a LG laser pulse, the transverse size of the μ+beam is focused from an initial value of w0=5 μm to w=2 μm within several picoseconds.In addition,the peak energy of the accelerated μ+bunch, which had an initial energy of 300 MeV, is about 500 MeV.A LG laser pulse shaped by a near-critical-density plasma has a shorter rise time.The shaped steep-rising-front LG laser pushes plasma electrons forward, causing an electron sheath with largerσe≡nshΔxnshto be formed at the front of the toroidal bubble,where nshandΔxnshare the density and width of the electron sheath, respectively.The acceleration field Exis proportional to σe.The simulation results show that in the toroidal wakefield driven by a shaped steep-rising-front LG laser, the peak energy of the accelerated μ+bunch with an initial energy of 300 MeV is about 2 GeV, and the transverse size of the μ+bunch is also focused from an initial value of w0=5 μm to w=2 μm within several picoseconds.

    In cylindrical coordinates, the transverse distribution of the normalized amplitude of an LG laser can be expressed as:

    where a0is the maximum normalized amplitude, cl,pis the normalizing factor, w is the laser spot size, andis the generalized Laguerre polynomial.In our simulations, the Gaussian model of the laser pulse used is the LG1,0model,which can be expressed as:

    where c1,0≈1.67w.Equation (2) shows that the laser intensity at r=0 is zero.Due to the ponderomotive force of the LG laser pulse, plasma electrons are squeezed into the center axis and form an electron cylinder.This center electron cylinder has a higher density than that of the background electrons.The ponderomotive force of the LG laser pulse can also exclude nearby plasma electrons.Plasma protons can be considered as unmovable.The homogeneous protons pull the excluded electrons back to the center axis.Therefore, a toroidal bubble is formed.

    A μ+beam can be accelerated and focused in a nonlinear toroidal wakefield [33, 34] driven by an LG laser pulse.Figure 1(a) shows a transverse density slice of a toroidal bubble.The red arrow in figure 1(a) shows the direction of the transverse electric field produced by the central electron cylinder.The transverse electric field of the central electron cylinder forms a focusing field for the μ+beam.In figure 1(b),negative momentum means that the central electrons are moving in the negative x direction.Therefore, their magnetic field is a focusing field.The toroidal wakefields shown in figures 1(c), (e) were driven by the same LG laser pulse at different plasma densities of ne=5×1024m-3and ne=1×1025m-3, and look like two spherical bubbles.Figure 1(c)shows that in a nonlinear scheme, the two spherical wakefields have overlapping ranges.Figure 1(d)shows that the longitudinal wakefield Exhardly varies with r,i.e.?Ex/?r ?0.Figure 1(e)shows that at the onset of the nonlinear scheme, the two spherical wakefields have no overlap.The longitudinal wakefield Exis close to zero at r=0, as shown in figure 1(f).Only the nonlinear toroidal wakefield can accelerate and focus the μ+beam.

    Figure 1.Simulation results illustrating focusing (a), (b) and acceleration (c), (d) fields for a μ+ beam in a nonlinear toroidal wakefield.(a)shows a transverse slice of the toroidal wakefield as shown in(c)at x=60 μm.(b)shows plots of the momentum in the x direction of the electrons and μ+at the centerline of the toroidal wakefield.(c)shows a longitudinal slice of the electron density at z=0 μm in a plasma with a density of ne=5×1024 m-3.(d) shows the longitudinal wakefield Ex corresponding to (c).(e) shows a longitudinal slice of the toroidal wakefield at z=0 μm in a plasma with a higher density of ne=1×1025 m-3.(f) shows the Ex corresponding to (e).

    2.A physical model

    We propose a simple physical model shown in figure 2 to illustrate the focusing and accelerating of the μ+beam in the nonlinear toroidal wakefield driven by a LG laser.The blue arrows is the direction of the focusing force.The red arrow is the direction of the longitudinal wakefield.nshis the density of the electron sheath at the front of the wakefield.Δxnshis the width of this electron sheath.The σeis defined asσe≡nshΔxnsh.The longitudinal wakefield Exis equal to zero at x=0, x0.For 0 <x <x1, the longitudinal wakefield Exis the acceleration field for positive particles.In the range of 0 <x <x1, y <y1and y >y0, the plasma electron density is close to zero.The electron cylinder at the centerline of the toroidal provides the focusing force for positive particles and the electron sheath at the front of the toroidal provides the acceleration field.In the wakefield coordinate, the acceleration field can be considered as a static electric field.The acceleration field in the wakefield coordinate is equal to that in the laboratory coordinate.The Gauss’s law for the static electric field can be expressed as:

    Figure 2.A physical model of the focusing and accelerating of a μ+beam in a toroidal wakefield driven by a LG laser pulse.The physical model is in the range of the red dotted line as shown in(c).The center red rectangle represents the center electron cylinder.The right red rectangle represents the electron sheath at the front of the toroidal wakefield.

    where ∮sis the integral of the closed surface S,is the electric field,q is the charge inner the closed surface S,ε0is the vacuum permittivity.The six surfaces of the blue cuboid form the closed surfaceS=s1+s1′ +s2+s2′ +s3+s3′.We assume that s1ands1′are infinitesimal,which causes the electric field on s2and s3almost equal to that ons2′ands3′,respectively.The electric field ons1′ is equal to zero.Therefore in the range of 0 <x <x0, y <y1and y >y0, the acceleration field on s1can be expressed as:

    where neis the electron density,npis the proton density and considered as a constant, e is the elementary charge.It is assumed that the density of the electron sheath at the front of the toroidal is a constant nsh.The σeis defined asσe≡nshΔxnsh.In the range of 0 <x <x0, y <y1and y >y0,the acceleration field Excan be simplified as:

    equation (5) shows that for a given position on the x-axis,the acceleration field Exis proportional to σe.

    3.Three-dimensional simulations of the μ+acceleration in a toroidal wakefield driven by a LG laser pulse

    We implement PIC simulations to explore the focusing and accelerating of a μ+beam in a toroidal wakefield driven by a LG laser pulse.Those simulation results as shown in figure 3 are obtained using a LG laser with the spot size, w=15 μm, normalized amplitude, a0=22, and pulse width, τ=25 fs.At the beginning of the simulation, a 300 MeV μ+beam is placed at the front part of the acceleration field where the LG laser pulse also exists as shown in figures 3(a) and (g).Compared with positrons,μ+has a slower response to the oscillating field of the LG laser pulse.Therefore,the μ+beam and the LG laser pulse can be placed at the same position in the toroidal wakfield,which ensures that the μ+beam can be accelerated with a longer acceleration length.Detailed simulation parameters are shown in configuration A of table 1.The Gauss(x, x0, w) function as shown in table 1 calculate a Gaussian profile in variable x centred on x0with a characteristic width w and be expressed as:

    The snapshots shown in figure 3 are taken at the beginning, middle, and end of the acceleration, corresponding to simulation times of t=0.2 ps, t=2.0 ps, and t=5.0 ps.Figures 3(a)-(c) show that an LG laser pulse can be selfguided,which is attributed to the distribution of the refractive index at the front of the toroidal wakefield.Figures 3(d)-(f)show that the toroidal wakefield propagates stably within 5 ps, and provides continuous acceleration and focusing fields for the μ+beam.The acceleration field is separated at five picoseconds, since the central electron cylinder retroacts on the LG laser pulse.Figures 3(g)-(i) show that the transverse size of the μ+bunch is focused from a value of w0=5 μm to w=2 μm within several picoseconds by the central electron cylinder.During the acceleration process the μ+bunch always moves back toward the rear edge of the toroidal wakefield and finally enters the decelerating field at five picoseconds.The final peak energy of the μ+beam is about 500 MeV.The energy spread iswhere △E is the full width at half maximum (FWHM) and E is the peak energy.

    Figure 3.The μ+acceleration in a toroidal wakefield driven by a LG laser pulse.(a)-(i)show the longitudinal slices of the simulation box at the plane of z=0 μm.(a)-(c)show the evolution of the laser pulse.(d)-(f)show the longitudinal structure of the toroidal wakefield.(g)-(i)show the longitudinal wakefield Ex and the density of the μ+ bunch.(j)-(l) are the energy spectrum of the μ+ bunch.

    4.The stronger acceleration field driven by a shaped steep-rising-front LG laser for positive particle

    Table 1.Detailed simulation parameters for three configurations:(A),(B),and(C).We only list the parameters of configurations B and C that differ from those of configuration A.

    The shaping of a Gaussian laser pulse was proposed by H W Wang and coworkers [35].They demonstrate that as relativistic self-focusing (RSF) [36, 37], relativistic self-phase modulation (RSPM) [38, 39], and relativistic transparency occur in the interaction between a laser pulse and a nearcritical plasma,three shaping effects take place:laser intensity enhancement, laser profile steepening, and absorption of the nonrelativistic prepulse.Our simulation results show that an LG laser pulse can also be shaped by a near-critical plasma.The shaping effect is controlled by the length of the nearcritical plasma.Figure 4 shows the transverse oscillating electric fields of LG laser pulses shaped by near-criticaldensity plasmas with lengths of 1 μm, 5 μm and 10 μm,respectively.The rise time of the shaped LG laser pulse shown in figure 4(a) is longer compared with that of the shaped LG laser pulse shown in figure 4(b), which limits the maximum transversal wakefield driven by this shaped LG laser pulse.Figure 4(c) shows that if the length of the nearcritical plasma is 10 μm, the maximum amount of LG laser pulse energy is consumed by the near-critical plasma.Therefore, in our simulations, the length of the near-critical plasma is set to 5 μm.Figure 5 shows the influences of the shaping of the LG laser pulse and the plasma density on the acceleration field.The simulation results in figures 5(a), (b),and (c) are obtained using the parameters shown in configurations A, B, and C, respectively.Compared with the blue line in figure 5(a), the blue line in figure 5(b) shows that the electron sheath generated by the shaped laser pulse has a larger σe.Furthermore,the blue line in figure 5(c)shows that in a higher-density plasma, σeis larger.Corresponding to those black lines,the red lines in figure 5 show the theoretical results of equation(5).The electron density neof equation(5)is represented by the blue lines.The theoretical results agree with the simulation results.The red line in figure 5(c) shows that in a higher-density plasma, the acceleration field driven by a shaped steep-rising-front LG laser is the largest and can reach about 2.4 TV/m.

    Figure 4.Comparison of LG laser pulses shaped by near-critical-density plasmas with different lengths: 1 μm, 5 μm, and 10 μm.Figures 4(a)-(c) are all one-dimensional simulation results located at y=0 μm, z=10 μm in the three-dimensional simulation box.

    Figure 5.Comparison of the wakefields driven by an LG laser pulse (a) and a shaped LG laser pulse (b)-(c), illustrating that the shaped steep-rising-front LG laser can stimulate a higher acceleration gradient.The blue lines represent the simulated results for the electron density.The black and red lines represent the simulated and theoretical results for the acceleration field Ex.The blue and black lines are located at y=0 μm, z=10 μm in the three-dimensional simulation box.

    5.Three-dimensional simulations of μ+ acceleration in a toroidal wakefield driven by a shaped steeprising-front LG laser pulse

    Figure 6 shows the evolution of the μ+acceleration process in a toroidal wakefield driven by a shaped steep-rising-front LG laser.The laser parameters are the same as those of figure 3.A μ+bunch with an initial energy of 300 MeV can be located at the front part of the wakefield by adjusting its injection time.The detailed simulation parameters are listed in configuration C of table 1.Figure 6 shows that in a plasma with a density of ne=1×1025m-3, a shaped steep-rising-front LG laser pulse can drive the acceleration field at the centerline of the toroidal bubble for positive particles.Although the central electron cylinder is unstable during acceleration, the transverse size of the μ+beam is also focused.The snapshots shown in figure 6 are taken at the beginning, middle, and end of the acceleration corresponding to simulation times of t=0.1 ps, t=1.5 ps,and t=3.0 ps.Figure 6(a) shows that an LG laser pulse is shaped by a near-critical-density plasma.The shaped LG laser has a shorter rise time of tr=13 fs and a higher amplitude of Ey=5×1013V/m,compared to the LG laser shown in figure 3(a) with a rise time of tr=33 fs and an amplitude of Ey=4×1013V/m.Figures 6(b)and(c)show that the LG laser pulse is self-guided.A large proportion of the laser energy is depleted at t=3 ps.Figures 6(e),(f),(h),and (i) show that the acceleration field is stable within 3 ps and at up to 4×1012V/m.Figures 6(g)-(i) show that the transverse size of the μ+bunch is focused from the initial value of w0=5 μm to w=2 μm within several picoseconds by the central electron cylinder.At the beginning of the acceleration,the μ+bunch with an initial energy of 300 MeV moves backward relative to the toroidal bubble and is simultaneously accelerated.When the velocity of the μ+bunch is larger than that of the toroidal wakefield,it moves forward relative to the toroidal bubble and finally overtakes the acceleration field.In the toroidal wakefield driven by a shaped steep-rising-front LG laser pulse, the final peak energy of an accelerated μ+bunch with an initial energy of 300 MeV is about 2 GeV.The energy spread is

    Figure 6.The acceleration process of a μ+ beam in a toroidal wakefield driven by a shaped steep-rising-front LG laser pulse.(a)-(i) show longitudinal slices of the simulation box at the plane z=0 μm.The scaling factor for (d) is ×10.The scaling factor for the other figures is×1.(a)shows the shaping of an LG laser pulse in a near-critical-density plasma.(b),(c)show the evolution of the laser pulse.(d)shows the density distribution of a near-critical-density plasma.(e), (f) show the longitudinal structure of a toroidal bubble.(g) shows the initial density distribution of the μ+beam.(h),(i)show the longitudinal field Ex and the density distribution of the μ+beam.(j)-(l)show the energy spectrum of the μ+ beam.

    6.Comparison of the peak energies of the accelerated muon beam for three different simulation configurations

    Figure 7 mainly shows the influences of the shaping of the LG laser pulse and the plasma density on the peak energy of the accelerated μ+bunch.The circles, triangles, and squares represent simulation times of 3 ps,4.5 ps,and 5 ps,using the simulation parameters shown in configurations(A),(B),and(C)of table 1,respectively.For the red circles shown in figure 7,the maximum LG laser pulse energy was consumed at a simulation time of t=3 ps.When the initial energy is 100 MeV, most muons cannot catch up with the focusing and acceleration fields.With an initial energy increase from 100 MeV to 300 MeV, the peak energy and number of muons in the accelerated μ+bunch both increase.When the initial energy increases from 300 MeV to 450 MeV, the number of muons still increases, but the peak energy decreases; the reason for this is that with a higher initial energy,the μ+bunch overtakes the wakefield earlier and has a shorter acceleration time.For the green triangles, the wakefield collapsed at the simulated time of t=4.5 ps.When the initial energy is increased, the peak energy and the number of muons in the accelerated μ+bunch also both increase.For the blue squares, the wakefield collapsed at a simulated time of t=5 ps.When the initial energy is increased, the peak energy of the accelerated μ+bunch increases and the number of muons almost remains constant due to the stable focusing field driven by a normal LG laser pulse.Compared with the blue solid line shown in figure 7, the red solid line shows that in the toroidal wakefield driven by a shaped steep-rising-front LG laser pulse, the peak energy of the μ+beam can be increased by three to four times compared to that of a μ+beam accelerated in a toroidal wakefield driven by a normal LG laser pulse.

    Figure 7.The initial energy E0 of the μ+ bunch versus the peak energy Eacc and the total number of muons after the μ+ bunch is accelerated.The solid lines represent the peak energy Eacc of the accelerated μ+bunch.The y error bars only represent the FWHM of the energy spectrums.The dashed lines represent the total number of the muons at the corresponding moment.

    7.Discussion

    We also considered the synchronization of the laser and muon beam.In PIC simulations, synchronization can be realized by controlling the injection times of the laser and the muon beam.However, in experiments, the synchronization will be very complicated.Here, we propose the preliminary time control system as shown in figure 8 to realize synchronization.We assume that the time of muon beam injection into the plasma accelerator from the muon source,tμ,is fixed.The time of the laser pulse injection into the plasma accelerator is modulated by the distance between the upper and lower mirrors, L, as shown in figure 8.When L is changed by 0.15 μm, the timing of the laser pulse injected into the plasma accelerator is altered by 1 fs.The main difficulty in realizing the synchronization is finding a way to precisely confirm tμ, which will be included in our next work plan.

    Figure 8.A preliminary time control system to realize the synchronization of the laser and muon beam.Here, tμ is the time at which the muon beam is injected into the plasma accelerator by the muon source.L is the distance between the upper and lower mirrors.The time control system is in the blue dotted box.

    8.Conclusions

    In conclusion, based on our PIC simulations, we propose an analytical physical model to illustrate the acceleration and focusing of μ+bunches in a donut wakefield driven by a LG laser or a shaped steep-rising-front LG laser.The transverse electric field and the magnetic field of the central electron cylinder are both focusing fields for positive particles.The acceleration field Exis proportional to the σeof the pushed electron sheath at the front of the donut bubble.An LG laser pulse can be shaped by a near-critical-density plasma.A shaped LG laser pulse with a shorter rise time can push plasma electrons,generating a electron sheath with a larger σeat the front of the donut bubble.A donut bubble driven by an LG laser can provide a stable focusing field but a lower acceleration field.The acceleration field driven by a shaped steep-rising-front LG laser pulse is four times higher than that driven by an unshaped LG laser pulse.Although the central electron cylinder generated by a shaped LG laser pulse is unstable during the acceleration process,the transverse size of the μ+beam is also focused.The μ+beam is accelerated from 300 MeV to 2 GeV in the donut wakefield driven by a shaped steep-rising-front LG laser pulse with a normalized amplitude of a=22.In 2017,a laser pulse with a wavelength of 800 nm,an output energy of 300 J,a maximum peak power of 10 PW and a pulse width of 21 fs was obtained at the Shanghai Superintense Ultrafast Laser Facility[40],which supports the feasibility of the compact prompt acceleration scheme.This new compact prompt acceleration scheme for μ+beams will provide higher-energy muon sources than those of traditional accelerators.An energetic μ+source will be an attractive way to realize future muon colliders and neutrino factories and has the potential to unlock new physics beyond the Standard Model.

    Acknowledgments

    Our work was supported in part by the National Key R&D Program of China (No.2018YFA0404802), National Natural Science Foundation of China (No.11 875 319), the Hunan Provincial Science and Technology Program (No.2020RC4020), Innovation Project of IHEP (Nos.542 017IHEPZZBS11820, 542 018IHEPZZBS12427), the CAS Center for Excellence in Particle Physics (CCEPP), the Meritocracy Research Funds of China West Normal University (No.17YC504).

    ORCID iDs

    猜你喜歡
    張昊春雷
    春雷響
    幼兒100(2024年11期)2024-03-27 08:32:56
    Quantum correlation enhanced bound of the information exclusion principle
    惜物
    做人與處世(2022年2期)2022-05-26 22:34:53
    花事
    愛情順風車
    一道考題
    My Dream Weekends
    豐 碑
    春雷
    春雷乍響活驚蟄
    国产成人精品久久二区二区免费| 亚洲av第一区精品v没综合| 超色免费av| av又黄又爽大尺度在线免费看| 美女福利国产在线| 丰满饥渴人妻一区二区三| 99re在线观看精品视频| 精品久久久久久久毛片微露脸| 国产欧美日韩一区二区精品| 国产人伦9x9x在线观看| 成年版毛片免费区| tube8黄色片| 久久久国产精品麻豆| 后天国语完整版免费观看| 制服人妻中文乱码| 9热在线视频观看99| 少妇精品久久久久久久| 天天添夜夜摸| 三级毛片av免费| 50天的宝宝边吃奶边哭怎么回事| 国产精品1区2区在线观看. | 老汉色∧v一级毛片| 国产真人三级小视频在线观看| 国产一区二区三区在线臀色熟女 | a级毛片在线看网站| 欧美一级毛片孕妇| 久久精品亚洲精品国产色婷小说| 久久精品国产a三级三级三级| 在线天堂中文资源库| 国产精品成人在线| 中文字幕最新亚洲高清| 欧美日韩精品网址| 精品亚洲成国产av| 国产精品自产拍在线观看55亚洲 | 99九九在线精品视频| 999久久久国产精品视频| 亚洲熟妇熟女久久| 欧美成狂野欧美在线观看| 国产精品一区二区在线不卡| 国产精品98久久久久久宅男小说| 午夜福利乱码中文字幕| 国产成人精品无人区| 日韩中文字幕视频在线看片| 女人爽到高潮嗷嗷叫在线视频| 韩国精品一区二区三区| 国产在线免费精品| 久久香蕉激情| 午夜激情久久久久久久| 国产亚洲精品一区二区www | 久久中文字幕一级| e午夜精品久久久久久久| 精品卡一卡二卡四卡免费| 嫩草影视91久久| 亚洲中文av在线| 久久香蕉激情| 日日摸夜夜添夜夜添小说| 12—13女人毛片做爰片一| 91精品三级在线观看| 欧美乱妇无乱码| 黄色a级毛片大全视频| 在线观看www视频免费| 国产精品免费一区二区三区在线 | 精品一区二区三区四区五区乱码| 成人精品一区二区免费| 999久久久国产精品视频| 国产精品.久久久| 亚洲人成电影免费在线| 窝窝影院91人妻| 成人av一区二区三区在线看| 99在线人妻在线中文字幕 | 91av网站免费观看| 亚洲精品中文字幕在线视频| 国产一区二区三区视频了| 黄色 视频免费看| 国产男靠女视频免费网站| 日韩欧美一区视频在线观看| 亚洲第一青青草原| 91av网站免费观看| 国产成人影院久久av| 99热国产这里只有精品6| 久久久久久亚洲精品国产蜜桃av| 在线播放国产精品三级| 黄色毛片三级朝国网站| 欧美性长视频在线观看| 黄色 视频免费看| 国产高清激情床上av| 国产精品二区激情视频| 欧美日韩视频精品一区| 啦啦啦中文免费视频观看日本| 老司机靠b影院| 女性生殖器流出的白浆| 国产成人免费观看mmmm| 又黄又粗又硬又大视频| 在线观看一区二区三区激情| 久久99一区二区三区| 亚洲精品国产一区二区精华液| 一二三四在线观看免费中文在| 国产免费av片在线观看野外av| 亚洲一区二区三区欧美精品| 久久影院123| 999精品在线视频| 岛国毛片在线播放| 日本wwww免费看| 国产在视频线精品| 国产又爽黄色视频| a级毛片在线看网站| 久久国产精品人妻蜜桃| 婷婷成人精品国产| 亚洲精品粉嫩美女一区| 黄色片一级片一级黄色片| 香蕉久久夜色| 国产日韩欧美在线精品| 亚洲黑人精品在线| 制服人妻中文乱码| 12—13女人毛片做爰片一| 精品久久久久久久毛片微露脸| 久久精品国产99精品国产亚洲性色 | 精品福利观看| 黑人操中国人逼视频| 国产精品熟女久久久久浪| 久久人人97超碰香蕉20202| 少妇被粗大的猛进出69影院| 亚洲熟妇熟女久久| 国产精品av久久久久免费| 国产成人影院久久av| 亚洲成a人片在线一区二区| 国产单亲对白刺激| 成人精品一区二区免费| 国产在线一区二区三区精| 亚洲中文av在线| 美女主播在线视频| 人人澡人人妻人| 久热爱精品视频在线9| 99久久人妻综合| 国产av一区二区精品久久| 免费高清在线观看日韩| 五月开心婷婷网| av超薄肉色丝袜交足视频| 久久亚洲真实| 国产三级黄色录像| 亚洲成人国产一区在线观看| 国产精品.久久久| 男女边摸边吃奶| 桃红色精品国产亚洲av| 久久精品91无色码中文字幕| 69av精品久久久久久 | 精品久久久久久电影网| 18禁裸乳无遮挡动漫免费视频| 久久午夜综合久久蜜桃| 亚洲va日本ⅴa欧美va伊人久久| 亚洲一区中文字幕在线| 成人特级黄色片久久久久久久 | 亚洲成人免费av在线播放| 国产又色又爽无遮挡免费看| 99re在线观看精品视频| 99国产精品免费福利视频| avwww免费| 性高湖久久久久久久久免费观看| av网站免费在线观看视频| 国产色视频综合| 国产一区二区在线观看av| 亚洲精品乱久久久久久| 伦理电影免费视频| 国产成+人综合+亚洲专区| 999精品在线视频| 国产又色又爽无遮挡免费看| 视频区欧美日本亚洲| 久久久久久久久久久久大奶| 久久这里只有精品19| 啦啦啦中文免费视频观看日本| 欧美国产精品va在线观看不卡| 韩国精品一区二区三区| 中文字幕人妻丝袜一区二区| 亚洲一码二码三码区别大吗| 搡老乐熟女国产| 18禁观看日本| 高清黄色对白视频在线免费看| 国产在线精品亚洲第一网站| 女人高潮潮喷娇喘18禁视频| 亚洲精品自拍成人| 久久国产亚洲av麻豆专区| 巨乳人妻的诱惑在线观看| 丝袜人妻中文字幕| 少妇猛男粗大的猛烈进出视频| 搡老岳熟女国产| 国产成人影院久久av| 国产成人精品久久二区二区免费| 国产精品香港三级国产av潘金莲| 久久精品亚洲av国产电影网| 亚洲国产欧美网| 精品一品国产午夜福利视频| 一区在线观看完整版| 日韩免费高清中文字幕av| 在线永久观看黄色视频| 热99re8久久精品国产| 国产老妇伦熟女老妇高清| 精品人妻熟女毛片av久久网站| 18禁裸乳无遮挡动漫免费视频| 日韩中文字幕欧美一区二区| 老司机影院毛片| 国产亚洲午夜精品一区二区久久| 不卡一级毛片| 亚洲成av片中文字幕在线观看| 亚洲人成电影观看| 亚洲国产中文字幕在线视频| 国产成人精品久久二区二区免费| 少妇粗大呻吟视频| 男女免费视频国产| 怎么达到女性高潮| 久久国产精品男人的天堂亚洲| 免费人妻精品一区二区三区视频| 黑人操中国人逼视频| 久久天堂一区二区三区四区| 桃花免费在线播放| 亚洲欧美激情在线| 久久中文字幕一级| 色视频在线一区二区三区| 免费少妇av软件| 香蕉国产在线看| 欧美性长视频在线观看| 亚洲精品美女久久av网站| av又黄又爽大尺度在线免费看| 老汉色∧v一级毛片| 国产福利在线免费观看视频| 一级毛片精品| 久久精品aⅴ一区二区三区四区| 99久久国产精品久久久| 黑人巨大精品欧美一区二区mp4| 90打野战视频偷拍视频| av一本久久久久| 极品少妇高潮喷水抽搐| 嫁个100分男人电影在线观看| 一本大道久久a久久精品| 精品少妇黑人巨大在线播放| 欧美成人免费av一区二区三区 | 男女午夜视频在线观看| 亚洲av国产av综合av卡| 日韩免费高清中文字幕av| 99re6热这里在线精品视频| 午夜激情久久久久久久| 伊人久久大香线蕉亚洲五| 色精品久久人妻99蜜桃| 91九色精品人成在线观看| 久久中文看片网| 成人国产av品久久久| 午夜福利免费观看在线| 亚洲精品国产一区二区精华液| 国产高清视频在线播放一区| 亚洲av欧美aⅴ国产| 啦啦啦在线免费观看视频4| 日韩视频在线欧美| 午夜精品久久久久久毛片777| 久久精品亚洲熟妇少妇任你| 亚洲精品国产精品久久久不卡| 亚洲国产欧美在线一区| 欧美亚洲日本最大视频资源| 一夜夜www| 亚洲欧美日韩高清在线视频 | 欧美另类亚洲清纯唯美| 天天躁夜夜躁狠狠躁躁| 交换朋友夫妻互换小说| 国产1区2区3区精品| 80岁老熟妇乱子伦牲交| 日本撒尿小便嘘嘘汇集6| 少妇 在线观看| 亚洲人成77777在线视频| 国产亚洲午夜精品一区二区久久| 亚洲av成人不卡在线观看播放网| 麻豆av在线久日| 99久久99久久久精品蜜桃| 国产不卡av网站在线观看| 99热网站在线观看| 动漫黄色视频在线观看| 18禁美女被吸乳视频| 淫妇啪啪啪对白视频| 国产日韩欧美在线精品| 国产欧美日韩综合在线一区二区| 九色亚洲精品在线播放| 99精国产麻豆久久婷婷| 国产aⅴ精品一区二区三区波| 色在线成人网| 成人黄色视频免费在线看| 欧美国产精品va在线观看不卡| 久久久水蜜桃国产精品网| 国产成人啪精品午夜网站| 人人妻,人人澡人人爽秒播| 中文欧美无线码| 欧美日韩精品网址| 免费女性裸体啪啪无遮挡网站| 国产av国产精品国产| 国产一卡二卡三卡精品| 人妻久久中文字幕网| 99久久人妻综合| 久久香蕉激情| 精品国产亚洲在线| 久久精品91无色码中文字幕| 五月天丁香电影| 色94色欧美一区二区| 国产一区二区 视频在线| av在线播放免费不卡| 日韩大片免费观看网站| 丝瓜视频免费看黄片| 成年人黄色毛片网站| 一二三四在线观看免费中文在| 18禁美女被吸乳视频| 久久精品国产综合久久久| 黄色视频不卡| 国产精品一区二区免费欧美| 久久精品国产亚洲av香蕉五月 | 美女国产高潮福利片在线看| 精品国产乱码久久久久久男人| 男男h啪啪无遮挡| 老汉色av国产亚洲站长工具| avwww免费| 18禁裸乳无遮挡动漫免费视频| 日韩欧美国产一区二区入口| 亚洲熟女精品中文字幕| 久久国产精品影院| 满18在线观看网站| 美国免费a级毛片| 亚洲人成77777在线视频| 丁香六月欧美| 男女床上黄色一级片免费看| 久久影院123| 国产免费av片在线观看野外av| 人妻久久中文字幕网| 天天躁狠狠躁夜夜躁狠狠躁| 日本撒尿小便嘘嘘汇集6| 伊人久久大香线蕉亚洲五| 久久久国产成人免费| 热re99久久精品国产66热6| 国产黄色免费在线视频| 欧美日韩精品网址| 欧美精品一区二区大全| 在线 av 中文字幕| 亚洲精品中文字幕一二三四区 | 久久精品成人免费网站| 亚洲色图av天堂| 日本a在线网址| 国产亚洲精品一区二区www | 久久精品国产99精品国产亚洲性色 | 成人免费观看视频高清| 美女主播在线视频| 久久精品国产综合久久久| 日本欧美视频一区| 国产精品 国内视频| 99久久99久久久精品蜜桃| av有码第一页| 日日夜夜操网爽| 亚洲熟妇熟女久久| 亚洲 欧美一区二区三区| 免费在线观看完整版高清| 91大片在线观看| 国产一卡二卡三卡精品| 国产aⅴ精品一区二区三区波| 一进一出好大好爽视频| 高清在线国产一区| 欧美黑人精品巨大| 免费av中文字幕在线| 成年动漫av网址| 成人三级做爰电影| 久久狼人影院| 人妻久久中文字幕网| 99re在线观看精品视频| 欧美另类亚洲清纯唯美| 国产主播在线观看一区二区| 多毛熟女@视频| 80岁老熟妇乱子伦牲交| 正在播放国产对白刺激| 欧美老熟妇乱子伦牲交| 最新美女视频免费是黄的| 欧美老熟妇乱子伦牲交| 亚洲情色 制服丝袜| 亚洲av美国av| 怎么达到女性高潮| 亚洲精品国产精品久久久不卡| 日日爽夜夜爽网站| 亚洲av日韩精品久久久久久密| 精品高清国产在线一区| 亚洲av电影在线进入| 亚洲av片天天在线观看| 黄色视频,在线免费观看| 欧美乱码精品一区二区三区| 99国产综合亚洲精品| 91九色精品人成在线观看| 久久人妻福利社区极品人妻图片| 成人永久免费在线观看视频 | 亚洲欧洲精品一区二区精品久久久| 国产男靠女视频免费网站| 桃花免费在线播放| 国产精品久久久av美女十八| 欧美日韩亚洲国产一区二区在线观看 | 麻豆成人av在线观看| 一本一本久久a久久精品综合妖精| 国产不卡一卡二| cao死你这个sao货| 午夜久久久在线观看| 国产一区二区三区视频了| 中文字幕另类日韩欧美亚洲嫩草| 成人18禁在线播放| 国产一区二区三区视频了| 亚洲av日韩精品久久久久久密| 美女扒开内裤让男人捅视频| 999精品在线视频| 狠狠婷婷综合久久久久久88av| 成人影院久久| 女人高潮潮喷娇喘18禁视频| a级毛片在线看网站| 黑人操中国人逼视频| 在线观看免费视频网站a站| 亚洲国产av新网站| 黄色视频在线播放观看不卡| 欧美老熟妇乱子伦牲交| 大片电影免费在线观看免费| 波多野结衣av一区二区av| 成年女人毛片免费观看观看9 | 久久影院123| 日韩精品免费视频一区二区三区| 日本wwww免费看| 成人av一区二区三区在线看| 久久这里只有精品19| 亚洲成人免费av在线播放| 老司机福利观看| 午夜福利一区二区在线看| 搡老乐熟女国产| 国产欧美日韩精品亚洲av| 中文字幕av电影在线播放| 人人妻人人澡人人爽人人夜夜| 丰满少妇做爰视频| cao死你这个sao货| 成人特级黄色片久久久久久久 | 麻豆乱淫一区二区| 国产熟女午夜一区二区三区| 亚洲精品在线观看二区| 国产单亲对白刺激| 欧美变态另类bdsm刘玥| 日本av手机在线免费观看| av有码第一页| 我要看黄色一级片免费的| 久久亚洲真实| 国产精品久久久久久精品古装| 黄色片一级片一级黄色片| 日韩成人在线观看一区二区三区| 欧美国产精品一级二级三级| 国产成人av激情在线播放| 亚洲,欧美精品.| 精品国内亚洲2022精品成人 | 老鸭窝网址在线观看| 亚洲熟女毛片儿| 欧美人与性动交α欧美精品济南到| 18禁观看日本| 精品午夜福利视频在线观看一区 | 久久久国产一区二区| 国产精品久久久人人做人人爽| 淫妇啪啪啪对白视频| 午夜福利免费观看在线| 一边摸一边抽搐一进一出视频| 久久亚洲真实| 国产精品久久久久久精品电影小说| 亚洲精品美女久久久久99蜜臀| 视频区欧美日本亚洲| 青青草视频在线视频观看| 国产av一区二区精品久久| 亚洲人成电影免费在线| 激情视频va一区二区三区| 天天操日日干夜夜撸| 夜夜骑夜夜射夜夜干| 91成年电影在线观看| 国产av国产精品国产| 亚洲精品一二三| 老司机福利观看| av欧美777| 一级毛片电影观看| 一区二区日韩欧美中文字幕| 免费在线观看黄色视频的| 久久久久网色| 满18在线观看网站| 黄色视频在线播放观看不卡| 亚洲一码二码三码区别大吗| 一本久久精品| 99精品欧美一区二区三区四区| 亚洲精品国产一区二区精华液| 日韩 欧美 亚洲 中文字幕| 一级片'在线观看视频| 欧美在线黄色| 国产激情久久老熟女| 日本欧美视频一区| 国产区一区二久久| 欧美 日韩 精品 国产| 在线观看免费午夜福利视频| 大型黄色视频在线免费观看| 午夜精品久久久久久毛片777| 久久婷婷成人综合色麻豆| 最黄视频免费看| 中文字幕制服av| 一区在线观看完整版| 精品少妇一区二区三区视频日本电影| 国产成人精品无人区| 99久久99久久久精品蜜桃| 女人久久www免费人成看片| 91老司机精品| 国产精品香港三级国产av潘金莲| 一本色道久久久久久精品综合| 免费黄频网站在线观看国产| 丰满迷人的少妇在线观看| 黑丝袜美女国产一区| 变态另类成人亚洲欧美熟女 | 黄色成人免费大全| 99久久国产精品久久久| 国产高清激情床上av| 窝窝影院91人妻| 亚洲av日韩在线播放| 丰满饥渴人妻一区二区三| 日本vs欧美在线观看视频| 国产免费av片在线观看野外av| 国产成人免费无遮挡视频| 国产福利在线免费观看视频| 12—13女人毛片做爰片一| 精品欧美一区二区三区在线| 国产欧美日韩精品亚洲av| 99九九在线精品视频| 久久人妻福利社区极品人妻图片| 欧美人与性动交α欧美软件| 91av网站免费观看| 亚洲欧美一区二区三区久久| 国产精品av久久久久免费| 一区二区三区乱码不卡18| 亚洲性夜色夜夜综合| 黑人操中国人逼视频| 亚洲黑人精品在线| 大型黄色视频在线免费观看| 免费av中文字幕在线| 成人亚洲精品一区在线观看| 在线观看66精品国产| 精品久久久久久电影网| 宅男免费午夜| 又黄又粗又硬又大视频| 欧美日韩视频精品一区| 99re在线观看精品视频| 国精品久久久久久国模美| 人成视频在线观看免费观看| 在线亚洲精品国产二区图片欧美| 欧美中文综合在线视频| 91成年电影在线观看| 侵犯人妻中文字幕一二三四区| 极品人妻少妇av视频| 国产91精品成人一区二区三区 | 美女高潮喷水抽搐中文字幕| 亚洲中文日韩欧美视频| 亚洲精品自拍成人| 国产精品影院久久| 自拍欧美九色日韩亚洲蝌蚪91| 国产av一区二区精品久久| 啦啦啦中文免费视频观看日本| cao死你这个sao货| 好男人电影高清在线观看| 丰满人妻熟妇乱又伦精品不卡| 国产一区二区三区在线臀色熟女 | 激情在线观看视频在线高清 | 咕卡用的链子| 亚洲人成电影观看| 国产精品久久久av美女十八| 窝窝影院91人妻| av超薄肉色丝袜交足视频| 精品亚洲乱码少妇综合久久| 两个人看的免费小视频| 久久精品国产亚洲av高清一级| 欧美亚洲日本最大视频资源| 亚洲精品国产一区二区精华液| 欧美日韩中文字幕国产精品一区二区三区 | 91成人精品电影| 黄色a级毛片大全视频| 国产成人精品久久二区二区91| 男人舔女人的私密视频| 男女高潮啪啪啪动态图| 成在线人永久免费视频| 不卡一级毛片| 法律面前人人平等表现在哪些方面| 国产精品.久久久| 国产精品亚洲一级av第二区| 中文字幕色久视频| av有码第一页| 黑人巨大精品欧美一区二区mp4| 在线av久久热| 久久久久精品人妻al黑| 黄色成人免费大全| 成人国语在线视频| 精品少妇黑人巨大在线播放| 午夜激情av网站| 桃花免费在线播放| 国产一区二区三区综合在线观看| 欧美精品啪啪一区二区三区| 一进一出抽搐动态| 国产欧美日韩一区二区三| 欧美人与性动交α欧美软件| 免费在线观看黄色视频的| 午夜福利一区二区在线看| 国产在视频线精品| 最黄视频免费看| 1024香蕉在线观看| 五月天丁香电影| 亚洲国产av影院在线观看| 亚洲成人国产一区在线观看| 五月天丁香电影| 久久久精品国产亚洲av高清涩受| 免费在线观看完整版高清| 激情在线观看视频在线高清 | 无限看片的www在线观看| 精品熟女少妇八av免费久了| 1024香蕉在线观看| 久久久久网色| 99热网站在线观看| 19禁男女啪啪无遮挡网站| 亚洲欧美激情在线| 一级片'在线观看视频|