• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical study of the effect of coflow argon jet on a laminar argon thermal plasma jet

    2022-06-01 07:56:14XuZHOU周旭XianhuiCHEN陳仙輝TaohongYE葉桃紅MinmingZHU朱旻明andWeidongXIA夏維東
    Plasma Science and Technology 2022年5期
    關(guān)鍵詞:桃紅

    Xu ZHOU (周旭), Xianhui CHEN (陳仙輝), Taohong YE (葉桃紅),Minming ZHU (朱旻明) and Weidong XIA (夏維東)

    School of Engineering Science, University of Science and Technology of China, Hefei 230022, People’s Republic of China

    Abstract The effects of the velocity and width in coflow argon jet inlet on the flow characteristics of laminar argon thermal plasma jet flowing into the cold air have been studied by the large eddy simulation methods.The Kelvin-Helmholtz instability between argon thermal plasma jet and coflow argon jet causes the transition from a laminar jet to a turbulent jet in the presence of coflow argon jet.Moreover, increasing the velocity and width in coflow argon jet inlet can enhance turbulent transport and provoke coherent structure in the downstream of thermal plasma jet.And the mixing characteristics between argon thermal plasma,coflow argon and ambient air are strengthened.In addition, the width in coflow argon jet inlet has a significant effect on the distribution of temperature in the upstream of thermal plasma jet.It was also found that the transition occurs in advance with the increase of velocity and width in coflow argon jet inlet.

    Keywords: thermal plasma jet, coflow argon jet, transition, mixing characteristics, large eddy simulation

    1.Introduction

    The various flow configurations of thermal plasma, including free jets [1-3], coflow jets, transverse jets [4-6] and counter flows [7-9], etc, have been widely used in industrial applications.As one of the basic flow configurations, thermal plasma jets integrated with coflow argon jets have been widely used in welding,cutting,spraying and material preparation,and so on.

    In atmosphere plasma spraying,solid particles are heated and melted by the thermal plasma jets with sufficiently high temperature and velocity, which then splash on the substrate in order to form the coatings with special physical and chemical properties [10].However, the thermal plasma jets will be rapidly decelerated and quenched due to the large amount of entrained cold ambient air into jets,which seriously affects the properties of the coatings,such as porosity,thickness and oxide contents, and even leads to the failure of coatings[11-14].Generally, coflow argon jets are adopted at the end of the nozzle of the plasma torch to decrease the entrainment of cold air into thermal plasma jets.Furthermore, coflow argon contributes to creating an inert gas atmosphere, and avoids the interaction between solid particles with high temperature and ambient air [15-21].

    In the process of thermal plasma arc welding and cutting,coflow argon jets cannot only inhibit the air oxidation of materials,but also protect the nozzle of the thermal plasma torch from molten materials splashed from the work-piece.Coflow argon jets also provide a cold boundary layer around the anode wall, which reduces the heat carried away by cooling water.In addition,coflow argon jets squeeze the arc column and raise the core temperature of thermal plasma jet, which contribute to improving the power density of thermal plasma [22-24].

    Recently, thermal plasma jets integrated with coflow argon jets have shown a unique advantage of superfast production graphene[25].The graphene prepared by this method shows few basal defect and presents high quality.The entire exfoliation process includes three parts: thermal shock of graphite from thermal plasma, and two-stage shearing in the laminar and turbulent region of thermal plasma jets.The experimental results also show that the flow rate of coflow argon jets have a significant influence on the temperature,velocity and exfoliation efficiency of graphite.

    Many experimental and numerical studies of the momentum, mass and heat transfer characteristics of thermal plasma free jets have been implemented [1-3, 26-29].Although thermal plasma jets integrated with coflow argon jets have been widely used in industrial applications, the interactions between coflow argon jets and thermal plasma jets are unclear.Kim et al [17] found that the coflow argon jets with high velocity are conducive to obtaining a thick coating with low porosity and oxide contents.Experimental studies were carried out to investigate the effects of different coflow nozzle configurations on the electro-thermal efficiency of plasma torch [18].A small number of numerical simulations were performed to investigate the effect of coflow argon jets on the content of cold air into thermal plasma jets.Twodimensional numerical simulation results show that coflow argon jets can effectively reduce air entrainment into the turbulent plasma jets,but have no significant influence on the distribution of temperature and velocity in the thermal plasma jets[16].Cheng et al[19]found that the velocity and width in coflow argon jet inlet have significant impacts on the ambient air content in the laminar thermal plasma jets.

    Most of experiment studies focused on the properties of materials obtained by the thermal plasma jets integrated with coflow argon jets.However, the flow characteristics of laminar thermal plasma jets integrated with coflow argon jets are unclear due to the limitation of experimental diagnostic methods,and the properties of materials are closely related to the flow characteristics of thermal plasma jets.On the other hand, numerical studies have been used to reveal the flow mechanisms of thermal plasma jets due to the improvement of computational performance.The steady-state assumptions,two-dimensional axisymmetric computational domain, and standardk-εturbulence model are adopted in most numerical simulations [15, 16, 19, 30].But the standardk-εturbulence model is only applicable for the turbulent flows with high Reynolds numbers.In addition, only mean flow field can be provided, and the turbulent fluctuation of thermal plasma jets cannot be resolved under these assumptions.Large eddy simulations can provide more fundamental flow information and have been popular tools to study thermal plasma jets[31-35].In this study,a numerical code solving argon thermal plasma jets flowing into ambient cold air was embedded based on OpenFOAM [36], and the influences of velocity and width in the coflow argon jet inlet on the flow characteristics of laminar argon thermal plasma jets were investigated with threedimensional large eddy simulation methods.

    2.Numerical methods

    2.1.Geometry and case setting

    As shown in figure 1,the diameter of thermal plasma jet inlet(marked in red in figure 1) is D = 8 mm.The coflow argon jet inlet (marked in yellow in figure 1) is adjacent to the thermal plasma jet inlet, and the width in coflow argon jet inletWcois variable for different cases.In addition, the outer diameter of plasma torch isDout=8.75D.

    Figure 1.Schematic diagram of the physical model and computational domain.

    In this paper,the laminar argon thermal plasma jet flowing into the ambient air is used as a base case 1.Table 1 shows the detailed parameters of laminar thermal plasma jet.The maximum velocityUjand maximum temperatureTjin the laminar thermal plasma jet inlet are 600 m s-1and 13 000 K, respectively.The configurations of coflow argon jet are considered to reveal the effect of coflow argon jet in the cases 2-4.The detailed parameters of coflow argon jet are shown in table 2.Where,the bulk velocities in coflow argon jet inletUcoare 20 m s-1and 50 m s-1, respectively, and the widths in coflow argon jet inletWcoare 0.5 mm and 1.16 mm, respectively.The effects of velocity in coflow argon jet inle are studied by case 2 and case 3,and the effects of width in coflow argon jet inle are studied by case 2 and case 4.It is worth noting that the parameters of thermal plasma jet in the cases 2-4 are the same as base case 1.

    2.2.Numerical methods

    In our previous work [37], the numerical codes have been embedded and validated to solve argon thermal plasma jet flowing into the cold argon based on the OpenFOAM [36].The following assumptions are made: (i) the plasma is in the LTE (Local Thermodynamic Equilibrium) and LCE (Local Chemical Equilibrium)state;(ii)the plasma is assumed to be optically thin,so the radiative heat loss is modeled as a source term dependent on the component and temperature of plasma;and (iii) the buoyancy effects are negligible because of their smallness.Based on the foregoing assumptions, the filtered large eddy simulation compressible governing equations are

    where, superscript ‘~’ represents Favre-filtered operation,and ‘-’ represents spatially-filtered operation for large eddy simulation.t,andare time, spatial coordinate component, velocity component, pressure and mass fraction of argon in the argon-air mixture,respectively.The filtered viscous stressis defined based on the eddy viscosity hypothesis as

    Table 1.Inflow conditions of the laminar thermal plasma jet.

    Table 2.Case settings of large eddy simulation.

    Figure 2.The relationships between density, dynamic viscosity,specific heat, specific enthalpy and temperature under different argon mass fractions.

    In the governing equations (2)-(4), the sub-grid scale terms denoted by superscript ‘SGS’ are closed by the Smagorinsky model [39].The sub-grid stress terminequation (2) reads

    Table 3.Boundary conditions of numerical simulation.

    where, the turbulent Prandtl numberPrtand Schmidt numberSctare set as 0.9 and 1.0,respectively[3].The last term on the right side of the energy conservation equation (3) represents energy transport caused by species diffusion [40].hAandhBare the specific enthalpy of pure argon and pure air respectively, which depend only on temperature.In order to distinguish the distribution of argon in the thermal plasma jet and coflow argon jet, the passive scalarφis added to represent only the mass fraction of argon in the coflow argon jet, and the conservation equation is as follows:

    where, the sub-grid scalar flux termIn particular,the passive scalarφhas no effect on the distribution of other physical quantities.

    Figure 1 shows the computational domain and grid employed in the simulations.Computing domains are 25D×5D×2π in size and divided into 350×99×96 hexahedral structured grids.The total number of hexahedral grids are about 3.5 million.Moreover,the minimum grids can be found in the jet inlet and shear layer, and the size is 0.08 mm.

    Table 3 shows the boundary conditions employed in this study.The inflow conditions of velocity and temperature in the argon thermal plasma jet inlet satisfy the following distributions [1, 3, 27]

    where, the jet radius isRin= 4 mm,the wall temperature isTw= 300 K,and the fitting parameternUandnTare 1.4 and 2.3, respectively.The inflow conditions of velocity in the coflow argon jet inlet satisfy the 1/7 power distribution[41, 42]

    where,δis the radial length from the center of coflow argon jet inlet.2%turbulence intensities are employed in the inflow conditions of velocity and the temperature is 300 K, respectively.The mass fraction of argon is set asYA= 1.0in the jet inlet of thermal plasma and coflow argon, and the passive scalar is set asφ=1.0in the coflow argon jet inlet.No-slip walls are set on the inner wall of the plasma torch.The open boundary conditions are employed in the other faces to allow fluid to enter and exit freely.The temperature and pressure of cold air areT∞=300 K andP∞=1 atm,respectively.In addition, the information on numerical validations can be found in our previous work [37].

    3.Results and discussion

    3.1.Mean flow field

    Figures 3-6 show the spatial distributions of mean axial velocity,mean temperature,mean argon thermal plasma mass fraction and mean passive scalar for cases 1-4.It can be seen that the effects of velocity and width in the coflow argon jet inlet on the mean flow field are obvious in comparison to base case 1.With increasing velocity and width in the coflow argon jet inlet,the length of argon thermal plasma jet or high temperature region reduces gradually, and the gradient of velocity and temperature enhance obviously.The thermal plasma jet has changed from a long laminar jet dominated by the molecular transport mechanism to a turbulent jet dominated by the turbulent transport mechanism, and the entrainment rate of the coflow argon and ambient air into the thermal plasma jet is significantly improved.For the case 3 and case 4 with the same mass flow in the coflow argon jet inlet, the effect of increasing velocity of coflow argon jet inlet on the mean flow field is far greater than that of increasing width of coflow argon jet inlet.It is worth noting that the lengths of regions in which the temperature surpasses 6000 K in case 2 and case 4 are slightly longer than those of case 1.Obviously,more coflow argon rather than cold air is entrained into upstream of thermal plasma jet due to the presence of coflow argon jet.On the other hand,the specific enthalpy and specific heat of argon are much lower than those of air at the same temperature, which causes the higher temperature in the upstream of the case 2 and case 4.

    Figure 3.Distributions of mean axial velocity for cases 1-4.The three black lines represent the contours with mean axial velocities of 100 m s-1, 300 m s-1 and 500 m s-1, respectively.

    Figure 4.Distributions of mean temperature for cases 1-4.The three black lines represent the contours with mean temperatures of 3000 K,6000 K and 9000 K, respectively.

    Figure 5.Distributions of mean argon thermal plasma mass fraction for cases 1-4.The three black lines represent the contours with mean argon thermal plasma mass fractions of 0.3, 0.6 and 0.9, respectively.

    Figure 6.Distributions of mean passive scalar for cases 2-4.The two white lines represent the contours with mean passive scalars of 0.3 and 0.6, respectively.

    Although the mean argon mass fraction decays faster in the axial direction with increasing velocity in the coflow argon jet inlet, the mean argon mass fraction has a wider influence, especially in the upstream of jet.In addition, the effects on the mean argon mass fraction are detectable in a wider area with increasing width in the coflow argon jet inlet.Figure 6 shows that the trajectory of coflow argon jet also changes significantly and the length of the coflow argon jet decreases appreciably with increasing velocity in the coflow argon jet inlet.The blanket effect [17] of coflow argon jet disappears, and the mixing characteristics between argon thermal plasma and cold air are significantly improved.However, the length and width of coflow argon jet increase appreciably with the increase of the width in the coflow argon jet inlet.As a result, a dense argon atmosphere is created,which leads to higher temperature in the upstream of the case 2 and case 4.

    The distributions of normalized mean axial velocityUj/Uc, normalized mean temperature ΔTj/ ΔTc,mean argon thermal plasma mass fraction and mean passive scalar along the thermal plasma jet axis of cases 1-4 are shown in figure 7.Where,the subscript‘c’represents jet axis and the symbol‘Δ’represents difference with cold air parameter, respectively.In order to show the difference between different cases more clearly, logarithmic ordinates are adopted in figures 7(a) and(b).The changes of velocity and width in the coflow argon jet inlet have little influence on the distributions of mean flow field in the jet axis ofz/D<5.This indicates that the turbulent thermal plasma jet also has a laminar high temperature potential core, which is consistent with the previous experiment[43].The decay laws of mean argon mass fraction along the axis of case 2 and case 4 are shown in figure 7(c).The results show that the coflow argon jet is beneficial to create a dense argon atmosphere and reduces the entrainment rate of cold air into the upstream of jet.However, a large number of cold air is entrained into the downstream of jet, causing a sharp increase of decay rate of mean flow field along the jet axis.In addition, increasing the velocity and width in the coflow argon jet inlet can significantly enhance the decay rate of physical quantities in the downstream of jet axis.

    Figure 7.Distributions of normalized mean axial velocity Uj /Uc ,normalized mean temperature ΔT j /ΔT c,mean argon thermal plasma mass fraction and mean passive scalar along the thermal plasma jet axis of cases 1-4.

    Figure 8.Iso-surfaces ofQ = 5 × 10 5s- 2for cases 1-4, and the color represents local Reynolds number.

    Figure 9.Vorticity in the x-direction in the y-z section of cases 1-4.

    3.2.Instantaneous flow field

    Figure 8 shows the iso-surfaces ofQ= 5 × 105s-2,and the color represents local Reynolds numberwhich is determined according to local dynamic viscosity, density,velocity and diameter of argon thermal plasma jet inlet.As a stable long laminar plasma jet, the phenomena of vortex rolling is not observed,and Reynolds number is very small in the case 1.Under the effect of coflow argon jet, obvious coherent structures are provoked for the cases 2-4, in which the Kelvin-Helmholtz vortexes are main feature.Moreover,increasing velocity and width in the coflow argon jet inlet can enhance the coherent structure of the thermal plasma jet and improve the mixing characteristics between argon and ambient air.

    Figure 10.Radial distributions of different physical quantities at different downstream locations of cases 2-4.

    Figure 9 shows the x-direction vorticity in the y-z section of cases 1-4.It can also be seen that there is no rolling and breaking of the vortex although the values of vorticity are large for the case 1.After coflow argon jets are applied, the numbers of shear layers are increased from one to two,which are the shear layer between argon thermal plasma jet and coflow argon jet,and the shear layer between coflow argon jet and cold air, respectively.Two shear layers are separated at the jet upstream due to inlet boundary conditions and then merged with the development of the jet, in which the phenomenon of vortex rolling and breaking can be obviously observed.In addition, the intensity of this phenomenon increases with the increase of velocity and width in the coflow argon jet inlet.However, the flow inside argon thermal plasma jet is still very stable until the vortex breaking occurs at a certain location downstream.This location is affected by the velocity and width in coflow argon jet inlet, and increasing the velocity and width in coflow argon jet inlet can promote the transition of argon thermal plasma jet in advance.

    3.3.Turbulence statistical characteristics

    The reasons of argon thermal plasma transition induced by coflow argon jet are investigated.The radial distributions of normalized axial velocity fluctuationu′/Uj, normalized temperature fluctuationT′/ΔTj, argon thermal plasma mass fraction fluctuationpassive scalar fluctuationφ′and normalized Reynolds shear stressat different downstream locations of cases 2-4 are displayed in figure 10.The two black dashed lines represent the two shear layers mentioned above,and the distance between the two shear layers is equal to the width in coflow argon jet inlet.As a stable long laminar plasma jet, obvious fluctuation cannot be found in base case 1.However,the peaks of fluctuations appear in the shear layer between argon thermal plasma jet and coflow argon jet atz/D=5 of case 2.Then, the fluctuations peaks move to the jet axis.Next,the peaks of fluctuations appear on the jet axis and the Reynolds stress reaches the maximum atz/D=20.Finally,the fluctuations are disappeared due to the process of mixing.Compared with base case 1 that thermal plasma jet issues into the stationary cold air,the coflow argon jet is applied in case 2, which generates the velocity shear between argon thermal plasma jet and coflow argon jet.As a result, Kelvin-Helmholtz instability is provoked, and a laminar jet transforms into turbulent jet.Increasing the velocity and width in coflow argon jet inlet cannot only enhance the turbulent transport between argon thermal plasma jet and coflow argon jet, but also advance the transition of argon thermal plasma jet.It is worth noting that the argon mass fraction fluctuation and passive scalar fluctuation show two peaks atz/D=2, which are caused by the two velocity shear layers.The peaks of argon mass fraction fluctuation and passive scalar fluctuation move much faster to the ambient air than to the axis of argon thermal plasma jet.This may be because the turbulent fluctuations are easily dissipated by the high temperature thermal plasma with high molecular viscosity compared cold ambient air.

    4.Conclusions

    A numerical code solving argon thermal plasma jets flowing into cold air was embedded based on OpenFOAM.Compared with the laminar argon thermal plasma jet flowing into cold air, the effects of velocity and width in the coflow argon jet inlet on flow and mixing characteristics of thermal plasma jet have been studied by the large eddy simulation methods.The conclusions are summarized as follows:

    (1) In comparison to the laminar argon thermal plasma jet flowing into cold air, the Kelvin-Helmholtz instability between thermal plasma jet and coflow argon jet is caused after the coflow argon jet is applied.As a result,a laminar jet transforms into turbulent jet.The length of argon thermal plasma jet reduces significantly, and the gradient of velocity and temperature enhances obviously in the downstream of jet.

    (2) Increasing the width in the coflow argon jet inlet can create a dense argon atmosphere.On one hand, more coflow argon rather than ambient air is entrained into the upstream of thermal plasma jet.On the other hand,the specific enthalpy and specific heat of argon are much lower than those of air at the same temperature,causing the higher temperature in the upstream of argon thermal plasma jet.

    (3) With the increase of velocity and width in the coflow argon jet inlet, the turbulent transport and coherent structure in the downstream of thermal plasma jet enhance.The mixing characteristics between argon thermal plasma, coflow argon and ambient air are also improved.In addition, the transition from laminar thermal plasma jets to turbulent thermal plasma jets can be advanced by increasing the velocity and width in coflow argon jet inlet.

    Acknowledgments

    This work is supported by National Natural Science Foundation of China (Nos.12035015 and 12105282).The numerical simulations in this work have been performed on the supercomputers in the Supercomputing Center, University of Science and Technology of China.

    猜你喜歡
    桃紅
    桃紅四物湯臨床研究進(jìn)展
    Large eddy simulation on the flow characteristics of an argon thermal plasma jet
    桃紅又是一年春(同題散文兩篇)
    神劍(2021年3期)2021-08-14 02:30:00
    等一樹桃紅
    松桃紅石林
    桃紅開了
    歲月(2016年6期)2016-05-14 03:39:00
    絕 唱
    小桃紅
    萆薢滲濕湯合桃紅四物湯治療濕熱血瘀證結(jié)節(jié)性紅斑25例
    国产真实乱freesex| 永久网站在线| 国产成人免费观看mmmm| 一个人观看的视频www高清免费观看| 建设人人有责人人尽责人人享有的 | 亚洲综合色惰| 久久6这里有精品| 午夜激情福利司机影院| a级一级毛片免费在线观看| 日本黄色视频三级网站网址| 国产精品人妻久久久影院| 亚洲aⅴ乱码一区二区在线播放| 国产真实乱freesex| 久久久精品大字幕| 亚洲第一区二区三区不卡| www.色视频.com| 一个人免费在线观看电影| 久久人人爽人人片av| av专区在线播放| 免费观看在线日韩| 久久久久久久久久黄片| 午夜老司机福利剧场| 欧美高清性xxxxhd video| 亚洲欧美日韩东京热| 亚洲真实伦在线观看| 色哟哟·www| 亚洲国产色片| 久久精品熟女亚洲av麻豆精品 | 蜜臀久久99精品久久宅男| 色综合站精品国产| 三级毛片av免费| 欧美潮喷喷水| 又粗又爽又猛毛片免费看| 床上黄色一级片| 亚洲av免费高清在线观看| av在线老鸭窝| 男的添女的下面高潮视频| 长腿黑丝高跟| 麻豆乱淫一区二区| 午夜免费男女啪啪视频观看| 国产亚洲5aaaaa淫片| 国产成人福利小说| 国产片特级美女逼逼视频| 国产色婷婷99| 免费看a级黄色片| 听说在线观看完整版免费高清| 亚洲欧美一区二区三区国产| 久久亚洲国产成人精品v| 亚洲精品日韩在线中文字幕| 超碰av人人做人人爽久久| 非洲黑人性xxxx精品又粗又长| 99热精品在线国产| 日韩人妻高清精品专区| 成人漫画全彩无遮挡| a级毛色黄片| 国产精品人妻久久久久久| 久久欧美精品欧美久久欧美| 国国产精品蜜臀av免费| 国产视频内射| 欧美人与善性xxx| 国产三级在线视频| 91在线精品国自产拍蜜月| 亚洲一区高清亚洲精品| 精品久久久久久久久久久久久| 国产在视频线在精品| 成人无遮挡网站| 欧美xxxx黑人xx丫x性爽| 在线免费观看不下载黄p国产| 直男gayav资源| 日本熟妇午夜| 日本色播在线视频| 日韩强制内射视频| 好男人视频免费观看在线| 午夜激情欧美在线| 亚洲在线自拍视频| 内射极品少妇av片p| 两个人的视频大全免费| 国产不卡一卡二| 麻豆国产97在线/欧美| 18禁裸乳无遮挡免费网站照片| 久久草成人影院| 午夜久久久久精精品| 看片在线看免费视频| 国产一级毛片七仙女欲春2| 亚洲美女视频黄频| av在线天堂中文字幕| 免费黄色在线免费观看| 男女那种视频在线观看| 欧美最新免费一区二区三区| 国产一区二区在线观看日韩| 一级二级三级毛片免费看| 三级毛片av免费| 国产精品麻豆人妻色哟哟久久 | 亚洲精华国产精华液的使用体验| 大话2 男鬼变身卡| 97超视频在线观看视频| av视频在线观看入口| 三级毛片av免费| 免费一级毛片在线播放高清视频| 亚洲av日韩在线播放| 五月玫瑰六月丁香| av卡一久久| 国产精品久久久久久久久免| 国产精品野战在线观看| 国产免费福利视频在线观看| 精华霜和精华液先用哪个| 汤姆久久久久久久影院中文字幕 | 免费看日本二区| videos熟女内射| 国产亚洲精品av在线| 亚洲国产高清在线一区二区三| 午夜a级毛片| 欧美激情在线99| 欧美丝袜亚洲另类| 精品久久久噜噜| 女人久久www免费人成看片 | 禁无遮挡网站| 亚洲国产精品久久男人天堂| kizo精华| 欧美不卡视频在线免费观看| 精品熟女少妇av免费看| 波多野结衣高清无吗| 看非洲黑人一级黄片| 亚洲av一区综合| 好男人在线观看高清免费视频| 久久久国产成人精品二区| 国产乱人偷精品视频| 久久久久久久亚洲中文字幕| 国产精品人妻久久久久久| 免费无遮挡裸体视频| 两个人的视频大全免费| 亚洲av成人精品一二三区| 一边亲一边摸免费视频| 91精品伊人久久大香线蕉| 久久精品国产亚洲网站| 日本一本二区三区精品| 国产精品一区二区三区四区免费观看| 22中文网久久字幕| 丰满人妻一区二区三区视频av| av卡一久久| 国产精品久久久久久久久免| 欧美日本视频| 亚洲精品aⅴ在线观看| 我的女老师完整版在线观看| 一区二区三区四区激情视频| 三级国产精品片| 免费人成在线观看视频色| 成年女人看的毛片在线观看| 国产成人91sexporn| 欧美zozozo另类| 亚洲av不卡在线观看| 三级男女做爰猛烈吃奶摸视频| 长腿黑丝高跟| 成年av动漫网址| 免费观看在线日韩| 久久99热这里只频精品6学生 | 欧美日韩在线观看h| 午夜福利在线观看吧| 国产探花在线观看一区二区| 亚洲成人中文字幕在线播放| av女优亚洲男人天堂| 久久亚洲国产成人精品v| 国内揄拍国产精品人妻在线| 亚洲欧美一区二区三区国产| 小说图片视频综合网站| 少妇裸体淫交视频免费看高清| 久久精品国产鲁丝片午夜精品| 国产精品一区二区性色av| 青春草亚洲视频在线观看| 一卡2卡三卡四卡精品乱码亚洲| 日本黄色视频三级网站网址| 免费看美女性在线毛片视频| 久久久久久久亚洲中文字幕| 2021天堂中文幕一二区在线观| 色播亚洲综合网| 亚洲人成网站高清观看| 男人舔女人下体高潮全视频| 久久精品夜色国产| 黄色一级大片看看| 激情 狠狠 欧美| 日本三级黄在线观看| 欧美日韩一区二区视频在线观看视频在线 | 亚洲成av人片在线播放无| 26uuu在线亚洲综合色| 禁无遮挡网站| 国产精品.久久久| 亚洲国产欧洲综合997久久,| 成年av动漫网址| 成人毛片a级毛片在线播放| 日本av手机在线免费观看| 国产大屁股一区二区在线视频| 日韩一本色道免费dvd| 嫩草影院新地址| 丝袜喷水一区| 国产不卡一卡二| 亚洲国产精品成人久久小说| 特级一级黄色大片| 床上黄色一级片| 亚洲av电影不卡..在线观看| 欧美又色又爽又黄视频| 亚洲av免费高清在线观看| 欧美激情国产日韩精品一区| 黑人高潮一二区| 久久久国产成人精品二区| 国产精品久久久久久久电影| 最近视频中文字幕2019在线8| 中文字幕免费在线视频6| 精品一区二区三区人妻视频| 嫩草影院入口| 伦精品一区二区三区| 亚洲av.av天堂| 韩国高清视频一区二区三区| 欧美三级亚洲精品| 一二三四中文在线观看免费高清| 亚洲精华国产精华液的使用体验| 亚洲熟妇中文字幕五十中出| 亚洲美女搞黄在线观看| 亚洲精品,欧美精品| 日韩欧美精品免费久久| av在线亚洲专区| 国产精品一及| 欧美另类亚洲清纯唯美| 亚洲精品亚洲一区二区| 日本一二三区视频观看| 亚洲成色77777| 国国产精品蜜臀av免费| 十八禁国产超污无遮挡网站| 久久精品夜夜夜夜夜久久蜜豆| 亚洲国产色片| 久久精品91蜜桃| 一级毛片久久久久久久久女| 国产伦精品一区二区三区四那| 亚洲美女视频黄频| 久久久国产成人精品二区| 三级国产精品欧美在线观看| 好男人视频免费观看在线| 日韩在线高清观看一区二区三区| 国产亚洲91精品色在线| 国产av一区在线观看免费| 亚洲精品自拍成人| 男人和女人高潮做爰伦理| 国产伦一二天堂av在线观看| 久久精品综合一区二区三区| 最近最新中文字幕大全电影3| 日产精品乱码卡一卡2卡三| 插阴视频在线观看视频| 黄色一级大片看看| 激情 狠狠 欧美| 国产高清三级在线| 最新中文字幕久久久久| 又爽又黄无遮挡网站| 国产精品一区二区性色av| 色播亚洲综合网| 人人妻人人看人人澡| 亚洲精品乱久久久久久| 亚洲人成网站在线播| 91午夜精品亚洲一区二区三区| 好男人视频免费观看在线| 亚洲成av人片在线播放无| av又黄又爽大尺度在线免费看 | 国产爱豆传媒在线观看| 最近手机中文字幕大全| av天堂中文字幕网| 嫩草影院新地址| a级一级毛片免费在线观看| 久久久久久伊人网av| 免费看av在线观看网站| 亚洲真实伦在线观看| 午夜老司机福利剧场| 亚洲最大成人中文| 日本猛色少妇xxxxx猛交久久| 欧美成人午夜免费资源| 免费电影在线观看免费观看| 欧美日本亚洲视频在线播放| АⅤ资源中文在线天堂| 99久国产av精品国产电影| 国产探花在线观看一区二区| 男女啪啪激烈高潮av片| 综合色丁香网| 亚洲人与动物交配视频| 国产麻豆成人av免费视频| 特级一级黄色大片| 久久久久久伊人网av| av国产久精品久网站免费入址| 丝袜喷水一区| 两个人的视频大全免费| 国产一区二区在线av高清观看| 高清毛片免费看| 亚洲自拍偷在线| 国产精品美女特级片免费视频播放器| 身体一侧抽搐| 毛片女人毛片| 在线a可以看的网站| 日本爱情动作片www.在线观看| 免费一级毛片在线播放高清视频| 亚洲内射少妇av| 老师上课跳d突然被开到最大视频| 日本色播在线视频| 免费看av在线观看网站| 中文欧美无线码| 精品一区二区三区视频在线| 午夜福利在线观看免费完整高清在| 久久韩国三级中文字幕| 人妻制服诱惑在线中文字幕| 午夜亚洲福利在线播放| 亚洲欧美成人精品一区二区| 男女国产视频网站| 免费人成在线观看视频色| 日韩欧美三级三区| 中文在线观看免费www的网站| 婷婷色综合大香蕉| 成人鲁丝片一二三区免费| 亚洲精品亚洲一区二区| 国产精品美女特级片免费视频播放器| 日本免费一区二区三区高清不卡| 99久国产av精品国产电影| 欧美日韩综合久久久久久| 乱人视频在线观看| 97超碰精品成人国产| 欧美精品国产亚洲| 成人美女网站在线观看视频| 黑人高潮一二区| 亚洲天堂国产精品一区在线| www.色视频.com| 亚洲人成网站在线播| 国产精品无大码| 亚洲欧美清纯卡通| 国产在视频线在精品| 国产大屁股一区二区在线视频| 成年女人看的毛片在线观看| 国产一区二区在线av高清观看| 少妇被粗大猛烈的视频| 欧美色视频一区免费| 国产成人freesex在线| 久久久久久国产a免费观看| 中文字幕精品亚洲无线码一区| 国产精品.久久久| 青青草视频在线视频观看| 国产高清三级在线| 婷婷六月久久综合丁香| 国产真实乱freesex| 伦精品一区二区三区| 亚洲国产欧美在线一区| 日韩一区二区三区影片| 在线观看66精品国产| 欧美一区二区亚洲| 日本一本二区三区精品| 国产真实伦视频高清在线观看| 国产真实乱freesex| 精品酒店卫生间| or卡值多少钱| 高清在线视频一区二区三区 | 蜜臀久久99精品久久宅男| 久久99热这里只频精品6学生 | 美女脱内裤让男人舔精品视频| 久久精品影院6| 欧美成人免费av一区二区三区| 高清午夜精品一区二区三区| 狂野欧美激情性xxxx在线观看| 高清在线视频一区二区三区 | av在线天堂中文字幕| 精品人妻一区二区三区麻豆| 日本免费一区二区三区高清不卡| 国产高清有码在线观看视频| 啦啦啦韩国在线观看视频| 国产 一区精品| 禁无遮挡网站| 成人高潮视频无遮挡免费网站| av又黄又爽大尺度在线免费看 | 国产女主播在线喷水免费视频网站 | 黄片wwwwww| 日本五十路高清| 男女视频在线观看网站免费| 中文在线观看免费www的网站| 久久国产乱子免费精品| 精品欧美国产一区二区三| 中文字幕人妻熟人妻熟丝袜美| 亚洲av日韩在线播放| 99久久无色码亚洲精品果冻| a级一级毛片免费在线观看| 精品久久久久久成人av| 最近最新中文字幕大全电影3| av福利片在线观看| 欧美一区二区亚洲| 联通29元200g的流量卡| 久久精品人妻少妇| 成人漫画全彩无遮挡| 国产在线一区二区三区精 | 日日啪夜夜撸| 成人无遮挡网站| 特级一级黄色大片| 亚洲国产欧洲综合997久久,| 如何舔出高潮| 波多野结衣高清无吗| 国模一区二区三区四区视频| 97超碰精品成人国产| 亚州av有码| 亚洲av不卡在线观看| 国产高潮美女av| 97热精品久久久久久| 国产伦理片在线播放av一区| 国产精品一区二区三区四区久久| 国产91av在线免费观看| 国产高潮美女av| 深爱激情五月婷婷| 男人舔女人下体高潮全视频| 久久久久性生活片| 色网站视频免费| 免费大片18禁| 99热这里只有是精品50| 午夜福利网站1000一区二区三区| 免费看美女性在线毛片视频| 色5月婷婷丁香| 青青草视频在线视频观看| 熟妇人妻久久中文字幕3abv| 国产免费视频播放在线视频 | 国内揄拍国产精品人妻在线| videos熟女内射| 日韩欧美三级三区| 可以在线观看毛片的网站| 国产视频首页在线观看| 色5月婷婷丁香| 亚洲av熟女| 成年版毛片免费区| 毛片女人毛片| 日韩av在线免费看完整版不卡| 色视频www国产| 日本色播在线视频| 久久精品国产鲁丝片午夜精品| 日日撸夜夜添| 国产精品电影一区二区三区| 舔av片在线| 久久精品国产亚洲av涩爱| 女人十人毛片免费观看3o分钟| 国语自产精品视频在线第100页| 丰满少妇做爰视频| 国产免费一级a男人的天堂| 国产精品美女特级片免费视频播放器| 日韩欧美精品v在线| 中文字幕亚洲精品专区| 97超视频在线观看视频| 亚洲av中文字字幕乱码综合| 日本爱情动作片www.在线观看| 国产精品一区二区三区四区免费观看| 美女cb高潮喷水在线观看| 国产精品一区二区性色av| 一级黄片播放器| 国产午夜精品久久久久久一区二区三区| 欧美极品一区二区三区四区| 国产精品久久久久久精品电影| videos熟女内射| 精品久久久久久久久av| 亚洲性久久影院| 毛片一级片免费看久久久久| 亚洲国产高清在线一区二区三| videossex国产| 欧美最新免费一区二区三区| 亚洲av免费在线观看| av卡一久久| 直男gayav资源| 亚洲国产精品专区欧美| 国产精品伦人一区二区| 波多野结衣高清无吗| 最近2019中文字幕mv第一页| 国产极品精品免费视频能看的| 国产成人精品婷婷| 最近2019中文字幕mv第一页| 少妇人妻一区二区三区视频| 国产综合懂色| 亚洲欧洲日产国产| 久久久久国产网址| 午夜福利视频1000在线观看| 2022亚洲国产成人精品| 欧美极品一区二区三区四区| 国产精品一区二区三区四区久久| 亚洲欧美成人精品一区二区| 亚洲五月天丁香| 日本黄大片高清| 最近2019中文字幕mv第一页| 婷婷色综合大香蕉| 天堂网av新在线| 亚洲精品国产成人久久av| 一个人看视频在线观看www免费| 国产精品久久视频播放| 中文字幕av成人在线电影| 成人二区视频| 免费不卡的大黄色大毛片视频在线观看 | 国产精品蜜桃在线观看| 七月丁香在线播放| 赤兔流量卡办理| 亚洲av熟女| 亚洲第一区二区三区不卡| 三级国产精品片| 亚洲欧美成人综合另类久久久 | 久久综合国产亚洲精品| h日本视频在线播放| 亚洲欧美日韩高清专用| 亚洲欧美日韩无卡精品| 国产大屁股一区二区在线视频| 亚洲精品国产成人久久av| 亚洲国产精品合色在线| 国产老妇伦熟女老妇高清| 深夜a级毛片| videos熟女内射| 国产高清视频在线观看网站| 观看免费一级毛片| 美女黄网站色视频| 国产一区二区在线av高清观看| 中文字幕人妻熟人妻熟丝袜美| 亚洲自偷自拍三级| 亚洲人成网站高清观看| 中文精品一卡2卡3卡4更新| 国产激情偷乱视频一区二区| 色综合站精品国产| 亚洲性久久影院| 欧美一区二区亚洲| av在线亚洲专区| 久久综合国产亚洲精品| 在线播放无遮挡| 一夜夜www| 日韩国内少妇激情av| 性插视频无遮挡在线免费观看| av福利片在线观看| 美女cb高潮喷水在线观看| 亚洲av日韩在线播放| 亚洲国产色片| 久久热精品热| 大香蕉97超碰在线| 欧美区成人在线视频| 亚洲五月天丁香| 熟妇人妻久久中文字幕3abv| 中文字幕熟女人妻在线| 午夜免费男女啪啪视频观看| 久久精品综合一区二区三区| 可以在线观看毛片的网站| 天美传媒精品一区二区| 午夜福利在线观看免费完整高清在| 99热这里只有是精品在线观看| 我的女老师完整版在线观看| 麻豆成人av视频| 好男人视频免费观看在线| 久久欧美精品欧美久久欧美| 亚洲国产精品国产精品| 国产精品爽爽va在线观看网站| 亚洲av二区三区四区| 三级毛片av免费| 久久这里只有精品中国| 亚洲成av人片在线播放无| 亚洲va在线va天堂va国产| 国产av在哪里看| 男女那种视频在线观看| 观看美女的网站| 日本黄大片高清| 亚洲精品456在线播放app| 亚洲熟妇中文字幕五十中出| 亚洲欧美日韩东京热| 日韩亚洲欧美综合| 少妇人妻一区二区三区视频| 精品国内亚洲2022精品成人| 91精品伊人久久大香线蕉| 国产乱人视频| 日韩欧美国产在线观看| 18禁在线播放成人免费| 日本黄大片高清| 老司机福利观看| 床上黄色一级片| 欧美最新免费一区二区三区| 韩国av在线不卡| 亚洲av免费在线观看| 内射极品少妇av片p| 在线免费十八禁| 黄片wwwwww| 赤兔流量卡办理| 成人无遮挡网站| 亚洲欧美日韩无卡精品| 免费人成在线观看视频色| 国产免费视频播放在线视频 | 美女国产视频在线观看| 秋霞伦理黄片| 六月丁香七月| 国产亚洲5aaaaa淫片| 国产日韩欧美在线精品| 欧美激情在线99| 天天躁夜夜躁狠狠久久av| av黄色大香蕉| 成人漫画全彩无遮挡| 三级国产精品欧美在线观看| 欧美成人午夜免费资源| 国产精品爽爽va在线观看网站| 欧美三级亚洲精品| 久热久热在线精品观看| 久久久久久久午夜电影| 亚洲成色77777| 亚洲一区高清亚洲精品| 日本猛色少妇xxxxx猛交久久| 亚洲经典国产精华液单| 亚洲一区高清亚洲精品| 天堂√8在线中文| 亚洲经典国产精华液单| 日本黄色片子视频| 久久人人爽人人爽人人片va| 老司机影院毛片| 亚洲一区高清亚洲精品| 色哟哟·www| 九九在线视频观看精品| 干丝袜人妻中文字幕| АⅤ资源中文在线天堂| 免费av不卡在线播放| 男人狂女人下面高潮的视频| 色综合站精品国产| 插逼视频在线观看| 亚洲av电影不卡..在线观看| 国产视频首页在线观看| 三级国产精品欧美在线观看| 日日干狠狠操夜夜爽|