• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical study of the effect of coflow argon jet on a laminar argon thermal plasma jet

    2022-06-01 07:56:14XuZHOU周旭XianhuiCHEN陳仙輝TaohongYE葉桃紅MinmingZHU朱旻明andWeidongXIA夏維東
    Plasma Science and Technology 2022年5期
    關(guān)鍵詞:桃紅

    Xu ZHOU (周旭), Xianhui CHEN (陳仙輝), Taohong YE (葉桃紅),Minming ZHU (朱旻明) and Weidong XIA (夏維東)

    School of Engineering Science, University of Science and Technology of China, Hefei 230022, People’s Republic of China

    Abstract The effects of the velocity and width in coflow argon jet inlet on the flow characteristics of laminar argon thermal plasma jet flowing into the cold air have been studied by the large eddy simulation methods.The Kelvin-Helmholtz instability between argon thermal plasma jet and coflow argon jet causes the transition from a laminar jet to a turbulent jet in the presence of coflow argon jet.Moreover, increasing the velocity and width in coflow argon jet inlet can enhance turbulent transport and provoke coherent structure in the downstream of thermal plasma jet.And the mixing characteristics between argon thermal plasma,coflow argon and ambient air are strengthened.In addition, the width in coflow argon jet inlet has a significant effect on the distribution of temperature in the upstream of thermal plasma jet.It was also found that the transition occurs in advance with the increase of velocity and width in coflow argon jet inlet.

    Keywords: thermal plasma jet, coflow argon jet, transition, mixing characteristics, large eddy simulation

    1.Introduction

    The various flow configurations of thermal plasma, including free jets [1-3], coflow jets, transverse jets [4-6] and counter flows [7-9], etc, have been widely used in industrial applications.As one of the basic flow configurations, thermal plasma jets integrated with coflow argon jets have been widely used in welding,cutting,spraying and material preparation,and so on.

    In atmosphere plasma spraying,solid particles are heated and melted by the thermal plasma jets with sufficiently high temperature and velocity, which then splash on the substrate in order to form the coatings with special physical and chemical properties [10].However, the thermal plasma jets will be rapidly decelerated and quenched due to the large amount of entrained cold ambient air into jets,which seriously affects the properties of the coatings,such as porosity,thickness and oxide contents, and even leads to the failure of coatings[11-14].Generally, coflow argon jets are adopted at the end of the nozzle of the plasma torch to decrease the entrainment of cold air into thermal plasma jets.Furthermore, coflow argon contributes to creating an inert gas atmosphere, and avoids the interaction between solid particles with high temperature and ambient air [15-21].

    In the process of thermal plasma arc welding and cutting,coflow argon jets cannot only inhibit the air oxidation of materials,but also protect the nozzle of the thermal plasma torch from molten materials splashed from the work-piece.Coflow argon jets also provide a cold boundary layer around the anode wall, which reduces the heat carried away by cooling water.In addition,coflow argon jets squeeze the arc column and raise the core temperature of thermal plasma jet, which contribute to improving the power density of thermal plasma [22-24].

    Recently, thermal plasma jets integrated with coflow argon jets have shown a unique advantage of superfast production graphene[25].The graphene prepared by this method shows few basal defect and presents high quality.The entire exfoliation process includes three parts: thermal shock of graphite from thermal plasma, and two-stage shearing in the laminar and turbulent region of thermal plasma jets.The experimental results also show that the flow rate of coflow argon jets have a significant influence on the temperature,velocity and exfoliation efficiency of graphite.

    Many experimental and numerical studies of the momentum, mass and heat transfer characteristics of thermal plasma free jets have been implemented [1-3, 26-29].Although thermal plasma jets integrated with coflow argon jets have been widely used in industrial applications, the interactions between coflow argon jets and thermal plasma jets are unclear.Kim et al [17] found that the coflow argon jets with high velocity are conducive to obtaining a thick coating with low porosity and oxide contents.Experimental studies were carried out to investigate the effects of different coflow nozzle configurations on the electro-thermal efficiency of plasma torch [18].A small number of numerical simulations were performed to investigate the effect of coflow argon jets on the content of cold air into thermal plasma jets.Twodimensional numerical simulation results show that coflow argon jets can effectively reduce air entrainment into the turbulent plasma jets,but have no significant influence on the distribution of temperature and velocity in the thermal plasma jets[16].Cheng et al[19]found that the velocity and width in coflow argon jet inlet have significant impacts on the ambient air content in the laminar thermal plasma jets.

    Most of experiment studies focused on the properties of materials obtained by the thermal plasma jets integrated with coflow argon jets.However, the flow characteristics of laminar thermal plasma jets integrated with coflow argon jets are unclear due to the limitation of experimental diagnostic methods,and the properties of materials are closely related to the flow characteristics of thermal plasma jets.On the other hand, numerical studies have been used to reveal the flow mechanisms of thermal plasma jets due to the improvement of computational performance.The steady-state assumptions,two-dimensional axisymmetric computational domain, and standardk-εturbulence model are adopted in most numerical simulations [15, 16, 19, 30].But the standardk-εturbulence model is only applicable for the turbulent flows with high Reynolds numbers.In addition, only mean flow field can be provided, and the turbulent fluctuation of thermal plasma jets cannot be resolved under these assumptions.Large eddy simulations can provide more fundamental flow information and have been popular tools to study thermal plasma jets[31-35].In this study,a numerical code solving argon thermal plasma jets flowing into ambient cold air was embedded based on OpenFOAM [36], and the influences of velocity and width in the coflow argon jet inlet on the flow characteristics of laminar argon thermal plasma jets were investigated with threedimensional large eddy simulation methods.

    2.Numerical methods

    2.1.Geometry and case setting

    As shown in figure 1,the diameter of thermal plasma jet inlet(marked in red in figure 1) is D = 8 mm.The coflow argon jet inlet (marked in yellow in figure 1) is adjacent to the thermal plasma jet inlet, and the width in coflow argon jet inletWcois variable for different cases.In addition, the outer diameter of plasma torch isDout=8.75D.

    Figure 1.Schematic diagram of the physical model and computational domain.

    In this paper,the laminar argon thermal plasma jet flowing into the ambient air is used as a base case 1.Table 1 shows the detailed parameters of laminar thermal plasma jet.The maximum velocityUjand maximum temperatureTjin the laminar thermal plasma jet inlet are 600 m s-1and 13 000 K, respectively.The configurations of coflow argon jet are considered to reveal the effect of coflow argon jet in the cases 2-4.The detailed parameters of coflow argon jet are shown in table 2.Where,the bulk velocities in coflow argon jet inletUcoare 20 m s-1and 50 m s-1, respectively, and the widths in coflow argon jet inletWcoare 0.5 mm and 1.16 mm, respectively.The effects of velocity in coflow argon jet inle are studied by case 2 and case 3,and the effects of width in coflow argon jet inle are studied by case 2 and case 4.It is worth noting that the parameters of thermal plasma jet in the cases 2-4 are the same as base case 1.

    2.2.Numerical methods

    In our previous work [37], the numerical codes have been embedded and validated to solve argon thermal plasma jet flowing into the cold argon based on the OpenFOAM [36].The following assumptions are made: (i) the plasma is in the LTE (Local Thermodynamic Equilibrium) and LCE (Local Chemical Equilibrium)state;(ii)the plasma is assumed to be optically thin,so the radiative heat loss is modeled as a source term dependent on the component and temperature of plasma;and (iii) the buoyancy effects are negligible because of their smallness.Based on the foregoing assumptions, the filtered large eddy simulation compressible governing equations are

    where, superscript ‘~’ represents Favre-filtered operation,and ‘-’ represents spatially-filtered operation for large eddy simulation.t,andare time, spatial coordinate component, velocity component, pressure and mass fraction of argon in the argon-air mixture,respectively.The filtered viscous stressis defined based on the eddy viscosity hypothesis as

    Table 1.Inflow conditions of the laminar thermal plasma jet.

    Table 2.Case settings of large eddy simulation.

    Figure 2.The relationships between density, dynamic viscosity,specific heat, specific enthalpy and temperature under different argon mass fractions.

    In the governing equations (2)-(4), the sub-grid scale terms denoted by superscript ‘SGS’ are closed by the Smagorinsky model [39].The sub-grid stress terminequation (2) reads

    Table 3.Boundary conditions of numerical simulation.

    where, the turbulent Prandtl numberPrtand Schmidt numberSctare set as 0.9 and 1.0,respectively[3].The last term on the right side of the energy conservation equation (3) represents energy transport caused by species diffusion [40].hAandhBare the specific enthalpy of pure argon and pure air respectively, which depend only on temperature.In order to distinguish the distribution of argon in the thermal plasma jet and coflow argon jet, the passive scalarφis added to represent only the mass fraction of argon in the coflow argon jet, and the conservation equation is as follows:

    where, the sub-grid scalar flux termIn particular,the passive scalarφhas no effect on the distribution of other physical quantities.

    Figure 1 shows the computational domain and grid employed in the simulations.Computing domains are 25D×5D×2π in size and divided into 350×99×96 hexahedral structured grids.The total number of hexahedral grids are about 3.5 million.Moreover,the minimum grids can be found in the jet inlet and shear layer, and the size is 0.08 mm.

    Table 3 shows the boundary conditions employed in this study.The inflow conditions of velocity and temperature in the argon thermal plasma jet inlet satisfy the following distributions [1, 3, 27]

    where, the jet radius isRin= 4 mm,the wall temperature isTw= 300 K,and the fitting parameternUandnTare 1.4 and 2.3, respectively.The inflow conditions of velocity in the coflow argon jet inlet satisfy the 1/7 power distribution[41, 42]

    where,δis the radial length from the center of coflow argon jet inlet.2%turbulence intensities are employed in the inflow conditions of velocity and the temperature is 300 K, respectively.The mass fraction of argon is set asYA= 1.0in the jet inlet of thermal plasma and coflow argon, and the passive scalar is set asφ=1.0in the coflow argon jet inlet.No-slip walls are set on the inner wall of the plasma torch.The open boundary conditions are employed in the other faces to allow fluid to enter and exit freely.The temperature and pressure of cold air areT∞=300 K andP∞=1 atm,respectively.In addition, the information on numerical validations can be found in our previous work [37].

    3.Results and discussion

    3.1.Mean flow field

    Figures 3-6 show the spatial distributions of mean axial velocity,mean temperature,mean argon thermal plasma mass fraction and mean passive scalar for cases 1-4.It can be seen that the effects of velocity and width in the coflow argon jet inlet on the mean flow field are obvious in comparison to base case 1.With increasing velocity and width in the coflow argon jet inlet,the length of argon thermal plasma jet or high temperature region reduces gradually, and the gradient of velocity and temperature enhance obviously.The thermal plasma jet has changed from a long laminar jet dominated by the molecular transport mechanism to a turbulent jet dominated by the turbulent transport mechanism, and the entrainment rate of the coflow argon and ambient air into the thermal plasma jet is significantly improved.For the case 3 and case 4 with the same mass flow in the coflow argon jet inlet, the effect of increasing velocity of coflow argon jet inlet on the mean flow field is far greater than that of increasing width of coflow argon jet inlet.It is worth noting that the lengths of regions in which the temperature surpasses 6000 K in case 2 and case 4 are slightly longer than those of case 1.Obviously,more coflow argon rather than cold air is entrained into upstream of thermal plasma jet due to the presence of coflow argon jet.On the other hand,the specific enthalpy and specific heat of argon are much lower than those of air at the same temperature, which causes the higher temperature in the upstream of the case 2 and case 4.

    Figure 3.Distributions of mean axial velocity for cases 1-4.The three black lines represent the contours with mean axial velocities of 100 m s-1, 300 m s-1 and 500 m s-1, respectively.

    Figure 4.Distributions of mean temperature for cases 1-4.The three black lines represent the contours with mean temperatures of 3000 K,6000 K and 9000 K, respectively.

    Figure 5.Distributions of mean argon thermal plasma mass fraction for cases 1-4.The three black lines represent the contours with mean argon thermal plasma mass fractions of 0.3, 0.6 and 0.9, respectively.

    Figure 6.Distributions of mean passive scalar for cases 2-4.The two white lines represent the contours with mean passive scalars of 0.3 and 0.6, respectively.

    Although the mean argon mass fraction decays faster in the axial direction with increasing velocity in the coflow argon jet inlet, the mean argon mass fraction has a wider influence, especially in the upstream of jet.In addition, the effects on the mean argon mass fraction are detectable in a wider area with increasing width in the coflow argon jet inlet.Figure 6 shows that the trajectory of coflow argon jet also changes significantly and the length of the coflow argon jet decreases appreciably with increasing velocity in the coflow argon jet inlet.The blanket effect [17] of coflow argon jet disappears, and the mixing characteristics between argon thermal plasma and cold air are significantly improved.However, the length and width of coflow argon jet increase appreciably with the increase of the width in the coflow argon jet inlet.As a result, a dense argon atmosphere is created,which leads to higher temperature in the upstream of the case 2 and case 4.

    The distributions of normalized mean axial velocityUj/Uc, normalized mean temperature ΔTj/ ΔTc,mean argon thermal plasma mass fraction and mean passive scalar along the thermal plasma jet axis of cases 1-4 are shown in figure 7.Where,the subscript‘c’represents jet axis and the symbol‘Δ’represents difference with cold air parameter, respectively.In order to show the difference between different cases more clearly, logarithmic ordinates are adopted in figures 7(a) and(b).The changes of velocity and width in the coflow argon jet inlet have little influence on the distributions of mean flow field in the jet axis ofz/D<5.This indicates that the turbulent thermal plasma jet also has a laminar high temperature potential core, which is consistent with the previous experiment[43].The decay laws of mean argon mass fraction along the axis of case 2 and case 4 are shown in figure 7(c).The results show that the coflow argon jet is beneficial to create a dense argon atmosphere and reduces the entrainment rate of cold air into the upstream of jet.However, a large number of cold air is entrained into the downstream of jet, causing a sharp increase of decay rate of mean flow field along the jet axis.In addition, increasing the velocity and width in the coflow argon jet inlet can significantly enhance the decay rate of physical quantities in the downstream of jet axis.

    Figure 7.Distributions of normalized mean axial velocity Uj /Uc ,normalized mean temperature ΔT j /ΔT c,mean argon thermal plasma mass fraction and mean passive scalar along the thermal plasma jet axis of cases 1-4.

    Figure 8.Iso-surfaces ofQ = 5 × 10 5s- 2for cases 1-4, and the color represents local Reynolds number.

    Figure 9.Vorticity in the x-direction in the y-z section of cases 1-4.

    3.2.Instantaneous flow field

    Figure 8 shows the iso-surfaces ofQ= 5 × 105s-2,and the color represents local Reynolds numberwhich is determined according to local dynamic viscosity, density,velocity and diameter of argon thermal plasma jet inlet.As a stable long laminar plasma jet, the phenomena of vortex rolling is not observed,and Reynolds number is very small in the case 1.Under the effect of coflow argon jet, obvious coherent structures are provoked for the cases 2-4, in which the Kelvin-Helmholtz vortexes are main feature.Moreover,increasing velocity and width in the coflow argon jet inlet can enhance the coherent structure of the thermal plasma jet and improve the mixing characteristics between argon and ambient air.

    Figure 10.Radial distributions of different physical quantities at different downstream locations of cases 2-4.

    Figure 9 shows the x-direction vorticity in the y-z section of cases 1-4.It can also be seen that there is no rolling and breaking of the vortex although the values of vorticity are large for the case 1.After coflow argon jets are applied, the numbers of shear layers are increased from one to two,which are the shear layer between argon thermal plasma jet and coflow argon jet,and the shear layer between coflow argon jet and cold air, respectively.Two shear layers are separated at the jet upstream due to inlet boundary conditions and then merged with the development of the jet, in which the phenomenon of vortex rolling and breaking can be obviously observed.In addition, the intensity of this phenomenon increases with the increase of velocity and width in the coflow argon jet inlet.However, the flow inside argon thermal plasma jet is still very stable until the vortex breaking occurs at a certain location downstream.This location is affected by the velocity and width in coflow argon jet inlet, and increasing the velocity and width in coflow argon jet inlet can promote the transition of argon thermal plasma jet in advance.

    3.3.Turbulence statistical characteristics

    The reasons of argon thermal plasma transition induced by coflow argon jet are investigated.The radial distributions of normalized axial velocity fluctuationu′/Uj, normalized temperature fluctuationT′/ΔTj, argon thermal plasma mass fraction fluctuationpassive scalar fluctuationφ′and normalized Reynolds shear stressat different downstream locations of cases 2-4 are displayed in figure 10.The two black dashed lines represent the two shear layers mentioned above,and the distance between the two shear layers is equal to the width in coflow argon jet inlet.As a stable long laminar plasma jet, obvious fluctuation cannot be found in base case 1.However,the peaks of fluctuations appear in the shear layer between argon thermal plasma jet and coflow argon jet atz/D=5 of case 2.Then, the fluctuations peaks move to the jet axis.Next,the peaks of fluctuations appear on the jet axis and the Reynolds stress reaches the maximum atz/D=20.Finally,the fluctuations are disappeared due to the process of mixing.Compared with base case 1 that thermal plasma jet issues into the stationary cold air,the coflow argon jet is applied in case 2, which generates the velocity shear between argon thermal plasma jet and coflow argon jet.As a result, Kelvin-Helmholtz instability is provoked, and a laminar jet transforms into turbulent jet.Increasing the velocity and width in coflow argon jet inlet cannot only enhance the turbulent transport between argon thermal plasma jet and coflow argon jet, but also advance the transition of argon thermal plasma jet.It is worth noting that the argon mass fraction fluctuation and passive scalar fluctuation show two peaks atz/D=2, which are caused by the two velocity shear layers.The peaks of argon mass fraction fluctuation and passive scalar fluctuation move much faster to the ambient air than to the axis of argon thermal plasma jet.This may be because the turbulent fluctuations are easily dissipated by the high temperature thermal plasma with high molecular viscosity compared cold ambient air.

    4.Conclusions

    A numerical code solving argon thermal plasma jets flowing into cold air was embedded based on OpenFOAM.Compared with the laminar argon thermal plasma jet flowing into cold air, the effects of velocity and width in the coflow argon jet inlet on flow and mixing characteristics of thermal plasma jet have been studied by the large eddy simulation methods.The conclusions are summarized as follows:

    (1) In comparison to the laminar argon thermal plasma jet flowing into cold air, the Kelvin-Helmholtz instability between thermal plasma jet and coflow argon jet is caused after the coflow argon jet is applied.As a result,a laminar jet transforms into turbulent jet.The length of argon thermal plasma jet reduces significantly, and the gradient of velocity and temperature enhances obviously in the downstream of jet.

    (2) Increasing the width in the coflow argon jet inlet can create a dense argon atmosphere.On one hand, more coflow argon rather than ambient air is entrained into the upstream of thermal plasma jet.On the other hand,the specific enthalpy and specific heat of argon are much lower than those of air at the same temperature,causing the higher temperature in the upstream of argon thermal plasma jet.

    (3) With the increase of velocity and width in the coflow argon jet inlet, the turbulent transport and coherent structure in the downstream of thermal plasma jet enhance.The mixing characteristics between argon thermal plasma, coflow argon and ambient air are also improved.In addition, the transition from laminar thermal plasma jets to turbulent thermal plasma jets can be advanced by increasing the velocity and width in coflow argon jet inlet.

    Acknowledgments

    This work is supported by National Natural Science Foundation of China (Nos.12035015 and 12105282).The numerical simulations in this work have been performed on the supercomputers in the Supercomputing Center, University of Science and Technology of China.

    猜你喜歡
    桃紅
    桃紅四物湯臨床研究進(jìn)展
    Large eddy simulation on the flow characteristics of an argon thermal plasma jet
    桃紅又是一年春(同題散文兩篇)
    神劍(2021年3期)2021-08-14 02:30:00
    等一樹桃紅
    松桃紅石林
    桃紅開了
    歲月(2016年6期)2016-05-14 03:39:00
    絕 唱
    小桃紅
    萆薢滲濕湯合桃紅四物湯治療濕熱血瘀證結(jié)節(jié)性紅斑25例
    妹子高潮喷水视频| av片东京热男人的天堂| 村上凉子中文字幕在线| 又黄又粗又硬又大视频| 一级片'在线观看视频| 久久性视频一级片| 人妻一区二区av| 男女午夜视频在线观看| 99久久99久久久精品蜜桃| 色婷婷av一区二区三区视频| a在线观看视频网站| 另类亚洲欧美激情| 侵犯人妻中文字幕一二三四区| 色尼玛亚洲综合影院| 国产熟女午夜一区二区三区| av网站免费在线观看视频| 91麻豆精品激情在线观看国产 | 少妇的丰满在线观看| 女人久久www免费人成看片| 十八禁高潮呻吟视频| 老司机在亚洲福利影院| 久久久久久久久免费视频了| 最新的欧美精品一区二区| 99精国产麻豆久久婷婷| 日韩成人在线观看一区二区三区| 欧美日韩国产mv在线观看视频| 久久影院123| 三级毛片av免费| 国产成人精品无人区| 久久中文看片网| 久久国产精品影院| 精品国产国语对白av| 免费在线观看黄色视频的| 欧美日韩中文字幕国产精品一区二区三区 | 午夜福利在线免费观看网站| 999久久久国产精品视频| 亚洲av片天天在线观看| 亚洲五月婷婷丁香| 亚洲av成人av| 99久久人妻综合| 免费在线观看视频国产中文字幕亚洲| 亚洲成国产人片在线观看| 久久精品国产亚洲av高清一级| 精品人妻在线不人妻| 亚洲欧美激情在线| 日韩欧美一区二区三区在线观看 | 免费日韩欧美在线观看| 黄色a级毛片大全视频| 色婷婷av一区二区三区视频| av超薄肉色丝袜交足视频| 91精品三级在线观看| 亚洲专区中文字幕在线| 成年人午夜在线观看视频| 亚洲欧美日韩高清在线视频| 一区在线观看完整版| 国产色视频综合| 18禁美女被吸乳视频| 在线天堂中文资源库| 99re6热这里在线精品视频| 久久精品aⅴ一区二区三区四区| 黑人巨大精品欧美一区二区蜜桃| ponron亚洲| 精品电影一区二区在线| 午夜免费成人在线视频| 伊人久久大香线蕉亚洲五| 欧美亚洲日本最大视频资源| a级毛片黄视频| 精品久久久久久久久久免费视频 | 国产一区有黄有色的免费视频| 极品少妇高潮喷水抽搐| 老司机深夜福利视频在线观看| 两个人看的免费小视频| 男人操女人黄网站| 久久精品国产亚洲av高清一级| 久久中文字幕一级| 黑丝袜美女国产一区| 国产极品粉嫩免费观看在线| 亚洲久久久国产精品| 两个人免费观看高清视频| 免费看a级黄色片| 韩国精品一区二区三区| 亚洲欧美日韩另类电影网站| 成熟少妇高潮喷水视频| 69av精品久久久久久| 男女免费视频国产| 国产又爽黄色视频| 中文字幕制服av| 亚洲专区国产一区二区| 日日摸夜夜添夜夜添小说| 亚洲情色 制服丝袜| 夫妻午夜视频| 亚洲欧洲精品一区二区精品久久久| 欧美日韩亚洲国产一区二区在线观看 | 精品亚洲成国产av| 涩涩av久久男人的天堂| 久久人人97超碰香蕉20202| 久久久久久免费高清国产稀缺| 亚洲中文日韩欧美视频| 欧洲精品卡2卡3卡4卡5卡区| 中文字幕人妻熟女乱码| 中文欧美无线码| 又大又爽又粗| 亚洲国产欧美一区二区综合| 成在线人永久免费视频| 亚洲一区二区三区不卡视频| 国产免费男女视频| 美女国产高潮福利片在线看| 不卡一级毛片| 十八禁高潮呻吟视频| 免费黄频网站在线观看国产| 少妇粗大呻吟视频| 动漫黄色视频在线观看| 亚洲欧美日韩另类电影网站| 99国产精品99久久久久| 高清在线国产一区| 日韩一卡2卡3卡4卡2021年| 亚洲av第一区精品v没综合| 国产精品免费一区二区三区在线 | 亚洲熟女毛片儿| 精品高清国产在线一区| 大片电影免费在线观看免费| 午夜福利在线观看吧| 女性生殖器流出的白浆| 在线永久观看黄色视频| 久久久久久久国产电影| 飞空精品影院首页| 国产男靠女视频免费网站| av一本久久久久| 我的亚洲天堂| 国产精品永久免费网站| 欧美日韩亚洲国产一区二区在线观看 | 69av精品久久久久久| 日韩人妻精品一区2区三区| 亚洲黑人精品在线| 久久九九热精品免费| 国产区一区二久久| 久久人妻av系列| 又紧又爽又黄一区二区| 新久久久久国产一级毛片| 日韩欧美一区视频在线观看| 日韩欧美国产一区二区入口| 亚洲熟妇中文字幕五十中出 | 亚洲精品中文字幕一二三四区| 午夜老司机福利片| 成人18禁在线播放| 精品久久久精品久久久| 美女视频免费永久观看网站| 波多野结衣av一区二区av| 高清视频免费观看一区二区| 久久人妻熟女aⅴ| 一级作爱视频免费观看| 男女高潮啪啪啪动态图| 99久久99久久久精品蜜桃| 亚洲三区欧美一区| 国产一区有黄有色的免费视频| 黄色视频不卡| av网站免费在线观看视频| 免费在线观看亚洲国产| 黄色a级毛片大全视频| 国产精品国产高清国产av | 亚洲色图 男人天堂 中文字幕| 精品午夜福利视频在线观看一区| 国产成人欧美在线观看 | 色老头精品视频在线观看| 色婷婷av一区二区三区视频| 亚洲精品乱久久久久久| 国产97色在线日韩免费| 中文字幕色久视频| av网站在线播放免费| 国产成人啪精品午夜网站| 高清在线国产一区| 黑人欧美特级aaaaaa片| 人人澡人人妻人| 久久热在线av| 黄片播放在线免费| 黄色a级毛片大全视频| 一级毛片精品| 啦啦啦在线免费观看视频4| 91精品国产国语对白视频| 王馨瑶露胸无遮挡在线观看| 超碰成人久久| 亚洲国产精品合色在线| 亚洲五月色婷婷综合| 在线观看免费视频日本深夜| 老熟妇仑乱视频hdxx| 天天躁夜夜躁狠狠躁躁| 自线自在国产av| 在线视频色国产色| 在线观看免费视频网站a站| 欧美午夜高清在线| 亚洲国产精品一区二区三区在线| 免费在线观看黄色视频的| 国产精品欧美亚洲77777| 国产高清国产精品国产三级| 国产精品一区二区在线不卡| 久久国产精品人妻蜜桃| 啦啦啦在线免费观看视频4| 久久精品亚洲精品国产色婷小说| 国产精品国产高清国产av | 国产男女超爽视频在线观看| 免费观看人在逋| 99riav亚洲国产免费| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品秋霞免费鲁丝片| 首页视频小说图片口味搜索| 午夜久久久在线观看| 国产成人av激情在线播放| 久久久久久久久免费视频了| 欧美日韩国产mv在线观看视频| 久久国产精品影院| 国产欧美日韩一区二区三区在线| 国产深夜福利视频在线观看| 丁香欧美五月| 午夜福利乱码中文字幕| 国产av一区二区精品久久| 欧美黑人欧美精品刺激| av有码第一页| 精品国产乱码久久久久久男人| 夜夜爽天天搞| tocl精华| 老司机午夜十八禁免费视频| 国产区一区二久久| 亚洲国产中文字幕在线视频| 最新美女视频免费是黄的| 人妻丰满熟妇av一区二区三区 | 亚洲成人免费电影在线观看| 女人被躁到高潮嗷嗷叫费观| 国产一区有黄有色的免费视频| 天天躁夜夜躁狠狠躁躁| 亚洲成人免费av在线播放| 久久天堂一区二区三区四区| 国产精品二区激情视频| 久久精品人人爽人人爽视色| 99国产精品一区二区蜜桃av | 午夜91福利影院| 又黄又爽又免费观看的视频| 亚洲欧美激情在线| 丝瓜视频免费看黄片| 在线观看一区二区三区激情| 亚洲成人国产一区在线观看| 国产免费现黄频在线看| cao死你这个sao货| 欧美色视频一区免费| 首页视频小说图片口味搜索| 国产高清国产精品国产三级| 亚洲av成人一区二区三| 色婷婷久久久亚洲欧美| 天堂俺去俺来也www色官网| av天堂在线播放| 美女午夜性视频免费| 亚洲精品美女久久久久99蜜臀| 免费女性裸体啪啪无遮挡网站| 亚洲五月天丁香| 久9热在线精品视频| 亚洲综合色网址| 欧美最黄视频在线播放免费 | 黄色片一级片一级黄色片| 免费av中文字幕在线| 色综合婷婷激情| 女同久久另类99精品国产91| av中文乱码字幕在线| 久久精品国产清高在天天线| 久久久国产精品麻豆| 亚洲黑人精品在线| √禁漫天堂资源中文www| 99国产精品99久久久久| 天天躁夜夜躁狠狠躁躁| 一本一本久久a久久精品综合妖精| 99国产精品免费福利视频| 国产有黄有色有爽视频| 中文字幕人妻熟女乱码| 成人三级做爰电影| 脱女人内裤的视频| av不卡在线播放| 日本黄色视频三级网站网址 | 欧美人与性动交α欧美精品济南到| 777米奇影视久久| 国产激情欧美一区二区| 国产乱人伦免费视频| 久久国产乱子伦精品免费另类| 99精品欧美一区二区三区四区| 黄片大片在线免费观看| 高清av免费在线| 咕卡用的链子| 男人舔女人的私密视频| 亚洲精品一二三| 人成视频在线观看免费观看| 亚洲欧美激情综合另类| 50天的宝宝边吃奶边哭怎么回事| 老司机在亚洲福利影院| 精品人妻1区二区| 国产欧美日韩精品亚洲av| 日韩人妻精品一区2区三区| 精品久久久久久电影网| 最新美女视频免费是黄的| 手机成人av网站| 日韩成人在线观看一区二区三区| 国产精品二区激情视频| 亚洲av熟女| 日本vs欧美在线观看视频| 欧美久久黑人一区二区| 午夜激情av网站| 国产一区有黄有色的免费视频| 亚洲久久久国产精品| 亚洲一区二区三区欧美精品| 国产亚洲欧美98| 日日爽夜夜爽网站| 亚洲精品国产区一区二| av在线播放免费不卡| 他把我摸到了高潮在线观看| 18禁国产床啪视频网站| 在线免费观看的www视频| 高清视频免费观看一区二区| 国产精品 国内视频| 18禁裸乳无遮挡动漫免费视频| 中文字幕av电影在线播放| 激情视频va一区二区三区| av欧美777| 香蕉丝袜av| 精品国产一区二区久久| 国产激情欧美一区二区| 亚洲熟女毛片儿| 日韩欧美一区视频在线观看| 91av网站免费观看| 三级毛片av免费| 日日摸夜夜添夜夜添小说| 黄色 视频免费看| 亚洲视频免费观看视频| 亚洲av熟女| 精品久久蜜臀av无| 亚洲午夜理论影院| 一进一出抽搐gif免费好疼 | 日韩欧美一区二区三区在线观看 | 欧美成人免费av一区二区三区 | 久久国产乱子伦精品免费另类| 久久国产精品大桥未久av| 视频区图区小说| 久久国产亚洲av麻豆专区| 国产欧美日韩一区二区三区在线| 国产欧美日韩精品亚洲av| 久久久国产一区二区| 亚洲va日本ⅴa欧美va伊人久久| 99re在线观看精品视频| 99国产精品一区二区蜜桃av | 国产xxxxx性猛交| 久久中文字幕人妻熟女| 日本撒尿小便嘘嘘汇集6| 在线国产一区二区在线| 男人舔女人的私密视频| 国产欧美亚洲国产| 欧美日韩福利视频一区二区| 窝窝影院91人妻| 女人被躁到高潮嗷嗷叫费观| 天堂动漫精品| 国产精品成人在线| 最近最新中文字幕大全电影3 | 日本vs欧美在线观看视频| 精品国内亚洲2022精品成人 | tube8黄色片| 午夜福利免费观看在线| 久久香蕉激情| 国产成人免费无遮挡视频| 亚洲全国av大片| 精品久久久久久久毛片微露脸| 日韩一卡2卡3卡4卡2021年| 亚洲国产欧美网| 日本五十路高清| 性色av乱码一区二区三区2| 亚洲第一欧美日韩一区二区三区| 美女国产高潮福利片在线看| 国产不卡av网站在线观看| 成年人黄色毛片网站| 村上凉子中文字幕在线| 日本a在线网址| 亚洲精品国产一区二区精华液| 亚洲专区国产一区二区| 18禁国产床啪视频网站| 亚洲aⅴ乱码一区二区在线播放 | 一进一出抽搐gif免费好疼 | 新久久久久国产一级毛片| 亚洲精品粉嫩美女一区| 制服诱惑二区| 免费在线观看日本一区| 老熟妇仑乱视频hdxx| 女人久久www免费人成看片| 欧美日韩视频精品一区| 亚洲精品久久午夜乱码| 黄色 视频免费看| 亚洲熟妇中文字幕五十中出 | 亚洲九九香蕉| 精品无人区乱码1区二区| 国产成人精品久久二区二区免费| 成人国产一区最新在线观看| 一个人免费在线观看的高清视频| bbb黄色大片| 少妇猛男粗大的猛烈进出视频| 国产亚洲av高清不卡| 国产蜜桃级精品一区二区三区 | 国精品久久久久久国模美| 超碰97精品在线观看| 精品人妻在线不人妻| 国产精品久久久久久人妻精品电影| 99久久综合精品五月天人人| 欧美国产精品va在线观看不卡| 涩涩av久久男人的天堂| 久久中文字幕人妻熟女| 性少妇av在线| 757午夜福利合集在线观看| 国产又色又爽无遮挡免费看| 亚洲国产精品一区二区三区在线| 欧美丝袜亚洲另类 | 国产精品香港三级国产av潘金莲| 色94色欧美一区二区| 亚洲人成伊人成综合网2020| 一区二区三区国产精品乱码| 纯流量卡能插随身wifi吗| 在线免费观看的www视频| 18在线观看网站| 国产精品永久免费网站| 欧美日韩av久久| 欧美午夜高清在线| 后天国语完整版免费观看| 日日夜夜操网爽| 韩国精品一区二区三区| 黄色视频,在线免费观看| 美女 人体艺术 gogo| 免费一级毛片在线播放高清视频 | 精品福利永久在线观看| 亚洲精品国产色婷婷电影| 一级毛片精品| 久久久久国产精品人妻aⅴ院 | 国产成人一区二区三区免费视频网站| 国产激情欧美一区二区| 亚洲 国产 在线| 免费观看人在逋| 少妇的丰满在线观看| 高清欧美精品videossex| 久久狼人影院| 午夜福利乱码中文字幕| 午夜精品在线福利| 中文字幕av电影在线播放| 亚洲伊人色综图| 欧美激情高清一区二区三区| 成人国语在线视频| 亚洲精品成人av观看孕妇| 老汉色av国产亚洲站长工具| 免费不卡黄色视频| 老司机在亚洲福利影院| 欧美午夜高清在线| 高清毛片免费观看视频网站 | 久久香蕉国产精品| 两人在一起打扑克的视频| 午夜91福利影院| 他把我摸到了高潮在线观看| 久久久国产成人免费| 王馨瑶露胸无遮挡在线观看| 一级a爱片免费观看的视频| 亚洲五月天丁香| 一级毛片女人18水好多| 91成人精品电影| 91av网站免费观看| 欧美久久黑人一区二区| 日韩欧美国产一区二区入口| 最近最新中文字幕大全免费视频| 亚洲在线自拍视频| 欧美精品高潮呻吟av久久| 视频在线观看一区二区三区| 免费观看精品视频网站| 亚洲美女黄片视频| 久久精品成人免费网站| 日日摸夜夜添夜夜添小说| 村上凉子中文字幕在线| 一级,二级,三级黄色视频| 亚洲色图综合在线观看| 在线观看一区二区三区激情| 黄片大片在线免费观看| 亚洲国产精品合色在线| 一本一本久久a久久精品综合妖精| 精品久久久久久电影网| 午夜激情av网站| 国产精品.久久久| 精品午夜福利视频在线观看一区| 身体一侧抽搐| 中国美女看黄片| 热re99久久国产66热| 一区二区日韩欧美中文字幕| 久9热在线精品视频| 亚洲va日本ⅴa欧美va伊人久久| 午夜福利在线免费观看网站| 高潮久久久久久久久久久不卡| 一区福利在线观看| 国产成人av教育| 欧美日韩精品网址| 捣出白浆h1v1| 亚洲国产中文字幕在线视频| 999久久久国产精品视频| 亚洲av欧美aⅴ国产| 欧美最黄视频在线播放免费 | 一级毛片高清免费大全| 国产高清激情床上av| 国产精品秋霞免费鲁丝片| 一二三四在线观看免费中文在| 91av网站免费观看| 丁香六月欧美| 日韩欧美一区二区三区在线观看 | 久久人人爽av亚洲精品天堂| 无遮挡黄片免费观看| 欧美日韩一级在线毛片| 老熟妇乱子伦视频在线观看| 国产精品.久久久| www.精华液| 人人妻,人人澡人人爽秒播| 青草久久国产| a级毛片黄视频| 99热只有精品国产| 91麻豆av在线| 热re99久久精品国产66热6| 国产一区二区三区在线臀色熟女 | 国产成人av教育| 黑人巨大精品欧美一区二区mp4| 国产有黄有色有爽视频| 我的亚洲天堂| 18禁国产床啪视频网站| 成人国语在线视频| 12—13女人毛片做爰片一| 久久久久久久久久久久大奶| 王馨瑶露胸无遮挡在线观看| 午夜福利,免费看| 久久久久视频综合| 成人国产一区最新在线观看| 欧美亚洲 丝袜 人妻 在线| www日本在线高清视频| 视频区欧美日本亚洲| 久久影院123| 亚洲精品久久成人aⅴ小说| 99久久精品国产亚洲精品| 一进一出抽搐gif免费好疼 | 免费观看人在逋| 啦啦啦视频在线资源免费观看| 国产一卡二卡三卡精品| 精品久久蜜臀av无| 亚洲伊人色综图| 欧美日韩视频精品一区| 国产精品98久久久久久宅男小说| 丝袜美腿诱惑在线| 丁香六月欧美| 丁香欧美五月| 超色免费av| 欧美精品啪啪一区二区三区| 亚洲视频免费观看视频| 免费在线观看黄色视频的| 久久香蕉精品热| 免费人成视频x8x8入口观看| 一本综合久久免费| 一个人免费在线观看的高清视频| 91老司机精品| 国产欧美日韩一区二区三| 久久久国产一区二区| 亚洲成人免费av在线播放| 视频区图区小说| 美女视频免费永久观看网站| 久久九九热精品免费| 侵犯人妻中文字幕一二三四区| 亚洲精品中文字幕一二三四区| 精品国产国语对白av| 啦啦啦 在线观看视频| 人人澡人人妻人| 国产一卡二卡三卡精品| 91老司机精品| 90打野战视频偷拍视频| 国产精品电影一区二区三区 | 高清av免费在线| 精品久久久久久,| e午夜精品久久久久久久| 久久人人97超碰香蕉20202| 精品一区二区三区四区五区乱码| 不卡一级毛片| 嫁个100分男人电影在线观看| 九色亚洲精品在线播放| cao死你这个sao货| 国产精品乱码一区二三区的特点 | 亚洲精品av麻豆狂野| 亚洲久久久国产精品| 久久热在线av| 亚洲精品一二三| 搡老乐熟女国产| 国产不卡av网站在线观看| 91大片在线观看| 午夜免费观看网址| 欧美精品av麻豆av| 另类亚洲欧美激情| 又大又爽又粗| 亚洲午夜精品一区,二区,三区| 性色av乱码一区二区三区2| 757午夜福利合集在线观看| 天堂中文最新版在线下载| 亚洲国产欧美网| 91成年电影在线观看| 亚洲中文日韩欧美视频| 女人久久www免费人成看片| 窝窝影院91人妻| 亚洲精品国产精品久久久不卡| 99久久99久久久精品蜜桃| 成人亚洲精品一区在线观看| 美女福利国产在线| 91成年电影在线观看| 亚洲国产欧美网| 极品教师在线免费播放| 好看av亚洲va欧美ⅴa在| 男女之事视频高清在线观看| 激情在线观看视频在线高清 | 热re99久久国产66热| 露出奶头的视频| 好看av亚洲va欧美ⅴa在| 午夜亚洲福利在线播放|