• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quantum correlation enhanced bound of the information exclusion principle

    2023-10-11 07:54:50JunZhang張鈞KanHe賀衎HaoZhang張昊andChangShuiYu于長水
    Chinese Physics B 2023年9期
    關(guān)鍵詞:長水張昊張鈞

    Jun Zhang(張鈞), Kan He(賀衎), Hao Zhang(張昊), and Chang-Shui Yu(于長水)

    1College of Data Science,Taiyuan University of Technology,Taiyuan 030024,China

    2College of Mathematics,Taiyuan University of Technology,Taiyuan 030024,China

    3College of Information and Computer,Taiyuan University of Technology,Taiyuan 030024,China

    4School of Physics,Dalian University of Technology,Dalian 116024,China

    Keywords: quantum correlation,information exclusion principle,entropic uncertainty relation

    1.Introduction

    Quantum information theory is an important tool to deal with all kinds of the quantum problem[1]and is widely used in various quantum information processing tasks, such as quantum key distribution, quantum cryptography, and entanglement witness.[2–20]Measurement plays a vital role in quantum theory.It is the interface between the classical world and the quantum world,which is characterized by noncommutativity and superposition.However, for any given measurement,superposition and noncommutativity necessarily lead to uncertainty in the outcomes of measurements.Simultaneously,it produces another critical quantity, information.From the viewpoint of quantum information,Shannon entropy could be used to quantify the amount of uncertainty about the observables.Deutsch[21]quantified uncertainty in terms of Shannon entropy and derived the entropic uncertainty relation for any pair of observables.[22]It describes the limitations of our ability to simultaneously predict the measurement outcomes of non-commuting observables in quantum theory.Later, Kraus conjectured the improved result.[23]Maassen and Uffink[24]gave the tighter entropic uncertainty relations:

    whereH(X) (H(Y)) is the Shannon entropy of measurement outcomes when a measurement of observableX(Y)is performed on a stateρ, andc= maxi,j|〈xi|yj〉|2quantifies the complementarity of the non-degenerate observablesXandYwith|xi〉,|yj〉denoting their eigenvectors, respectively.Subsequently, the entropy uncertainty relation has been extensively studied.[25–39]Based on the accessible information about a quantum system represented by an ensemble of states,Hall first generalizes the bound of the information exclusion principle.[40]Suppose that for the quantum ensemble{pi,ρi},the corresponding quantum state formula isρε=∑i piρi,subject to the mutual information corresponding to the measurement ofAon the quantum stateρε, then we haveI(A|ε)=S(A|ρε)-∑i piS(A|ρi),whereS(A|ρ)is the associated entropy defined asS(A|ρ)=-∫dap(a|ρ)logp(a|ρ).For observablesΠi,(i=1,2,...,N),Hall proposed the general form inequalities for the information exclusion principle

    with the nontrivial quantum boundJ.It implies that for any selected observables the information gain can be maximized at the expense of the observables’complementary.

    Acting as the best-known information exclusion principle, it has not been studied as much as quantum uncertainty relations.[41,42]Subsequently,Grudkaet al.considered the observablesXandYthat are performed on system A,andZis a classical register that may be correlated to A.They improved the bound and conjectured a stronger information exclusion relation[43]

    with the quantum mutual informationI(X(Y):Z)and the sum over the largestdterms of the matrix|〈xi|yj〉|2.In what follows,we describe a stronger version of the information exclusion principle,proved by Coles and Piani,that can also be extended to the much more general case of quantum memory.[44]

    whereH(A|B)=H(ρAB)-H(ρB)is the quantum conditional entropy and(Π, ~Π)stands for(X(Y),Y(X)).In addition,they further explained the distinction between the complementarity of uncertainty and the complementarity of information.Namely, to obtain a state-independent bound for uncertainty relations.It must consider the subspace with the least complementarity whilst concerning the various subspaces that compose the space, i.e., it is the overall complementarity, and it formulates the information exclusion relations.In other words,for uncertainty relations,a trivial bound will be generated whilst the information exclusion principle will be a nontrivial bound.Considering the multiple measurements,Zhanget al.gave the quantum memory-assisted information exclusion principle as[45]

    where

    However,the above model focuses on the bipartite quantum state for multiple measurements.It means that one part is the measured subsystem which is measured by multiple measurements, and the other part is the quantum memory which can store measurement information.Thus, it will be interesting to find out the information exclusion principle in multiple quantum states for multiple measurements.Inspired by the ideas of monogamy or decoupling which is close to quantum cryptography, in this paper we would like to split the quantum memory intoNparts compared to the bipartite quantum state, and present multiple quantum memory-assisted information exclusion principle for multiple measurements.It is found that the upper bound includes the complementarity of the observables,quantum discord,and quantum condition entropy, while the lower bound consists of the complementarity of the observables and the complementarity of uncertainty.Thus,there exists a relationship between the complementarity of uncertainty and the complementarity of information.In addition, the bounds of the complementarity of uncertainty and the bounds of the quantum discord can exist as essential factors to enhance the bounds of each other.

    The paper is organized as follows.Section 2 gives the bounds of the multiple quantum memory-assisted entropic information exclusive principle for multiple measurements and the bounds of the tripartite quantum memory-assisted entropic information exclusive principle for multiple measurements,and in Section 3,the application is given to examine the lower and upper bounds.Finally,the conclusion is drawn.

    2.The multiple quantum memory assisted information exclusion principle for multiple measurements

    Firstly, we briefly describe an information gain game amongN+1 participants,Alice(A),and herNfriends(Bi,i ∈D:={1,2,...,N}).Suppose that Alice’s friends prepare a composite quantum stateρAB1B2...BNin?N+1d-dimensional Hilbert space and then send the particleAto Alice.Alice and her friends agree on a group of measurements{Πi},i ∈Dwith|iα〉 denotingαth eigenvector of theΠi.Subsequently, Alice randomly chooses one measurementΠiand performs it on herself.She will obtain the corresponding measurement outcomes.Then,she announces her choice to her friendBi.They try to predict the information gained about Alice’s measurement outcomes.

    During the processing of measurement, when Alice puts the measurement{Πi}on herself, it will destroy the quantum correlation between her and her friendBi.The quantum correlation (quantum discord) can be defined as the difference between the total correlation and classical correlation,that is,[47,48]

    whereI(A:Bm)=H(ρA)+H(ρBm)-H(ρABm)is the total correlation,andJA(ρABm)is the classical correlation that can be defined as

    with the mutual informationI(Ω:Bm)=H(ρΩ)+H(ρBm)-H(ρΩBm)of the post-measurement state

    According to these rules of the game, based on the entropic uncertainty relation for multiple measurements,we obtain the multiple quantum memory-assisted information exclusion principle for multiple measurements.

    Theorem 1The subsystemAof the composite quantum stateρAB1B2...BNis measured by the set of observables{Πi},i ∈D:={1,2,...,N}.The multiple quantum memoryassisted information exclusion principle for multiple measurements will be restricted by the observables’complementarity,the conditional von Neumann entropy, and the quantum discord.

    where the upper bound and lower bound are,respectively,

    with??given by Eq.(8).

    ProofBased on the definitions of the quantum mutual informationI(A:B)=H(ρA)+H(ρB)-H(ρAB)and the quantum condition entropyH(A|B) =H(ρAB)-H(ρB), one can obtain

    Based on the relation (15), the uncertainties of the multiple measurements in the presence of the multiple quantum memory can be expressed as

    In the last equality, while we add the quantum mutual informationI(A:Bk)and delete it,the equality holds.

    Regrouping the terms yields

    Due to the inequalityH(Π)≤log2d,the upper bounds of the information exclusion principleU?holds.

    For the lower bounds of the information exclusion principle, we also substitute the relation (15) into the uncertainties of the multiple measurements in the presence of the multiple quantum memory,it will arrive at

    Rearranging the relation(18),we have

    The proof is finished.

    Corollary 1The shareability of quantum discord among different parties of theN+1 composite quantum system can be constrained by the entropic uncertainty relation

    For the tripartite pure quantum stateρABCor the tripartite mixed quantum stateρABC=|ψ〉A(chǔ)(BC)L ?|ψ〉A(chǔ)(BC)R, the shareability of quantum discord among different parties can be given by

    with ~δ=??+H(X|B)+H(Y|C)-H(A|B)-H(A|C).

    ProofThe proof is evident.We rearrange the elements of inequality in Theorem 1,and it will arrive at Eq.(20).For the tripartite pure quantum stateρABCor the tripartite mixed quantum stateρABC=|ψ〉A(chǔ)(BC)L ?|ψ〉A(chǔ)(BC)R,it means that there exist two observablesXandYoperated on the subsystemA,the result will be reduced to

    We can obtain

    with ~δ=H(X|B)+H(Y|C)-H(A|B)-H(A|C)-??.

    Notice that there exists the relationH(ρA)=QA(ρA:BC)for all tripartite pure quantum state|ψ〉A(chǔ)BC.For the mixed quantum stateρABC, there exists a factorizationHBC=H(BC)L ?H(BC)Rin the Hilbert spaceHBC, thus the mixed quantum stateρABC=|ψ〉A(chǔ)(BC)L ?|ψ〉A(chǔ)(BC)R, the relationQA(ρA:BC)=QA(|ψ〉A(chǔ)(BC)L)=H(ρA)holds.[49]It will arrive at the relation(21).The proof is completed.

    It is worth noting that, from this relation, one can find that the sum of the quantum discordQA(ρAB) andQA(ρAC)of the tripartite quantum stateρABCwill be restricted by theQA(ρA:BC) and the parameter ~δwhich contains the uncertainties of the measurementsXandYand the incompatibility of the measurements??excluding the effects of quantum entanglementH(A|B) andH(A|C).However, in Ref.[50],the shareability of quantum discord among different parties of a composite system is given byQA(ρAB)+QA(ρAC)≤

    δ+QA(ρA:BC)withδ=??+H(X|B)+H(Y|C)-H(A|B).It is evident that ~δ ≤δ,thus the bound of Corollary 2 is tighter than the result of Ref.[50].Notably,the shareability of quantum discord among different parties of the tripartite quantum system is consistent with the recent results in Ref.[51].

    Corollary 2The relation between the complementarity of uncertainty and the complementarity of information

    ProofThe proof is evident.We rearrange the elements of inequality in Theorem 1,and it will arrive at Eq.(24).

    Next, we derive the tripartite quantum memory-assisted information exclusion principle for multiple measurements.For tripartite quantum systemρABC, the multiple measurementsNcan be randomly divided into two partsNBandNC,which satisfyNB+NC=N.Suppose thatNBmeasurements are performed on subsystemA, Alice tells her choice to Bob,B.In contrast,NCmeasurements are performed on subsystemA; Alice announces her choice to Charlie,C.Subsequently,Bob and Charlie try to quantify the information gained from Alice’s measurement outcomes.There exists the following information exclusion principle.

    Theorem 2For any tripartite quantum stateρABCmeasured by the set of observables{Πi,i=1,2,...,N},the quantum memory-assisted information exclusion principle for multiple measurements will be given by

    where the lower and upper bounds are,respectively,

    with(Ξ, ~Ξ)standing for(B,C)or(C,B).It is equivalent to

    ProofFor the lower bounds of the tripartite quantum memory-assisted information exclusion principle for multiple measurements, we substitute the relation (15) into the uncertainties of the multiple measurements in the presence of the multiple quantum memory,it will arrive at

    where(Ξ, ~Ξ)stands for(B,C)or(C,B).Rearranging the relation(27),we have

    For the upper bounds of the tripartite quantum memory assisted information exclusion principle for multiple measurements, we start from the uncertainties of the multiple measurements in the presence of the tripartite quantum memory in terms of relation(15),

    Regrouping the terms yields

    The proof is completed.

    One will find this lower bound is similar to the result in Theorem 1; that is, the incompatibility of the measurements??,the quantum discord between the measured subsystem and each unmeasured subsystem,and the conditional quantum entropy in the lower bound also exist.It is evident that the quantum measurements performed on subsystemAbring the uncertainties of the measurements while the quantum correlation of the quantum system is destroyed simultaneously.This result could reveal that the information gain corresponding to the measurement can be maximized only at the expense of the information gains corresponding to complementary observables and quantum correlations.In other words,the quantum correlation within the composite quantum system is also restricted by the uncertainties of the measurements.According to this division and combination idea,it can be extended to multiple quantum states that the number of measurements is more than the number of quantum memory-assisted systems.

    3.Applications for three projective measurements

    As applications, in order to verify the effectiveness of the information exclusion principle, we consider three two-dimensional observablesΠ1=|0〉〈1|+|1〉〈0|,Π2=-i|0〉〈1|+i|1〉〈0|,Π3=|0〉〈0|-|1〉〈1|measured on the generalized W state which is given by

    whereθ ∈[0,2π],φ ∈[0,π],andφ ∈[0,π].

    Fig.1.The difference between the upper bound U? and the complementarity of information C?(Π)versus the parameters θ and φ of the quantum state.

    Fig.2.The difference between the complementarity of information C?(Π)and the lower bound L? versus the parameters θ and φ of the quantum state.

    Figure 1 shows the difference between the complementarity of information of the three two-dimensional observables and the upper bound given by Theorem 1 versus the parametersθandφof the quantum state withφ=π/3.Figure 2 similarly shows the difference between the complementarity of information and the lower bound given by Theorem 1.The differences are always positive with the increasing parametersθandφ.It is illustrated that,for the generalized W state,the information gained from the observables are well bounded by the effective upper and lower bounds.Namely,the information gain corresponding to the selected observablesΠi(i=1,2,3)can be maximized at the expense of the information carried by complementary observables,quantum discord,and the conditional quantum entropy,which are quantities between the observed subsystem and the quantum memory-assisted subsystems.Figure 3 shows the relationship between the complementarity of uncertainty and the complementarity of information versusθfor the quantum state withφ=π/8 andφ=π/3.It indicates that the lower bound depends on the complementarity of the observables and the conditional quantum entropy of subsystemρAand shows that the limitations on our ability to simultaneously predict the measurement outcomes and information gained from non-commuting observables.

    Fig.3.The sum of the complementarity of uncertainty CU(Π)and the complementarity of information C?(Π) with the lower bound versus the parameter θ of the quantum state.

    4.Conclusion

    As the fundamental features of quantum information theory, we mainly consider the multiple quantum memoryassisted information exclusion principle for multiple measurements.The nontrivial upper bound can be determined by the complementary of measurements, quantum discord, and the conditional quantum entropy,which are quantities between the observed subsystem and the quantum memory-assisted subsystems.They describe the effects of quantum correlation(including quantum discord and quantum entanglement) on the information exclusion principle.They imply that the information gain corresponding to any selected observables can be maximized only at the expense of the information gains corresponding to the observables’ complementary and quantum correlations.In addition, there exists a relationship between the complementarity of uncertainty and the complementarity of information which describes the limitations on our ability to simultaneously predict the measurement outcomes and information gained from non-commuting observables in quantum theory.What’s more,the shareability of quantum discord among different parties of the composite quantum system is restricted by the complementarity of uncertainty.As a consequence,the results shed new light on the quantum entropic uncertainty relation, information exclusion principle, and quantum correlation.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant Nos.12271394, 11775040,and 12011530014), the Natural Science Foundation of Shanxi Province, China (Grant Nos.201801D221032 and 201801D121016),the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (Grant No.2019L0178), the Key Research and Development Program of Shanxi Province(Grant No.202102010101004),and the China Scholarship Council.

    猜你喜歡
    長水張昊張鈞
    書法欣賞
    求知(2023年2期)2023-03-01 12:35:50
    Prompt acceleration of a μ+ beam in a toroidal wakefield driven by a shaped steeprising-front Laguerre-Gaussian laser pulse
    Quantifying entanglement in terms of an operational way?
    等你團圓
    人文天下(2020年4期)2020-04-10 06:50:19
    愛情順風(fēng)車
    一道考題
    My Dream Weekends
    張鈞甯:在運動中綻放自己
    幸福(2017年18期)2018-01-03 06:34:40
    不瘋魔不制茶
    昆明長水國際機場
    云南畫報(2015年1期)2015-01-06 08:28:51
    成人黄色视频免费在线看| 18禁裸乳无遮挡动漫免费视频| 久久人妻熟女aⅴ| 看十八女毛片水多多多| 日韩熟女老妇一区二区性免费视频| 国产淫语在线视频| 亚洲图色成人| 极品少妇高潮喷水抽搐| 热re99久久精品国产66热6| 一级黄片播放器| 老司机在亚洲福利影院| 最近手机中文字幕大全| 一级毛片我不卡| 亚洲精品国产av成人精品| 一本久久精品| 丰满少妇做爰视频| av电影中文网址| 热99国产精品久久久久久7| 久久精品国产综合久久久| 日日夜夜操网爽| 成人影院久久| 我的亚洲天堂| 久久99热这里只频精品6学生| 黄色毛片三级朝国网站| 久久热在线av| 国产精品久久久人人做人人爽| 真人做人爱边吃奶动态| 精品一区二区三区av网在线观看 | 欧美国产精品一级二级三级| 亚洲欧洲国产日韩| 亚洲欧洲国产日韩| 日韩制服骚丝袜av| 人人妻人人澡人人看| 国产精品秋霞免费鲁丝片| 国产熟女午夜一区二区三区| 观看av在线不卡| 亚洲天堂av无毛| 欧美亚洲 丝袜 人妻 在线| 中国美女看黄片| 国产成人精品无人区| 精品福利永久在线观看| 久久精品国产亚洲av高清一级| 国产伦人伦偷精品视频| 国产有黄有色有爽视频| 亚洲七黄色美女视频| 色精品久久人妻99蜜桃| 日韩大码丰满熟妇| 国产精品一国产av| 女警被强在线播放| 如日韩欧美国产精品一区二区三区| 精品免费久久久久久久清纯 | 黄色一级大片看看| 国产一区二区三区综合在线观看| 欧美日本中文国产一区发布| 欧美日本中文国产一区发布| 亚洲人成77777在线视频| 久久国产精品大桥未久av| 中文字幕人妻丝袜制服| 国产成人精品久久二区二区91| 国产成人精品久久久久久| 久久99一区二区三区| 国产成人影院久久av| 国产精品久久久久久人妻精品电影 | 久久久久网色| 亚洲中文日韩欧美视频| 午夜91福利影院| 亚洲av片天天在线观看| 国精品久久久久久国模美| 久久精品久久精品一区二区三区| 一区二区三区四区激情视频| 91九色精品人成在线观看| 免费在线观看视频国产中文字幕亚洲 | 黄片小视频在线播放| 九草在线视频观看| 女性生殖器流出的白浆| 成在线人永久免费视频| 男女免费视频国产| 久久性视频一级片| 免费在线观看黄色视频的| 久久久久国产一级毛片高清牌| 国产黄频视频在线观看| 国产熟女午夜一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 国产男人的电影天堂91| 欧美另类一区| 久久精品久久精品一区二区三区| 精品久久久精品久久久| a级毛片黄视频| 美女国产高潮福利片在线看| 秋霞在线观看毛片| 悠悠久久av| 男女午夜视频在线观看| 一区二区日韩欧美中文字幕| 亚洲第一青青草原| 性高湖久久久久久久久免费观看| 国产熟女欧美一区二区| 亚洲美女黄色视频免费看| www.999成人在线观看| 亚洲人成77777在线视频| 久久天躁狠狠躁夜夜2o2o | 人妻人人澡人人爽人人| 亚洲欧美一区二区三区国产| 国产高清视频在线播放一区 | 亚洲精品久久成人aⅴ小说| 久久久久精品人妻al黑| 肉色欧美久久久久久久蜜桃| 欧美日韩成人在线一区二区| 亚洲国产av新网站| 精品一区在线观看国产| 亚洲av片天天在线观看| 91九色精品人成在线观看| 九色亚洲精品在线播放| 嫩草影视91久久| avwww免费| 天天添夜夜摸| 亚洲精品久久久久久婷婷小说| 欧美黄色淫秽网站| 国产精品欧美亚洲77777| 免费一级毛片在线播放高清视频 | 黄片小视频在线播放| 国产精品一区二区在线观看99| 美女大奶头黄色视频| 久久久精品国产亚洲av高清涩受| 一级片'在线观看视频| 日日摸夜夜添夜夜爱| 美女国产高潮福利片在线看| 中文字幕亚洲精品专区| 日本欧美视频一区| 在线天堂中文资源库| 高清黄色对白视频在线免费看| 操出白浆在线播放| 欧美中文综合在线视频| 亚洲国产欧美网| 亚洲欧美激情在线| 人人妻,人人澡人人爽秒播 | 性色av乱码一区二区三区2| 中文欧美无线码| 日韩中文字幕视频在线看片| 久久久久久久久免费视频了| 黑人欧美特级aaaaaa片| 婷婷色综合www| 中文字幕亚洲精品专区| h视频一区二区三区| 国产免费现黄频在线看| 日韩大码丰满熟妇| 一级毛片 在线播放| 人人澡人人妻人| 国产精品久久久久成人av| 久久久久久人人人人人| 久久精品熟女亚洲av麻豆精品| 夫妻性生交免费视频一级片| 男女边摸边吃奶| 欧美黄色淫秽网站| 亚洲精品av麻豆狂野| www日本在线高清视频| 国产高清视频在线播放一区 | 亚洲欧美日韩另类电影网站| 伊人久久大香线蕉亚洲五| 国产精品香港三级国产av潘金莲 | 欧美日韩视频高清一区二区三区二| 亚洲精品日本国产第一区| 午夜视频精品福利| 精品人妻在线不人妻| 叶爱在线成人免费视频播放| 亚洲av国产av综合av卡| 国产成人免费观看mmmm| 搡老乐熟女国产| 亚洲精品日本国产第一区| 中文字幕亚洲精品专区| 少妇被粗大的猛进出69影院| 人体艺术视频欧美日本| 亚洲一卡2卡3卡4卡5卡精品中文| 一边亲一边摸免费视频| 国产成人精品久久二区二区免费| 少妇 在线观看| 丁香六月天网| 亚洲国产日韩一区二区| a级毛片在线看网站| 一区二区av电影网| 国产人伦9x9x在线观看| 大片免费播放器 马上看| 国产精品免费视频内射| 国产成人免费无遮挡视频| 国产1区2区3区精品| 国产视频一区二区在线看| 91成人精品电影| 岛国毛片在线播放| 欧美亚洲 丝袜 人妻 在线| 91麻豆av在线| 高清不卡的av网站| 一边摸一边抽搐一进一出视频| 婷婷色av中文字幕| 亚洲第一av免费看| 女性生殖器流出的白浆| 丝袜人妻中文字幕| 一本色道久久久久久精品综合| 久久精品久久精品一区二区三区| 91精品伊人久久大香线蕉| 亚洲成人免费电影在线观看 | 欧美日韩福利视频一区二区| 一级毛片电影观看| 老司机在亚洲福利影院| 日本91视频免费播放| 国产精品九九99| 午夜av观看不卡| 多毛熟女@视频| 国产在视频线精品| 晚上一个人看的免费电影| 免费看不卡的av| 男女免费视频国产| 精品国产一区二区久久| 两个人看的免费小视频| 9热在线视频观看99| 亚洲第一av免费看| 成在线人永久免费视频| 后天国语完整版免费观看| 欧美日韩亚洲国产一区二区在线观看 | av欧美777| 人体艺术视频欧美日本| 欧美日韩一级在线毛片| 精品一区二区三区av网在线观看 | 久久久国产精品麻豆| 国产精品偷伦视频观看了| 国产亚洲欧美精品永久| 人妻人人澡人人爽人人| 伊人久久大香线蕉亚洲五| 久久久久精品人妻al黑| 超色免费av| 中文字幕最新亚洲高清| 秋霞在线观看毛片| 久久精品aⅴ一区二区三区四区| 最近最新中文字幕大全免费视频 | 久久人人97超碰香蕉20202| 亚洲精品美女久久久久99蜜臀 | 久久人人爽人人片av| 久久亚洲精品不卡| 国产福利在线免费观看视频| 在线av久久热| 91九色精品人成在线观看| 乱人伦中国视频| www.999成人在线观看| 波多野结衣一区麻豆| 久久ye,这里只有精品| 狂野欧美激情性bbbbbb| 欧美黑人精品巨大| 在线看a的网站| 日韩中文字幕视频在线看片| 久久精品国产综合久久久| av线在线观看网站| 国产一区二区激情短视频 | 久久免费观看电影| 狂野欧美激情性xxxx| 高清欧美精品videossex| 十八禁高潮呻吟视频| 成在线人永久免费视频| 亚洲欧美成人综合另类久久久| 久久 成人 亚洲| 中文字幕制服av| 中文字幕人妻丝袜一区二区| 国产精品偷伦视频观看了| 亚洲国产精品一区三区| 侵犯人妻中文字幕一二三四区| 一区二区日韩欧美中文字幕| 免费观看av网站的网址| 七月丁香在线播放| 日韩 亚洲 欧美在线| 美女中出高潮动态图| 免费在线观看完整版高清| 久久天躁狠狠躁夜夜2o2o | 丁香六月天网| 国产福利在线免费观看视频| 精品第一国产精品| 日韩 亚洲 欧美在线| 99re6热这里在线精品视频| 亚洲人成电影免费在线| 50天的宝宝边吃奶边哭怎么回事| 国产一级毛片在线| 捣出白浆h1v1| 香蕉国产在线看| 伦理电影免费视频| 一级a爱视频在线免费观看| 1024香蕉在线观看| 国产精品偷伦视频观看了| 一级毛片女人18水好多 | 欧美在线一区亚洲| 国产激情久久老熟女| 日韩 亚洲 欧美在线| 午夜福利乱码中文字幕| 亚洲激情五月婷婷啪啪| 久久ye,这里只有精品| 另类精品久久| 色94色欧美一区二区| 精品一区二区三区四区五区乱码 | 久久久精品区二区三区| 国产精品九九99| 久久ye,这里只有精品| 一边摸一边抽搐一进一出视频| 悠悠久久av| 人人妻人人爽人人添夜夜欢视频| 日韩大码丰满熟妇| 看免费av毛片| 韩国精品一区二区三区| 香蕉丝袜av| 又粗又硬又长又爽又黄的视频| 夜夜骑夜夜射夜夜干| 精品一区二区三卡| 久久99一区二区三区| 色综合欧美亚洲国产小说| 久久久久国产精品人妻一区二区| 欧美黄色片欧美黄色片| 后天国语完整版免费观看| 91精品伊人久久大香线蕉| 午夜免费成人在线视频| 51午夜福利影视在线观看| 欧美日韩亚洲国产一区二区在线观看 | 高清视频免费观看一区二区| 国产精品偷伦视频观看了| av国产精品久久久久影院| 亚洲伊人色综图| 久久人妻熟女aⅴ| 高清av免费在线| 又紧又爽又黄一区二区| 欧美黑人欧美精品刺激| 女警被强在线播放| 午夜91福利影院| 97在线人人人人妻| 性色av乱码一区二区三区2| 国产精品 欧美亚洲| 精品少妇一区二区三区视频日本电影| 亚洲av美国av| 99热国产这里只有精品6| 国语对白做爰xxxⅹ性视频网站| 国产真人三级小视频在线观看| 交换朋友夫妻互换小说| www.熟女人妻精品国产| 999精品在线视频| 99国产综合亚洲精品| 多毛熟女@视频| 欧美日韩黄片免| 色94色欧美一区二区| 一本—道久久a久久精品蜜桃钙片| 国产片特级美女逼逼视频| 欧美激情 高清一区二区三区| 免费观看a级毛片全部| 好男人视频免费观看在线| 午夜福利视频在线观看免费| 国产精品久久久久久人妻精品电影 | 国产成人a∨麻豆精品| 欧美精品高潮呻吟av久久| 久久天躁狠狠躁夜夜2o2o | 18禁国产床啪视频网站| 制服诱惑二区| 国产99久久九九免费精品| 丁香六月天网| 十八禁人妻一区二区| 国产成人免费无遮挡视频| tube8黄色片| 丝袜人妻中文字幕| av在线播放精品| 国产日韩欧美亚洲二区| 日韩av不卡免费在线播放| 久久精品久久精品一区二区三区| 新久久久久国产一级毛片| 久久精品成人免费网站| 欧美日韩视频高清一区二区三区二| 好男人电影高清在线观看| 欧美精品人与动牲交sv欧美| xxxhd国产人妻xxx| 亚洲第一av免费看| 久久精品亚洲av国产电影网| 精品卡一卡二卡四卡免费| kizo精华| 亚洲国产av新网站| 九色亚洲精品在线播放| 亚洲精品美女久久av网站| 极品人妻少妇av视频| 久久人人爽人人片av| 人人妻人人澡人人爽人人夜夜| 亚洲欧洲日产国产| 亚洲精品国产区一区二| 国产熟女欧美一区二区| 久久影院123| 亚洲av成人不卡在线观看播放网 | 大话2 男鬼变身卡| 精品一区在线观看国产| 久久精品国产a三级三级三级| 一级,二级,三级黄色视频| 国产免费视频播放在线视频| 国产xxxxx性猛交| av网站免费在线观看视频| 黄色毛片三级朝国网站| 日韩精品免费视频一区二区三区| 黄色片一级片一级黄色片| av国产精品久久久久影院| 人人妻,人人澡人人爽秒播 | 国产激情久久老熟女| 欧美亚洲日本最大视频资源| 老司机影院毛片| 久久久久精品国产欧美久久久 | netflix在线观看网站| 美女午夜性视频免费| 亚洲美女黄色视频免费看| 婷婷色综合www| 亚洲男人天堂网一区| 在线av久久热| 国产无遮挡羞羞视频在线观看| 久久人妻福利社区极品人妻图片 | 久久亚洲精品不卡| 婷婷色综合大香蕉| 亚洲一区中文字幕在线| 欧美黑人欧美精品刺激| 精品欧美一区二区三区在线| 飞空精品影院首页| 久久久久久久久久久久大奶| 亚洲情色 制服丝袜| 天天躁狠狠躁夜夜躁狠狠躁| 麻豆av在线久日| 午夜91福利影院| 午夜免费男女啪啪视频观看| 波多野结衣一区麻豆| 亚洲一区中文字幕在线| 黄色一级大片看看| 777米奇影视久久| 免费在线观看影片大全网站 | 老司机午夜十八禁免费视频| 国产精品一区二区精品视频观看| 国产一区二区激情短视频 | 精品欧美一区二区三区在线| 热re99久久精品国产66热6| 欧美激情高清一区二区三区| 久久ye,这里只有精品| 国产野战对白在线观看| 中文欧美无线码| 人妻人人澡人人爽人人| 黄片小视频在线播放| 亚洲成国产人片在线观看| 国产欧美日韩一区二区三区在线| 永久免费av网站大全| 久久精品久久精品一区二区三区| 涩涩av久久男人的天堂| 国产成人精品久久二区二区91| 高清不卡的av网站| 精品一品国产午夜福利视频| 只有这里有精品99| 欧美人与性动交α欧美软件| 两个人免费观看高清视频| 一区二区av电影网| a级毛片黄视频| 国产在线免费精品| 国产男女超爽视频在线观看| 色综合欧美亚洲国产小说| 亚洲av综合色区一区| 国产伦人伦偷精品视频| 我的亚洲天堂| 精品人妻在线不人妻| 黄色片一级片一级黄色片| 亚洲精品第二区| 大香蕉久久网| 国产免费一区二区三区四区乱码| 亚洲精品中文字幕在线视频| 交换朋友夫妻互换小说| 好男人视频免费观看在线| 在线精品无人区一区二区三| 国产成人啪精品午夜网站| 好男人电影高清在线观看| 免费高清在线观看视频在线观看| 我要看黄色一级片免费的| 国产三级黄色录像| 在线观看国产h片| 日韩电影二区| 国产成人欧美在线观看 | 久热爱精品视频在线9| 肉色欧美久久久久久久蜜桃| 少妇猛男粗大的猛烈进出视频| 亚洲精品一二三| 免费久久久久久久精品成人欧美视频| 成年av动漫网址| 欧美成狂野欧美在线观看| 手机成人av网站| 精品国产一区二区三区久久久樱花| 亚洲国产精品一区三区| 精品一区二区三卡| 国产成人免费观看mmmm| 亚洲精品国产区一区二| 色精品久久人妻99蜜桃| 欧美国产精品va在线观看不卡| 久久国产精品大桥未久av| 在线观看免费高清a一片| 两个人免费观看高清视频| 18禁裸乳无遮挡动漫免费视频| 久久人人97超碰香蕉20202| 亚洲色图 男人天堂 中文字幕| 一级黄片播放器| 人成视频在线观看免费观看| 国产精品熟女久久久久浪| 久久久国产精品麻豆| av国产精品久久久久影院| 久久亚洲国产成人精品v| 国产男女内射视频| 国产在线观看jvid| 操美女的视频在线观看| 日韩制服丝袜自拍偷拍| 久久精品亚洲av国产电影网| 97精品久久久久久久久久精品| 黄频高清免费视频| 国产成人a∨麻豆精品| 欧美黑人欧美精品刺激| av一本久久久久| 国产av一区二区精品久久| 啦啦啦在线观看免费高清www| av在线app专区| 日韩制服骚丝袜av| 亚洲精品国产区一区二| 香蕉国产在线看| 欧美日韩黄片免| 在线观看免费日韩欧美大片| 亚洲五月色婷婷综合| 纵有疾风起免费观看全集完整版| 中文字幕精品免费在线观看视频| 黑丝袜美女国产一区| 丰满少妇做爰视频| videosex国产| 久久国产亚洲av麻豆专区| 大香蕉久久网| av国产精品久久久久影院| www.999成人在线观看| av天堂久久9| 宅男免费午夜| 久久国产精品人妻蜜桃| 免费在线观看完整版高清| 精品第一国产精品| 亚洲av美国av| 国产精品一区二区免费欧美 | 亚洲,欧美,日韩| 色视频在线一区二区三区| 一二三四社区在线视频社区8| 久久综合国产亚洲精品| 午夜福利,免费看| 国产日韩一区二区三区精品不卡| 国产91精品成人一区二区三区 | 五月开心婷婷网| 大片免费播放器 马上看| 久久久国产精品麻豆| 精品国产国语对白av| 欧美日韩综合久久久久久| 一区二区三区乱码不卡18| 人体艺术视频欧美日本| 最近手机中文字幕大全| 国产亚洲精品久久久久5区| 9191精品国产免费久久| 成在线人永久免费视频| 日韩免费高清中文字幕av| 波野结衣二区三区在线| 精品久久久精品久久久| 少妇裸体淫交视频免费看高清 | 乱人伦中国视频| 久久久久久人人人人人| 欧美成狂野欧美在线观看| 亚洲精品国产区一区二| 欧美日韩一级在线毛片| 国产深夜福利视频在线观看| 日韩制服骚丝袜av| 日韩制服丝袜自拍偷拍| 日韩制服骚丝袜av| 在线观看人妻少妇| 大片电影免费在线观看免费| 国产主播在线观看一区二区 | 在线观看免费视频网站a站| 久久久久精品国产欧美久久久 | 亚洲av在线观看美女高潮| 女人精品久久久久毛片| 美女中出高潮动态图| 欧美国产精品一级二级三级| 涩涩av久久男人的天堂| 国产熟女午夜一区二区三区| 国产爽快片一区二区三区| 日本午夜av视频| 亚洲熟女毛片儿| 国产成人精品久久二区二区91| 亚洲午夜精品一区,二区,三区| 1024视频免费在线观看| 亚洲精品在线美女| 婷婷色综合大香蕉| av线在线观看网站| 成年女人毛片免费观看观看9 | av在线老鸭窝| 亚洲综合色网址| 18禁国产床啪视频网站| 精品少妇久久久久久888优播| 国产在线视频一区二区| 亚洲中文日韩欧美视频| 最近中文字幕2019免费版| www日本在线高清视频| 麻豆av在线久日| 悠悠久久av| e午夜精品久久久久久久| 精品一区二区三卡| 亚洲欧洲精品一区二区精品久久久| 精品少妇黑人巨大在线播放| 大片免费播放器 马上看| 国产亚洲精品久久久久5区| 精品福利观看| 大香蕉久久成人网| 18禁观看日本| 精品久久蜜臀av无| 少妇被粗大的猛进出69影院| 久久午夜综合久久蜜桃| 在线天堂中文资源库| 欧美乱码精品一区二区三区| 国产成人精品久久二区二区91| 国产日韩欧美视频二区| 女人爽到高潮嗷嗷叫在线视频| 性色av乱码一区二区三区2| 水蜜桃什么品种好| 国产精品成人在线|