• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quantum correlation enhanced bound of the information exclusion principle

    2023-10-11 07:54:50JunZhang張鈞KanHe賀衎HaoZhang張昊andChangShuiYu于長水
    Chinese Physics B 2023年9期
    關(guān)鍵詞:長水張昊張鈞

    Jun Zhang(張鈞), Kan He(賀衎), Hao Zhang(張昊), and Chang-Shui Yu(于長水)

    1College of Data Science,Taiyuan University of Technology,Taiyuan 030024,China

    2College of Mathematics,Taiyuan University of Technology,Taiyuan 030024,China

    3College of Information and Computer,Taiyuan University of Technology,Taiyuan 030024,China

    4School of Physics,Dalian University of Technology,Dalian 116024,China

    Keywords: quantum correlation,information exclusion principle,entropic uncertainty relation

    1.Introduction

    Quantum information theory is an important tool to deal with all kinds of the quantum problem[1]and is widely used in various quantum information processing tasks, such as quantum key distribution, quantum cryptography, and entanglement witness.[2–20]Measurement plays a vital role in quantum theory.It is the interface between the classical world and the quantum world,which is characterized by noncommutativity and superposition.However, for any given measurement,superposition and noncommutativity necessarily lead to uncertainty in the outcomes of measurements.Simultaneously,it produces another critical quantity, information.From the viewpoint of quantum information,Shannon entropy could be used to quantify the amount of uncertainty about the observables.Deutsch[21]quantified uncertainty in terms of Shannon entropy and derived the entropic uncertainty relation for any pair of observables.[22]It describes the limitations of our ability to simultaneously predict the measurement outcomes of non-commuting observables in quantum theory.Later, Kraus conjectured the improved result.[23]Maassen and Uffink[24]gave the tighter entropic uncertainty relations:

    whereH(X) (H(Y)) is the Shannon entropy of measurement outcomes when a measurement of observableX(Y)is performed on a stateρ, andc= maxi,j|〈xi|yj〉|2quantifies the complementarity of the non-degenerate observablesXandYwith|xi〉,|yj〉denoting their eigenvectors, respectively.Subsequently, the entropy uncertainty relation has been extensively studied.[25–39]Based on the accessible information about a quantum system represented by an ensemble of states,Hall first generalizes the bound of the information exclusion principle.[40]Suppose that for the quantum ensemble{pi,ρi},the corresponding quantum state formula isρε=∑i piρi,subject to the mutual information corresponding to the measurement ofAon the quantum stateρε, then we haveI(A|ε)=S(A|ρε)-∑i piS(A|ρi),whereS(A|ρ)is the associated entropy defined asS(A|ρ)=-∫dap(a|ρ)logp(a|ρ).For observablesΠi,(i=1,2,...,N),Hall proposed the general form inequalities for the information exclusion principle

    with the nontrivial quantum boundJ.It implies that for any selected observables the information gain can be maximized at the expense of the observables’complementary.

    Acting as the best-known information exclusion principle, it has not been studied as much as quantum uncertainty relations.[41,42]Subsequently,Grudkaet al.considered the observablesXandYthat are performed on system A,andZis a classical register that may be correlated to A.They improved the bound and conjectured a stronger information exclusion relation[43]

    with the quantum mutual informationI(X(Y):Z)and the sum over the largestdterms of the matrix|〈xi|yj〉|2.In what follows,we describe a stronger version of the information exclusion principle,proved by Coles and Piani,that can also be extended to the much more general case of quantum memory.[44]

    whereH(A|B)=H(ρAB)-H(ρB)is the quantum conditional entropy and(Π, ~Π)stands for(X(Y),Y(X)).In addition,they further explained the distinction between the complementarity of uncertainty and the complementarity of information.Namely, to obtain a state-independent bound for uncertainty relations.It must consider the subspace with the least complementarity whilst concerning the various subspaces that compose the space, i.e., it is the overall complementarity, and it formulates the information exclusion relations.In other words,for uncertainty relations,a trivial bound will be generated whilst the information exclusion principle will be a nontrivial bound.Considering the multiple measurements,Zhanget al.gave the quantum memory-assisted information exclusion principle as[45]

    where

    However,the above model focuses on the bipartite quantum state for multiple measurements.It means that one part is the measured subsystem which is measured by multiple measurements, and the other part is the quantum memory which can store measurement information.Thus, it will be interesting to find out the information exclusion principle in multiple quantum states for multiple measurements.Inspired by the ideas of monogamy or decoupling which is close to quantum cryptography, in this paper we would like to split the quantum memory intoNparts compared to the bipartite quantum state, and present multiple quantum memory-assisted information exclusion principle for multiple measurements.It is found that the upper bound includes the complementarity of the observables,quantum discord,and quantum condition entropy, while the lower bound consists of the complementarity of the observables and the complementarity of uncertainty.Thus,there exists a relationship between the complementarity of uncertainty and the complementarity of information.In addition, the bounds of the complementarity of uncertainty and the bounds of the quantum discord can exist as essential factors to enhance the bounds of each other.

    The paper is organized as follows.Section 2 gives the bounds of the multiple quantum memory-assisted entropic information exclusive principle for multiple measurements and the bounds of the tripartite quantum memory-assisted entropic information exclusive principle for multiple measurements,and in Section 3,the application is given to examine the lower and upper bounds.Finally,the conclusion is drawn.

    2.The multiple quantum memory assisted information exclusion principle for multiple measurements

    Firstly, we briefly describe an information gain game amongN+1 participants,Alice(A),and herNfriends(Bi,i ∈D:={1,2,...,N}).Suppose that Alice’s friends prepare a composite quantum stateρAB1B2...BNin?N+1d-dimensional Hilbert space and then send the particleAto Alice.Alice and her friends agree on a group of measurements{Πi},i ∈Dwith|iα〉 denotingαth eigenvector of theΠi.Subsequently, Alice randomly chooses one measurementΠiand performs it on herself.She will obtain the corresponding measurement outcomes.Then,she announces her choice to her friendBi.They try to predict the information gained about Alice’s measurement outcomes.

    During the processing of measurement, when Alice puts the measurement{Πi}on herself, it will destroy the quantum correlation between her and her friendBi.The quantum correlation (quantum discord) can be defined as the difference between the total correlation and classical correlation,that is,[47,48]

    whereI(A:Bm)=H(ρA)+H(ρBm)-H(ρABm)is the total correlation,andJA(ρABm)is the classical correlation that can be defined as

    with the mutual informationI(Ω:Bm)=H(ρΩ)+H(ρBm)-H(ρΩBm)of the post-measurement state

    According to these rules of the game, based on the entropic uncertainty relation for multiple measurements,we obtain the multiple quantum memory-assisted information exclusion principle for multiple measurements.

    Theorem 1The subsystemAof the composite quantum stateρAB1B2...BNis measured by the set of observables{Πi},i ∈D:={1,2,...,N}.The multiple quantum memoryassisted information exclusion principle for multiple measurements will be restricted by the observables’complementarity,the conditional von Neumann entropy, and the quantum discord.

    where the upper bound and lower bound are,respectively,

    with??given by Eq.(8).

    ProofBased on the definitions of the quantum mutual informationI(A:B)=H(ρA)+H(ρB)-H(ρAB)and the quantum condition entropyH(A|B) =H(ρAB)-H(ρB), one can obtain

    Based on the relation (15), the uncertainties of the multiple measurements in the presence of the multiple quantum memory can be expressed as

    In the last equality, while we add the quantum mutual informationI(A:Bk)and delete it,the equality holds.

    Regrouping the terms yields

    Due to the inequalityH(Π)≤log2d,the upper bounds of the information exclusion principleU?holds.

    For the lower bounds of the information exclusion principle, we also substitute the relation (15) into the uncertainties of the multiple measurements in the presence of the multiple quantum memory,it will arrive at

    Rearranging the relation(18),we have

    The proof is finished.

    Corollary 1The shareability of quantum discord among different parties of theN+1 composite quantum system can be constrained by the entropic uncertainty relation

    For the tripartite pure quantum stateρABCor the tripartite mixed quantum stateρABC=|ψ〉A(chǔ)(BC)L ?|ψ〉A(chǔ)(BC)R, the shareability of quantum discord among different parties can be given by

    with ~δ=??+H(X|B)+H(Y|C)-H(A|B)-H(A|C).

    ProofThe proof is evident.We rearrange the elements of inequality in Theorem 1,and it will arrive at Eq.(20).For the tripartite pure quantum stateρABCor the tripartite mixed quantum stateρABC=|ψ〉A(chǔ)(BC)L ?|ψ〉A(chǔ)(BC)R,it means that there exist two observablesXandYoperated on the subsystemA,the result will be reduced to

    We can obtain

    with ~δ=H(X|B)+H(Y|C)-H(A|B)-H(A|C)-??.

    Notice that there exists the relationH(ρA)=QA(ρA:BC)for all tripartite pure quantum state|ψ〉A(chǔ)BC.For the mixed quantum stateρABC, there exists a factorizationHBC=H(BC)L ?H(BC)Rin the Hilbert spaceHBC, thus the mixed quantum stateρABC=|ψ〉A(chǔ)(BC)L ?|ψ〉A(chǔ)(BC)R, the relationQA(ρA:BC)=QA(|ψ〉A(chǔ)(BC)L)=H(ρA)holds.[49]It will arrive at the relation(21).The proof is completed.

    It is worth noting that, from this relation, one can find that the sum of the quantum discordQA(ρAB) andQA(ρAC)of the tripartite quantum stateρABCwill be restricted by theQA(ρA:BC) and the parameter ~δwhich contains the uncertainties of the measurementsXandYand the incompatibility of the measurements??excluding the effects of quantum entanglementH(A|B) andH(A|C).However, in Ref.[50],the shareability of quantum discord among different parties of a composite system is given byQA(ρAB)+QA(ρAC)≤

    δ+QA(ρA:BC)withδ=??+H(X|B)+H(Y|C)-H(A|B).It is evident that ~δ ≤δ,thus the bound of Corollary 2 is tighter than the result of Ref.[50].Notably,the shareability of quantum discord among different parties of the tripartite quantum system is consistent with the recent results in Ref.[51].

    Corollary 2The relation between the complementarity of uncertainty and the complementarity of information

    ProofThe proof is evident.We rearrange the elements of inequality in Theorem 1,and it will arrive at Eq.(24).

    Next, we derive the tripartite quantum memory-assisted information exclusion principle for multiple measurements.For tripartite quantum systemρABC, the multiple measurementsNcan be randomly divided into two partsNBandNC,which satisfyNB+NC=N.Suppose thatNBmeasurements are performed on subsystemA, Alice tells her choice to Bob,B.In contrast,NCmeasurements are performed on subsystemA; Alice announces her choice to Charlie,C.Subsequently,Bob and Charlie try to quantify the information gained from Alice’s measurement outcomes.There exists the following information exclusion principle.

    Theorem 2For any tripartite quantum stateρABCmeasured by the set of observables{Πi,i=1,2,...,N},the quantum memory-assisted information exclusion principle for multiple measurements will be given by

    where the lower and upper bounds are,respectively,

    with(Ξ, ~Ξ)standing for(B,C)or(C,B).It is equivalent to

    ProofFor the lower bounds of the tripartite quantum memory-assisted information exclusion principle for multiple measurements, we substitute the relation (15) into the uncertainties of the multiple measurements in the presence of the multiple quantum memory,it will arrive at

    where(Ξ, ~Ξ)stands for(B,C)or(C,B).Rearranging the relation(27),we have

    For the upper bounds of the tripartite quantum memory assisted information exclusion principle for multiple measurements, we start from the uncertainties of the multiple measurements in the presence of the tripartite quantum memory in terms of relation(15),

    Regrouping the terms yields

    The proof is completed.

    One will find this lower bound is similar to the result in Theorem 1; that is, the incompatibility of the measurements??,the quantum discord between the measured subsystem and each unmeasured subsystem,and the conditional quantum entropy in the lower bound also exist.It is evident that the quantum measurements performed on subsystemAbring the uncertainties of the measurements while the quantum correlation of the quantum system is destroyed simultaneously.This result could reveal that the information gain corresponding to the measurement can be maximized only at the expense of the information gains corresponding to complementary observables and quantum correlations.In other words,the quantum correlation within the composite quantum system is also restricted by the uncertainties of the measurements.According to this division and combination idea,it can be extended to multiple quantum states that the number of measurements is more than the number of quantum memory-assisted systems.

    3.Applications for three projective measurements

    As applications, in order to verify the effectiveness of the information exclusion principle, we consider three two-dimensional observablesΠ1=|0〉〈1|+|1〉〈0|,Π2=-i|0〉〈1|+i|1〉〈0|,Π3=|0〉〈0|-|1〉〈1|measured on the generalized W state which is given by

    whereθ ∈[0,2π],φ ∈[0,π],andφ ∈[0,π].

    Fig.1.The difference between the upper bound U? and the complementarity of information C?(Π)versus the parameters θ and φ of the quantum state.

    Fig.2.The difference between the complementarity of information C?(Π)and the lower bound L? versus the parameters θ and φ of the quantum state.

    Figure 1 shows the difference between the complementarity of information of the three two-dimensional observables and the upper bound given by Theorem 1 versus the parametersθandφof the quantum state withφ=π/3.Figure 2 similarly shows the difference between the complementarity of information and the lower bound given by Theorem 1.The differences are always positive with the increasing parametersθandφ.It is illustrated that,for the generalized W state,the information gained from the observables are well bounded by the effective upper and lower bounds.Namely,the information gain corresponding to the selected observablesΠi(i=1,2,3)can be maximized at the expense of the information carried by complementary observables,quantum discord,and the conditional quantum entropy,which are quantities between the observed subsystem and the quantum memory-assisted subsystems.Figure 3 shows the relationship between the complementarity of uncertainty and the complementarity of information versusθfor the quantum state withφ=π/8 andφ=π/3.It indicates that the lower bound depends on the complementarity of the observables and the conditional quantum entropy of subsystemρAand shows that the limitations on our ability to simultaneously predict the measurement outcomes and information gained from non-commuting observables.

    Fig.3.The sum of the complementarity of uncertainty CU(Π)and the complementarity of information C?(Π) with the lower bound versus the parameter θ of the quantum state.

    4.Conclusion

    As the fundamental features of quantum information theory, we mainly consider the multiple quantum memoryassisted information exclusion principle for multiple measurements.The nontrivial upper bound can be determined by the complementary of measurements, quantum discord, and the conditional quantum entropy,which are quantities between the observed subsystem and the quantum memory-assisted subsystems.They describe the effects of quantum correlation(including quantum discord and quantum entanglement) on the information exclusion principle.They imply that the information gain corresponding to any selected observables can be maximized only at the expense of the information gains corresponding to the observables’ complementary and quantum correlations.In addition, there exists a relationship between the complementarity of uncertainty and the complementarity of information which describes the limitations on our ability to simultaneously predict the measurement outcomes and information gained from non-commuting observables in quantum theory.What’s more,the shareability of quantum discord among different parties of the composite quantum system is restricted by the complementarity of uncertainty.As a consequence,the results shed new light on the quantum entropic uncertainty relation, information exclusion principle, and quantum correlation.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant Nos.12271394, 11775040,and 12011530014), the Natural Science Foundation of Shanxi Province, China (Grant Nos.201801D221032 and 201801D121016),the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (Grant No.2019L0178), the Key Research and Development Program of Shanxi Province(Grant No.202102010101004),and the China Scholarship Council.

    猜你喜歡
    長水張昊張鈞
    書法欣賞
    求知(2023年2期)2023-03-01 12:35:50
    Prompt acceleration of a μ+ beam in a toroidal wakefield driven by a shaped steeprising-front Laguerre-Gaussian laser pulse
    Quantifying entanglement in terms of an operational way?
    等你團圓
    人文天下(2020年4期)2020-04-10 06:50:19
    愛情順風(fēng)車
    一道考題
    My Dream Weekends
    張鈞甯:在運動中綻放自己
    幸福(2017年18期)2018-01-03 06:34:40
    不瘋魔不制茶
    昆明長水國際機場
    云南畫報(2015年1期)2015-01-06 08:28:51
    国产视频内射| 中文字幕久久专区| 国产精品亚洲美女久久久| 国产免费一级a男人的天堂| 国产精品久久久久久精品电影| 我要看日韩黄色一级片| 日韩有码中文字幕| 精品久久久久久久久久免费视频| av福利片在线观看| 色在线成人网| 亚洲狠狠婷婷综合久久图片| 别揉我奶头~嗯~啊~动态视频| 久久久久精品国产欧美久久久| 国产成+人综合+亚洲专区| 久久热精品热| 国产黄a三级三级三级人| 久久久久九九精品影院| 亚洲精品乱码久久久v下载方式| 国产精品99久久久久久久久| av天堂在线播放| 有码 亚洲区| 午夜老司机福利剧场| 99久国产av精品| 国产亚洲精品av在线| 精品人妻偷拍中文字幕| 精品久久国产蜜桃| 欧美色视频一区免费| 国产 一区 欧美 日韩| 麻豆成人av在线观看| 男人舔女人下体高潮全视频| 精品免费久久久久久久清纯| 亚洲一区高清亚洲精品| 中文资源天堂在线| 国产av在哪里看| or卡值多少钱| 热99re8久久精品国产| 欧美最黄视频在线播放免费| 成人av一区二区三区在线看| 美女高潮喷水抽搐中文字幕| 十八禁人妻一区二区| 亚洲国产精品久久男人天堂| 老熟妇乱子伦视频在线观看| 国产一区二区在线观看日韩| 久久久久久久精品吃奶| 特大巨黑吊av在线直播| 欧美乱色亚洲激情| 久久国产乱子伦精品免费另类| 变态另类丝袜制服| 别揉我奶头~嗯~啊~动态视频| 看免费av毛片| 每晚都被弄得嗷嗷叫到高潮| 久久人人爽人人爽人人片va | 91在线观看av| 日韩欧美国产一区二区入口| 90打野战视频偷拍视频| 欧美色欧美亚洲另类二区| 久久久久久久久中文| 日韩精品青青久久久久久| 亚洲国产欧美人成| 很黄的视频免费| 国产在线男女| 男人舔奶头视频| 琪琪午夜伦伦电影理论片6080| 麻豆成人午夜福利视频| 窝窝影院91人妻| 亚洲成人久久性| 精品久久久久久久久av| 精品熟女少妇八av免费久了| 丁香六月欧美| 国产乱人视频| 久久久久久大精品| 国内精品久久久久久久电影| 国产精品人妻久久久久久| 久久精品人妻少妇| 噜噜噜噜噜久久久久久91| 美女 人体艺术 gogo| 国产精品人妻久久久久久| av在线观看视频网站免费| 色哟哟·www| 精品免费久久久久久久清纯| 全区人妻精品视频| 男人舔奶头视频| 亚州av有码| 99国产综合亚洲精品| 久9热在线精品视频| 国产又黄又爽又无遮挡在线| 亚洲av二区三区四区| 亚洲美女黄片视频| 天堂√8在线中文| 观看美女的网站| 久久人人爽人人爽人人片va | 人人妻,人人澡人人爽秒播| 精品人妻视频免费看| 国产一区二区三区视频了| eeuss影院久久| 久久婷婷人人爽人人干人人爱| 色综合亚洲欧美另类图片| 美女黄网站色视频| 欧美成狂野欧美在线观看| 欧美一区二区亚洲| 久久草成人影院| 久久久久免费精品人妻一区二区| 18禁黄网站禁片免费观看直播| 日本a在线网址| 国产v大片淫在线免费观看| 成人高潮视频无遮挡免费网站| 日本 av在线| 精品久久久久久久末码| 国产色爽女视频免费观看| 欧美三级亚洲精品| 九色成人免费人妻av| 亚洲成人久久爱视频| 看黄色毛片网站| 午夜福利18| 欧美一区二区亚洲| 精品99又大又爽又粗少妇毛片 | 成人av一区二区三区在线看| 国产精品自产拍在线观看55亚洲| 久久精品国产99精品国产亚洲性色| 欧美绝顶高潮抽搐喷水| 一区福利在线观看| 日韩高清综合在线| 日日夜夜操网爽| 嫩草影视91久久| 亚洲狠狠婷婷综合久久图片| 成熟少妇高潮喷水视频| 伊人久久精品亚洲午夜| 久久人人精品亚洲av| 超碰av人人做人人爽久久| 久久精品国产99精品国产亚洲性色| 伦理电影大哥的女人| 色综合亚洲欧美另类图片| 男人和女人高潮做爰伦理| 成人精品一区二区免费| 日本与韩国留学比较| 日日干狠狠操夜夜爽| 久久精品国产99精品国产亚洲性色| 亚洲av五月六月丁香网| 在线免费观看的www视频| 成人av在线播放网站| 欧美高清成人免费视频www| 亚洲成人中文字幕在线播放| 国产精品久久视频播放| 两人在一起打扑克的视频| 国产精品亚洲美女久久久| 国内揄拍国产精品人妻在线| 国模一区二区三区四区视频| 欧美一级a爱片免费观看看| 在线观看66精品国产| 久久欧美精品欧美久久欧美| 69人妻影院| av黄色大香蕉| 亚洲专区中文字幕在线| 国产高清有码在线观看视频| 欧美高清性xxxxhd video| 精品国产亚洲在线| 久久久久久大精品| 亚洲第一欧美日韩一区二区三区| 国产视频一区二区在线看| 亚洲av美国av| 一级作爱视频免费观看| 成人永久免费在线观看视频| 久久亚洲精品不卡| 欧美色视频一区免费| 亚洲一区二区三区不卡视频| 婷婷六月久久综合丁香| 在现免费观看毛片| 熟妇人妻久久中文字幕3abv| 一进一出好大好爽视频| 中文字幕精品亚洲无线码一区| 天天一区二区日本电影三级| 搡老岳熟女国产| 一区二区三区免费毛片| 小蜜桃在线观看免费完整版高清| 午夜福利欧美成人| 好男人在线观看高清免费视频| 欧美高清成人免费视频www| 少妇丰满av| 亚洲最大成人手机在线| 在线观看舔阴道视频| 搡女人真爽免费视频火全软件 | 日本精品一区二区三区蜜桃| 欧美丝袜亚洲另类 | 搡女人真爽免费视频火全软件 | a级毛片a级免费在线| 中出人妻视频一区二区| 精品一区二区三区视频在线观看免费| 听说在线观看完整版免费高清| 日本在线视频免费播放| 久久久久亚洲av毛片大全| 一个人观看的视频www高清免费观看| 十八禁国产超污无遮挡网站| 最好的美女福利视频网| 一边摸一边抽搐一进一小说| 午夜免费男女啪啪视频观看 | 国产男靠女视频免费网站| 国产精品久久久久久人妻精品电影| 日韩大尺度精品在线看网址| 搡老岳熟女国产| 成年人黄色毛片网站| 中文资源天堂在线| 亚洲av美国av| 99久国产av精品| 午夜福利在线观看免费完整高清在 | 欧美黑人巨大hd| 国产av麻豆久久久久久久| 中文字幕人成人乱码亚洲影| 久久久国产成人免费| 欧美绝顶高潮抽搐喷水| АⅤ资源中文在线天堂| 国产精品久久久久久久久免 | 啪啪无遮挡十八禁网站| 成人欧美大片| 一区福利在线观看| x7x7x7水蜜桃| 麻豆成人av在线观看| 噜噜噜噜噜久久久久久91| 黄色丝袜av网址大全| 亚洲精品在线观看二区| 18禁裸乳无遮挡免费网站照片| 18+在线观看网站| 婷婷六月久久综合丁香| 99热这里只有是精品在线观看 | 热99re8久久精品国产| 国产精品98久久久久久宅男小说| 成人特级av手机在线观看| 亚洲不卡免费看| 亚洲精品色激情综合| 简卡轻食公司| 欧美日韩综合久久久久久 | 亚洲精华国产精华精| 亚洲av中文字字幕乱码综合| 久久婷婷人人爽人人干人人爱| 美女 人体艺术 gogo| 九九在线视频观看精品| 亚洲最大成人av| 国内久久婷婷六月综合欲色啪| 嫩草影视91久久| 午夜老司机福利剧场| 国产伦在线观看视频一区| 宅男免费午夜| 人妻久久中文字幕网| 每晚都被弄得嗷嗷叫到高潮| 中国美女看黄片| 18+在线观看网站| 美女黄网站色视频| 成人亚洲精品av一区二区| 国产乱人视频| 18禁裸乳无遮挡免费网站照片| 国产精品亚洲美女久久久| 亚洲国产欧洲综合997久久,| 成熟少妇高潮喷水视频| 男人舔奶头视频| 亚洲欧美清纯卡通| 亚洲欧美日韩东京热| 有码 亚洲区| 黄色丝袜av网址大全| 免费看a级黄色片| 男插女下体视频免费在线播放| 99国产精品一区二区三区| 国产黄a三级三级三级人| 中文字幕免费在线视频6| 嫩草影视91久久| 男人的好看免费观看在线视频| 亚洲,欧美,日韩| 国产成人福利小说| 国产久久久一区二区三区| av在线观看视频网站免费| 久久午夜亚洲精品久久| 国产毛片a区久久久久| 变态另类丝袜制服| 又爽又黄a免费视频| 亚洲国产精品999在线| 国产人妻一区二区三区在| 国产黄片美女视频| 国产伦人伦偷精品视频| 波多野结衣巨乳人妻| 日韩欧美三级三区| 色尼玛亚洲综合影院| 2021天堂中文幕一二区在线观| 亚洲av免费高清在线观看| 欧美激情久久久久久爽电影| a级毛片免费高清观看在线播放| 国产大屁股一区二区在线视频| 精品人妻1区二区| 亚洲欧美清纯卡通| 欧美日本视频| 国产精品一及| 国内精品久久久久久久电影| 一区二区三区高清视频在线| 桃红色精品国产亚洲av| 成年版毛片免费区| 制服丝袜大香蕉在线| 欧美潮喷喷水| 精品乱码久久久久久99久播| 中文字幕免费在线视频6| av在线观看视频网站免费| 亚洲av免费高清在线观看| 欧美不卡视频在线免费观看| 欧美性猛交黑人性爽| 精品一区二区三区av网在线观看| 久久婷婷人人爽人人干人人爱| 免费看日本二区| 日韩欧美 国产精品| 成人无遮挡网站| 亚洲va日本ⅴa欧美va伊人久久| 亚洲国产欧美人成| 脱女人内裤的视频| 丰满人妻一区二区三区视频av| 如何舔出高潮| 精品人妻视频免费看| 午夜激情福利司机影院| 日韩人妻高清精品专区| 国产精品嫩草影院av在线观看 | 亚洲精品亚洲一区二区| 麻豆国产av国片精品| 在线天堂最新版资源| 欧美在线一区亚洲| 欧美乱色亚洲激情| 俄罗斯特黄特色一大片| 在线播放无遮挡| 成年女人永久免费观看视频| 高潮久久久久久久久久久不卡| 欧美午夜高清在线| 亚洲不卡免费看| eeuss影院久久| 男人狂女人下面高潮的视频| 午夜福利18| 亚洲欧美激情综合另类| 日韩精品青青久久久久久| 精品一区二区三区视频在线| 三级国产精品欧美在线观看| 亚洲欧美清纯卡通| 成人特级黄色片久久久久久久| 99久久无色码亚洲精品果冻| 欧美精品啪啪一区二区三区| 欧美成人性av电影在线观看| 国产免费男女视频| 欧美一区二区亚洲| 一本综合久久免费| 少妇裸体淫交视频免费看高清| 麻豆一二三区av精品| 国产国拍精品亚洲av在线观看| 国产高清三级在线| 日韩欧美三级三区| 淫妇啪啪啪对白视频| 婷婷六月久久综合丁香| 国内久久婷婷六月综合欲色啪| avwww免费| 一级av片app| 精品人妻1区二区| 一级黄片播放器| 两个人的视频大全免费| 一本一本综合久久| 国产高潮美女av| 日韩欧美精品免费久久 | 精品欧美国产一区二区三| 夜夜看夜夜爽夜夜摸| 久久天躁狠狠躁夜夜2o2o| 99国产精品一区二区三区| 天美传媒精品一区二区| 国产免费男女视频| 51午夜福利影视在线观看| 国产午夜精品论理片| 国产在视频线在精品| 欧美在线黄色| 色av中文字幕| 色噜噜av男人的天堂激情| 人妻久久中文字幕网| eeuss影院久久| 亚洲精品456在线播放app | 成人特级av手机在线观看| 免费一级毛片在线播放高清视频| 男女床上黄色一级片免费看| 国产色爽女视频免费观看| 我的女老师完整版在线观看| 亚洲av成人精品一区久久| 97超视频在线观看视频| 亚洲欧美日韩高清在线视频| 长腿黑丝高跟| 看片在线看免费视频| 国产精品三级大全| 麻豆一二三区av精品| 国产精品爽爽va在线观看网站| 免费一级毛片在线播放高清视频| 亚洲av电影在线进入| 亚洲成av人片在线播放无| 国产精品爽爽va在线观看网站| 午夜日韩欧美国产| 欧美性感艳星| 亚洲国产精品合色在线| 国产精品久久视频播放| 精品国产亚洲在线| 久99久视频精品免费| 91字幕亚洲| 一进一出抽搐动态| 亚洲乱码一区二区免费版| 亚洲成a人片在线一区二区| 日本五十路高清| 日本撒尿小便嘘嘘汇集6| 波多野结衣高清无吗| 一级黄片播放器| av在线观看视频网站免费| 亚洲欧美激情综合另类| 91久久精品电影网| 中亚洲国语对白在线视频| 啦啦啦韩国在线观看视频| 可以在线观看的亚洲视频| 白带黄色成豆腐渣| 少妇裸体淫交视频免费看高清| 十八禁国产超污无遮挡网站| www日本黄色视频网| 成人av在线播放网站| 三级国产精品欧美在线观看| 最近最新免费中文字幕在线| 赤兔流量卡办理| 久久久成人免费电影| 欧美丝袜亚洲另类 | 日本成人三级电影网站| 亚洲精品久久国产高清桃花| 12—13女人毛片做爰片一| 精品人妻熟女av久视频| 欧美三级亚洲精品| 一边摸一边抽搐一进一小说| 一区二区三区激情视频| 亚洲人与动物交配视频| 91久久精品电影网| 一本一本综合久久| ponron亚洲| 精品无人区乱码1区二区| 精品久久久久久,| 如何舔出高潮| 美女黄网站色视频| 波多野结衣巨乳人妻| 我要搜黄色片| 亚洲经典国产精华液单 | av中文乱码字幕在线| 国产69精品久久久久777片| 一级a爱片免费观看的视频| 国产久久久一区二区三区| 亚州av有码| 看片在线看免费视频| 免费看美女性在线毛片视频| 真人做人爱边吃奶动态| 欧美黑人欧美精品刺激| 男人的好看免费观看在线视频| 午夜福利视频1000在线观看| 欧美高清成人免费视频www| 久久中文看片网| 国产精品永久免费网站| 国产三级中文精品| 18禁黄网站禁片午夜丰满| 亚洲中文字幕一区二区三区有码在线看| 最后的刺客免费高清国语| 一级黄色大片毛片| 51午夜福利影视在线观看| 好看av亚洲va欧美ⅴa在| 亚洲av电影在线进入| 精品久久久久久久久久免费视频| 91麻豆精品激情在线观看国产| 久9热在线精品视频| 亚洲成人免费电影在线观看| 成人午夜高清在线视频| 国产午夜精品论理片| 啦啦啦观看免费观看视频高清| 日韩免费av在线播放| 亚洲五月婷婷丁香| 免费av不卡在线播放| 日韩av在线大香蕉| 午夜免费男女啪啪视频观看 | 91麻豆精品激情在线观看国产| 中文字幕精品亚洲无线码一区| 精品不卡国产一区二区三区| 亚洲狠狠婷婷综合久久图片| 欧美潮喷喷水| 久久精品国产亚洲av香蕉五月| 亚洲人与动物交配视频| 精品不卡国产一区二区三区| 天天躁日日操中文字幕| 99久久九九国产精品国产免费| 亚洲av第一区精品v没综合| 国产精品不卡视频一区二区 | 怎么达到女性高潮| 男女床上黄色一级片免费看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 俄罗斯特黄特色一大片| 18+在线观看网站| a级毛片免费高清观看在线播放| 窝窝影院91人妻| 精品久久久久久久久av| 免费观看精品视频网站| 免费高清视频大片| 欧美一级a爱片免费观看看| 亚洲18禁久久av| 亚洲在线观看片| 深夜精品福利| 久久久久久久亚洲中文字幕 | 亚洲一区二区三区不卡视频| 日韩欧美精品免费久久 | 日韩欧美在线二视频| 99在线人妻在线中文字幕| 国产成+人综合+亚洲专区| 日韩高清综合在线| 精品人妻1区二区| 丰满人妻熟妇乱又伦精品不卡| 少妇的逼好多水| 国产精品乱码一区二三区的特点| 男人的好看免费观看在线视频| 国产精品影院久久| 又爽又黄a免费视频| 亚洲无线在线观看| 国语自产精品视频在线第100页| 国产人妻一区二区三区在| eeuss影院久久| 中文字幕久久专区| av视频在线观看入口| 精品一区二区三区人妻视频| 首页视频小说图片口味搜索| 国产91精品成人一区二区三区| 成人精品一区二区免费| 亚洲五月天丁香| 国产高清视频在线播放一区| 欧美日韩亚洲国产一区二区在线观看| 久久人人爽人人爽人人片va | 国产一区二区三区在线臀色熟女| 网址你懂的国产日韩在线| 可以在线观看的亚洲视频| 最新中文字幕久久久久| 免费人成在线观看视频色| 成年女人永久免费观看视频| 成人精品一区二区免费| 久久精品国产清高在天天线| 亚洲内射少妇av| 欧美中文日本在线观看视频| 亚洲乱码一区二区免费版| 老司机午夜十八禁免费视频| 亚洲精品亚洲一区二区| 一进一出抽搐动态| 人人妻,人人澡人人爽秒播| 久久99热6这里只有精品| 亚洲成人精品中文字幕电影| 99久国产av精品| 一a级毛片在线观看| 亚洲精品乱码久久久v下载方式| 他把我摸到了高潮在线观看| av在线老鸭窝| 少妇的逼好多水| 看黄色毛片网站| 免费观看人在逋| 激情在线观看视频在线高清| 成人无遮挡网站| 不卡一级毛片| 18禁黄网站禁片午夜丰满| 国产三级在线视频| 一级av片app| 草草在线视频免费看| 国产在视频线在精品| 国产高清视频在线观看网站| 国产色婷婷99| 女生性感内裤真人,穿戴方法视频| 成人精品一区二区免费| 欧美日韩乱码在线| 久久久久国产精品人妻aⅴ院| 久久午夜福利片| 亚洲国产高清在线一区二区三| bbb黄色大片| 精品人妻视频免费看| 尤物成人国产欧美一区二区三区| 久久精品影院6| 91狼人影院| 欧美黑人巨大hd| 一区二区三区高清视频在线| 夜夜夜夜夜久久久久| 热99在线观看视频| 中文字幕人妻熟人妻熟丝袜美| 亚洲,欧美精品.| 天堂网av新在线| 亚洲国产欧美人成| 国产午夜精品论理片| 久久久久久久精品吃奶| 亚洲人成网站在线播放欧美日韩| 1024手机看黄色片| 午夜免费成人在线视频| 特大巨黑吊av在线直播| 国产精品一及| 国产激情偷乱视频一区二区| 乱人视频在线观看| 亚洲av五月六月丁香网| 亚洲成av人片免费观看| 波多野结衣高清无吗| 色综合欧美亚洲国产小说| 99久久精品热视频| 怎么达到女性高潮| 俄罗斯特黄特色一大片| 国产乱人伦免费视频| 真人一进一出gif抽搐免费| 亚洲 国产 在线| 国产v大片淫在线免费观看| 亚洲激情在线av| 国产av麻豆久久久久久久| 国产精品女同一区二区软件 | 国产av在哪里看| 国内精品久久久久精免费| 日本 欧美在线| 精品久久久久久,| 免费一级毛片在线播放高清视频| www.www免费av| 精华霜和精华液先用哪个| 中文字幕久久专区| 中国美女看黄片| 亚洲成人中文字幕在线播放| 少妇的逼水好多| 毛片女人毛片| 国产精品av视频在线免费观看| 国产伦一二天堂av在线观看|